Microwave processing techniques and their recent appl

Trends in Food Science and Technology 67, 236-247

DOI: 10.1016/j.tifs.2017.07.007

Citation Report

#	Article	IF	CITATIONS
1	Augmentation of biocontrol agents with physical methods against postharvest diseases of fruits and vegetables. Trends in Food Science and Technology, 2017, 69, 36-45.	7.8	58
2	Effects of electric fields and electromagnetic wave on food protein structure and functionality: A review. Trends in Food Science and Technology, 2018, 75, 1-9.	7.8	126
3	Quality assurance in microwave food processing and the enabling potentials of solid-state power generators: A review. Journal of Food Engineering, 2018, 234, 1-15.	2.7	78
4	Efficacy Evaluation of Control Measures on the Reduction of Staphylococcus aureusin Salad and Bacillus cereusin Fried Rice Served at Restaurants. Foodborne Pathogens and Disease, 2018, 15, 198-209.	0.8	4
5	The Mutual Correlation of Glucose, Starch, and Beta-Glucan Release During Microwave Heating and Antioxidant Activity of Oat Water Extracts. Food and Bioprocess Technology, 2018, 11, 874-884.	2.6	18
6	Impact of Microwave-Assisted Heating on the pH Value, Color, and Flavor Compounds in Glucose-Ammonium Model System. Food and Bioprocess Technology, 2018, 11, 1248-1258.	2.6	17
7	Model food for microwaveâ€essisted pasteurization of fruit juices and nectars at 915 and 2,450 MHz. Journal of Food Process Engineering, 2018, 41, e12858.	1.5	5
8	Evaluation of microwave toasting of corn flakes. Journal of Food Processing and Preservation, 2018, 42, e13671.	0.9	2
9	Inactivation Kinetics of Pectin Methylesterase, Polyphenol Oxidase, and Peroxidase in Cloudy Apple Juice under Microwave and Conventional Heating to Evaluate Non-Thermal Microwave Effects. Food and Bioprocess Technology, 2018, 11, 1359-1369.	2.6	40
10	High power short time microwave finish drying of paprika (<i>Capsicum annuum</i> L.): Development of models for moisture diffusion and color degradation. Drying Technology, 2019, 37, 253-267.	1.7	18
11	Microwave dielectric properties and Targeted heating of polypropylene nano-composites containing carbon nanotubes and carbon black. Polymer, 2019, 179, 121658.	1.8	12
12	Impact of Microwave Irradiation on Food Composition. , 2019, , 147-161.		1
13	Technologies for Improving the Nutritional Quality of Cereals. , 2019, , 19-31.		0
15	Multiphysics modeling of microwave processing for enzyme inactivation in fruit juices. Journal of Food Engineering, 2019, 263, 366-379.	2.7	29
16	Structure of Hyla rabbit skin gelatin as affected by microwave-assisted extraction. International Journal of Food Properties, 2019, 22, 1594-1607.	1.3	25
17	Microwave Processing: Current Background and Effects on the Physicochemical and Microbiological Aspects of Dairy Products. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 67-83.	5.9	58
18	The microwaveâ€assisted convective drying of kale (<scp><i>Brassica oleracea</i></scp> L. var.) Tj ETQq0 0 0 rg Engineering, 2019, 42, e13004.	gBT /Overlo 1.5	ock 10 Tf 50 1 5
19	Maillard conjugation as an approach to improve whey proteins functionality: A review of conventional and novel preparation techniques. Trends in Food Science and Technology, 2019, 91, 1-11.	7.8	78

