Iodine Vacancy Redistribution in Organic–Inorganic Switching Effects

Advanced Materials 29, 1700527 DOI: 10.1002/adma.201700527

Citation Report

#	Article	IF	CITATIONS
1	Wafer-scale reliable switching memory based on 2-dimensional layered organic–inorganic halide perovskite. Nanoscale, 2017, 9, 15278-15285.	5.6	113
2	Metal/Ion Interactions Induced p–i–n Junction in Methylammonium Lead Triiodide Perovskite Single Crystals. Journal of the American Chemical Society, 2017, 139, 17285-17288.	13.7	32
3	Competition between Metallic and Vacancy Defect Conductive Filaments in a CH ₃ NH ₃ Pbl ₃ -Based Memory Device. Journal of Physical Chemistry C, 2018, 122, 6431-6436.	3.1	115
4	Analytical Modeling of Organic–Inorganic CH ₃ NH ₃ PbI ₃ Perovskite Resistive Switching and its Application for Neuromorphic Recognition. Advanced Theory and Simulations, 2018, 1, 1700035.	2.8	35
5	Coexistence of unipolar and bipolar resistive switching behaviors in NiFe2O4 thin film devices by doping Ag nanoparticles. Journal of Applied Physics, 2018, 123, .	2.5	28
6	Emerging perovskite materials for high density data storage and artificial synapses. Journal of Materials Chemistry C, 2018, 6, 1600-1617.	5.5	110
7	Optogenetics-Inspired Tunable Synaptic Functions in Memristors. ACS Nano, 2018, 12, 1242-1249.	14.6	205
8	Screening of point defects in methylammonium lead halides: a Monte Carlo study. Journal of Materials Chemistry C, 2018, 6, 1487-1494.	5.5	6
9	Light-current-induced acceleration of degradation of methylammonium lead iodide perovskite solar cells. Journal of Power Sources, 2018, 384, 303-311.	7.8	9
10	Lead-free, air-stable hybrid organic–inorganic perovskite resistive switching memory with ultrafast switching and multilevel data storage. Nanoscale, 2018, 10, 8578-8584.	5.6	136
11	Compliance-Free Multileveled Resistive Switching in a Transparent 2D Perovskite for Neuromorphic Computing. ACS Applied Materials & amp; Interfaces, 2018, 10, 12768-12772.	8.0	64
12	From dead leaves to sustainable organic resistive switching memory. Journal of Colloid and Interface Science, 2018, 513, 774-778.	9.4	72
13	Effects of mobile charged defects on current–voltage behavior in resistive switching memories based on organic–inorganic hybrid perovskite. Applied Physics Letters, 2018, 113, .	3.3	13
14	Multifunctional Optoelectronic Device Based on Resistive Switching Effects. , 0, , .		4
15	Intrinsic Behavior of CH ₃ NH ₃ PbBr ₃ Single Crystals under Light Illumination. Advanced Materials Interfaces, 2018, 5, 1801206.	3.7	18
16	Control of Charge Recombination in Perovskites by Oxidation State of Halide Vacancy. Journal of the American Chemical Society, 2018, 140, 15753-15763.	13.7	129
17	Giant Zero-Drift Electronic Behaviors in Methylammonium Lead Halide Perovskite Diodes by Doping Iodine Ions. Materials, 2018, 11, 1606.	2.9	11
18	Synergies of Electrochemical Metallization and Valance Change in Allâ€Inorganic Perovskite Quantum Dots for Resistive Switching. Advanced Materials, 2018, 30, e1800327.	21.0	246

#	Article	IF	CITATIONS
19	Biological Spiking Synapse Constructed from Solution Processed Bimetal Core–Shell Nanoparticle Based Composites. Small, 2018, 14, e1800288.	10.0	68
20	Phototunable Biomemory Based on Lightâ€Mediated Charge Trap. Advanced Science, 2018, 5, 1800714.	11.2	99
21	Atomic Scale Photodetection Enabled by a Memristive Junction. ACS Nano, 2018, 12, 6706-6713.	14.6	37
22	Plasmon-Assisted Zone-Selective Repair of Nanoscale Electrical Breakdown Paths in Metal/Oxide/Metal Structures for Near-Field Optical Sensing. ACS Applied Nano Materials, 2018, 1, 4340-4350.	5.0	4
23	Lightâ€Induced Anomalous Resistive Switches Based on Individual Organic–Inorganic Halide Perovskite Microâ€INanofibers. Advanced Electronic Materials, 2018, 4, 1800206.	5.1	26
24	1D Hexagonal HC(NH ₂) ₂ PbI ₃ for Multilevel Resistive Switching Nonvolatile Memory. Advanced Electronic Materials, 2018, 4, 1800190.	5.1	70
25	Influence of the voltage window on resistive switching memory characteristics based on g-C3N4 device. Ceramics International, 2018, 44, 18108-18112.	4.8	15
26	Solution-processed resistive switching memory devices based on hybrid organic–inorganic materials and composites. Physical Chemistry Chemical Physics, 2018, 20, 23837-23846.	2.8	68
27	Phosphorene/ZnO Nanoâ€Heterojunctions for Broadband Photonic Nonvolatile Memory Applications. Advanced Materials, 2018, 30, e1801232.	21.0	98
28	Independent Memcapacitive Switching Triggered by Bromide Ion Migration for Quaternary Information Storage. Advanced Materials, 2019, 31, e1806424.	21.0	38
29	The effect of compositional engineering of imidazolium lead iodide on the resistive switching properties. Nanoscale, 2019, 11, 14455-14464.	5.6	16
30	Effect of interlayer spacing in layered perovskites on resistive switching memory. Nanoscale, 2019, 11, 14330-14338.	5.6	39
31	Air-Stable Lead-Free Perovskite Thin Film Based on CsBi ₃ 1 ₁₀ and Its Application in Resistive Switching Devices. ACS Applied Materials & Interfaces, 2019, 11, 30037-30044.	8.0	59
32	From Macroscopic to Nanoscopic Current Hysteresis Suppressed by Fullerene in Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900235.	5.8	10
33	Fine Multiâ€Phase Alignments in 2D Perovskite Solar Cells with Efficiency over 17% via Slow Postâ€Annealing. Advanced Materials, 2019, 31, e1903889.	21.0	178
34	Long-Distance Ionic Diffusion in Cesium Lead Mixed Halide Perovskite Induced by Focused Illumination. Chemistry of Materials, 2019, 31, 9049-9056.	6.7	28
35	Environmentally Robust Memristor Enabled by Leadâ€Free Double Perovskite for Highâ€Performance Information Storage. Small, 2019, 15, e1905731.	10.0	123
36	Advanced functional materials for soft robotics: tuning physicochemical properties beyond rigidity control. Multifunctional Materials, 2019, 2, 042001.	3.7	13

