Enhancement of gamma-aminobutyric acid (GABA) leve Lactobacillus futsaii CS3 as starter culture in Thai ferme

World Journal of Microbiology and Biotechnology 33, 152 DOI: 10.1007/s11274-017-2317-3

Citation Report

#	Article	IF	CITATIONS
1	Spontaneous Food Fermentations and Potential Risks for Human Health. Fermentation, 2017, 3, 49.	1.4	130
2	Tuna condensate as a promising low-cost substrate for glutamic acid and GABA formation using Candida rugosa and Lactobacillus futsaii. Process Biochemistry, 2018, 70, 29-35.	1.8	17
3	Substrate sustained release-based high efficacy biosynthesis of GABA by Lactobacillus brevis NCL912. Microbial Cell Factories, 2018, 17, 80.	1.9	51
4	Health-Promoting Fermented Foods. , 2019, , 399-418.		7
5	Production of GABAâ€enriched honey syrup using Lactobacillus bacteria isolated from honey bee stomach. Journal of Food Processing and Preservation, 2019, 43, e14054.	0.9	9
6	A metagenomic analysis of the relationship between microorganisms and flavor development in Shaoxing mechanized huangjiu fermentation mashes. International Journal of Food Microbiology, 2019, 303, 9-18.	2.1	116
7	Identification, Classification and Screening for γ-Amino-butyric Acid Production in Lactic Acid Bacteria from Cambodian Fermented Foods. Biomolecules, 2019, 9, 768.	1.8	20
8	Use of Streptococcus thermophilus for the in situ production of Î ³ -aminobutyric acid-enriched fermented milk. Journal of Dairy Science, 2020, 103, 98-105.	1.4	34
9	γ-Aminobutyric acid found in fermented foods and beverages: current trends. Heliyon, 2020, 6, e05526.	1.4	51
10	CHARACTERIZATION OF LACTIC ACID BACTERIA AND ANTIMICROBIAL ACTIVITY IN SUI WU'U FROM BAJAWA DISTRICT, NUSA TENGGARA TIMUR, INDONESIA. Asian Journal of Pharmaceutical and Clinical Research, 0, , 44-49.	0.3	0
11	African Sorghum-Based Fermented Foods: Past, Current and Future Prospects. Nutrients, 2020, 12, 1111.	1.7	86
12	Isolation of Î ³ -Aminobutyric Acid Producing <i>Lactobacillus brevis</i> T118 from <i>Sun-Tae Jeotgal</i> and Its Clutamate Decarboxylase Gene Cloning. Journal of Agriculture & Life Science, 2020, 54, 85-92.	0.1	5
13	Microbial bioprocesses for production of nutraceuticals and functional foods. , 2022, , 1-29.		1
14	Overexpression of ORX or MCH Protects Neurological Function Against Ischemic Stroke. Neurotoxicity Research, 2022, 40, 44-55.	1.3	1
15	Improved Survival of Freeze-Dried Lactobacillus pentosus SY130 and Applied as a Co-culture Starter with Lactobacillus plantarum KJ03 for Fermenting Stink Bean (Sataw-Dong). Indian Journal of Microbiology, 2022, 62, 215-224.	1.5	2
16	A comprehensive investigation into the production of gamma-aminobutyric acid by Limosilactobacillus fermentum NG16, a tuna gut isolate. Acta Alimentaria, 2022, 51, 302-311.	0.3	0
17	The Role and Significance of Bacillus and Lactobacillus Species in Thai Fermented Foods. Fermentation, 2022, 8, 635.	1.4	5
18	Asian fermented fish and meat-based products. , 2023, , 133-147.		1

ATION RED

#	Article	IF	CITATIONS
19	Increased Production of γ-Aminobutyric Acid from Brewer's Spent Grain Through <i>Bacillus</i> Fermentation. Journal of Microbiology and Biotechnology, 2022, , .	0.9	0
20	LACTIPLANTIBACILLUS PLANTARUM EK148'İN ET PROTEİNLERİ İÇEREN ORTAMDA GAMA AMİNO BÂ VE OPTİMİZASYONU. Gıda, 0, , 271-284.	lœTİRİŀ 0.1	≺ ASİT ÜR
21	Lactic acid bacterial cell factories for the production of gamma-aminobutyric acid. , 2023, , 121-152.		0

CITATION REPORT