#	Article	IF	Citations
20	Microwave Processing of Foods. , 2019, , 417-438.		4
21	Development of reduced-fat muffins by the application of jet-impingement microwave (JIM) technology. Journal of Food Engineering, 2019, 262, 131-141.	2.7	6
22	Pyrolysis, morphology and microwave absorption properties of tobacco stem materials. Science of the Total Environment, 2019, 683, 341-350.	3.9	22
23	Microwave processing of camuâ€camu juices: Physicochemical and microbiological parameters. Journal of Food Processing and Preservation, 2019, 43, e13989.	0.9	11
24	Recycling of Carbon Fibers from CFRP Waste by Microwave Thermolysis. Processes, 2019, 7, 207.	1.3	38
25	Physicochemical and in vitro digestion of millet starch: Effect of moisture content in microwave. International Journal of Biological Macromolecules, 2019, 134, 308-315.	3.6	70
26	Development of a Microwave Irradiation Probe for a Cylindrical Applicator. Processes, 2019, 7, 143.	1.3	3
27	Durian chips drying using combined microwave techniques with step-down microwave power input. Food and Bioproducts Processing, 2019, 116, 105-117.	1.8	14
28	Dielectric properties of carrots affected by ultrasound treatment in water and oil medium simulated systems. Ultrasonics Sonochemistry, 2019, 56, 150-159.	3.8	12
29	Evaluation of physicochemical characteristics of microwave vacuum dried mackerel and inhibition of oxidation by essential oils. Journal of Food Science and Technology, 2019, 56, 1890-1898.	1.4	17
30	Organic Consumer Choices for Nutrient Labels on Dried Strawberries among Different Health Attitude Segments in Norway, Romania, and Turkey. Nutrients, 2019, 11, 2951.	1.7	13
31	A Review of Chemicals to Produce Activated Carbon from Agricultural Waste Biomass. Sustainability, 2019, 11, 6204.	1.6	167
32	Microwave-dried or air-dried? Consumers' stated preferences and attitudes for organic dried strawberries. A multi-country investigation in Europe. Food Research International, 2019, 120, 763-775.	2.9	22
33	Microwave transmission performance of fused silica ceramics in microwave high-temperature heating. Ceramics International, 2019, 45, 6157-6162.	2.3	10
34	The impacts of vacuum microwave drying on osmosis dehydration of tilapia fillets. Journal of Food Process Engineering, 2019, 42, e12956.	1.5	15
35	Effect of Heat on Food Properties. , 2019, , 70-75.		6
36	Recent development in the application of alternative sterilization technologies to prepared dishes: A review. Critical Reviews in Food Science and Nutrition, 2019, 59, 1188-1196.	5.4	32
37	Energy issues in microwave food processing: A review of developments and the enabling potentials of solid-state power delivery. Critical Reviews in Food Science and Nutrition, 2019, 59, 1392-1407.	5.4	29

#	ARTICLE	IF	Citations
38	Development of an innovative induction heating technique for the treatment of liquid food: Principle, experimental validation and application. Journal of Food Engineering, 2020, 271, 109780.	2.7	22
39	Effect of microwave sterilization on maturation time and quality of lowâ€salt sufu. Food Science and Nutrition, 2020, 8, 584-593.	1.5	13
40	Microwave pasteurization of apple juice: Modeling the inactivation of Escherichia coli O157:H7 and Salmonella Typhimurium at 80–90°C. Food Microbiology, 2020, 87, 103382.	2.1	29
41	Development of Bacterial Spore Pouches as a Tool to Evaluate the Sterilization Efficiency—A Case Study with Microwave Sterilization Using Clostridium sporogenes and Geobacillus stearothermophilus. Foods, 2020, 9, 1342.	1.9	5
42	Microwave reduction of graphene oxide. Carbon, 2020, 170, 277-293.	5.4	80
43	Functional group changes and chemical bondâ€dependent dielectric properties of lotus seed flour with microwave vacuum drying. Journal of Food Science, 2020, 85, 4241-4248.	1.5	6
44	Efficient method of recycling carbon fiber from the waste of carbon fiber reinforced polymer composites. Polymer Degradation and Stability, 2020, 182, 109419.	2.7	28
45	Effects of different drying methods on quality changes and energy characteristics of tilapia fillets. Journal of Microwave Power and Electromagnetic Energy, 2020, 54, 186-209.	0.4	9
46	Non-thermal effects of microwave processing on inactivation of Clostridium Sporogenes inoculated in salmon fillets. LWT - Food Science and Technology, 2020, 133, 109861.	2.5	28
47	Fate of Residual Pesticides in Fruit and Vegetable Waste (FVW) Processing. Foods, 2020, 9, 1468.	1.9	40
48	Effects of microwave combined with ultrasound treatment on the pasteurization and nutritional properties of bottle gourd (<i>Lagenaria siceraria</i>) juice. Journal of Food Processing and Preservation, 2020, 44, e14904.	0.9	15
49	Mathematical description of super-high frequencies drying process of free-running food media in device with combined energy input. E3S Web of Conferences, 2020, 175, 05021.	0.2	1
50	A systematic analysis of the overall nutritional contribution of food loss and waste in tomatoes, spinach, and kidney beans as a function of processing. Journal of Food Process Engineering, 2020, 43, e13509.	1.5	6
51	Effect of Microwave Heating on the Acrylamide Formation in Foods. Molecules, 2020, 25, 4140.	1.7	43
52	Plasma Agriculture from Laboratory to Farm: A Review. Processes, 2020, 8, 1002.	1.3	125
53	Effect of boiling, steaming, stir-frying and microwave cooking on the antioxidant potential of peppers of varying pungency. Cogent Food and Agriculture, 2020, 6, 1834661.	0.6	5
54	Justification of the possibility of cooking eggs without water in an ultra-high frequency electromagnetic field. IOP Conference Series: Earth and Environmental Science, 2020, 604, 012006.	0.2	1
55	Effect of Microwave on Changes of Gallic Acid and Resveratrol in a Model Extraction Solution. Food and Bioprocess Technology, 2020, 13, 1246-1254.	2.6	12

