Keratin: dissolution, extraction and biomedical applicat

Biomaterials Science 5, 1699-1735 DOI: 10.1039/c7bm00411g

Citation Report

#	Article	IF	CITATIONS
1	Biologically Inspired Materials in Tissue Engineering. Pancreatic Islet Biology, 2018, , 113-147.	0.1	1
2	Molecular mechanism and characterization of self-assembly of feather keratin gelation. International Journal of Biological Macromolecules, 2018, 107, 290-296.	3.6	30
3	Adsorbed protein on P25 nanoparticles–synthesis, characterization and electrochemical property. AIP Conference Proceedings, 2018, , .	0.3	0
4	Screening of Ionic Liquids for Keratin Dissolution by Means of COSMO-RS and Experimental Verification. ACS Sustainable Chemistry and Engineering, 2018, 6, 17314-17322.	3.2	52
5	Current and novel polymeric biomaterials for neural tissue engineering. Journal of Biomedical Science, 2018, 25, 90.	2.6	302
6	Design and Preparation of Biomass-Derived Carbon Materials for Supercapacitors: A Review. Journal of Carbon Research, 2018, 4, 53.	1.4	52
7	Benefits of Renewable Hydrogels over Acrylate- and Acrylamide-Based Hydrogels. Polymers and Polymeric Composites, 2018, , 1-47.	0.6	1
8	A new adhesive from waste wool protein hydrolysate. Journal of Environmental Chemical Engineering, 2018, 6, 6700-6706.	3.3	6
9	Borrowing From Nature: Biopolymers and Biocomposites as Smart Wound Care Materials. Frontiers in Bioengineering and Biotechnology, 2018, 6, 137.	2.0	137
10	Extraction of Keratin from Rabbit Hair by a Deep Eutectic Solvent and Its Characterization. Polymers, 2018, 10, 993.	2.0	40
11	Mild and Effective Polymerization of Dopamine on Keratin Films for Innovative Photoactivable and Biocompatible Coated Materials. Macromolecular Materials and Engineering, 2018, 303, 1700653.	1.7	10
12	Protein-Based Hydrogels. Polymers and Polymeric Composites, 2018, , 1-40.	0.6	Ο
13	Novel Eco-Friendly Method to Extract Keratin from Hair. ACS Sustainable Chemistry and Engineering, 2018, 6, 12268-12274.	3.2	30
14	Collagens of Poriferan Origin. Marine Drugs, 2018, 16, 79.	2.2	72
15	Vapor-Assisted Crosslinking of a FK/PVA/PEO Nanofiber Membrane. Polymers, 2018, 10, 747.	2.0	22
16	Dissolution of wool in the choline chloride/oxalic acid deep eutectic solvent. Materials Letters, 2018, 231, 217-220.	1.3	33
17	Keratin Film as Natural and Ecoâ€Friendly Support for Organic Optoelectronic Devices. Advanced Sustainable Systems, 2019, 3, 1900080.	2.7	19
18	Research progress on resource utilization of leather solid waste. Journal of Leather Science and Engineering, 2019, 1, .	2.7	67

ATION RED

#	Article	IF	CITATIONS
21	Drug onjugation Induced Selfâ€Assembly of Feather Keratinâ€Based Prodrug for Tumor Intracellular Reduction Triggered Drug Delivery. Particle and Particle Systems Characterization, 2019, 36, 1900189.	1.2	4
22	Uniqueness of meromorphic solutions of the difference equation $R_{1}(z)f(z+1)+R_{2}(z)f(z)=R_{3}(z)$. Advances in Difference Equations, 2019, 2019, .	3.5	1
23	Protein: a versatile biopolymer for the fabrication of smart materials for drug delivery. Journal of Chemical Sciences, 2019, 131, 1.	0.7	10
24	Overview of Proteinâ€Based Biopolymers for Biomedical Application. Macromolecular Chemistry and Physics, 2019, 220, 1900126.	1.1	50
25	Keratin-based drug-protein conjugate with acid-labile and reduction-cleavable linkages in series for tumor intracellular DOX delivery. Journal of Industrial and Engineering Chemistry, 2019, 80, 739-748.	2.9	9
26	DOX-Conjugated keratin nanoparticles for pH-Sensitive drug delivery. Colloids and Surfaces B: Biointerfaces, 2019, 181, 1012-1018.	2.5	38
27	One-Pot Synthesis of Chicken-Feather-Keratin-Based Prodrug Nanoparticles with High Drug Content for Tumor Intracellular DOX Delivery. Langmuir, 2019, 35, 8007-8014.	1.6	23
28	Using Wool Keratin as a Basic Resist Material to Fabricate Precise Protein Patterns. Advanced Materials, 2019, 31, e1900870.	11.1	54
29	Comparative study of keratin extraction from human hair. International Journal of Biological Macromolecules, 2019, 133, 382-390.	3.6	56
30	A Keratin-based biomaterial as a promising dresser for skin wound healing. Wound Medicine, 2019, 25, 100155.	2.7	10
31	Biomaterials and Applications. , 2019, , 199-287.		22
32	Keratin based thermoplastic biocomposites: a review. Reviews in Environmental Science and Biotechnology, 2019, 18, 299-316.	3.9	30
33	Keratin scaffolds with human adipose stem cells: Physical and biological effects toward wound healing. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 1044-1058.	1.3	26
34	Recent developments in biomass-derived carbon as a potential sustainable material for super-capacitor-based energy storage and environmental applications. Journal of Analytical and Applied Pyrolysis, 2019, 140, 54-85.	2.6	118
35	Natural fiber biodegradable composites and nanocomposites. , 2019, , 179-201.		17
36	Graft polymerization onto wool fibre for improved functionality. Progress in Organic Coatings, 2019, 130, 182-199.	1.9	23
37	Effect of Microwave or Ultrasound Irradiation in the Extraction from Feather Keratin. Journal of Chemistry, 2019, 2019, 1-9.	0.9	7
38	Bio-inspired keratin-based core-crosslinked micelles for pH and reduction dual-responsive triggered DOX delivery. International Journal of Biological Macromolecules, 2019, 123, 1150-1156.	3.6	32

