Toward the blue energy dream by triboelectric nanoger

Nano Energy 39, 9-23 DOI: 10.1016/j.nanoen.2017.06.035

Citation Report

#	Article	IF	Citations
1	Progress in electronics and photonics with nanomaterials. Vacuum, 2017, 146, 304-307.	1.6	27
2	Reviving Vibration Energy Harvesting and Self-Powered Sensing by a Triboelectric Nanogenerator. Joule, 2017, 1, 480-521.	11.7	748
3	Natural triboelectric nanogenerator based on soles for harvesting low-frequency walking energy. Nano Energy, 2017, 42, 138-142.	8.2	122
4	Flexible transparent high-voltage diodes for energy management in wearable electronics. Nano Energy, 2017, 40, 289-299.	8.2	41
5	Multifunctional power unit by hybridizing contact-separate triboelectric nanogenerator, electromagnetic generator and solar cell for harvesting blue energy. Nano Energy, 2017, 39, 608-615.	8.2	117
6	Self-powered triboelectric nanogenerator buoy ball for applications ranging from environment monitoring to water wave energy farm. Nano Energy, 2017, 40, 203-213.	8.2	153
7	Self-Powered Electrostatic Filter with Enhanced Photocatalytic Degradation of Formaldehyde Based on Built-in Triboelectric Nanogenerators. ACS Nano, 2017, 11, 12411-12418.	7.3	169
8	Control of electro-chemical processes using energy harvesting materials and devices. Chemical Society Reviews, 2017, 46, 7757-7786.	18.7	135
9	Flexible Organic Tribotronic Transistor for Pressure and Magnetic Sensing. ACS Nano, 2017, 11, 11566-11573.	7.3	74
10	A paper triboelectric nanogenerator for self-powered electronic systems. Nanoscale, 2017, 9, 14499-14505.	2.8	101
12	Hybridized nanogenerator based on honeycomb-like three electrodes for efficient ocean wave energy harvesting. Nano Energy, 2018, 47, 217-223.	8.2	89
13	Nitrogen doping effect on flow-induced voltage generation from graphene-water interface. Applied Physics Letters, 2018, 112, .	1.5	16
14	All-in-one self-powered flexible microsystems based on triboelectric nanogenerators. Nano Energy, 2018, 47, 410-426.	8.2	249
15	Metal-free, flexible triboelectric generator based on MWCNT mesh film and PDMS layers. Applied Surface Science, 2018, 442, 693-699.	3.1	33
16	Hybridized Nanogenerators for Harvesting Vibrational Energy by Triboelectric–Piezoelectric–Electromagnetic Effects. Advanced Materials Technologies, 2018, 3, 1800019.	3.0	35
17	Battery-Free Electronic Smart Toys: A Step toward the Commercialization of Sustainable Triboelectric Nanogenerators. ACS Sustainable Chemistry and Engineering, 2018, 6, 6110-6116.	3.2	39
18	Highly Adaptive Solid–Liquid Interfacing Triboelectric Nanogenerator for Harvesting Diverse Water Wave Energy. ACS Nano, 2018, 12, 4280-4285.	7.3	156
19	An alginate film-based degradable triboelectric nanogenerator. RSC Advances, 2018, 8, 6719-6726.	1.7	64

TATION REDO

#	Article	IF	CITATIONS
20	Vitrimer Elastomerâ€Based Jigsaw Puzzle‣ike Healable Triboelectric Nanogenerator for Selfâ€Powered Wearable Electronics. Advanced Materials, 2018, 30, e1705918.	11.1	265
21	Towards flexible solid-state supercapacitors for smart and wearable electronics. Chemical Society Reviews, 2018, 47, 2065-2129.	18.7	1,338
22	Wireless Electric Energy Transmission through Various Isolated Solid Media Based on Triboelectric Nanogenerator. Advanced Energy Materials, 2018, 8, 1703086.	10.2	58
23	Liquid-Metal-Based Super-Stretchable and Structure-Designable Triboelectric Nanogenerator for Wearable Electronics. ACS Nano, 2018, 12, 2027-2034.	7.3	353
24	Liquid-FEP-based U-tube triboelectric nanogenerator for harvesting water-wave energy. Nano Research, 2018, 11, 4062-4073.	5.8	143
25	A Selfâ€Powered Lantern Based on a Triboelectric–Photovoltaic Hybrid Nanogenerator. Advanced Materials Technologies, 2018, 3, 1700371.	3.0	26
26	Radialâ€Grating Pendulumâ€Structured Triboelectric Nanogenerator for Energy Harvesting and Tiltingâ€Angle Sensing. Advanced Materials Technologies, 2018, 3, 1700251.	3.0	26
27	Three-dimensional ultraflexible triboelectric nanogenerator made by 3D printing. Nano Energy, 2018, 45, 380-389.	8.2	178
28	A Soft and Robust Spring Based Triboelectric Nanogenerator for Harvesting Arbitrary Directional Vibration Energy and Selfâ€Powered Vibration Sensing. Advanced Energy Materials, 2018, 8, 1702432.	10.2	186
29	Green synthesis of nickel oxide, palladium and palladium oxide synthesized via Aspalathus linearis natural extracts: physical properties & mechanism of formation. Applied Surface Science, 2018, 446, 266-272.	3.1	140
30	Triboelectric Nanogenerator Tree for Harvesting Wind Energy and Illuminating in Subway Tunnel. Advanced Materials Technologies, 2018, 3, 1700317.	3.0	98
31	Coupled Triboelectric Nanogenerator Networks for Efficient Water Wave Energy Harvesting. ACS Nano, 2018, 12, 1849-1858.	7.3	299
32	Complementary Electromagneticâ€⊺riboelectric Active Sensor for Detecting Multiple Mechanical Triggering. Advanced Functional Materials, 2018, 28, 1705808.	7.8	87
33	Scavenging Wind Energy by Triboelectric Nanogenerators. Advanced Energy Materials, 2018, 8, 1702649.	10.2	302
34	Silicone-Based Triboelectric Nanogenerator for Water Wave Energy Harvesting. ACS Applied Materials & Interfaces, 2018, 10, 3616-3623.	4.0	98
35	Toxicity of engineered nanomaterials mediated by nano–bio–eco interactions. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews, 2018, 36, 21-42.	2.9	59
36	Inductorâ€Free Wireless Energy Delivery via Maxwell's Displacement Current from an Electrodeless Triboelectric Nanogenerator. Advanced Materials, 2018, 30, 1704077.	11.1	124
37	Triboelectric electronic-skin based on graphene quantum dots for application in self-powered, smart, artificial fingers. Nano Energy, 2018, 49, 274-282.	8.2	46