#	Article	IF	CITATIONS
56	Microwave-assisted catalytic methane reforming: A review. Applied Catalysis A: General, 2020, 599, 117620.	2.2	51
57	Effects of physical and chemical pretreatments on drying and quality properties of blackberry (<i>Rubus</i> spp.) in hot air dryer. Food Science and Nutrition, 2020, 8, 3843-3856.	1.5	17
58	Spectroscopic Techniques for Monitoring Thermal Treatments in Fish and Other Seafood: A Review of Recent Developments and Applications. Foods, 2020, 9, 767.	1.9	19
59	Non-thermal Technology and Heating Technology for Fresh Food Cooking in the Central Kitchen Processing: A Review. Food Reviews International, 2022, 38, 608-627.	4.3	11
60	Microwave irradiation: impacts on physicochemical properties of red wine. CYTA - Journal of Food, 2020, 18, 281-290.	0.9	12
61	Enhancing laccaseâ€induced soybean protein isolates gel properties by microwave pretreatment. Journal of Food Processing and Preservation, 2020, 44, e14386.	0.9	11
62	Microwave mode of heating in the preparation of porous carbon materials for adsorption and energy storage applications – An overview. Renewable and Sustainable Energy Reviews, 2020, 124, 109743.	8.2	68
63	Computational analysis of temperature distribution in microwave-heated potatoes. Food Science and Technology International, 2020, 26, 465-474.	1.1	8
64	Enhancing the antityrosinase activity of saponins and polyphenols from Asparagus by hot air coupled with microwave treatments. LWT - Food Science and Technology, 2020, 124, 109174.	2.5	14
65	Food consumption by degree of processing and cardiometabolic risk: a systematic review. International Journal of Food Sciences and Nutrition, 2020, 71, 678-692.	1.3	67
66	Microwave-induced thermal sterilization- A review on history, technical progress, advantages and challenges as compared to the conventional methods. Trends in Food Science and Technology, 2020, 97, 433-442.	7.8	90
67	Effect of cooking on the nutritive quality, sensory properties and safety of lamb meat: Current challenges and future prospects. Meat Science, 2020, 167, 108172.	2.7	79
68	Lipid Peroxidation in Meat and Meat Products. , 2020, , .		5
69	Dry Sterilization of Paprika (Capsicum annuum L.) by Short Time-Intensive Microwave-Infrared Radiation: Establishment of Process Using Glass Transition, Sorption, and Quality Degradation Kinetic Parameters. Innovative Food Science and Emerging Technologies, 2020, 62, 102345.	2.7	20
70	Comparative study of physicochemical and functional properties of pan and microwave cooked underutilized millets (proso and little). LWT - Food Science and Technology, 2020, 128, 109465.	2.5	35
71	Optimisation and characterisation of protein extraction from coffee silverskin assisted by ultrasound or microwave techniques. Biomass Conversion and Biorefinery, 2021, 11, 1575-1585.	2.9	28
72	Microwave combined with conduction heating effects on the tenderness, water distribution, and microstructure of pork belly. Innovative Food Science and Emerging Technologies, 2020, 62, 102344.	2.7	23
73	Microwave Heating for Food Preservation. , 2020, , .		5

#	Article	IF	CITATIONS
74	Inactivation of polyphenol oxidase by microwave and conventional heating: Investigation of thermal and non-thermal effects of focused microwaves. Food Chemistry, 2021, 340, 127911.	4.2	25
75	Effects of constant power microwave on the adsorption behaviour of myofibril protein to aldehyde flavour compounds. Food Chemistry, 2021, 336, 127728.	4.2	33
76	Multiscale Structural Disorganization of Indica Rice Starch under Microwave Treatment with High Water Contents. ACS Food Science & Technology, 2021, 1, 45-53.	1.3	2
77	Effect of microwave-assisted processing on polyphenol oxidase and peroxidase inactivation kinetics of açai-berry (Euterpe oleracea) pulp. Food Chemistry, 2021, 341, 128287.	4.2	12
78	Continuous microwave drying of germinated brown rice: Effects of drying conditions on fissure and color, and modeling of moisture content and stress inside kernel. Drying Technology, 2021, 39, 669-697.	1.7	25
79	Microwave and Ultrasound Pretreatment of <i>Moringa oleifera</i> Lam. Seeds: Effects on Oil Expression, Oil Quality, and Bioactive Component. Journal of Oleo Science, 2021, 70, 875-884.	0.6	5
80	Microwave-assisted sterilization. , 2021, , 285-328.		1
81	Effects of different preheat treatments on volatile compounds of camellia (<i>Camellia (/i>) Tj ETQq1 1 0.784314 Food Biochemistry, 2021, 45, e13649.</i>	rgBT /Ove	erlock 10 Tf 23
82	Impact of osmotic dehydration and different drying methods on the texture and sensory characteristic of sweet corn kernels. Journal of Food Processing and Preservation, 2021, 45, e15383.	0.9	6
83	Influence of microwave bag vs. conventional microwave cooking on phytochemicals of industrially and domestically processed broccoli. Food Research International, 2021, 140, 110077.	2.9	5
84	Prospects and Challenges of Microwave-Combined Technology for Biodiesel and Biolubricant Production through a Transesterification: A Review. Molecules, 2021, 26, 788.	1.7	15
85	Effects on the structure and properties of native corn starch modified by enzymatic debranching (ED), microwave assisted esterification with citric acid (MCAE) and by the dual ED/MCAE treatment. International Journal of Biological Macromolecules, 2021, 171, 123-129.	3.6	32
86	Bioactive and Antimicrobial Properties of Eggplant (Solanum melongena L.) under Microwave Cooking. Sustainability, 2021, 13, 1519.	1.6	5
87	The Effect of Process Parameters on Stewed Beef. IOP Conference Series: Earth and Environmental Science, 2021, 692, 032089.	0.2	1
88	Preliminary Evaluation of a Novel Microwave-Assisted Induction Heating (MAIH) System on White Shrimp Cooking. Foods, 2021, 10, 545.	1.9	10
89	Microwaveâ€induced free radicals production in red wine and model wine by electron paramagnetic resonance spin trapping. Journal of Food Processing and Preservation, 2021, 45, e15407.	0.9	5
90	Physicochemical, microstructural, and microbial qualities of dehydrated Tuna chunks: Effects of microwave power and drying methods. Journal of Food Processing and Preservation, 2021, 45, e15426.	0.9	4
91	Dynamic model for controlled uniform processing under microwave heating by using a heat exchanger. International Journal of RF and Microwave Computer-Aided Engineering, 2021, 31, e22654.	0.8	1