#	Article	IF	CITATIONS
39	Keratin Production and Its Applications: Current and Future Perspective. Springer Series on Polymer and Composite Materials, 2019, , 19-34.	0.5	15
40	Extraction and Characterization of Keratin from Different Biomasses. Springer Series on Polymer and Composite Materials, 2019, , 35-76.	0.5	18
41	Benefits of Renewable Hydrogels over Acrylate- and Acrylamide-Based Hydrogels. Polymers and Polymeric Composites, 2019, , 197-243.	0.6	3
42	Protein-Based Hydrogels. Polymers and Polymeric Composites, 2019, , 1561-1600.	0.6	16
43	Preparation and characterisation of mechanically milled particles from waste alpaca fibres. Powder Technology, 2019, 342, 848-855.	2.1	29
44	Keratin-Based Biofilms, Hydrogels, and Biofibers. Springer Series on Polymer and Composite Materials, 2019, , 187-200.	0.5	11
45	Keratin as a Biopolymer. Springer Series on Polymer and Composite Materials, 2019, , 163-185.	0.5	14
46	Resource recovery from waste streams in a water-energy-food nexus perspective: Toward more sustainable food processing. Food and Bioproducts Processing, 2020, 119, 133-147.	1.8	47
47	Liquefaction of porcine hoof shell to prepare peptone substitute by instant catapult steam explosion. Journal of Bioscience and Bioengineering, 2020, 129, 467-475.	1.1	5
48	From Poultry Wastes to Quality Protein Products via Restoration of the Secondary Structure with Extended Disulfide Linkages. ACS Sustainable Chemistry and Engineering, 2020, 8, 1396-1405.	3.2	7
49	Dual crosslinked keratin-alginate fibers formed via ionic complexation of amide networks with improved toughness for assembling into braids. Polymer Testing, 2020, 81, 106286.	2.3	12
50	Evaluation of keratin biomaterial containing silver nanoparticles as a potential wound dressing in fullâ€thickness skin wound model in diabetic mice. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 334-346.	1.3	45
51	Eco-fabrication of antibacterial nanofibrous membrane with high moisture permeability from wasted wool fabrics. Waste Management, 2020, 102, 404-411.	3.7	32
52	Highly efficient extraction of large molecular-weight keratin from wool in a water/ethanol co-solvent. Textile Reseach Journal, 2020, 90, 1084-1093.	1.1	17
53	Keratin Associations with Synthetic, Biosynthetic and Natural Polymers: An Extensive Review. Polymers, 2020, 12, 32.	2.0	66
54	Environment-friendly treatment to reduce photoyellowing and improve UV-blocking of wool. Polymer Degradation and Stability, 2020, 181, 109319.	2.7	8
55	Recent trends in protein and peptide-based biomaterials for advanced drug delivery. Advanced Drug Delivery Reviews, 2020, 156, 133-187.	6.6	173
56	Enzymatic Extraction of Bioactive and Selfâ€Assembling Wool Keratin for Biomedical Applications. Macromolecular Bioscience, 2020, 20, e2000073.	2.1	27

#	Article	IF	CITATIONS
57	Development of Arabinoxylan-Reinforced Apple Pectin/Graphene Oxide/Nano-Hydroxyapatite Based Nanocomposite Scaffolds with Controlled Release of Drug for Bone Tissue Engineering: In-Vitro Evaluation of Biocompatibility and Cytotoxicity against MC3T3-E1. Coatings, 2020, 10, 1120.	1.2	37
58	The tale of a versatile enzyme: Molecular insights into keratinase for its industrial dissemination. Biotechnology Advances, 2020, 45, 107655.	6.0	29
59	Progress in Modern Marine Biomaterials Research. Marine Drugs, 2020, 18, 589.	2.2	64
60	Continuous High-Content Keratin Fibers with Balanced Properties Derived from Wool Waste. ACS Sustainable Chemistry and Engineering, 2020, 8, 18148-18156.	3.2	30
61	Optimization of keratin protein extraction from waste chicken feathers using hybrid pre-treatment techniques. Sustainable Chemistry and Pharmacy, 2020, 17, 100267.	1.6	40
62	Keratin–cinnamon essential oil biocomposite fibrous patches for skin burn care. Materials Advances, 2020, 1, 1805-1816.	2.6	20
63	Transferring feather wastes to ductile keratin filaments towards a sustainable poultry industry. Waste Management, 2020, 115, 65-73.	3.7	25
64	Effect of gelatin concentration on the characterizations and hemocompatibility of polyvinyl alcohol–gelatin hydrogel. Bio-Medical Materials and Engineering, 2020, 31, 225-234.	0.4	3
65	Microbial enzymes catalyzing keratin degradation: Classification, structure, function. Biotechnology Advances, 2020, 44, 107607.	6.0	113
66	Medical textiles. Textile Progress, 2020, 52, 1-127.	1.3	38
67	Programing Performance of Silk Fibroin Superstrong Scaffolds by Mesoscopic Regulation among Hierarchical Structures. Biomacromolecules, 2020, 21, 4169-4179.	2.6	14
68	Polymeric Hydrogel Systems as Emerging Biomaterial Platforms to Enable Hemostasis and Wound Healing. Advanced Healthcare Materials, 2020, 9, e2000905.	3.9	194
69	Extraction of keratin from unhairing of bovine hide. Chemical Engineering Communications, 2022, 209, 118-126.	1.5	5
70	Wool Keratin Photolithography as an Eco-Friendly Route to Fabricate Protein Microarchitectures. ACS Applied Bio Materials, 2020, 3, 2891-2896.	2.3	7
71	Glutathione enables full utilization of wool wastes for keratin production and wastewater decolorization. Journal of Cleaner Production, 2020, 270, 122092.	4.6	12
72	Novel versatile 3D bio-scaffold made of natural biocompatible hagfish exudate for tissue growth and organoid modeling. International Journal of Biological Macromolecules, 2020, 158, 894-902.	3.6	11
73	Does dilute nitric acid improve the removal of exogenous heavy metals from feathers? A comparative study towards the optimization of the cleaning procedure of feather samples prior to metal analysis. Ecotoxicology and Environmental Safety, 2020, 200, 110759.	2.9	8
74	From fabric to tissue: Recovered wool keratin/polyvinylpyrrolidone biocomposite fibers as artificial scaffold platform. Materials Science and Engineering C, 2020, 116, 111151.	3.8	37