#	Article	IF	CITATIONS
38	Rationally designed sea snake structure based triboelectric nanogenerators for effectively and efficiently harvesting ocean wave energy with minimized water screening effect. Nano Energy, 2018, 48, 421-429.	8.2	195
39	Studying about applied force and the output performance of sliding-mode triboelectric nanogenerators. Nano Energy, 2018, 48, 292-300.	8.2	60
40	Self-Powered Wind Sensor System for Detecting Wind Speed and Direction Based on a Triboelectric Nanogenerator. ACS Nano, 2018, 12, 3954-3963.	7.3	224
41	Generators to harvest ocean wave energy through electrokinetic principle. Nano Energy, 2018, 48, 128-133.	8.2	46
42	Rolling friction contact-separation mode hybrid triboelectric nanogenerator for mechanical energy harvesting and self-powered multifunctional sensors. Nano Energy, 2018, 47, 539-546.	8.2	77
43	Triboelectric Nanogenerators for Mechanical Energy Harvesting. Energy Technology, 2018, 6, 958-997.	1.8	26
44	Surface texturing and dielectric property tuning toward boosting of triboelectric nanogenerator performance. Journal of Materials Chemistry A, 2018, 6, 52-57.	5.2	113
45	Toward Wearable Selfâ€Charging Power Systems: The Integration of Energyâ€Harvesting and Storage Devices. Small, 2018, 14, 1702817.	5.2	274
46	Theoretical Study of Slidingâ€Electrificationâ€Gated Tribotronic Transistors and Logic Device. Advanced Electronic Materials, 2018, 4, 1700337.	2.6	12
47	Ultrasoft and cuttable paper-based triboelectric nanogenerators for mechanical energy harvesting. Nano Energy, 2018, 44, 279-287.	8.2	78
48	Ultrafine Capillaryâ€Tube Triboelectric Nanogenerator as Active Sensor for Microliquid Biological and Chemical Sensing. Advanced Materials Technologies, 2018, 3, 1700229.	3.0	64
49	An ultraviolet and electric field activated photopolymer–ferroelectric nanoparticle composite for the performance enhancement of triboelectric nanogenerators. Nanoscale, 2018, 10, 20995-21000.	2.8	7
50	Highly porous composite aerogel based triboelectric nanogenerators for high performance energy generation and versatile self-powered sensing. Nanoscale, 2018, 10, 23131-23140.	2.8	80
51	Preliminary Study on Evaluation of Smart-Cities Technologies and Proposed UV Lifestyles. , 2018, , .		7
53	Effects of Environmental Atmosphere on the Performance of Contact–Separation Mode TENG. Advanced Materials Technologies, 2019, 4, 1800569.	3.0	23
54	Dynamic Electronic Doping for Correlated Oxides by a Triboelectric Nanogenerator. Advanced Materials, 2018, 30, e1803580.	11.1	20
55	Capsule Triboelectric Nanogenerators: Toward Optional 3D Integration for High Output and Efficient Energy Harvesting from Broadband-Amplitude Vibrations. ACS Nano, 2018, 12, 9947-9957.	7.3	26
56	Nanonetworks. , 2018, , 1-8.		0

#	Article	IF	CITATIONS
57	Nature of Power Generation and Output Optimization Criteria for Triboelectric Nanogenerators. Advanced Energy Materials, 2018, 8, 1802190.	10.2	90
58	"Genetically Engineered―Biofunctional Triboelectric Nanogenerators Using Recombinant Spider Silk. Advanced Materials, 2018, 30, e1805722.	11.1	92
59	Nanogenerators, self-powered systems, blue energy, piezotronics and piezo-phototronics – A recall on the original thoughts for coining these fields. Nano Energy, 2018, 54, 477-483.	8.2	182
60	Atmospheric pressure difference driven triboelectric nanogenerator for efficiently harvesting ocean wave energy. Nano Energy, 2018, 54, 156-162.	8.2	65
61	Few layer MoS2 and in situ poled PVDF nanofibers on low cost paper substrate as high performance piezo-triboelectric hybrid nanogenerator: Energy harvesting from handwriting and human touch. Applied Materials Today, 2018, 13, 91-99.	2.3	86
62	Giant Voltage Enhancement <i>via</i> Triboelectric Charge Supplement Channel for Self-Powered Electroadhesion. ACS Nano, 2018, 12, 10262-10271.	7.3	109
63	Blue energy harvesting on nanostructured carbon materials. Journal of Materials Chemistry A, 2018, 6, 18357-18377.	5.2	63
64	An Ultra-Low-Friction Triboelectric–Electromagnetic Hybrid Nanogenerator for Rotation Energy Harvesting and Self-Powered Wind Speed Sensor. ACS Nano, 2018, 12, 9433-9440.	7.3	286
65	Design and experiment of an electromagnetic ocean wave energy harvesting device. , 2018, , .		8
66	Harshâ€Environmentalâ€Resistant Triboelectric Nanogenerator and Its Applications in Autodrive Safety Warning. Advanced Energy Materials, 2018, 8, 1801898.	10.2	82
67	Design, simulation, and experimental characterization of a heaving triboelectric-electromagnetic wave energy harvester. Nano Energy, 2018, 50, 281-290.	8.2	30
68	Development of energy-harvesting system using deformation of magnetic elastomer. Japanese Journal of Applied Physics, 2018, 57, 06HJ05.	0.8	7
69	Waterproof and stretchable triboelectric nanogenerator for biomechanical energy harvesting and self-powered sensing. Applied Physics Letters, 2018, 112, .	1.5	67
70	Triboelectric–Electromagnetic Hybrid Generator for Harvesting Blue Energy. Nano-Micro Letters, 2018, 10, 54.	14.4	92
71	Disk-based triboelectric nanogenerator operated by rotational force converted from linear force by a gear system. Nano Energy, 2018, 50, 489-496.	8.2	54
72	Integrable card-type triboelectric nanogenerators assembled by using less problematic, readily available materials. Nano Energy, 2018, 51, 383-390.	8.2	10
73	Spherical Triboelectric Nanogenerators Based on Springâ€Assisted Multilayered Structure for Efficient Water Wave Energy Harvesting. Advanced Functional Materials, 2018, 28, 1802634.	7.8	168
74	Toward a Rapid-Fabricated Triboelectric Device with a 1,3-Phosphorylated Poly(vinyl alcohol) Polymer for Water Turbulence Energy Harvesting. ACS Omega, 2018, 3, 8421-8428.	1.6	8