#	Article	IF	Citations
92	Impact of ultrasound, microwaves and high-pressure processing on food components and their interactions. Trends in Food Science and Technology, 2021, 109, 1-15.	7.8	98
93	Recent developments of drying techniques for aquatic products: With emphasis on drying process monitoring with innovative methods. Drying Technology, 2021, 39, 1577-1594.	1.7	20
94	Osmotic dehydration under low agitation laminar flow condition: Effect on dielectric properties of broccoli stalk slices at 2.45 GHz. Journal of Food Process Engineering, 2021, 44, e13707.	1.5	1
95	Effects of different drying methods on the chemical, nutritional and colour of yerba mate (<i>llex) Tj ETQq1 1 C</i>	0.784314 rg 0.7	gBT/Overlock
96	Pasteurization mechanism of S. aureus ATCC 25923 in walnut shells using radio frequency energy at lab level. LWT - Food Science and Technology, 2021, 143, 111129.	2.5	16
97	Microwave applications in the food industry: an overview of recent developments. Critical Reviews in Food Science and Nutrition, 2022, 62, 7989-8008.	5.4	76
98	Novel alternative recovery of polyhydroxyalkanoates from mixed microbial cultures using microwaveâ€assisted extraction. Journal of Chemical Technology and Biotechnology, 2021, 96, 2596-2603.	1.6	1
99	Effect of infrared ray roasting on oxidation stability and flavor of virgin rapeseed oils. Journal of Food Science, 2021, 86, 2990-3000.	1.5	10
100	Improvement of the Quality of Solid Ingredients of Instant Soups: A Review. Food Reviews International, 2023, 39, 1333-1358.	4.3	1
101	The effect of pre-drying methods on physicochemical, textural and sensory characteristics on puff dried Turkey breast meat. LWT - Food Science and Technology, 2021, 145, 111350.	2.5	13
102	Novel Technologies for Flavor Formation in the Processing of Meat Products: A Review. Food Reviews International, 2023, 39, 802-826.	4.3	13
103	Heat transfer analysis of convective and microwave drying of dragon fruit. Journal of Food Process Engineering, 2021, 44, e13775.	1.5	12
104	Enhanced Interfacial Adhesion of Polystyrene Bead Foams by Microwave Sintering for Microplastics Reduction. Industrial & Engineering Chemistry Research, 2021, 60, 8812-8820.	1.8	16
105	Physico-chemical aspects of Thai fermented fish viscera, Tai-Pla, curry powder processed by hot air drying and hybrid microwave-infrared drying. PLoS ONE, 2021, 16, e0253834.	1.1	4
106	Recent developments in vibrational spectral analyses for dynamically assessing and monitoring food dehydration processes. Critical Reviews in Food Science and Nutrition, 2022, 62, 4267-4293.	5.4	8
107	Comprehensive investigation into quality of pasteurized Oncorhynchus keta Walbaum fillets and non-thermal effects of microwave. LWT - Food Science and Technology, 2021, 146, 111466.	2.5	13
108	Drying kinetics and quality characteristics of microwave-assisted hot air dried beef chips. Journal of Microwave Power and Electromagnetic Energy, 2021, 55, 219-235.	0.4	5
109	Process effectiveness assessment by modeling the kinetics of lotus seed drying combining airâ€borne ultrasound and microwave vacuum. Journal of Food Process Engineering, 2021, 44, e13795.	1.5	5