#	Article	IF	CITATIONS
75	Electrospun Keratin-Polysulfone Blend Membranes for Treatment of Tannery Effluents. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	17
76	Effect of thermal treatments on the structural change and the hemostatic property of hair extracted proteins. Colloids and Surfaces B: Biointerfaces, 2020, 190, 110951.	2.5	8
77	Recent Advances in Silk Sericin/Calcium Phosphate Biomaterials. Frontiers in Materials, 2020, 7, .	1.2	27
78	Impact of the wet spinning parameters on the alpacaâ€based polyacrylonitrile composite fibers: Morphology and enhanced mechanical properties study. Journal of Applied Polymer Science, 2020, 137, 49264.	1.3	19
79	Study of Mechanisms of Recombinant Keratin Solubilization with Enhanced Wound Healing Capability. Chemistry of Materials, 2020, 32, 3122-3133.	3.2	18
80	Preparation and characterization of Keratin-PEG conjugate-based micelles as a tumor microenvironment-responsive drug delivery system. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 1163-1178.	1.9	14
81	lonic Liquid-Mediated Processing of SAIB-Chitin Scaffolds. ACS Sustainable Chemistry and Engineering, 2020, 8, 3986-3994.	3.2	12
82	Thermal responsive poly(N-isopropylacrylamide) grafted chicken feather keratin prepared via surface initiated aqueous Cu(0)-mediated RDRP: Synthesis and properties. International Journal of Biological Macromolecules, 2020, 153, 364-372.	3.6	6
83	Protein-Based Hydroxyapatite Materials: Tuning Composition toward Biomedical Applications. ACS Applied Bio Materials, 2020, 3, 3441-3455.	2.3	20
84	Keratin - Based materials for biomedical applications. Bioactive Materials, 2020, 5, 496-509.	8.6	187
85	Mechanics and hierarchical structure transformation mechanism of wool fibers. Textile Reseach Journal, 2021, 91, 496-507.	1.1	10
86	Strategies for Fabricating Protein Films for Biomaterial Applications. Advanced Sustainable Systems, 2021, 5, .	2.7	28
87	Epithelialâ€toâ€mesenchymal transition in oral squamous cell carcinoma: Challenges and opportunities. International Journal of Cancer, 2021, 148, 1548-1561.	2.3	100
88	Recent Advances in Antiinflammatory Material Design. Advanced Healthcare Materials, 2021, 10, e2001373.	3.9	35
89	Nanocomposite adhesive hydrogels: from design to application. Journal of Materials Chemistry B, 2021, 9, 585-593.	2.9	51
90	Metagenomic analysis of a keratin-degrading bacterial consortium provides insight into the keratinolytic mechanisms. Science of the Total Environment, 2021, 761, 143281.	3.9	25
91	Highly flexible, transparent film prepared by upcycle of wasted jute fabrics with functional properties. Chemical Engineering Research and Design, 2021, 146, 718-725.	2.7	11
92	Biopolymers for tissue engineering applications: A review. Materials Today: Proceedings, 2021, 41, 397-402.	0.9	69

#	Article	IF	CITATIONS
93	A keratin-based microparticle for cell delivery. Journal of Biomaterials Applications, 2021, 35, 579-591.	1.2	7
94	Tunable Protein Hydrogels: Present State and Emerging Development. Advances in Biochemical Engineering/Biotechnology, 2021, 178, 63-97.	0.6	4
95	Processing of bio-based polymers for industrial and medical applications. , 2021, , 191-238.		4
96	Role of Biodegradable Polymer-Based Biomaterials in Advanced Wound Care. , 2021, , 599-620.		1
97	Biopolymers and biocomposites: Nature's tools for wound healing and tissue engineering. , 2021, , 573-630.		5
98	Isolation and physicochemical characterization of biopolymers. , 2021, , 45-79.		7
99	Chapter 26. Animal Protein-based Soft Materials for Tissue Engineering Applications. RSC Soft Matter, 2021, , 660-683.	0.2	0
100	Applications of nanomaterials in tissue engineering. RSC Advances, 2021, 11, 19041-19058.	1.7	68
101	Promotion of feather waste recycling by enhancing the reducing power and keratinase activity of <i>Streptomyces</i> sp. SCUT-3. Green Chemistry, 2021, 23, 5166-5178.	4.6	10
102	Methods to Synthesize and Assemble Recombinant Keratins. Methods in Molecular Biology, 2021, 2347, 105-112.	0.4	0
103	Effect of wool fiber addition on the reinforcement of loose sands by microbially induced carbonate precipitation (MICP): mechanical property and underlying mechanism. Acta Geotechnica, 2021, 16, 1401-1416.	2.9	39
104	Degradation of Temminck's pangolin (Smutsia temminckii) scales with a keratinase for extraction of reproductive steroid hormones. MethodsX, 2021, 8, 101229.	0.7	7
105	Highly Thermalâ€Resistant and Biodegradable Textile Sizes from Glycols Modified Soy Proteins for Remediation of Textile Effluents. Macromolecular Materials and Engineering, 2021, 306, 2000751.	1.7	6
106	Preparing Biochars from Cow Hair Waste Produced in a Tannery for Dye Wastewater Treatment. Materials, 2021, 14, 1690.	1.3	14
107	Natural and synthetic polymeric scaffolds used in peripheral nerve tissue engineering: Advantages and disadvantages. Polymers for Advanced Technologies, 2021, 32, 2267-2289.	1.6	43
108	Mesoâ€Reconstruction of Silk Fibroin based on Molecular and Nanoâ€Templates for Electronic Skin in Medical Applications. Advanced Functional Materials, 2021, 31, 2100150.	7.8	42
109	Exploring the Catalytic Significant Residues of Serine Protease Using Substrate-Enriched Residues and a Peptidase Inhibitor. Microbiology and Biotechnology Letters, 2021, 49, 65-74.	0.2	2
110	Can Thiourea Dioxide Regenerate Keratin from Waste Wool?. Journal of Natural Fibers, 2022, 19, 5991-5999.	1.7	3