#	Article	IF	Citations
37	Photonic Memristor for Future Computing: A Perspective. Advanced Optical Materials, 2019, 7, 1900766.	7.3	130
38	Enhanced stability of guanidinium-based organic-inorganic hybrid lead triiodides in resistance switching. APL Materials, 2019, 7, .	5.1	12
39	Enhanced Switching Ratio and Long-Term Stability of Flexible RRAM by Anchoring Polyvinylammonium on Perovskite Grains. ACS Applied Materials & amp; Interfaces, 2019, 11, 35914-35923.	8.0	65
40	A bio-inspired electronic synapse using solution processable organic small molecule. Journal of Materials Chemistry C, 2019, 7, 1491-1501.	5.5	59
41	Self-powered behavior based on the light-induced self-poling effect in perovskite-based transport layer-free photodetectors. Journal of Materials Chemistry C, 2019, 7, 609-616.	5.5	29
42	A solution processed metal–oxo cluster for rewritable resistive memory devices. Journal of Materials Chemistry C, 2019, 7, 843-852.	5.5	18
43	Lead-Free All-Inorganic Cesium Tin Iodide Perovskite for Filamentary and Interface-Type Resistive Switching toward Environment-Friendly and Temperature-Tolerant Nonvolatile Memories. ACS Applied Materials & Interfaces, 2019, 11, 8155-8163.	8.0	133
44	Tunable hysteresis behaviour related to trap filling dependence of surface barrier in an individual CH ₃ NH ₃ Pbl ₃ micro/nanowire. Nanoscale, 2019, 11, 3360-3369.	5.6	23
45	Influence of Defects on Excited-State Dynamics in Lead Halide Perovskites: Time-Domain ab Initio Studies. Journal of Physical Chemistry Letters, 2019, 10, 3788-3804.	4.6	66
46	Unconventional CN vacancies suppress iron-leaching in Prussian blue analogue pre-catalyst for boosted oxygen evolution catalysis. Nature Communications, 2019, 10, 2799.	12.8	202
47	Memristors with organicâ€inorganic halide perovskites. InformaÄnÃ-Materiály, 2019, 1, 183-210.	17.3	111
48	Metal halide perovskites for resistive switching memory devices and artificial synapses. Journal of Materials Chemistry C, 2019, 7, 7476-7493.	5.5	72
49	High-Performance Nanofloating Gate Memory Based on Lead Halide Perovskite Nanocrystals. ACS Applied Materials & Interfaces, 2019, 11, 24367-24376.	8.0	23
50	Light assisted multilevel resistive switching memory devices based on all-inorganic perovskite quantum dots. Applied Physics Letters, 2019, 114, .	3.3	55
51	Vacuumâ€Deposited Inorganic Perovskite Memory Arrays with Longâ€Term Ambient Stability. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900182.	2.4	10
52	Conductive metallic filaments dominate in hybrid perovskite-based memory devices. Science China Materials, 2019, 62, 1323-1331.	6.3	18
53	Nanoionic Resistiveâ€ 6 witching Devices. Advanced Electronic Materials, 2019, 5, 1900184.	5.1	41
54	An excellent pH-controlled resistive switching memory device based on self-colored (C ₇ H ₇ O ₄ N) _n extracted from a lichen plant. Journal of Materials Chemistry C, 2019, 7, 7593-7600.	5.5	31

#	Article	IF	CITATIONS
55	Controllable switching properties in an individual CH3NH3PbI3 micro/nanowire-based transistor for gate voltage and illumination dual-driving non-volatile memory. Journal of Materials Chemistry C, 2019, 7, 4259-4266.	5.5	18
56	Solid-State Electrochemical Process and Performance Optimization of Memristive Materials and Devices. Chemistry, 2019, 1, 44-68.	2.2	4
57	Silver Iodide Induced Resistive Switching in CsPbl ₃ Perovskiteâ€Based Memory Device. Advanced Materials Interfaces, 2019, 6, 1802071.	3.7	65
58	Verification and mitigation of ion migration in perovskite solar cells. APL Materials, 2019, 7, .	5.1	179
59	Highâ€Performance Solutionâ€Processed Organoâ€Metal Halide Perovskite Unipolar Resistive Memory Devices in a Crossâ€Bar Array Structure. Advanced Materials, 2019, 31, e1804841.	21.0	100
60	Kelvin probe force microscopy for perovskite solar cells. Science China Materials, 2019, 62, 776-789.	6.3	93
61	Performance-enhanced solar-blind photodetector based on a CH ₃ NH ₃ PbI ₃ /β-Ga ₂ O ₃ hybrid structure. Journal of Materials Chemistry C, 2019, 7, 14205-14211.	5.5	45
62	A nonvolatile organic resistive switching memory based on lotus leaves. Chemical Physics, 2019, 516, 168-174.	1.9	57
63	Organic Memristor Utilizing Copper Phthalocyanine Nanowires with Infrared Response and Cation Regulating Properties. Advanced Electronic Materials, 2019, 5, 1800793.	5.1	44
64	Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nature Materials, 2019, 18, 141-148.	27.5	426
65	Improvement of resistive memory properties of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/CH3NH3PbI3 based device by potassium iodide additives. Journal of Alloys and Compounds, 2019, 783, 478-485.	5.5	16
66	Insertion of Nanoscale AgInSbTe Layer between the Ag Electrode and the CH ₃ NH ₃ PbI ₃ Electrolyte Layer Enabling Enhanced Multilevel Memory. ACS Applied Nano Materials, 2019, 2, 307-314.	5.0	26
67	Substrate-Dependent Photoconductivity Dynamics in a High-Efficiency Hybrid Perovskite Alloy. Journal of Physical Chemistry C, 2019, 123, 3402-3415.	3.1	10
68	Emerging Memory Devices for Neuromorphic Computing. Advanced Materials Technologies, 2019, 4, 1800589.	5.8	307
69	Recent Advances in Memory Devices with Hybrid Materials. Advanced Electronic Materials, 2019, 5, 1800519.	5.1	92
70	Cyclingâ€Induced Degradation of Organic–Inorganic Perovskiteâ€Based Resistive Switching Memory. Advanced Materials Technologies, 2019, 4, 1800238.	5.8	47
71	An ionic compensation strategy for high-performance mesoporous perovskite solar cells: healing defects with tri-iodide ions in a solvent vapor annealing process. Journal of Materials Chemistry A, 2019, 7, 353-362.	10.3	28
72	Organic and hybrid resistive switching materials and devices. Chemical Society Reviews, 2019, 48, 1531-1565.	38.1	291