#	Article	IF	Citations
110	Emerging cold plasma treatment on rice grains: A mini review. Chemosphere, 2021, 274, 129972.	4.2	11
111	Sodium Reduction in Traditional Fermented Foods: Challenges, Strategies, and Perspectives. Journal of Agricultural and Food Chemistry, 2021, 69, 8065-8080.	2.4	40
112	Experimental and Simulation Study of Drying Skipjack Tuna with a Modified Microwave Drying System. Journal of Aquatic Food Product Technology, 2021, 30, 968-979.	0.6	0
113	Redox Proteomic Analysis Reveals Microwave-Induced Oxidation Modifications of Myofibrillar Proteins from Silver Carp (<i>Hypophthalmichthys molitrix</i>). Journal of Agricultural and Food Chemistry, 2021, 69, 9706-9715.	2.4	18
114	Microwave heating of dried minced pork slices with different fat content: An assessment of dielectric response and quality properties. LWT - Food Science and Technology, 2021, 148, 111729.	2.5	4
115	Impact of drying temperature and salt pre-treatments on drying behavior and instrumental color and investigations on spectral product monitoring during drying of beef slices. Meat Science, 2021, 178, 108525.	2.7	10
116	Invited review: Stress resistance of Cronobacter spp. affecting control of its growth during food production. Journal of Dairy Science, 2021, 104, 11348-11367.	1.4	12
117	Microwave irradiation: Effect on activities and properties of polyphenol oxidase in grape maceration stage. Food Bioscience, 2021, 44, 101378.	2.0	11
118	Processing technologies for improved digestibility of milk proteins. Trends in Food Science and Technology, 2021, 118, 1-16.	7.8	19
119	Bioactive Compounds from Agricultural Residues, Their Obtaining Techniques, and the Antimicrobial Effect as Postharvest Additives. International Journal of Food Science, 2021, 2021, 1-13.	0.9	16
120	Impact of different microwave treatments on food texture. Journal of Texture Studies, 2022, 53, 709-736.	1.1	36
121	Effect of a Novel Microwave-Assisted Induction Heating (MAIH) Technology on the Quality of Prepackaged Asian Hard Clam (Meretrix lusoria). Foods, 2021, 10, 2299.	1.9	6
122	Comparison of microwave-assisted induction heating system (MAIH) and individual heating methods on the quality of pre-packaged white shrimp. Innovative Food Science and Emerging Technologies, 2021, 73, 102787.	2.7	15
123	Microwave processing: A way to reduce the anti-nutritional factors (ANFs) in food grains. LWT - Food Science and Technology, 2021, 150, 111960.	2.5	41
124	Insights into the multi-scale structural properties and digestibility of lotus seed starch-chlorogenic acid complexes prepared by microwave irradiation. Food Chemistry, 2021, 361, 130171.	4.2	35
125	Long-term retrogradation behavior of lotus seed starch-chlorogenic acid mixtures after microwave treatment. Food Hydrocolloids, 2021, 121, 106994.	5.6	21
126	Inactivation of Zygosaccharomyces rouxii in organic intermediate moisture apricot and fig by microwave pasteurization. LWT - Food Science and Technology, 2021, 152, 112294.	2.5	4
127	Effects of different levels of salt and temperature on some physico-chemical and colour properties of microwave-dried beef round (<i>M. semitendinosus</i>). British Food Journal, 2021, 123, 2066-2078.	1.6	0