		EPORT	
# 75	ARTICLE A contact electrification based wind generator. Sensors and Actuators A: Physical, 2018, 280, 252-260.	IF 2.0	Citations 8
76	Polymer tubes as carrier boats of thermosetting and powder materials based on 3D printing for triboelectric nanogenerator with microstructure. Nano Energy, 2018, 52, 134-141.	8.2	45
77	A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Science Robotics, 2018, 3, .	9.9	573
78	Role of Doped Nitrogen in Graphene for Flowâ€Induced Power Generation. Advanced Engineering Materials, 2018, 20, 1800387.	1.6	16
79	Solar Absorber Gel: Localized Macroâ€Nano Heat Channeling for Efficient Plasmonic Au Nanoflowers Photothermic Vaporization and Triboelectric Generation. Advanced Energy Materials, 2018, 8, 1800711.	10.2	256
80	A Critical Review on Triboelectric Nanogenerator. IOP Conference Series: Materials Science and Engineering, 2018, 377, 012186.	0.3	33
81	Triboelectric Nanogenerators Made of Porous Polyamide Nanofiber Mats and Polyimide Aerogel Film: Output Optimization and Performance in Circuits. ACS Applied Materials & Interfaces, 2018, 10, 30596-30606.	4.0	103
82	Self-Powered All-in-One Fluid Sensor Textile with Enhanced Triboelectric Effect on All-Immersed Dendritic Liquid–Solid Interface. ACS Applied Materials & Interfaces, 2018, 10, 30819-30826.	4.0	20
83	Molecular structure engineering of dielectric fluorinated polymers for enhanced performances of triboelectric nanogenerators. Nano Energy, 2018, 53, 37-45.	8.2	47
84	Harvest of ocean energy by triboelectric generator technology. Applied Physics Reviews, 2018, 5, 031303.	5.5	14
85	Raising the Working Temperature of a Triboelectric Nanogenerator by Quenching Down Electron Thermionic Emission in Contactâ€Electrification. Advanced Materials, 2018, 30, e1803968.	11.1	199
86	Energy Harvesting Research: The Road from Single Source to Multisource. Advanced Materials, 2018, 30, e1707271.	11.1	203
87	A sinusoidal alternating output of a triboelectric nanogenerator array with asymmetric-layer-based units. Nanoscale, 2018, 10, 13730-13736.	2.8	5
88	Tire Condition Monitoring and Intelligent Tires Using Nanogenerators Based on Piezoelectric, Electromagnetic, and Triboelectric Effects. Advanced Materials Technologies, 2019, 4, 1800105.	3.0	57
89	Self-powered Flexible PDMS Channel Assisted Discrete Liquid Column Motion Based Triboelectric Nanogenerator (DLC-TENG) as Mechanical Transducer. International Journal of Precision Engineering and Manufacturing - Green Technology, 2019, 6, 907-917.	2.7	28
90	Characterization of hybrid piezoelectric nanogenerators through asymptotic homogenization. Computer Methods in Applied Mechanics and Engineering, 2019, 355, 1148-1186.	3.4	18
91	Separation and Quantum Tunneling of Photo-generated Carriers Using a Tribo-Induced Field. Matter, 2019, 1, 650-660.	5.0	56
92	Harvesting liquid stream energy from unsteady peristaltic flow induced pulsatile Flow-TENG (PF-TENG) using slipping polymeric surface inside elastomeric tubing. Nano Energy, 2019, 65, 104017.	8.2	56

	CITATION	Report	
#	Article	IF	CITATIONS
93	Energy Scavenging and Powering E-Skin Functional Devices. Proceedings of the IEEE, 2019, 107, 2118-2136.	16.4	34
94	Captive-air-bubble aerophobicity measurements of antibiofouling coatings for underwater MEMS devices. Nanomaterials and Nanotechnology, 2019, 9, 184798041986207.	1.2	20
95	A low-frequency, broadband and tri-hybrid energy harvester with septuple-stable nonlinearity-enhanced mechanical frequency up-conversion mechanism for powering portable electronics. Nano Energy, 2019, 64, 103943.	8.2	30
96	Whirlingâ€Folded Triboelectric Nanogenerator with High Average Power for Water Wave Energy Harvesting. Advanced Functional Materials, 2019, 29, 1904867.	7.8	98
97	2D materials as an emerging platform for nanopore-based power generation. Nature Reviews Materials, 2019, 4, 588-605.	23.3	253
98	Transparent and stretchable bimodal triboelectric nanogenerators with hierarchical micro-nanostructures for mechanical and water energy harvesting. Nano Energy, 2019, 64, 103904.	8.2	85
99	High Breakdown Voltage and Low Dynamic ON-Resistance AlGaN/GaN HEMT with Fluorine Ion Implantation in SiNx Passivation Layer. Nanoscale Research Letters, 2019, 14, 191.	3.1	22
100	Design and Optimization of a MEMS Triboelectric Energy Harvester for Nano-sensor Applications. , 2019, , .		5
101	A Nonencapsulative Pendulum‣ike Paper–Based Hybrid Nanogenerator for Energy Harvesting. Advanced Energy Materials, 2019, 9, 1901149.	10.2	88
102	Pyrrolic-nitrogen-rich biomass-derived catalyst for sustainable degradation of organic pollutant via a self-powered electro-Fenton process. Nano Energy, 2019, 64, 103940.	8.2	62
103	Energy harvesting and wireless power transmission by a hybridized electromagnetic–triboelectric nanogenerator. Energy and Environmental Science, 2019, 12, 2678-2684.	15.6	128
104	Seesaw structured triboelectric nanogenerator with enhanced output performance and its applications in self-powered motion sensing. Nano Energy, 2019, 65, 103944.	8.2	57
105	High-Output and Bending-Tolerant Triboelectric Nanogenerator Based on an Interlocked Array of Surface-Functionalized Indium Tin Oxide Nanohelixes. ACS Energy Letters, 2019, 4, 1748-1754.	8.8	48
106	Amplitude-variable output characteristics of triboelectric-electret nanogenerators during multiple working cycles. Nano Energy, 2019, 63, 103856.	8.2	12
107	Study of thin film blue energy harvester based on triboelectric nanogenerator and seashore IoT applications. Nano Energy, 2019, 66, 104167.	8.2	117
108	Chemically functionalized cellulose nanofibrils-based gear-like triboelectric nanogenerator for energy harvesting and sensing. Nano Energy, 2019, 66, 104126.	8.2	129
109	A wearable system based on core-shell structured peptide-Co9S8 supercapacitor and triboelectric nanogenerator. Nano Energy, 2019, 66, 104149.	8.2	62
110	Triboelectric nanogenerators with simultaneous outputs in both single-electrode mode and freestanding-triboelectric-layer mode. Nano Energy, 2019, 66, 104169.	8.2	41