#	Article	IF	CITATIONS
73	Photonic Organolead Halide Perovskite Artificial Synapse Capable of Accelerated Learning at Low Power Inspired by Dopamineâ€Facilitated Synaptic Activity. Advanced Functional Materials, 2019, 29, 1806646.	14.9	154
74	Interfacial Mechanism for Efficient Resistive Switching in Ruddlesden–Popper Perovskites for Non-volatile Memories. Journal of Physical Chemistry Letters, 2020, 11, 463-470.	4.6	90
75	Improved air stability and low voltage resistive switching behaviors of NiO-buffered CH ₃ NH ₃ PbI ₃ films prepared by a solution method. Journal Physics D: Applied Physics, 2020, 53, 075101.	2.8	2
76	Incorporation of Nickel Ions to Enhance Integrity and Stability of Perovskite Crystal Lattice for High-Performance Planar Heterojunction Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 904-913.	8.0	13
77	Analytical modeling of electrochemical metallization memory device with dual-layer structure of Ag/AgInSbTe/amorphous C/Pt. Semiconductor Science and Technology, 2020, 35, 02LT01.	2.0	2
78	Roadmap on halide perovskite and related devices. Nanotechnology, 2020, 31, 152001.	2.6	24
79	Effect of iodine doping on photoelectric properties of perovskite-based MOS devices. Materials Letters, 2020, 261, 127040.	2.6	0
80	Leadâ€free perovskite MASnBr ₃ â€based memristor for quaternary information storage. InformaÄnÃ-Materiály, 2020, 2, 743-751.	17.3	58
81	Ion Migration: A "Doubleâ€Edged Sword―for Halideâ€Perovskiteâ€Based Electronic Devices. Small Methods, 2020, 4, 1900552.	8.6	127
82	A solvent-based surface cleaning and passivation technique for suppressing ionic defects in high-mobility perovskite field-effect transistors. Nature Electronics, 2020, 3, 694-703.	26.0	99
83	Fabrication of Flexible Resistive Switching Devices Based on Leadâ€Free Allâ€Inorganic CsSnBr ₃ Perovskite Using a One‣tep Chemical Vapor Deposition Method. Advanced Electronic Materials, 2020, 6, 2000799.	5.1	21
84	Solid-State Ionic Rectification in Perovskite Nanowire Heterostructures. Nano Letters, 2020, 20, 8151-8156.	9.1	12
85	Triple-Cation Perovskite Resistive Switching Memory with Enhanced Endurance and Retention. ACS Applied Electronic Materials, 2020, 2, 3695-3703.	4.3	18
86	Recent advances in optical and optoelectronic data storage based on luminescent nanomaterials. Nanoscale, 2020, 12, 23391-23423.	5.6	47
87	Switchable Perovskite Photovoltaic Sensors for Bioinspired Adaptive Machine Vision. Advanced Intelligent Systems, 2020, 2, 2000122.	6.1	44
88	Resistive-switching tunability with size-dependent all-inorganic zero-dimensional tetrahedrite quantum dots. Science China Materials, 2020, 63, 2497-2508.	6.3	3
89	Organic neuromorphic devices: Past, present, and future challenges. MRS Bulletin, 2020, 45, 619-630.	3.5	59
90	Hardware implementation of photoelectrically modulated dendritic arithmetic and spike-timing-dependent plasticity enabled by an ion-coupling gate-tunable vertical OD-perovskite/2D-MoS ₂ hybrid-dimensional van der Waals heterostructure. Nanoscale, 2020, 12, 21298, 21811	5.6	51