TION RED

#	Article	IF	CITATIONS
111	Waste to health: A review of waste derived materials for tissue engineering. Journal of Cleaner Production, 2021, 290, 125792.	4.6	38
112	Recent developments in sustainably sourced protein-based biomaterials. Biochemical Society Transactions, 2021, 49, 953-964.	1.6	18
113	Protein-Based 3D Biofabrication of Biomaterials. Bioengineering, 2021, 8, 48.	1.6	28
114	Magnetically Recyclable Wool Keratin Modified Magnetite Powders for Efficient Removal of Cu2+ Ions from Aqueous Solutions. Nanomaterials, 2021, 11, 1068.	1.9	10
115	Valorization of keratin waste biomass and its potential applications. Journal of Water Process Engineering, 2021, 40, 101707.	2.6	45
116	Extraction and application of keratin from natural resources: a review. 3 Biotech, 2021, 11, 220.	1.1	62
117	Keratin Scaffolds Containing Casomorphin Stimulate Macrophage Infiltration and Accelerate Full-Thickness Cutaneous Wound Healing in Diabetic Mice. Molecules, 2021, 26, 2554.	1.7	16
119	Closing the Loop with Keratin-Rich Fibrous Materials. Polymers, 2021, 13, 1896.	2.0	17
120	Graphene oxide incorporated waste wool/PAN hybrid fibres. Scientific Reports, 2021, 11, 12068.	1.6	17
121	Thiol- and Disulfide-Based Stimulus-Responsive Soft Materials and Self-Assembling Systems. Molecules, 2021, 26, 3332.	1.7	29
122	Brief introduction of keratin and its biological application, especially in drug delivery. Emergent Materials, 2021, 4, 1225-1242.	3.2	7
123	Anisotropic hair keratinâ€dopamine composite scaffolds exhibit strainâ€stiffening properties. Journal of Biomedical Materials Research - Part A, 2022, 110, 92-104.	2.1	4
124	Structural Color Materials from Natural Polymers. Advanced Materials Technologies, 2021, 6, .	3.0	52
125	Preparation of dynamic covalently crosslinking keratin hydrogels based on thiol/disulfide bonds exchange strategy. International Journal of Biological Macromolecules, 2021, 182, 1259-1267.	3.6	28
126	Chicken Feather Keratin Peptides for the Control of Keratinocyte Migration. Applied Sciences (Switzerland), 2021, 11, 6779.	1.3	2
127	Biodegradable Packaging Materials from Animal Processing Co-Products and Wastes: An Overview. Polymers, 2021, 13, 2561.	2.0	38
128	Engineering with keratin: A functional material and a source of bioinspiration. IScience, 2021, 24, 102798.	1.9	51
129	Non-target protein analysis of samples from wastewater treatment plants using the regions of interest-multivariate curve resolution (ROIMCR) chemometrics method. Journal of Environmental Chemical Engineering, 2021, 9, 105752.	3.3	20

#	Article	IF	CITATIONS
130	Low Concentration and High Transparency Keratin Hydrogel Fabricated via Cryoablation. Frontiers in Materials, 2021, 8, .	1.2	2
131	Synthesis and characterization of superabsorbent hydrogels from waste bovine hair via keratin hydrolysate graft with acrylic acid (AA) and acrylamide (AAm). Chemical Papers, 2021, 75, 6601-6610.	1.0	7
132	Stepwise immobilization of keratin-dopamine conjugates and gold nanoparticles on PET sheets for potential vascular graft with the catalytic generation of nitric oxide. Colloids and Surfaces B: Biointerfaces, 2021, 205, 111855.	2.5	15
133	Mechanical and water absorption behaviour of palm seed particles based hybrid bio-composites. Journal of Physics: Conference Series, 2021, 2027, 012006.	0.3	2
134	Synthesis of Silica-Based Boron-Incorporated Collagen/Human Hair Keratin Hybrid Cryogels with the Potential Bone Formation Capability. ACS Applied Bio Materials, 2021, 4, 7266-7279.	2.3	11
135	Preparation, characterization and cell response studies on bioconjugated 3D protein hydrogels with wide-range stiffness: An approach on cell therapy and cell storage. Colloids and Surfaces B: Biointerfaces, 2021, 205, 111843.	2.5	3
136	Molecular Mechanism of Rabbit Hair Keratin Hydrogel Fabricated via Cryoablation. Macromolecular Chemistry and Physics, 0, , 2100240.	1.1	0
137	Biowaste valorization by conversion to nanokeratin-urea composite fertilizers for sustainable and controllable nutrient release. Carbon Trends, 2021, 5, 100083.	1.4	10
138	A sustainable solvent based on lactic acid and <scp>l</scp> -cysteine for the regeneration of keratin from waste wool. Green Chemistry, 2021, 23, 1171-1174.	4.6	29
139	Fabrication and characterization of chicken feather fiber-reinforced polymer composites. , 2021, , 225-247.		4
140	Preparation of <scp>PEG</scp> â€nodified wool keratin/sodium alginate porous scaffolds with elasticity recovery and good biocompatibility. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 1303-1312.	1.6	4
141	The development of biomass-derived carbon-based photocatalysts for the visible-light-driven photodegradation of pollutants: a comprehensive review. RSC Advances, 2021, 11, 30574-30596.	1.7	26
142	ECM-mimicking nanofibrous scaffold enriched with dual growth factor carrying nanoparticles for diabetic wound healing. Nanoscale Advances, 2021, 3, 3085-3092.	2.2	26
143	Study on the Structure and Properties of Biofunctional Keratin from Rabbit Hair. Materials, 2021, 14, 379.	1.3	19
145	Biocompatible, Antioxidant Nanoparticles Prepared from Natural Renewable Tea Polyphenols and Human Hair Keratins for Cell Protection and Anti-inflammation. ACS Biomaterials Science and Engineering, 2021, 7, 1046-1057.	2.6	32
146	Valorization of refractory keratinous waste using a new and sustainable bio-catalysis. Chemical Engineering Journal, 2020, 397, 125420.	6.6	23
147	Utilization of waste wool fibers for fabrication of wool powders and keratin: a review. Journal of Leather Science and Engineering, 2020, 2, .	2.7	16
148	Ionic Liquids and Deep Eutectic Solvents and Their Use for Dissolving Animal Hair. Advances in Chemical Engineering and Science, 2020, 10, 40-51.	0.2	5