#	Article	IF	CITATIONS
111	Simultaneously efficient light absorption and charge transport of CdS/TiO2 nanotube array toward improved photoelectrochemical performance. International Journal of Hydrogen Energy, 2019, 44, 30899-30909.	3.8	30
112	Experimental Evaluation of TENGs for Energy Harvesting in Maritime Applications. , 2019, , .		1
113	Dualâ€Tube Helmholtz Resonatorâ€Based Triboelectric Nanogenerator for Highly Efficient Harvesting of Acoustic Energy. Advanced Energy Materials, 2019, 9, 1902824.	10.2	121
114	Integrated Triboelectric Nanogenerators in the Era of the Internet of Things. Advanced Science, 2019, 6, 1802230.	5.6	174
115	Water-solid triboelectric nanogenerators: An alternative means for harvesting hydropower. Renewable and Sustainable Energy Reviews, 2019, 115, 109366.	8.2	73
116	Tiltingâ€Sensitive Triboelectric Nanogenerators for Energy Harvesting from Unstable/Fluctuating Surfaces. Advanced Functional Materials, 2019, 29, 1905319.	7.8	27
117	Thermoelectric Generator Using Space Cold Source. ACS Applied Materials & Interfaces, 2019, 11, 33941-33945.	4.0	45
118	Self-Powered Inhomogeneous Strain Sensor Enabled Joint Motion and Three-Dimensional Muscle Sensing. ACS Applied Materials & Interfaces, 2019, 11, 34251-34257.	4.0	40
119	Triboâ€Tunneling DC Generator with Carbon Aerogel/Silicon Multiâ€Nanocontacts. Advanced Electronic Materials, 2019, 5, 1900464.	2.6	46
120	Nanogenerator as new energy technology for self-powered intelligent transportation system. Nano Energy, 2019, 66, 104086.	8.2	130
121	Scaled-up Direct-Current Generation in MoS ₂ Multilayer-Based Moving Heterojunctions. ACS Applied Materials & Interfaces, 2019, 11, 35404-35409.	4.0	55
122	High-performance triboelectric nanogenerators for self-powered, in-situ and real-time water quality mapping. Nano Energy, 2019, 66, 104117.	8.2	127
123	Sustainable Energy Harvesting through Triboelectric Nano – Generators: A Review of current status and applications. Energy Procedia, 2019, 157, 999-1010.	1.8	33
124	Stacked pendulum-structured triboelectric nanogenerators for effectively harvesting low-frequency water wave energy. Nano Energy, 2019, 66, 104108.	8.2	60
125	Bistable broadband hybrid generator for ultralow-frequency rectilinear motion. Nano Energy, 2019, 65, 103973.	8.2	25
126	Matryoshka-inspired hierarchically structured triboelectric nanogenerators for wave energy harvesting. Nano Energy, 2019, 66, 104131.	8.2	78
127	A Hybridized Triboelectric–Electromagnetic Water Wave Energy Harvester Based on a Magnetic Sphere. ACS Nano, 2019, 13, 2349-2356.	7.3	92
128	Waist-wearable wireless respiration sensor based on triboelectric effect. Nano Energy, 2019, 59, 75-83.	8.2	117

#	Article		CITATIONS
129	Contact-Electrification between Two Identical Materials: Curvature Effect. ACS Nano, 2019, 13, 2034-2041.	7.3	78
130	Photo-induced charge boosting of liquid–solid electrokinetic generators for efficient wave energy harvesting. Journal of Materials Chemistry A, 2019, 7, 5373-5380.	5.2	11
131	Conformal fluorine coated carbon paper for an energy harvesting water wheel. Nano Energy, 2019, 58, 842-851.	8.2	37
132	Entropy theory of distributed energy for internet of things. Nano Energy, 2019, 58, 669-672.	8.2	335
133	Nanogenerators as a Sustainable Power Source: State of Art, Applications, and Challenges. Nanomaterials, 2019, 9, 773.	1.9	78
134	Oblate Spheroidal Triboelectric Nanogenerator for Allâ€Weather Blue Energy Harvesting. Advanced Energy Materials, 2019, 9, 1900801.	10.2	162
135	Development of flexible self-charging triboelectric power cell on paper for temperature and weight sensing. Nano Energy, 2019, 63, 103831.	8.2	42
136	Solid–Liquid Triboelectrification Control and Antistatic Materials Design Based on Interface Wettability Control. Advanced Functional Materials, 2019, 29, 1903587.	7.8	58
137	Advances in the development of power supplies for the Internet of Everything. InformaÄnÃ-MateriÃily, 2019, 1, 130-139.	8.5	97
138	Optimization of triboelectric energy harvesting from falling water droplet onto wrinkled polydimethylsiloxane-reduced graphene oxide nanocomposite surface. Composites Part B: Engineering, 2019, 174, 106923.	5.9	40
139	Blue energy case study and analysis: Attack of chloride ions on chromia passive film on metallic electrode of nanogenerator. Nano Energy, 2019, 62, 103-110.	8.2	14
140	Towards optimized triboelectric nanogenerators. Nano Energy, 2019, 62, 530-549.	8.2	124
141	A Filter Paperâ€Based Nanogenerator via Waterâ€Đrop Flow. Advanced Sustainable Systems, 2019, 3, 1900012.	2.7	13
142	On the origin of contact-electrification. Materials Today, 2019, 30, 34-51.	8.3	958
143	A study of the charge distribution and output characteristics of an ultra-thin tribo-dielectric layer. Nano Energy, 2019, 62, 458-464.	8.2	10
144	A self-powered multi-broadcasting wireless sensing system realized with an all-in-one triboelectric nanogenerator. Nano Energy, 2019, 62, 691-699.	8.2	31
145	Capturing Flow Energy from Ocean and Wind. Energies, 2019, 12, 2184.	1.6	41
146	A Novel Arch‧haped Hybrid Composite Triboelectric Generator Using Carbon Fiber Reinforced Polymers. Energy Technology, 2019, 7, 1801005.	1.8	2