~			_			
Сп	ΓΑΤ	ION	ı R	FP	\cap	RΤ

#	Article	IF	CITATIONS
91	Leadâ€Free Dualâ€Phase Halide Perovskites for Preconditioned Conductingâ€Bridge Memory. Small, 2020, 16, e2003225.	10.0	27
92	Induced Vacancy-Assisted Filamentary Resistive Switching Device Based on RbPbI _{3–<i>x</i>} Cl _{<i>x</i>} Perovskite for RRAM Application. ACS Applied Materials & Interfaces, 2020, 12, 41718-41727.	8.0	46
93	Unraveling the origin of resistive switching behavior in organolead halide perovskite based memory devices. AIP Advances, 2020, 10, .	1.3	16
94	Visible Light Detection and Memory Capabilities in MgO/HfOâ,, Bilayer-Based Transparent Structure for Photograph Sensing. IEEE Transactions on Electron Devices, 2020, 67, 4274-4280.	3.0	18
95	Memristor networks for real-time neural activity analysis. Nature Communications, 2020, 11, 2439.	12.8	108
96	The application of halide perovskites in memristors. Journal of Semiconductors, 2020, 41, 051205.	3.7	22
97	Black Phosphorus Based Multicolor Light-Modulated Transparent Memristor with Enhanced Resistive Switching Performance. ACS Applied Materials & Interfaces, 2020, 12, 25108-25114.	8.0	32
98	Defects engineering of bimetallic Ni-based catalysts for electrochemical energy conversion. Coordination Chemistry Reviews, 2020, 418, 213372.	18.8	41
99	Resistive Switching Property of Organic–Inorganic Tri-Cation Lead Iodide Perovskite Memory Device. Nanomaterials, 2020, 10, 1155.	4.1	9
100	Extremely Low Program Current Memory Based on Self-Assembled All-Inorganic Perovskite Single Crystals. ACS Applied Materials & Interfaces, 2020, 12, 31776-31782.	8.0	20
101	Solution-processed inorganic l´-phase CsPbI ₃ electronic synapses with short- and long-term plasticity in a crossbar array structure. Nanoscale, 2020, 12, 13558-13566.	5.6	9
102	First-Principles Study on the Oxygen–Light-Induced Iodide Vacancy Formation in FASnI ₃ Perovskite. Journal of Physical Chemistry C, 2020, 124, 14147-14157.	3.1	17
103	Improved Performance of CH ₃ NH ₃ PbI _{3–<i>x</i>} Cl <i>_x</i> Resistive Switching Memory by Assembling 2D/3D Perovskite Heterostructures. ACS Applied Materials & Interfaces, 2020, 12, 15439-15445.	8.0	43
104	Correlation of Spatiotemporal Dynamics of Polarization and Charge Transport in Blended Hybrid Organic–Inorganic Perovskites on Macro- and Nanoscales. ACS Applied Materials & Interfaces, 2020, 12, 15380-15388.	8.0	5
105	Photoassisted Electroforming Method for Reliable Lowâ€Power Organic–Inorganic Perovskite Memristors. Advanced Functional Materials, 2020, 30, 1910151.	14.9	62
106	Two-terminal optoelectronic memory device. , 2020, , 75-105.		0
107	Recent progress in hybrid perovskite solar cells through scanning tunneling microscopy and spectroscopy. Nanoscale, 2020, 12, 15970-15992.	5.6	19
108	Multifunctional Electronic Skin Based on Perovskite Intermediate Gels. Advanced Electronic Materials, 2020, 6, 1901291.	5.1	16

#	Article	IF	CITATIONS
109	Quasi-2D halide perovskites for resistive switching devices with ON/OFF ratios above 109. NPG Asia Materials, 2020, 12, .	7.9	71
110	Multifunctional Polymer Memory via Biâ€Interfacial Topography for Pressure Perception Recognition. Advanced Science, 2020, 7, 1902864.	11.2	15
111	Lead-free monocrystalline perovskite resistive switching device for temporal information processing. Nano Energy, 2020, 71, 104616.	16.0	96
112	Optoelectronic memristor for neuromorphic computing*. Chinese Physics B, 2020, 29, 048401.	1.4	34
113	Lowâ€Dimensional Leadâ€Free Inorganic Perovskites for Resistive Switching with Ultralow Bias. Advanced Functional Materials, 2020, 30, 2002110.	14.9	78
114	Recent Advances in Halide Perovskite Memristors: Materials, Structures, Mechanisms, and Applications. Advanced Materials Technologies, 2020, 5, .	5.8	110
115	Revealing Dynamic Effects of Mobile Ions in Halide Perovskite Solar Cells Using Timeâ€Resolved Microspectroscopy. Small Methods, 2021, 5, e2000731.	8.6	18
116	Improving memory performance of PVA:ZnO nanocomposite: The experimental and theoretical approaches. Applied Surface Science, 2021, 537, 148000.	6.1	17
117	Recent advances in resistive random access memory based on lead halide perovskite. InformaÄ n Ã- Materiály, 2021, 3, 293-315.	17.3	70
118	Allâ€Optically Controlled Memristor for Optoelectronic Neuromorphic Computing. Advanced Functional Materials, 2021, 31, 2005582.	14.9	123
119	Highly Uniform Allâ€Vacuumâ€Deposited Inorganic Perovskite Artificial Synapses for Reservoir Computing. Advanced Intelligent Systems, 2021, 3, 2000196.	6.1	18
120	Modulating vacancies in nonstoichiometric oxides by annealing polarized nanoporous NiCoMn as thick pseudocapacitive electrode. Electrochimica Acta, 2021, 368, 137628.	5.2	2
121	Resistive switching in formamidinium lead iodide perovskite nanocrystals: a contradiction to the bulk form. Journal of Materials Chemistry C, 2021, 9, 288-293.	5.5	14
122	Strong electron-ion coupling in gradient halide perovskite heterojunction. Nano Research, 2021, 14, 1012-1017.	10.4	3
123	Memory Devices for Flexible and Neuromorphic Device Applications. Advanced Intelligent Systems, 2021, 3, 2000206.	6.1	14
124	ABO ₃ multiferroic perovskite materials for memristive memory and neuromorphic computing. Nanoscale Horizons, 2021, 6, 939-970.	8.0	79
126	Light induced transformation of resistive switching polarity in Sb ₂ S ₃ based organic–inorganic hybrid devices. Journal of Materials Chemistry C, 2021, 9, 6904-6910.	5.5	13
127	Optically tunable ultra-fast resistive switching in lead-free methyl-ammonium bismuth iodide perovskite films. Nanoscale, 2021, 13, 6184-6191.	5.6	21