#	Article	IF	CITATIONS
149	Assembly and recognition of keratins: A structural perspective. Seminars in Cell and Developmental Biology, 2022, 128, 80-89.	2.3	6
150	A Nano-Silver Loaded PVA/Keratin Hydrogel With Strong Mechanical Properties Provides Excellent Antibacterial Effect for Delayed Sternal Closure. Frontiers in Bioengineering and Biotechnology, 2021, 9, 733980.	2.0	5
151	Natural Biomaterials from Biodiversity for Healthcare Applications. Advanced Healthcare Materials, 2022, 11, e2101389.	3.9	19
152	Deciphering Mechanism of Assembly of Keratin within Nanofibrous Matrix: Expanding the Horizon of Electrospun Polymer/Protein Composites. ChemistrySelect, 2021, 6, 10767-10775.	0.7	1
153	Structure and Performance of Cuticles Isolated from Wool Fibers Using Different Approaches. Journal of Natural Fibers, 2022, 19, 7714-7727.	1.7	1
154	Imidazolium-based ionic liquid–assisted processing of natural biopolymers containing amine/amide functionalities for sustainable fiber production. Materials Today Sustainability, 2021, 14, 100082.	1.9	9
155	Exceptionally rich keratinolytic enzyme profile found in the rare actinomycetes Amycolatopsis keratiniphila D2T. Applied Microbiology and Biotechnology, 2021, 105, 8129-8138.	1.7	8
156	Waste Reutilization in Polymeric Membrane Fabrication: A New Direction in Membranes for Separation. Membranes, 2021, 11, 782.	1.4	20
157	Personalized hydrogels for individual health care: preparation, features, and applications in tissue engineering. Materials Today Chemistry, 2021, 22, 100612.	1.7	11
158	Valorisation of keratin waste: Controlled pretreatment enhances enzymatic production of antioxidant peptides. Journal of Environmental Management, 2022, 301, 113945.	3.8	7
159	Nanobiomaterials for neural regenerative medicine. , 2020, , 25-45.		1
160	Biological macromolecules for growth factor delivery. , 2022, , 419-438.		0
161	Modification of Wool Fibers via Base/Cationic Detergent Pretreatment and Transglutaminase-mediated Reaction of Keratin. Journal of Natural Fibers, 2022, 19, 10924-10934.	1.7	1
162	Photocatalytic Properties of a Novel Keratin char-TiO2 Composite Films Made through the Calcination of Wool Keratin Coatings Containing TiO2 Precursors. Catalysts, 2021, 11, 1366.	1.6	2
163	A combination of bioinformatics analysis and rational design strategies to enhance keratinase thermostability for efficient biodegradation of feathers. Science of the Total Environment, 2022, 818, 151824.	3.9	15
164	Keratin Biomaterials in Skin Wound Healing, an Old Player in Modern Medicine: A Mini Review. Pharmaceutics, 2021, 13, 2029.	2.0	31
165	Keratin-Associated Protein Nanoparticles as Hemostatic Agents. ACS Applied Nano Materials, 2021, 4, 12798-12806.	2.4	10
166	Xanthan-gelatin and xanthan-gelatin-keratin wound dressings for local delivery of Vitamin C. International Journal of Pharmaceutics, 2022, 614, 121436.	2.6	20

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
167	Self-assembled uniform keratin nanoparticles as building blocks for nanofibrils and nanolayers derived from industrial feather waste. Journal of Cleaner Production, 2022, 335, 130331.	4.6	12
168	Characteristics of regenerated keratin and keratin-based film. Biopolymers and Cell, 2021, 37, 335-345.	0.1	1
169	Biobased Protic Ionic Liquids as Sustainable Solvents for Wool Keratin/Cellulose Simultaneous Dissolution: Solution Properties and Composited Membrane Preparation. ACS Sustainable Chemistry and Engineering, 2022, 10, 2158-2168.	3.2	14
170	Enhanced keratin extraction from wool waste using a deep eutectic solvent. Chemical Papers, 2022, 76, 2637-2648.	1.0	10
171	Keratin-based biofibers and their composites. , 2022, , 315-334.		5
172	pH Mediated L-cysteine Aqueous Solution for Wool Reduction and Urea-Free Keratin Extraction. Journal of Polymers and the Environment, 2022, 30, 2714-2726.	2.4	4
173	Green and Highly Efficient Wool Keratin Extraction by Microwave Induction Method. Frontiers in Materials, 2022, 8, .	1.2	10
174	Wool keratin – A novel dietary protein source: Nutritional value and toxicological assessment. Food Chemistry, 2022, 383, 132436.	4.2	10
175	Replacement of Synthetic Nitrogenous Fertilizer by Human Hair Hydrolysates in Cultivation of Mung Bean (Vigna radiata L.). Waste and Biomass Valorization, 0, , 1.	1.8	2
176	Introduction: waste to food $\hat{a} \in$ returning nutrients to the food chain. , 2022, , 9-12.		2
177	Chapter 8. From waste to food: legislative insights. , 2022, , 197-208.		4
178	Chapter 1. An introduction to the concept of organic waste to food conversion. , 2022, , 15-30.		1
179	Chapter 12. Potential scenarios of waste to food concept and further research, development and innovation. , 2022, , 283-300.		0
180	Chapter 7. Hygienic issues associated with waste to food. , 2022, , 181-193.		2
181	Chapter 9. Environmental impacts of different waste to food approaches. , 2022, , 209-233.		0
182	Chapter 4. Conversion of food waste into new food in a closed loop. , 2022, , 103-146.		0
183	A novel strategy for producing highâ€performance continuous regenerated fibers with woolâ€like structure. SusMat, 2022, 2, 90-103.	7.8	7
184	Chapter 11. How to optimise food production and nutrients circulation: artificial intelligence & blockchainbased circular food supply chain. , 2022, , 257-282.		0