#	Article	IF	CITATIONS
128	Temperature Optimization of Thermal Runaway in Microwave Heating Process Based on Sliding Mode Control. Advances in Intelligent Systems and Computing, 2021, , 573-580.	0.5	0
129	Microwave technology for food applications. , 2019, , 455-498.		5
130	CHEMICAL, NUTRITIONAL AND SENSORY CHARACTERIZATION OF SWEET POTATO SUBMITTED TO DIFFERENT COOKING METHODS. International Journal of Research -GRANTHAALAYAH, 2020, 8, 147-156.	0.1	7
131	Edible coatings as osmotic dehydration pretreatment in nutrientâ€enhanced fruit or vegetable snacks development: A review. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 5641-5674.	5.9	9
132	Physicochemical and Microbial Quality of Prepackaged Shrimp Processed by a Scaled-Up Microwave-Assisted Induction Heating Technology. Applied Sciences (Switzerland), 2021, 11, 9514.	1.3	4
133	Effect of different drying techniques on drying kinetics, nutritional components, antioxidant capacity, physical properties and microstructure of edamame. Food Chemistry, 2022, 373, 131412.	4.2	41
134	Application of protein-polysaccharide Maillard conjugates as emulsifiers: Source, preparation and functional properties. Food Research International, 2021, 150, 110740.	2.9	74
135	Et Teknolojisinde Alternatif Isıtma Yöntemleri. El-Cezeri Journal of Science and Engineering, 2018, 5, 656-670.	0.1	3
136	Devicification of Food Process Engineering. , 2019, , .		0
138	Microwave hybrid heating (MHH) of Ni-based alloy powder on Ni and steel-based metals –a review on fundamentals and parameters. International Journal of Lightweight Materials and Manufacture, 2021, 5, 58-58.	1.3	4
139	On the Effect of Microwave Heating on Quality Characteristics and Functional Properties of Persimmon Juice and Its Residue. Foods, 2021, 10, 2650.	1.9	10
140	Non-invasive Neurologic Assessment in Recovery and Treatment Phase Acrylamide Exposure in Ageing Wistar Rats. International Neuropsychiatric Disease Journal, 0, , 96-101.	0.1	0
141	Phytohormones in postharvest storage of fruit and vegetables: mechanisms and applications. Critical Reviews in Food Science and Nutrition, 2021, 61, 2969-2983.	5.4	15
142	Food Microbial Hazards, Safety, and Quality Control. Advances in Hospitality, Tourism and the Services Industry, 2022, , 67-98.	0.2	1
143	Characterization of pre-gelatinized kidney bean (Phaseolus vulgaris L.) produced using microwave hot-air flow rolling drying technique. LWT - Food Science and Technology, 2022, 154, 112673.	2.5	18
144	Evaluating the effect of an emerging microwave-assisted induction heating (MAIH) on the quality and shelf life of prepackaged Pacific white shrimp Litopenaeus vannamei stored at 4°C in Taiwan. Food Control, 2022, 133, 108509.	2.8	5
145	Synergistic Effect of the Lactic Acid Bacteria and Salt Coagulant in Improvement of Quality Characteristics and Storage Stability of Tofu. Journal of Oleo Science, 2020, 69, 1455-1465.	0.6	1
146	Influence of fat content and water activity on the heating pattern of model systems submitted to microwave heating. Journal of Food Science, 2021, 86, 5329.	1.5	1

#	Article	IF	CITATIONS
147	Agricultural Application of Low-Temperature Plasmas; Toward a Novel Environmentally Friendly Technology of Plant Response Control with Low Cost. Journal of the Institute of Electrical Engineers of Japan, 2020, 140, 605-608.	0.0	0
148	Do non-thermal effects exist in microwave heating of glucose aqueous solutions? Evidence from molecular dynamics simulations. Food Chemistry, 2022, 375, 131677.	4.2	9
149	Microwave resonator can help to predict oxidative stability in C18-based vegetable oils. Food Chemistry, 2021, 373, 131606.	4.2	0
151	Hybrid high-intensity ultrasound and microwave treatment: A review on its effect on quality and bioactivity of foods. Ultrasonics Sonochemistry, 2021, 80, 105835.	3.8	31
152	Sustainable pretreatments in textile wet processing. Journal of Cleaner Production, 2021, 329, 129725.	4.6	25
153	Elektromagnetische Eigenschaften. , 2021, , 441-469.		0
155	Physical Decontamination and Degradation of Aflatoxins. , 2021, , 207-232.		2
156	Goji Berry (Lycium Barbarum L.) Carotenoids Enrichment through â€~Green' Extraction Method Improves Oxidative Stability and Maintains Fatty Acids of Yak Ghee with Microwave Heating and Storage. Foods, 2022, 11, 369.	1.9	7
157	The Effect of Microwave Irradiation on the Representation and Growth of Moulds in Nuts and Almonds. Foods, 2022, 11, 221.	1.9	3
159	Production and characterization of bio-oil from catalytic fast pyrolysis of greenhouse vegetables wastes. Biomass Conversion and Biorefinery, 2023, 13, 12737-12748.	2.9	1
160	Preparation and properties of silicon nitride-phosphate composites for application in microwave furnace. Ceramics International, 2022, , .	2.3	0
161	Dairy foods and novel thermal and non-thermal processing: A bibliometric analysis. Innovative Food Science and Emerging Technologies, 2022, 76, 102934.	2.7	23
162	Microwave Cooking Enriches the Nanoscale and Short/Long-Range Orders of the Resulting indica Rice Starch Undergoing Storage. Foods, 2022, 11, 501.	1.9	4
163	Comparison of microwave and conventional heating on physicochemical properties and phenolic profiles of purple sweetpotato and wheat flours. Food Bioscience, 2022, 46, 101602.	2.0	7
164	Proteomic analysis of japonica sorghum following microwave intermittent drying based on label-free technology. Food Science and Technology, 0, 42, .	0.8	0
165	Role of Food Hydrocolloids as Antioxidants along with Modern Processing Techniques on the Surimi Protein Gel Textural Properties, Developments, Limitation and Future Perspectives. Antioxidants, 2022, 11, 486.	2.2	20
166	Extraction of functional extracts from berries and their high quality processing: a comprehensive review. Critical Reviews in Food Science and Nutrition, 2023, 63, 7108-7125.	5.4	11
170	Non-Thermal Atmospheric Plasma for Microbial Decontamination and Removal of Hazardous Chemicals: An Overview in the Circular Economy Context with Data for Test Applications of Microwave Plasma Torch. Processes, 2022, 10, 554.	1.3	10