#	Article	IF	CITATIONS
128	Atomistic Mechanism of Passivation of Halide Vacancies in Lead Halide Perovskites by Alkali Ions. Chemistry of Materials, 2021, 33, 1285-1292.	6.7	26
129	Impact of Hydroiodic Acid on Resistive Switching Performance of Lead-Free Cs ₃ Cu ₂ I ₅ Perovskite Memory. Journal of Physical Chemistry Letters, 2021, 12, 1973-1978.	4.6	27
130	Copper (II) Phthalocyanine (CuPc) Based Optoelectronic Memory Device with Multilevel Resistive Switching for Neuromorphic Application. Advanced Electronic Materials, 2021, 7, 2001079.	5.1	14
131	Nitrogen-induced ultralow power switching in flexible ZnO-based memristor for artificial synaptic learning. Applied Physics Letters, 2021, 118, .	3.3	21
132	Mixed Conductivity of Hybrid Halide Perovskites: Emerging Opportunities and Challenges. Frontiers in Energy Research, 2021, 9, .	2.3	26
133	Advances in Halide Perovskite Memristor from Lead-Based to Lead-Free Materials. ACS Applied Materials & Interfaces, 2021, 13, 17141-17157.	8.0	64
134	Reduction of Hysteresis in Hybrid Perovskite Transistors by Solvent-Controlled Growth. Materials, 2021, 14, 2573.	2.9	6
135	Halide Perovskites: A New Era of Solutionâ€Processed Electronics. Advanced Materials, 2021, 33, e2005000.	21.0	138
136	Humidity Effect on Resistive Switching Characteristics of the CH ₃ NH ₃ PbI ₃ Memristor. ACS Applied Materials & Interfaces, 2021, 13, 28555-28563.	8.0	43
137	Designing zero-dimensional dimer-type all-inorganic perovskites for ultra-fast switching memory. Nature Communications, 2021, 12, 3527.	12.8	38
138	Rapid microwave annealing of CH3NH3PbI3 with controllable crystallization for enhancing the resistive-switching performance. Semiconductor Science and Technology, 2021, 36, 095012.	2.0	4
139	All-inorganic perovskite quantum dot light-emitting memories. Nature Communications, 2021, 12, 4460.	12.8	62
140	Ionically Mediated Mechanical Deformation Associated with Memristive Switching. Advanced Functional Materials, 2021, 31, 2103145.	14.9	4
141	Full Solar‧pectrumâ€Driven Antibacterial Therapy over Hierarchical Sn ₃ O ₄ /PDINH with Enhanced Photocatalytic Activity. Small, 2021, 17, e2102744.	10.0	64
142	Enhancing the Switching Performance of CH ₃ NH ₃ PbI ₃ Memristors by the Control of Size and Characterization Parameters. Advanced Electronic Materials, 2021, 7, 2100472.	5.1	14
143	Donor–Acceptor Competition via Halide Vacancy Filling for Oxygen Detection of High Sensitivity and Stability by Allâ€Inorganic Perovskite Films. Small, 2021, 17, 2102733.	10.0	3
144	Advances in Flexible Memristors with Hybrid Perovskites. Journal of Physical Chemistry Letters, 2021, 12, 8798-8825.	4.6	36
145	Ferrocene Induced Perpetual Recovery on All Elemental Defects in Perovskite Solar Cells. Angewandte Chemie, 0, , .	2.0	0

#	Article	IF	CITATIONS
146	Ferroceneâ€Induced Perpetual Recovery on All Elemental Defects in Perovskite Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 25567-25574.	13.8	34
147	Resistive Switching by Percolative Conducting Filaments in Organometal Perovskite Unipolar Memory Devices Analyzed Using Current Noise Spectra. Advanced Functional Materials, 2022, 32, 2107727.	14.9	8
148	Oxide Passivation of Halide Perovskite Resistive Memory Device: A Strategy for Overcoming Endurance Problem. ACS Applied Materials & Interfaces, 2021, 13, 44577-44584.	8.0	5
149	Halide Perovskites for Memristive Data Storage and Artificial Synapses. Journal of Physical Chemistry Letters, 2021, 12, 8999-9010.	4.6	46
150	Unraveling the hysteretic behavior at double cations-double halides perovskite - electrode interfaces. Nano Energy, 2021, 89, 106428.	16.0	11
151	Light-induced nonvolatile resistive switching in Cs0.15FA0.85PbI3-XBrX perovskite-based memristors. Solid-State Electronics, 2021, 186, 108166.	1.4	5
152	Optical and oxide modification of CsFAMAPbIBr memristor achieving low power consumption. Journal of Alloys and Compounds, 2022, 891, 162096.	5.5	8
153	Enhanced resistive switching performance in yttrium-doped CH ₃ NH ₃ Pbl ₃ perovskite devices. Physical Chemistry Chemical Physics, 2021, 23, 21757-21768.	2.8	12
154	Bipolar resistive switching in biomaterials: case studies of DNA and melanin-based bio-memristive devices. , 2021, , 299-323.		1
155	Artificial Neural Networks Based on Memristive Devices: From Device to System. Advanced Intelligent Systems, 2020, 2, 2000149.	6.1	39
156	Bifunctional Silver-Doped ZnO for Reliable and Stable Organic–Inorganic Hybrid Perovskite Memory. ACS Applied Materials & Interfaces, 2021, 13, 1021-1026.	8.0	14
157	Multilevel Resistive Switching Memory Based on a CH3NH3PbI 3â^'xClx Film with Potassium Chloride Additives. Nanoscale Research Letters, 2020, 15, 126.	5.7	7
158	High-performance perovskite memristor by integrating a tip-shape contact. Journal of Materials Chemistry C, 2021, 9, 15435-15444.	5.5	14
159	Printed Memtransistor Utilizing a Hybrid Perovskite/Organic Heterojunction Channel. ACS Applied Materials & Interfaces, 2021, 13, 51592-51601.	8.0	9
160	Defect Behaviors in Perovskite Light-Emitting Diodes. , 2021, 3, 1702-1728.		27
161	Quantum Dot Passivation of Halide Perovskite Films with Reduced Defects, Suppressed Phase Segregation, and Enhanced Stability. Advanced Science, 2022, 9, e2102258.	11.2	35
162	Enhanced Memristive Performance of Double Perovskite Cs ₂ AgBiBr _{6â€<i>x</i>} Cl _{<i>x</i>} Devices by Chloride Doping. ChemPlusChem, 2021, 86, 1530-1536.	2.8	6
163	Halide Perovskites for Resistive Switching Memory. Journal of Physical Chemistry Letters, 2021, 12, 11673-11682.	4.6	47