#	Article	IF	CITATIONS
185	3D Printing for Bone-Cartilage Interface Regeneration. Frontiers in Bioengineering and Biotechnology, 2022, 10, 828921.	2.0	13
186	Chapter 10. Stakeholder driven co-creation of sustainable resilient climate smart solutions to minimise impacts and maximise benefits of the agrifood value chain. , 2022, , 237-256.		0
187	Chapter 5. Extraction of valuable components from waste biomass. , 2022, , 147-168.		1
188	Chapter 2. Requirements for safe and nutritious food and feed production: consideration for wastes and side streams utilisation. , 2022, , 31-45.		0
191	Chapter 6. Eco-efficient electrotechnologies to convert food waste and by-products to high added value food components. , 2022, , 169-180.		0
192	Chapter 3. Utilisation of oilseed meals in food industry. , 2022, , 47-102.		0
193	Preparation of MSNs@Keratin as pH/GSH dual responsive drug delivery system. Journal of Biomaterials Science, Polymer Edition, 2022, 33, 1369-1382.	1.9	2
194	Shape-Recoverable Hyaluronic Acid–Waterborne Polyurethane Hybrid Cryogel Accelerates Hemostasis and Wound Healing. ACS Applied Materials & Interfaces, 2022, 14, 17093-17108.	4.0	35
195	Dynamic transcriptome profiling reveals essential roles of the Receptor Tyrosine Kinases (RTK) family in feather development of duck. British Poultry Science, 2022, , .	0.8	0
196	An environment-friendly chemical modification method for thiol groups on polypeptide macromolecules to improve the performance of regenerated keratin materials. Materials and Design, 2022, 217, 110611.	3.3	11
197	Recent advances in carbonaceous sustainable nanomaterials for wastewater treatments. Sustainable Materials and Technologies, 2022, 32, e00406.	1.7	27
198	From Feather to Adsorbent: Keratin Extraction, Chemical Modification, and Fe(III) Removal from Aqueous Solution. Applied Sciences (Switzerland), 2021, 11, 12163.	1.3	0
199	Keratinases as Versatile Enzymatic Tools for Sustainable Development. Biomolecules, 2021, 11, 1900.	1.8	20
201	Sustainable Applications of Animal Waste Proteins. Polymers, 2022, 14, 1601.	2.0	11
202	MiR-149-5p promotes β-catenin-induced goat hair follicle stem cell differentiation. In Vitro Cellular and Developmental Biology - Animal, 2022, 58, 325-334.	0.7	6
203	A sustainable and efficient recycling strategy of feather waste into keratin peptides with antimicrobial activity. Waste Management, 2022, 144, 421-430.	3.7	13
205	Chemistry and Analysis of Organic Compounds in Dinosaurs. Biology, 2022, 11, 670.	1.3	11
206	Keratin-based wound dressings: From waste to wealth. International Journal of Biological Macromolecules, 2022, 211, 183-197.	3.6	21

# 207	ARTICLE Protein by-products: Composition, extraction, and biomedical applications. Critical Reviews in Food Science and Nutrition, 2023, 63, 9436-9481.	IF 5.4	CITATIONS
208	Advances in adhesive hydrogels for tissue engineering. European Polymer Journal, 2022, 172, 111241.	2.6	18
209	Transforming Wastes into High Value-Added Products: An Introduction. Springer Series on Polymer and Composite Materials, 2022, , 1-18.	0.5	3
210	Rational Design of Highâ€Performance Keratinâ€Based Hemostatic Agents. Advanced Healthcare Materials, 2022, 11, .	3.9	9
211	Innovativeness and sustainability of polymer nanocomposites. , 2022, , 515-535.		0
212	A hemostatic keratin/alginate hydrogel scaffold with methylene blue mediated antimicrobial photodynamic therapy. Journal of Materials Chemistry B, 2022, 10, 4878-4888.	2.9	9
213	Valorization of Livestock Keratin Waste: Application in Agricultural Fields. International Journal of Environmental Research and Public Health, 2022, 19, 6681.	1.2	17
214	A Comprehensive Review on Utilization of Slaughterhouse By-Product: Current Status and Prospect. Sustainability, 2022, 14, 6469.	1.6	14
215	A Review of Recent Advances in Natural Polymer-Based Scaffolds for Musculoskeletal Tissue Engineering. Polymers, 2022, 14, 2097.	2.0	22
216	Novel biopolymer-based hydrogels obtained through crosslinking of keratose proteins using tetrakis(hydroxymethyl) phosphonium chloride. Iranian Polymer Journal (English Edition), 2022, 31, 1057-1067.	1.3	3
217	The progress and prospect for sustainable development of waste wool resources. Textile Reseach Journal, 2023, 93, 468-485.	1.1	8
218	Biodegradable Nonwovens with Poultry Feather Addition as a Method for Recycling and Waste Management. Polymers, 2022, 14, 2370.	2.0	0
219	Performance and Structure Evaluation of Gln-Lys Isopeptide Bond Crosslinked USYK-SPI Bioplastic Film Derived from Discarded Yak Hair. Polymers, 2022, 14, 2471.	2.0	4
220	A State-of-the-art Review on Keratin Biomaterial as Eminent Nanocarriers for Drug Delivery Applications. Letters in Drug Design and Discovery, 2023, 20, 245-263.	0.4	1
221	Deep coverage proteome analysis of hair shaft for forensic individual identification. Forensic Science International: Genetics, 2022, 60, 102742.	1.6	4
222	Identifying KRT20 as a Potential Key Gene in Lymphatic Metastasis of Head and Neck Squamous Cell Carcinoma. Technology in Cancer Research and Treatment, 2022, 21, 153303382211077.	0.8	1
223	Hydrogen sulfide releasing hydrogel for alleviating cardiac inflammation and protecting against myocardial ischemia-reperfusion injury. Journal of Materials Chemistry B, 2022, 10, 5344-5351.	2.9	10
224	Turning Food Protein Waste into Sustainable Technologies. Chemical Reviews, 2023, 123, 2112-2154.	23.0	58