#	Article	IF	CITATIONS
173	Research developments in the applications of microwave energy in fish processing: A review. Trends in Food Science and Technology, 2022, 123, 222-232.	7.8	31
174	Advances Of Pulsed Electric Field For Foodborne Pathogen Sterilization. Food Reviews International, 2023, 39, 3603-3619.	4.3	3
175	Thermal processing of food: Challenges, innovations and opportunities. A position paper. Food Reviews International, 2023, 39, 3344-3369.	4.3	8
176	Current Strategies for Real-Time Enzyme Activation. Biomolecules, 2022, 12, 599.	1.8	3
177	Experimental and computational study of fluidized-microwave drying process of shrinking parchment coffee and determination of quality attributes. International Journal of Food Engineering, 2022, .	0.7	1
178	Novel electromagnetic-black-hole-based high-efficiency single-mode microwave liquid-phase food heating system. Innovative Food Science and Emerging Technologies, 2022, 78, 103012.	2.7	11
179	Infrared and Microwave as a dry blanching tool for Irish potato: Product quality, cell integrity, and artificial neural networks (ANNs) modeling of enzyme inactivation kinetic. Innovative Food Science and Emerging Technologies, 2022, 78, 103010.	2.7	16
180	Pasteurization mechanism on the cellular level of radio frequency heating and its possible non-thermal effect. Innovative Food Science and Emerging Technologies, 2022, 78, 103026.	2.7	9
181	Fruit variability impacts puree quality: Assessment on individually processed apples using the visible and near infrared spectroscopy. Food Chemistry, 2022, 390, 133088.	4.2	7
182	Advances in drying techniques for retention of antioxidants in agro produces. Critical Reviews in Food Science and Nutrition, 2023, 63, 10849-10865.	5.4	3
183	Microwave Irradiation: Effects on the Change of Colour Characteristics and Main Phenolic Compounds of Cabernet Gernischt Dry Red Wine during Storage. Foods, 2022, 11, 1778.	1.9	3
184	Microwave heating and conduction heating pork belly: Non-volatile compounds and their correlation with taste characteristics, heat transfer modes, and matrix microstructure. Meat Science, 2022, 192, 108899.	2.7	8
185	Research progress in fluid and semifluid microwave heating technology in food processing. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 3436-3454.	5.9	13
186	Pasteurization of egg white by integrating ultrasound and microwave: Effect on structure and functional properties. Innovative Food Science and Emerging Technologies, 2022, 79, 103063.	2.7	12
187	Retardation of quality loss and extension of shelf life of prepackaged hard clam heating by a novel microwave-assisted induction heating (MAIH) during refrigerated storage. Food Control, 2022, 141, 109187.	2.8	1
188	Microwave Irradiation: the Influence on the Production of Xanthylium Cation Pigments in Model Wine. Food and Bioprocess Technology, 2022, 15, 2210-2225.	2.6	2
189	Cooking and pasteurizing evaluation of barramundi (Lates calcarifer) meats subjected to an emerging microwave-assisted induction heating (MAIH) technology. Innovative Food Science and Emerging Technologies, 2022, 80, 103089.	2.7	6
190	Novel rapid cooling system design and modeling for continuous flow food processing systems. LWT - Food Science and Technology, 2022, 165, 113752.	2.5	0

#	Article	IF	CITATIONS
192	Microwave-Assisted Photocatalytic Degradation of Organic Pollutants via CNTs/TiO2. Catalysts, 2022, 12, 940.	1.6	9
194	Recent advances in frying processes for plant-based foods. , 2022, 1, 100086.		9
195	Effect of lossy thin-walled cylindrical food containers on microwave heating performance. Journal of Food Engineering, 2023, 337, 111232.	2.7	16
196	Influence of Microwave Heating on Food Bioactives. Food Bioactive Ingredients, 2022, , 369-395.	0.3	3
197	Food Waste Biorefineries: Developments, Current Advances and Future Outlook., 2022,, 309-336.		0
198	Factors affecting energy efficiency of microwave drying of foods: an updated understanding. Critical Reviews in Food Science and Nutrition, 0, , 1-16.	5.4	7
199	Behind the veil: a multidisciplinary discussion on protein–microwave interactions. Current Opinion in Food Science, 2022, 48, 100936.	4.1	4
200	Microwave processing technology influences the functional and structural properties of fish gelatin. Journal of Texture Studies, 2023, 54, 127-135.	1.1	3
201	Research progress on quality deterioration mechanism and control technology of frozen muscle foods. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 4812-4846.	5.9	22
202	Improving modification of structures and functionalities of food macromolecules by novel thermal technologies. Trends in Food Science and Technology, 2022, 129, 327-338.	7.8	15
203	Application of physical fieldâ€assisted freezing and thawing to mitigate damage to frozen food. Journal of the Science of Food and Agriculture, 2023, 103, 2223-2238.	1.7	12
204	Strategies to optimize the structural and functional properties of myofibrillar proteins: Physical and biochemical perspectives. Critical Reviews in Food Science and Nutrition, 0 , $1-17$.	5.4	7
205	The Effect of Hybrid Drying Methods on the Quality of Dried Carrot. Applied Sciences (Switzerland), 2022, 12, 10588.	1.3	6
206	A comprehensive review of the principles, key factors, application, and assessment of thawing technologies for muscle foods. Comprehensive Reviews in Food Science and Food Safety, 2023, 22, 107-134.	5.9	11
207	Feasibility of advancing the production of bio-jet fuel via microwave reactor under low reaction temperature. Journal of Analytical and Applied Pyrolysis, 2022, 168, 105772.	2.6	3
208	Green Technologies for Sustainable Food Production and Preservation: Microwaves., 2023,,.		O
209	Double-ridged waveguide for efficiently heating ultrafine filament fibers. International Journal of Heat and Mass Transfer, 2023, 200, 123543.	2.5	11
210	Influence of a postâ€processing heat treatment method on the textural properties of textured vegetable protein. Journal of Food Science, 2022, 87, 5340-5348.	1.5	3