#	Article	IF	CITATIONS
164	Single Crystal Halide Perovskite Film for Nonlinear Resistive Memory with Ultrahigh Switching Ratio. Small, 2022, 18, e2103881.	10.0	13
165	Ion Migration in Perovskite Lightâ€Emitting Diodes: Mechanism, Characterizations, and Material and Device Engineering. Advanced Materials, 2022, 34, e2108102.	21.0	85
166	Electrode Engineering in Halide Perovskite Electronics: Plenty of Room at the Interfaces. Advanced Materials, 2022, 34, e2108616.	21.0	55
167	A Solutionâ€Processed Allâ€Perovskite Memory with Dualâ€Band Light Response and Triâ€Mode Operation. Advanced Functional Materials, 2022, 32, 2110975.	14.9	30
168	Enhanced resistive switching behavior of CH3NH3PbI3 based resistive random access memory by nickel doping. Vacuum, 2022, 198, 110862.	3.5	16
169	Emerging Newâ€Generation Detecting and Sensing of Metal Halide Perovskites. Advanced Electronic Materials, 2022, 8, .	5.1	17
170	Recent progress in optoelectronic memristive devices for in-sensor computing. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 148701.	0.5	3
171	Nanostructured perovskites for nonvolatile memory devices. Chemical Society Reviews, 2022, 51, 3341-3379.	38.1	71
172	Fully Lightâ€Modulated Organic Artificial Synapse with the Assistance of Ferroelectric Polarization. Advanced Electronic Materials, 2022, 8, .	5.1	19
173	Enhanced band-filling effect in halide perovskites via hydrophobic conductive linkers. Cell Reports Physical Science, 2022, 3, 100800.	5.6	3
174	A facile fabrication of lead-free Cs2NaBiI6 double perovskite films for memory device application. Journal of Alloys and Compounds, 2022, 909, 164613.	5.5	26
175	Dynamic resistive switching devices for neuromorphic computing. Semiconductor Science and Technology, 2022, 37, 024003.	2.0	12
176	Siteâ€Specific Regulated Memristors via Electronâ€Beamâ€Induced Functionalization of HfO ₂ . Small, 2022, 18, e2105585.	10.0	10
177	All in One: A Versatile n-Perovskite/p-Spiro-MeOTAD p–n Heterojunction Diode as a Photovoltaic Cell, Photodetector, and Memristive Photosynapse. Journal of Physical Chemistry Letters, 2021, 12, 12098-12106.	4.6	17
178	Airâ€Stable, Ecoâ€Friendly <scp>RRAMs</scp> Based on Leadâ€Free <scp>Cs₃Bi₂Br₉</scp> Perovskite Quantum Dots for Highâ€Performance Information Storage. Energy and Environmental Materials, 2023, 6, .	12.8	11
179	An ammonium-pseudohalide ion pair for synergistic passivating surfaces in FAPbI3 perovskite solar cells. Matter, 2022, 5, 2209-2224.	10.0	26
180	Study of Resistive Switching and Biodegradability in Ultralow Power Memory Device Based on Allâ€Inorganic Ag/AgBi ₂ I ₇ /ITO Structure. Advanced Materials Interfaces, 2022, 9,	3.7	5
181	Rare earth Nd-doping lead-free double perovskite Cs2AgBiBr6 films with improved resistive memory performance. Journal of Alloys and Compounds, 2022, 913, 165300.	5.5	11

#	Article	IF	CITATIONS
182	Highly Efficient Invisible TaO _{<i>x</i>} /ZTO Bilayer Memristor for Neuromorphic Computing and Image Sensing. ACS Applied Electronic Materials, 2022, 4, 2180-2190.	4.3	20
183	Image processing with a multi-level ultra-fast three dimensionally integrated perovskite nanowire array. Nanoscale Horizons, 2022, 7, 759-769.	8.0	5
184	Conductance Quantization in CH ₃ NH ₃ PbI ₃ Memristor. IEEE Electron Device Letters, 2022, 43, 1037-1040.	3.9	2
185	Solution-processed perovskite crystals for electronics: Moving forward. Matter, 2022, 5, 1700-1733.	10.0	3
187	Resistive switching of self-assembly stacked h-BN polycrystal film. Cell Reports Physical Science, 2022, 3, 100939.	5.6	9
188	Metal Halide Perovskite-Based Memristors for Emerging Memory Applications. Journal of Physical Chemistry Letters, 2022, 13, 5638-5647.	4.6	38
189	The capacitive effect of inverted perovskite solar cell caused by the interface between perovskite layer and zinc oxide layer. Optical Materials, 2022, 131, 112570.	3.6	1
190	Memristive perovskite solar cells towards parallel solar energy harvesting and processing-in-memory computing. Materials Advances, 2022, 3, 7002-7014.	5.4	9
191	Halide-Perovskite-Based Memristor Devices and Their Application in Neuromorphic Computing. Physical Review Applied, 2022, 18, .	3.8	13
192	Controllable volatile-to-nonvolatile memristive switching in single-crystal lead-free double perovskite with ultralow switching electric field. Science China Materials, 2023, 66, 241-248.	6.3	7
193	Physics, Simulation, and Experiment of Perovskite Solar Cells with Addressing Hysteresis Effect. Solar Rrl, 2022, 6, .	5.8	2
194	Lowâ€Dimensional Metalâ€Halide Perovskites as Highâ€Performance Materials for Memory Applications. Small, 2022, 18, .	10.0	38
195	Advances in Emerging Photonic Memristive and Memristive‣ike Devices. Advanced Science, 2022, 9, .	11.2	15
196	Memristors with Biomaterials for Biorealistic Neuromorphic Applications. Small Science, 2022, 2, .	9.9	16
197	Mixed tin-lead perovskite nanorod-based resistive memory device. Thin Solid Films, 2022, 758, 139437.	1.8	2
199	A flexible resistive switching device for logical operation applications in wearable systems. Materials Today Chemistry, 2022, 26, 101169.	3.5	9
200	A Polyanionic Strategy to Modify the Perovskite Grain Boundary for a Larger Switching Ratio in Flexible Woven Resistive Random-Access Memories. ACS Applied Materials & Interfaces, 2022, 14, 44652-44664.	8.0	7
201	Flexible Threshold Switching Based on CsCu ₂ 1 ₃ with Low Threshold Voltage and High Air Stability. ACS Applied Materials & Interfaces, 2022, 14, 43474-43481.	8.0	8