#	Article	IF	CITATIONS
225	Affinity of Keratin Peptides for Cellulose and Lignin: A Fundamental Study toward Advanced Bio-Based Materials. Langmuir, 2022, 38, 9917-9927.	1.6	3
226	Resourceful Utilization of Cow Hair in the Preparation of Iron Tailing-Based Foam Concrete. Materials, 2022, 15, 5739.	1.3	5
227	Valorisation of keratinous wastes: A sustainable approach towards a circular economy. Waste Management, 2022, 151, 81-104.	3.7	20
228	Research Methodology and Mechanisms of Action of Current Orthopaedic Implant Coatings. Journal of Long-Term Effects of Medical Implants, 2022, , .	0.2	1
229	Chemical Modification of Keratin Using Schiff Bases to Prepare Cation Exchangers and Study Their Adsorption Activity. SSRN Electronic Journal, 0, , .	0.4	0
230	Molecular Crosstalk between the Immunological Mechanism of the Tumor Microenvironment and Epithelial–Mesenchymal Transition in Oral Cancer. Vaccines, 2022, 10, 1490.	2.1	Ο
231	Soluble Protein Hydrolysate Ameliorates Gastrointestinal Inflammation and Injury in 2,4,6-Trinitrobenzene Sulfonic Acid-Induced Colitis in Mice. Biomolecules, 2022, 12, 1287.	1.8	1
232	A drug-eluting nanofibrous hyaluronic acid-keratin mat for diabetic wound dressing. Emergent Materials, 2022, 5, 1617-1627.	3.2	3
233	Wool Keratin Nanoparticle-Based Micropatterns for Cellular Guidance Applications. ACS Applied Nano Materials, 2022, 5, 15272-15287.	2.4	5
234	Electrospun Keratin-Based Nanofibers. , 2022, , 1-10.		0
234 235		1.2	0
	Electrospun Keratin-Based Nanofibers. , 2022, , 1-10. Keratinolytic Properties of Aspergillus clavatus Promising for Biodegradation. International Journal	1.2	
235	Electrospun Keratin-Based Nanofibers. , 2022, , 1-10. Keratinolytic Properties of Aspergillus clavatus Promising for Biodegradation. International Journal of Environmental Research and Public Health, 2022, 19, 13939. Optimizing the Extraction of Keratin from Cattle Hoof Using Central Composite Design. Advances in		3
235 236	Electrospun Keratin-Based Nanofibers. , 2022, , 1-10. Keratinolytic Properties of Aspergillus clavatus Promising for Biodegradation. International Journal of Environmental Research and Public Health, 2022, 19, 13939. Optimizing the Extraction of Keratin from Cattle Hoof Using Central Composite Design. Advances in Materials Science and Engineering, 2022, 2022, 1-12.	1.0	3
235 236 237	Electrospun Keratin-Based Nanofibers. , 2022, , 1-10. Keratinolytic Properties of Aspergillus clavatus Promising for Biodegradation. International Journal of Environmental Research and Public Health, 2022, 19, 13939. Optimizing the Extraction of Keratin from Cattle Hoof Using Central Composite Design. Advances in Materials Science and Engineering, 2022, 2022, 1-12. Ionic Liquids to Process Silk Fibroin and Wool Keratin for Bio-sustainable and Biomedical Applications. Journal of Polymers and the Environment, 2022, 30, 4961-4977. Experimental and theoretical study on the extraction of keratin from human hair using protic ionic	1.0 2.4	3 1 9
235 236 237 238	Electrospun Keratin-Based Nanofibers. , 2022, , 1-10. Keratinolytic Properties of Aspergillus clavatus Promising for Biodegradation. International Journal of Environmental Research and Public Health, 2022, 19, 13939. Optimizing the Extraction of Keratin from Cattle Hoof Using Central Composite Design. Advances in Materials Science and Engineering, 2022, 2022, 1-12. Ionic Liquids to Process Silk Fibroin and Wool Keratin for Bio-sustainable and Biomedical Applications. Journal of Polymers and the Environment, 2022, 30, 4961-4977. Experimental and theoretical study on the extraction of keratin from human hair using protic ionic liquids. Journal of Molecular Liquids, 2022, 368, 120626. Artificial nerve graft constructed by coculture of activated Schwann cells and human hair keratin	1.0 2.4 2.3	3 1 9 4
235 236 237 238 239	Electrospun Keratin-Based Nanofibers. , 2022, , 1-10. Keratinolytic Properties of Aspergillus clavatus Promising for Biodegradation. International Journal of Environmental Research and Public Health, 2022, 19, 13939. Optimizing the Extraction of Keratin from Cattle Hoof Using Central Composite Design. Advances in Materials Science and Engineering, 2022, 2022, 1-12. Ionic Liquids to Process Silk Fibroin and Wool Keratin for Bio-sustainable and Biomedical Applications. Journal of Polymers and the Environment, 2022, 30, 4961-4977. Experimental and theoretical study on the extraction of keratin from human hair using protic ionic liquids. Journal of Molecular Liquids, 2022, 368, 120626. Artificial nerve graft constructed by coculture of activated Schwann cells and human hair keratin for repair of peripheral nerve defects. Neural Regeneration Research, 2023, 18, 1118. Producing bacterial nano-cellulose and keratin from wastes to synthesize keratin/cellulose nanobiocomposite for removal of dyes and heavy metal ions from waters and wastewaters. Colloids	1.0 2.4 2.3 1.6	3 1 9 4 7