#	Article	IF	Citations
211	The effect of gamma irradiation, microwaves, and roasting on aflatoxin levels in pistachio kernels. World Mycotoxin Journal, 2022, 16, 75-83.	0.8	0
212	Introduction to emerging thermal food processes. , 2023, , 1-29.		1
213	Microwave heating equipment for the food industry. , 2023, , 119-163.		1
214	Review of Electric Cracking of Hydrocarbons. ACS Sustainable Chemistry and Engineering, 2022, 10, 16070-16089.	3.2	9
215	Emerging Technological Advances in Improving the Safety of Muscle Foods: Framing in the Context of the Food Revolution 4.0. Food Reviews International, 2024, 40, 37-78.	4. 3	2
216	Effects of microwave and conventional heating on physicochemical, digestive, and structural properties of debranched quinoa starchâ€oleic acid complexes with different water addition. Journal of the Science of Food and Agriculture, 2023, 103, 2146-2154.	1.7	3
217	Physicochemical study of Camellia oleifera Abel. seed oils produced using different pretreatment and processing methods. LWT - Food Science and Technology, 2023, 173, 114396.	2.5	6
218	Fast aging technology of novel kiwifruit wine and dynamic changes of aroma components during storage. Food Science and Technology, 0, 43, .	0.8	2
219	Microwave-Assisted Extraction of Plant Proteins. , 2023, , 211-236.		1
220	Recent advances in crispness retention of microwaveable frozen pre-fried foods. Trends in Food Science and Technology, 2023, 132, 54-64.	7.8	7
222	Microwave: An overview., 2023,, 19-59.		0
223	Continuous-Flow Microwave Milk Sterilisation System Based on a Coaxial Slot Radiator. Foods, 2023, 12, 459.	1.9	2
224	Development and substantiation of the electrodynamic parameters of a continuous operation radio wave installation for the heat treatment of eggs. Agrarian Science, 2023, 1, 94-102.	0.1	0
225	Synergistic effect of sonication and microwave for inhibition of microorganism., 2023, , 189-216.		0
226	Perceptions, barriers and enablers of salt reduction in Malaysian out-of-home sectors (MySaltOH): from the point of view of policy-makers and food industries. Health Research Policy and Systems, 2023, 21, .	1.1	1
227	Ultraviolet-radiation technology for preservation of meat and meat products: Recent advances and future trends. Food Control, 2023, 148, 109684.	2.8	7
228	In-situ indirect measurements of real-time moisture contents during microwave vacuum drying of beef and carrot slices using terahertz time-domain spectroscopy. Food Chemistry, 2023, 418, 135943.	4.2	8
229	Microwave heating and conduction heating pork belly: Influence of heat transfer modes on volatile compounds and aroma attributes. Food Bioscience, 2023, 52, 102438.	2.0	3

#	Article	IF	CITATIONS
230	Glycerol and microwave-assisted catalysis: recent progress in batch and flow devices. Sustainable Energy and Fuels, 2023, 7, 1768-1792.	2.5	8
231	Dietary fiber modification: structure, physicochemical properties, bioactivities, and application—a review. Critical Reviews in Food Science and Nutrition, 0, , 1-21.	5.4	2
232	Reactive Air Disinfection Technologies: Principles and Applications in Bioaerosol Removal. ACS ES&T Engineering, 2023, 3, 602-615.	3.7	5
233	Microwave irradiation: Reduction of higher alcohols in wine and the effect mechanism by employing model wine. LWT - Food Science and Technology, 2023, 181, 114765.	2.5	1
236	Electromagnetic Properties. , 2023, , 455-482.		0
239	Microwave Heating Chamber Loaded with Photonic Crystal. , 2022, , .		0
276	Emerging Novel Technologies for Food Drying. , 2023, , 3-12.		0
286	Livestock product processing technology. , 2024, , 295-318.		O