#	Article	IF	CITATIONS
202	Essential Characteristics of Memristors for Neuromorphic Computing. Advanced Electronic Materials, 2023, 9, .	5.1	21
203	Photoâ€Enhanced Resistive Switching Effect in Highâ€Performance MAPbI ₃ Memristors. Advanced Materials Interfaces, 2023, 10, .	3.7	9
204	Metal Halide Perovskite/Electrode Contacts in Chargeâ€Transportingâ€Layerâ€Free Devices. Advanced Science, 2022, 9, .	11.2	11
205	Improved Performance of the Al ₂ O ₃ Protected HfO ₂ –TiO ₂ Base Layer with a Self-Assembled CH ₃ NH ₃ Pbl ₃ Heterostructure for Extremely Low Operating Voltage and Stable Filament Formation in Nonvolatile Resistive Switching Memory. ACS Applied	8.0	7
206	Materials Qamp, Interfaces, 2022, 14, 51066 51083. An electronic synaptic memory device based on four-cation mixed halide perovskite. Discover Materials, 2022, 2, .	2.8	5
207	Supramolecular Framework Constructed by Dendritic Nanopolymer for Stable Flexible Perovskite Resistive Randomâ€Access Memory. Small, 2023, 19, .	10.0	5
208	Reliable Bil ₃ -Based Resistive Random-Access Memory Devices with a High On/Off Ratio. ACS Applied Electronic Materials, 2023, 5, 255-264.	4.3	0
209	Biomemristor based on a natural medicinal plant (Tinospora cordifolia) and their phototunable resistive switching properties integrated with carbon quantum dots. Applied Physics A: Materials Science and Processing, 2023, 129, .	2.3	1
210	Optoelectronic Resistive Memory Based on Leadâ€Free Cs ₂ AgBiBr ₆ Double Perovskite for Artificial Self‣torage Visual Sensors. Advanced Electronic Materials, 2023, 9, .	5.1	9
211	A Simple-Structured Perovskite Wavelength Sensor for Full-Color Imaging Application. Nano Letters, 2023, 23, 533-540.	9.1	6
212	Hybrid Perovskite-Based Memristor Devices. , 0, , .		1
213	Micro/Nanostructural Analyses of Efficient and Stable Perovskite Solar Cells via KF Doping. ACS Applied Energy Materials, 2023, 6, 371-377.	5.1	7
214	Halide perovskite for photodetector applications. , 2023, , 335-367.		0
215	Bioâ€Voltage Memristors: From Physical Mechanisms to Neuromorphic Interfaces. Advanced Electronic Materials, 2023, 9, .	5.1	4
216	Advanced Optoelectronic Devices for Neuromorphic Analog Based on Lowâ€Dimensional Semiconductors. Advanced Functional Materials, 2023, 33, .	14.9	23
217	Recent developments of lead-free halide-perovskite nanocrystals: Synthesis strategies, stability, challenges, and potential in optoelectronic applications. Materials Today Physics, 2023, 34, 101079.	6.0	8
218	PbI3â^' ion abnormal migration in CH3NH3PbI Cl3- ultralong single nanowire for resistive switching memories. Materials Characterization, 2023, 199, 112762.	4.4	7
219	Resistive switching of carbon nitride supported ultra-fine lead sulfide based device: Implementation of a 8-bit memristor. Microelectronic Engineering, 2023, 271-272, 111949.	2.4	1

#	Article	IF	CITATIONS
220	Polyvinylammonium-immobilized FAPbI3 Perovskite Grains for Flexible Fibrous Woven RRAM Array. Journal of Electronic Materials, 2023, 52, 2794-2806.	2.2	1
221	PbI ₆ Octahedra Stabilization Strategy Based on Ï€â€i€ Stacking Small Molecule Toward Highly Efficient and Stable Perovskite Solar Cells. Advanced Energy Materials, 2023, 13, .	19.5	24
222	Passivation strategies for mitigating defect challenges in halide perovskite light-emitting diodes. Joule, 2023, 7, 272-308.	24.0	32
223	Two-dimensional hybrid perovskite resistive switching memory inherited from photovoltaic devices. Applied Physics Letters, 2023, 122, .	3.3	1
224	Biomemristor with Phototunable Resistive Switching Characteristics of a Neem (Azadirachta) Tj ETQq0 0 0 rgBT	Overlock 1	10 ₂ Tf 50 582

225	Controllable extrinsic ion transport in two-dimensional perovskite films for reproducible, low-voltage resistive switching. Science China Materials, 2023, 66, 2383-2392.	6.3	5
226	Emerging Iontronic Neural Devices for Neuromorphic Sensory Computing. Advanced Materials, 2023, 35, .	21.0	18
227	High-efficiency resistive switch and artificial synaptic simulation in antimony-based perovskite devices. Science China Technological Sciences, 2023, 66, 1141-1151.	4.0	4
228	Electrochemical Doping of Halide Perovskites by Noble Metal Interstitial Cations. Advanced Materials, 2023, 35, .	21.0	3
229	Inhibition of Ion Migration for Highly Efficient and Stable Perovskite Solar Cells. Advanced Materials, 2023, 35, .	21.0	8
230	Single-Crystal Halide Perovskites for Transistor Applications. , 2023, , 265-296.		0
231	Promising Materials and Synthesis Methods for Resistive Switching Memory Devices: A Status Review. ACS Applied Electronic Materials, 2023, 5, 2454-2481.	4.3	10
232	Mechanistic and Kinetic Analysis of Perovskite Memristors with Buffer Layers: The Case of a Two-Step Set Process. Journal of Physical Chemistry Letters, 2023, 14, 1395-1402.	4.6	11
233	CsPbBr ₃ Perovskite Quantum Dots Embedded in Polystyrene-poly2-vinyl Pyridine Copolymer for Robust and Light-Tunable Memristors. ACS Applied Nano Materials, 2023, 6, 8655-8667.	5.0	4
234	Low-dimensional optoelectronic synaptic devices for neuromorphic vision sensors. Materials Futures, 2023, 2, 032301.	8.4	0
235	Interfacial Passivation Enormously Enhances Electroluminescence of Triphenylphosphine Cu ₄ 1 ₄ Cube. Advanced Materials, 2023, 35, .	21.0	3
236	Polyethylene-Glycol-Modified Halide Perovskite for Enhancing the Switching Ratio and Cycling Stability of Resistive Random Access Memory. Journal of Physical Chemistry Letters, 2023, 14, 5318-5327.	4.6	0
237	Quasiâ€2D Lead–Tin Perovskite Memory Devices Fabricated by Blade Coating. Small Methods, 2024, 8, .	8.6	1