#	Article	IF	CITATIONS
147	Minimalist and multi-functional human machine interface (HMI) using a flexible wearable triboelectric patch. Nano Energy, 2019, 62, 355-366.	8.2	164
148	Effects of Metal Work Function and Contact Potential Difference on Electron Thermionic Emission in Contact Electrification. Advanced Functional Materials, 2019, 29, 1903142.	7.8	75
149	A new type of triboelectric nanogenerator with self-actuated series-to-parallel electrical interface based on self-synchronized mechanical switches for exponential charge accumulation in a capacitor. Nano Energy, 2019, 62, 465-474.	8.2	23
150	Power management and effective energy storage of pulsed output from triboelectric nanogenerator. Nano Energy, 2019, 61, 517-532.	8.2	135
152	Spiral Steel WireÂBased Fiber-Shaped Stretchable and Tailorable Triboelectric Nanogenerator for Wearable Power Source and Active Gesture Sensor. Nano-Micro Letters, 2019, 11, 39.	14.4	114
153	Multi-grating triboelectric nanogenerator for harvesting low-frequency ocean wave energy. Nano Energy, 2019, 61, 132-140.	8.2	99
154	Water-solid triboelectrification with self-repairable surfaces for water-flow energy harvesting. Nano Energy, 2019, 61, 454-461.	8.2	88
155	Self-Powered Pressure- and Vibration-Sensitive Tactile Sensors for Learning Technique-Based Neural Finger Skin. Nano Letters, 2019, 19, 3305-3312.	4.5	121
156	Energy Harvesting‣torage Bracelet Incorporating Electrochemical Microsupercapacitors Selfâ€Charged from a Single Hand Gesture. Advanced Energy Materials, 2019, 9, 1900152.	10.2	47
157	Self-Powered Direct Muscle Stimulation Using a Triboelectric Nanogenerator (TENG) Integrated with a Flexible Multiple-Channel Intramuscular Electrode. ACS Nano, 2019, 13, 3589-3599.	7.3	130
158	Open-book-like triboelectric nanogenerators based on low-frequency roll–swing oscillators for wave energy harvesting. Nanoscale, 2019, 11, 7199-7208.	2.8	78
159	Macroscopic self-assembly network of encapsulated high-performance triboelectric nanogenerators for water wave energy harvesting. Nano Energy, 2019, 60, 404-412.	8.2	144
160	Triboelectric filtering for air purification. Nanotechnology, 2019, 30, 292001.	1.3	28
161	Recent Progress in Power Generation from Water/Liquid Droplet Interaction with Solid Surfaces. Advanced Functional Materials, 2019, 29, 1901069.	7.8	147
162	Recent advances in triboelectric nanogenerator based self-charging power systems. Energy Storage Materials, 2019, 23, 617-628.	9.5	160
163	Nanogenerator-Based Self-Charging Energy Storage Devices. Nano-Micro Letters, 2019, 11, 19.	14.4	53
164	Can nanogenerators contribute to the global greening data centres?. Nano Energy, 2019, 60, 235-246.	8.2	8
165	Harvesting wind energy: A hybridized design of pinwheel by coupling triboelectrification and electromagnetic induction effects. Nano Energy, 2019, 60, 641-648.	8.2	73

# 166	ARTICLE Quantifying the triboelectric series. Nature Communications, 2019, 10, 1427.	IF 5.8	Citations 1,107
167	Electrohydrodynamic Jet Printing Driven by a Triboelectric Nanogenerator. Advanced Functional Materials, 2019, 29, 1901102.	7.8	59
168	Triboelectric single-electrode-output control interface using patterned grid electrode. Nano Energy, 2019, 60, 545-556.	8.2	71
169	Rational Structure Optimized Hybrid Nanogenerator for Highly Efficient Water Wave Energy Harvesting. Advanced Energy Materials, 2019, 9, 1802892.	10.2	92
170	Direct-Current Rotary-Tubular Triboelectric Nanogenerators Based on Liquid-Dielectrics Contact for Sustainable Energy Harvesting and Chemical Composition Analysis. ACS Nano, 2019, 13, 2587-2598.	7.3	66
171	Nanogenerator for scavenging low frequency vibrations. Journal of Micromechanics and Microengineering, 2019, 29, 053001.	1.5	34
172	Poly-stable energy harvesting based on synergetic multistable vibration. Communications Physics, 2019, 2, .	2.0	37
173	Quantifying the power output and structural figure-of-merits of triboelectric nanogenerators in a charging system starting from the Maxwell's displacement current. Nano Energy, 2019, 59, 380-389.	8.2	84
174	Single-Layer Graphene-Based Transparent and Flexible Multifunctional Electronics for Self-Charging Power and Touch-Sensing Systems. ACS Applied Materials & Interfaces, 2019, 11, 9301-9308.	4.0	44
175	Metal–Organic Framework: A Novel Material for Triboelectric Nanogenerator–Based Selfâ€Powered Sensors and Systems. Advanced Energy Materials, 2019, 9, 1803581.	10.2	138
176	Triboelectric performances of self-powered, ultra-flexible and large-area poly(dimethylsiloxane)/Ag-coated chinlon composites with a sandpaper-assisted surface microstructure. Journal of Materials Science, 2019, 54, 7823-7833.	1.7	13
177	Triboelectric Nanogenerator: A Hope to Collect Blue Energy. , 2019, , .		2
178	Reliability of Protective Coatings for Flexible Piezoelectric Transducers in Aqueous Environments. Micromachines, 2019, 10, 739.	1.4	25
179	Design and Experiment of an Ultra-Low Frequency Pendulum-Based Wave Energy Harvester. , 2019, , .		2
180	A highly-sensitive wave sensor based on liquid-solid interfacing triboelectric nanogenerator for smart marine equipment. Nano Energy, 2019, 57, 574-580.	8.2	147
181	The Current Development and Future Outlook of Triboelectric Nanogenerators: A Survey of Literature. Advanced Materials Technologies, 2019, 4, 1800588.	3.0	108
182	C-C3N4-based films: A rising star for photoelectrochemical water splitting. Sustainable Materials and Technologies, 2019, 19, e00089.	1.7	44
183	Electricity generation from a Ni-Al layered double hydroxide-based flexible generator driven by natural water evaporation. Nano Energy, 2019, 57, 269-278.	8.2	134