#	Article	IF	CITATIONS
244	Fervidobacterium pennivorans subsp. keratinolyticus subsp. nov., a Novel Feather-Degrading Anaerobic Thermophile. Microorganisms, 2023, 11, 22.	1.6	0
245	Wool keratin as a novel alternative protein: A comprehensive review of extraction, purification, nutrition, safety, and food applications. Comprehensive Reviews in Food Science and Food Safety, 2023, 22, 643-687.	5.9	13
246	Degradable and Tunable Keratin-fibrinogen Hydrogel as Controlled Release System for Skin Tissue Regeneration. Journal of Bionic Engineering, 2023, 20, 1049-1059.	2.7	3
247	Development of a Growth-Dependent System to Regulate Cell Growth and Keratinase Production in <i>B. subtilis</i> . Journal of Agricultural and Food Chemistry, 2023, 71, 2421-2429.	2.4	1
248	Harnessing electromagnetic fields to assist bone tissue engineering. Stem Cell Research and Therapy, 2023, 14, .	2.4	10
249	Novel PLCL nanofibrous/keratin hydrogel bilayer wound dressing for skin wound repair. Colloids and Surfaces B: Biointerfaces, 2023, 222, 113119.	2.5	8
250	Effect of ultrasound on keratin valorization from chicken feather waste: Process optimization and keratin characterization. Ultrasonics Sonochemistry, 2023, 93, 106297.	3.8	7
251	Using an eco-friendly deep eutectic solvent for waterless anti-felting of wool fibers. Journal of Cleaner Production, 2023, 386, 135732.	4.6	5
252	Valorization of chicken feathers using aqueous solutions of ionic liquids. Green Chemistry, 2023, 25, 1424-1434.	4.6	4
253	Reinforced Wool Keratin Fibers via Dithiol Chain Reâ€bonding. Advanced Functional Materials, 2023, 33, .	7.8	5
254	Keratin for potential biomedical applications. , 2023, , 59-91.		0
255	Recent developments in extraction of keratin from industrial wastes. , 2023, , 281-302.		0
256	Fungal Keratinases: Enzymes with Immense Biotechnological Potential. , 2023, , 89-125.		1
257	A Glance at Novel Materials, from the Textile World to Environmental Remediation. Journal of Polymers and the Environment, 0, , .	2.4	2
258	General overview of biopolymers: structure and properties. ChemistrySelect, 2023, .	0.7	0
259	Biopolymers as Engineering Materials. , 2022, , 1-27.		0
260	Valorization of feather waste in Brazil: structure, methods of extraction, and applications of feather keratin. Environmental Science and Pollution Research, 2023, 30, 39558-39567.	2.7	4
261	A Short Review on Nanostructured Carbon Containing Biopolymer Derived Composites for Tissue Engineering Applications. Polymers, 2023, 15, 1567.	2.0	1

#	ARTICLE	IF	CITATIONS
262	Production and Utilization of Keratin and Sericin-Based Electro-Spun Nanofibers: A Comprehensive Review. Journal of Natural Fibers, 2023, 20, .	1.7	5
264	Research progress of biopolymers combined with stem cells in the repair of intrauterine adhesions. Nanotechnology Reviews, 2023, 12, .	2.6	0
265	One-Pot Extraction of Bioresources from Human Hair via a Zero-Waste Green Route. ACS Omega, 0, , .	1.6	0
266	Nature-derived polymers and their composites for energy depository applications in batteries and supercapacitors: Advances, prospects and sustainability. Journal of Energy Storage, 2023, 66, 107391.	3.9	7
267	Biopolymers as Engineering Materials. , 2023, , 627-653.		0
268	Sustainable Biodegradation and Extraction of Keratin with Its Applications. , 2023, , 713-747.		0
272	Applications of functionalized nanoparticles in tissue engineering. , 2023, , 485-513.		1
275	Valorization of Animal Waste for the Production of Sustainable Bioenergy. , 2023, , 431-448.		0
276	Current Trends and Prospects of Transforming Animal Waste into Food. , 2023, , 469-503.		0
278	Extraction, properties, and applications of keratin-based films and blends. , 2023, , 399-420.		0
282	Exploring the potential of keratin-based biomaterials in orthopedic tissue engineering: a comprehensive review. Emergent Materials, 2023, 6, 1441-1460.	3.2	3
284	Extraction and improvement of protein functionality using steam explosion pretreatment: advances, challenges, and perspectives. Journal of Food Science and Technology, 0, , .	1.4	2
289	Biomaterial-based waste for membranes and energy applications. , 2023, , 333-369.		0
292	Recent advancement of nanostructured materials: a compatible therapy of tissue engineering and drug delivery system. Polymer Bulletin, 2024, 81, 5679-5702.	1.7	0
301	Keratinase Role in Management of Poultry Waste. , 2023, , 119-138.		0
315	Keratin extraction and its application: extraction of wool keratin and application in diversified fields. , 2024, , 501-531.		0
316	By-products during processing of fiber and their use: generation of by-products during wool processing and their utilization. , 2024, , 577-592.		0
317	Piezoelectric dressings for advanced wound healing. Journal of Materials Chemistry B, 2024, 12, 1973-1990.	2.9	0

#	Article	IF	CITATIONS
320	Man-Made Bio-based and Biodegradable Fibers for Textile Applications. Sustainable Textiles, 2024, , 229-280.	0.4	0
325	The effect of the developed emulsion based on a water-soluble polymer composition on the performance of wool fiber. AIP Conference Proceedings, 2024, , .	0.3	0