#	Article	IF	CITATIONS
238	Functional Materials for Memristorâ€Based Reservoir Computing: Dynamics and Applications. Advanced Functional Materials, 2023, 33, .	14.9	7
239	Resistive switching and artificial synaptic performances of memristor based on low-dimensional bismuth halide perovskites. Nano Research, 2023, 16, 10108-10119.	10.4	11
240	Resistive switching characteristics of methyl-ammonium lead iodide perovskite during atmosphere degradation. Journal of Alloys and Compounds, 2023, 963, 171231.	5.5	0
241	3D trigonal FAPbI ₃ â€based multilevel resistive switching nonvolatile memory for artificial neural synapse. SmartMat, 0, , .	10.7	6
242	Polyacrylonitrile Passivation for Enhancing the Optoelectronic Switching Performance of Halide Perovskite Memristor for Image Boolean Logic Applications. Nanomaterials, 2023, 13, 2174.	4.1	2
243	Photochargeable Semiconductors: in "Dark Photocatalysis―and Beyond. Advanced Functional Materials, 2023, 33, .	14.9	4
244	Effect of HBr additive on the performance of all-inorganic Cs3Bi2Br9 halide perovskite resistive switching memory. Journal of Alloys and Compounds, 2023, 968, 171886.	5.5	0
245	A review on device requirements of resistive random access memory (RRAM)-based neuromorphic computing. APL Materials, 2023, 11, .	5.1	2
246	Organic-inorganic halide perovskites for memristors. Journal of Semiconductors, 2023, 44, 091604.	3.7	1
247	Bio-inspired artificial synapses: Neuromorphic computing chip engineering with soft biomaterials. , 2023, 6, 100088.		0
248	Optimized chalcogenide medium for inherently activated resistive switching device. Applied Surface Science, 2023, 641, 158444.	6.1	1
249	Controllable Resistive Switching in ReS ₂ /WS ₂ Heterostructure for Nonvolatile Memory and Synaptic Simulation. Advanced Science, 2023, 10, .	11.2	4
250	Technology and Integration Roadmap for Optoelectronic Memristor. Advanced Materials, 2024, 36, .	21.0	2
251	In-sensor Computing Based on Two-terminal Optoelectronic Memristors. , 2023, , 339-372.		0
253	Improved resistive switching performance through donor–acceptor structure construction in memristors based on covalent organic framework films. Journal of Materials Chemistry C, 2023, 11, 16672-16678.	5.5	0
254	Cs ₃ Bi ₂ Br ₉ Halide Perovskite Nanostructure/Polymer Composite Films Resistive Memory. Journal of Physical Chemistry C, 2023, 127, 23138-23148.	3.1	1
256	Three-Dimensional/Two-Dimensional Perovskite-Resistive Random-Access Memory with Low SET Voltage and High Stability. ACS Applied Electronic Materials, 0, , .	4.3	0
257	The rise of metal halide perovskite memristors for edge computing. , 2023, 1, 100221.		Ο

#	Article	IF	CITATIONS
258	Multibit, Leadâ€Free Cs ₂ Snl ₆ Resistive Random Access Memory with Selfâ€Compliance for Improved Accuracy in Binary Neural Network Application. Advanced Functional Materials, 0, , .	14.9	1
259	lon Migration in Lead-Halide Perovskites: Cation Matters. Journal of Physical Chemistry Letters, 2024, 15, 1006-1018.	4.6	1
260	Selfâ€Assembly of Deltaâ€Formamidinium Lead Iodide Nanoparticles to Nanorods: Study of Memristor Properties and Resistive Switching Mechanism. Small, 0, , .	10.0	0
261	Multifunctional two-dimensional perovskite based solar cells for photodetectors and resistive switching. Nanoscale, 2024, 16, 4148-4156.	5.6	0
262	Defects in lead halide perovskite light-emitting diodes under electric field: from behavior to passivation strategies. Nanoscale, 2024, 16, 3838-3880.	5.6	0
263	基于准二维钙钛矿的é«~稳定电é~»éšæœºå~å,¨å™". Science China Materials, 2024, 67, 879-886.	6.3	0
264	Recent Progress in Two-Terminal Memristors Utilizing Halide Perovskites and Their Potential Applications. , 2023, 2, 161-185.		0
265	One-vs-One, One-vs-Rest, and a novel Outcome-Driven One-vs-One binary classifiers enabled by optoelectronic memristors towards overcoming hardware limitations in multiclass classification. Discover Materials, 2024, 4, .	2.8	0
266	All-Photon Bipolar Reversible Modulation Artificial Synapse for Color Perception and Mitigation of Glare Phenomenon. ACS Photonics, 2024, 11, 1548-1556.	6.6	0
267	Electro-Optically Tunable Passivated Double-Cation Perovskite-Based ReRAM for Low-Power Memory Applications. ACS Applied Electronic Materials, 2024, 6, 2709-2719.	4.3	0
268	High-performance one-dimensional halide perovskite crossbar memristors and synapses for neuromorphic computing. Materials Horizons, 0, , .	12.2	0