#	Article	IF	CITATIONS
184	Structure and Dimension Effects on the Performance of Layered Triboelectric Nanogenerators in Contact-Separation Mode. ACS Nano, 2019, 13, 698-705.	7.3	100
185	Strategies and progress on improving robustness and reliability of triboelectric nanogenerators. Nano Energy, 2019, 55, 203-215.	8.2	78
186	High-frequency supercapacitors based on carbonized melamine foam as energy storage devices for triboelectric nanogenerators. Nano Energy, 2019, 55, 447-453.	8.2	54
187	Standardization of triboelectric nanogenerators: Progress and perspectives. Nano Energy, 2019, 56, 40-55.	8.2	53
188	Electrically Responsive Materials and Devices Directly Driven by the High Voltage of Triboelectric Nanogenerators. Advanced Functional Materials, 2019, 29, 1806351.	7.8	121
189	Mechanical energy conversion systems for triboelectric nanogenerators: Kinematic and vibrational designs. Nano Energy, 2019, 56, 307-321.	8.2	79
190	A full-packaged rolling triboelectric-electromagnetic hybrid nanogenerator for energy harvesting and building up self-powered wireless systems. Nano Energy, 2019, 56, 300-306.	8.2	96
191	Triboelectric Nanogenerator: A Foundation of the Energy for the New Era. Advanced Energy Materials, 2019, 9, 1802906.	10.2	1,086
192	Metal nanowire–polymer matrix hybrid layer for triboelectric nanogenerator. Nano Energy, 2019, 58, 227-233.	8.2	22
193	Ingenious use of natural triboelectrification on the human body for versatile applications in walking energy harvesting and body action monitoring. Nano Energy, 2019, 57, 872-878.	8.2	39
194	More than energy harvesting – Combining triboelectric nanogenerator and flexible electronics technology for enabling novel micro-/nano-systems. Nano Energy, 2019, 57, 851-871.	8.2	255
195	Flexible Multifunctional Sensors for Wearable and Robotic Applications. Advanced Materials Technologies, 2019, 4, 1800626.	3.0	221
196	High Power Density Tower-like Triboelectric Nanogenerator for Harvesting Arbitrary Directional Water Wave Energy. ACS Nano, 2019, 13, 1932-1939.	7.3	116
197	Triboelectric Nanogenerator Networks Integrated with Power Management Module for Water Wave Energy Harvesting. Advanced Functional Materials, 2019, 29, 1807241.	7.8	190
198	Effects of nitrogen-dopant bonding states on liquid-flow-induced electricity generation of graphene: A comparative study. Results in Physics, 2019, 12, 1291-1293.	2.0	4
199	Integration of organic/inorganic nanostructured materials in a hybrid nanogenerator enables efficacious energy harvesting via mutual performance enhancement. Nano Energy, 2019, 58, 112-120.	8.2	26
200	Low Cost and Piezoelectric based Soft Wave Energy Harvester. MRS Advances, 2019, 4, 889-895.	0.5	8
201	Green hybrid power system based on triboelectric nanogenerator for wearable/portable electronics. Nano Energy, 2019, 55, 151-163.	8.2	129

		CITATION RE	PORT	
#	Article		IF	Citations
202	Nanogenerators for harvesting mechanical energy conveyed by liquids. Nano Energy, 2	019, 57, 141-156.	8.2	59
203	Ferroelectret materials and devices for energy harvesting applications. Nano Energy, 20	019, 57, 118-140.	8.2	108
204	Butterflyâ€Inspired Triboelectric Nanogenerators with Springâ€Assisted Linkage Struct Wave Energy Harvesting. Advanced Materials Technologies, 2019, 4, 1800514.	cure for Water	3.0	77
205	Bladelessâ€Turbineâ€Based Triboelectric Nanogenerator for Fluid Energy Harvesting an Fluid Gauge. Advanced Materials Technologies, 2019, 4, 1800560.	nd Selfâ€Powered	3.0	30
206	Pump drill-integrated triboelectric nanogenerator as a practical substitute for batteries intermittently used devices. Nano Energy, 2019, 56, 612-618.	of	8.2	10
207	Current situation and future projection of marine renewable energy in China. Internation of Energy Research, 2019, 43, 662-680.	bnal Journal	2.2	31
208	Graphene for Energy Storage and Conversion: Synthesis and Interdisciplinary Application Electrochemical Energy Reviews, 2020, 3, 395-430.	ons.	13.1	59
209	Flexible Piezoelectric Acoustic Sensors and Machine Learning for Speech Processing. A Materials, 2020, 32, e1904020.	dvanced	11.1	155
210	Triboelectric nanogenerator as self-powered impact force sensor for falling object. Cur Physics, 2020, 20, 137-144.	ent Applied	1.1	20
211	Fiber/Fabricâ€Based Piezoelectric and Triboelectric Nanogenerators for Flexible/Stretch Wearable Electronics and Artificial Intelligence. Advanced Materials, 2020, 32, e19025	able and 49.	11.1	826
212	On the first principle theory of nanogenerators from Maxwell's equations. Nano Energy 104272.	, 2020, 68,	8.2	431
213	Triboelectric rotational speed sensor integrated into a bearing: A solid step to industria Extreme Mechanics Letters, 2020, 34, 100595.	l application.	2.0	43
214	Wearable and self-cleaning hybrid energy harvesting system based on micro/nanostruc Nano Energy, 2020, 67, 104243.	tured haze film.	8.2	77
215	The electron transfer mechanism between metal and amorphous polymers in humidity for triboelectric nanogenerator. Nano Energy, 2020, 70, 104476.	environment	8.2	46
216	Spherical triboelectric nanogenerator integrated with power management module for multidirectional water wave energy. Energy and Environmental Science, 2020, 13, 277		15.6	252
217	Blue energy fuels: converting ocean wave energy to carbon-based liquid fuels <i>viaCO₂ reduction. Energy and Environmental Science, 2020, 13, 1300-1308</i>		15.6	93
218	The unique dielectricity of inorganic perovskites toward high-performance triboelectric nanogenerators. Nano Energy, 2020, 69, 104418.		8.2	73
219	Three-dimensional polymer networks for solid-state electrochemical energy storage. Cl Engineering Journal, 2020, 391, 123548.	nemical	6.6	44

#	Article	IF	CITATIONS
220	Electromagnetic energy harvesting using magnetic levitation architectures: A review. Applied Energy, 2020, 260, 114191.	5.1	132
221	A universal and passive power management circuit with high efficiency for pulsed triboelectric nanogenerator. Nano Energy, 2020, 68, 104372.	8.2	133
222	Highly safe and ionothermal synthesis of Ti3C2 MXene with expanded interlayer spacing for enhanced lithium storage. Journal of Energy Chemistry, 2020, 47, 203-209.	7.1	91
223	Rapidly fabricated triboelectric nanogenerator employing insoluble and infusible biomass materials by fused deposition modeling. Nano Energy, 2020, 68, 104382.	8.2	49
224	Overview of Power Management for Triboelectric Nanogenerators. Advanced Intelligent Systems, 2020, 2, 1900129.	3.3	40
225	Progress in <scp>TENG</scp> technology—A journey from energy harvesting to nanoenergy and nanosystem. EcoMat, 2020, 2, e12058.	6.8	194
226	Wearable triboelectric nanogenerators for biomechanical energy harvesting. Nano Energy, 2020, 77, 105303.	8.2	206
227	A Review and Perspective for the Development of Triboelectric Nanogenerator (TENG)-Based Self-Powered Neuroprosthetics. Micromachines, 2020, 11, 865.	1.4	28
228	Recent progress of triboelectric nanogenerators: From fundamental theory to practical applications. EcoMat, 2020, 2, e12059.	6.8	212
229	Organogel electrode enables highly transparent and stretchable triboelectric nanogenerators of high power density for robust and reliable energy harvesting. Nano Energy, 2020, 78, 105373.	8.2	31
230	Output density quantification of electricity generation by flowing deionized water on graphene. Applied Physics Letters, 2020, 117, .	1.5	8
231	Theoretical maximum efficiency and higher power output in triboelectric nanogenerators. Energy Reports, 2020, 6, 2463-2475.	2.5	19
232	Toward Self-Powered Inertial Sensors Enabled by Triboelectric Effect. ACS Applied Electronic Materials, 2020, 2, 3072-3087.	2.0	23
233	Multi-phase-field modeling of localized corrosion involving galvanic pitting and mechano-electrochemical coupling. Corrosion Science, 2020, 177, 108900.	3.0	19
234	Triboelectric charging behaviors and photoinduced enhancement of alkaline earth ions doped inorganic perovskite triboelectric nanogenerators. Nano Energy, 2020, 77, 105280.	8.2	39
235	Regulation and influence factors of triboelectricity at the solid-liquid interface. Nano Energy, 2020, 78, 105370.	8.2	58
236	Flexible nanofiber based triboelectric nanogenerators with high power conversion. Renewable Energy, 2020, 162, 1428-1437.	4.3	33
237	Ultralight PEDOT:PSS/graphene oxide composite aerogel sponges for electric power harvesting from thermal fluctuations and moist environment. Nano Energy, 2020, 77, 105096.	8.2	41

ARTICLE IF CITATIONS Liquidâ€Filling Polydimethylsiloxane Composites with Enhanced Triboelectric Performance for Flexible 238 1.7 13 Nanogenerators. Macromolecular Materials and Engineering, 2020, 305, 2000275. Ultrasound-induced wireless energy harvesting: From materials strategies to functional applications. 8.2 69 Nano Energy, 2020, 77, 105131. Dripping Channel Based Liquid Triboelectric Nanogenerators for Energy Harvesting and Sensing. ACS 240 7.3 60 Nano, 2020, 14, 10510-10517. Seawater Degradable Triboelectric Nanogenerators for Blue Energy. Advanced Materials 241 Technologies, 2020, 5, 2000455. Emerging triboelectric nanogenerators for ocean wave energy harvesting: state of the art and future 242 15.6 195 perspectives. Energy and Environmental Science, 2020, 13, 2657-2683. A Triboelectric Closedâ€Loop Sensing System for Authenticity Identification of Paperâ€Based Artworks. 3.0 Advanced Materials Technologies, 2020, 5, 2000194. A unified contact force-dependent model for triboelectric nanogenerators accounting for surface 244 8.2 57 roughness. Nano Energy, 2020, 76, 105067. Biofilm material based triboelectric nanogenerator with high output performance in 95% humidity 8.2 57 environment. Nano Energy, 2020, 77, 105088. 246 Self-Powered Memory Systems. , 2020, 2, 1669-1690. 15 247 Electron Transfer as a Liquid Droplet Contacting a Polymer Surface. ACS Nano, 2020, 14, 17565-17573. 7.3 141 Achieving Ultrahigh Output Energy Density of Triboelectric Nanogenerators in Highâ€Pressure Gas 248 5.6 59 Environment. Advanced Science, 2020, 7, 2001757. Hierarchically Divacancy Defect Building Dualâ€Activated Porous Carbon Fibers for Highâ€Performance 249 79 Energyâ€Stórage Devices. Advanced Functional Materials, 2020, 30, 2002580. Flexible composites with Ce-doped BaTiO3/P(VDF-TrFE) nanofibers for piezoelectric device. Composites 250 3.8 26 Science and Technology, 2020, 200, 108386. Woven Fabric Triboelectric Nanogenerator for Biomotion Energy Harvesting and as Self-Powered 1.6 Gait-Recognizing Socks. Energies, 2020, 13, 4119. Advances in Healthcare Electronics Enabled by Triboelectric Nanogenerators. Advanced Functional 252 7.8 88 Materials, 2020, 30, 2004673. Novel integrated strategies toward efficient and stable unassisted photoelectrochemical water 14 splitting. Sustainable Materials and Technologies, 2020, 25, e00209. Blue Energy Collection toward Allâ€Hours Selfâ€Powered Chemical Energy Conversion. Advanced Energy 254 10.2 54 Materials, 2020, 10, 2001041. Bionicâ€Finâ€Structured Triboelectric Nanogenerators for Undersea Energy Harvesting. Advanced 46 Materials Technologies, 2020, 5, 2000531.

	CITATION RI	EPORT	
# 256	ARTICLE Enhanced ion transport by graphene oxide/cellulose nanofibers assembled membranes for high-performance osmotic energy harvesting. Materials Horizons, 2020, 7, 2702-2709.	IF 6.4	CITATIONS
257	Electromagnetic Pulse Powered by a Triboelectric Nanogenerator with Applications in Accurate Selfâ€Powered Sensing and Security. Advanced Materials Technologies, 2020, 5, 2000368.	3.0	15
258	A magnetic levitation-based tristable hybrid energy harvester for scavenging energy from low-frequency structural vibration. Engineering Structures, 2020, 221, 110789.	2.6	33
259	Measuring the actual voltage of a triboelectric nanogenerator using the non-grounded method. Nano Energy, 2020, 77, 105108.	8.2	80
260	A synergetic hybrid mechanism of piezoelectric and triboelectric for galloping wind energy harvesting. Applied Physics Letters, 2020, 117, .	1.5	43
261	Recent Progress in Electrical Generators for Oceanic Wave Energy Conversion. IEEE Access, 2020, 8, 138595-138615.	2.6	37
262	Wave impact energy harvesting through water-dielectric triboelectrification with single-electrode triboelectric nanogenerators for battery-less systems. Nano Energy, 2020, 78, 105204.	8.2	24
263	Windmill-inspired hybridized triboelectric nanogenerators integrated with power management circuit for harvesting wind and acoustic energy. Nano Energy, 2020, 78, 105244.	8.2	64
264	Direct Current Triboelectric Nanogenerators. Advanced Energy Materials, 2020, 10, 2002756.	10.2	64
266	Theoretical modeling of triboelectric nanogenerators (TENGs). Journal of Applied Physics, 2020, 128, .	1.1	110
267	Triboelectric Nanogenerator Network Integrated with Charge Excitation Circuit for Effective Water Wave Energy Harvesting. Advanced Energy Materials, 2020, 10, 2002123.	10.2	154
268	Universal Triboelectric Nanogenerator Simulation Based on Dynamic Finite Element Method Model. Sensors, 2020, 20, 4838.	2.1	9
269	Flexible/Stretchable Supercapacitors with Novel Functionality for Wearable Electronics. Advanced Materials, 2020, 32, e2002180.	11.1	236
270	Research on the Folding Spring Triboelectric Nanogenerator for Rock Climbing Trajectory and Time Monitoring. IEEE Access, 2020, 8, 155086-155092.	2.6	4
271	Pumping up the charge density of a triboelectric nanogenerator by charge-shuttling. Nature Communications, 2020, 11, 4203.	5.8	150
272	Fully Biodegradable Water Droplet Energy Harvester Based on Leaves of Living Plants. ACS Applied Materials & Interfaces, 2020, 12, 56060-56067.	4.0	69
273	Triboelectric behaviors of inorganic Cs _{1â^'x} A _x PbBr ₃ halide perovskites toward enriching the triboelectric series. Journal of Materials Chemistry A, 2020, 8, 25696-25705.	5.2	16
274	Thermally Induced, Tension-Gradient-Driven Self-Assembly of Nanoparticle Films for Superhydrophobicity and Oil-Water Separation. Cell Reports Physical Science, 2020, 1, 100220.	2.8	15

#	Article	IF	CITATIONS
275	Triboelectric energy harvester with large bandwidth under harmonic and random excitations. Energy Reports, 2020, 6, 2490-2502.	2.5	28
276	A flexible hybridized electromagnetic-triboelectric nanogenerator and its application for 3D trajectory sensing. Nano Energy, 2020, 74, 104878.	8.2	46
277	Robust Swing‧tructured Triboelectric Nanogenerator for Efficient Blue Energy Harvesting. Advanced Energy Materials, 2020, 10, 2000064.	10.2	212
278	Enhancing the Performance of a Stretchable and Transparent Triboelectric Nanogenerator by Optimizing the Hydrogel Ionic Electrode Property. ACS Applied Materials & Interfaces, 2020, 12, 23474-23483.	4.0	76
279	New inorganic coating-based triboelectric nanogenerators with anti-wear and self-healing properties for efficient wave energy harvesting. Applied Materials Today, 2020, 20, 100645.	2.3	26
280	Engineering flexible 3D printed triboelectric nanogenerator to self-power electro-Fenton degradation of pollutants. Nano Energy, 2020, 74, 104908.	8.2	54
281	Robust Triboelectric Nanogenerator Achieved by Centrifugal Force Induced Automatic Working Mode Transition. Advanced Energy Materials, 2020, 10, 2000886.	10.2	100
282	Boosting performances of triboelectric nanogenerators by optimizing dielectric properties and thickness of electrification layer. RSC Advances, 2020, 10, 17752-17759.	1.7	102
283	Artificial intelligence enhanced mathematical modeling on rotary triboelectric nanogenerators under various kinematic and geometric conditions. Nano Energy, 2020, 75, 104993.	8.2	24
284	Polymer Materials for Highâ€Performance Triboelectric Nanogenerators. Advanced Science, 2020, 7, 2000186.	5.6	230
285	Hybrid energy cells based on triboelectric nanogenerator: From principle to system. Nano Energy, 2020, 75, 104980.	8.2	71
286	Theoretical foundations of triboelectric nanogenerators (TENGs). Science China Technological Sciences, 2020, 63, 1087-1109.	2.0	83
287	Silk and Silk Composite Aerogel-Based Biocompatible Triboelectric Nanogenerators for Efficient Energy Harvesting. Industrial & Engineering Chemistry Research, 2020, 59, 12399-12408.	1.8	30
288	New Hydrophobic Organic Coating Based Triboelectric Nanogenerator for Efficient and Stable Hydropower Harvesting. ACS Applied Materials & Interfaces, 2020, 12, 31351-31359.	4.0	53
289	Self-Powered Sensor for Quantifying Ocean Surface Water Waves Based on Triboelectric Nanogenerator. ACS Nano, 2020, 14, 7092-7100.	7.3	105
290	Bioâ€Derived Natural Materials Based Triboelectric Devices for Selfâ€Powered Ubiquitous Wearable and Implantable Intelligent Devices. Advanced Sustainable Systems, 2020, 4, 2000108.	2.7	42
291	Electrode selection rules for enhancing the performance of triboelectric nanogenerators and the role of few-layers graphene. Nano Energy, 2020, 76, 104989.	8.2	28
292	Triboelectric nanogenerator for a repairable transistor with self-powered electro-thermal annealing. Nano Energy, 2020, 76, 105000.	8.2	7

#	Article	IF	CITATIONS
293	Special Session: Physically Flexible Devices for Health and Activity Monitoring: Challenges from Design to Test. , 2020, , .		3
294	Novel wireless power transmission based on Maxwell displacement current. Nano Energy, 2020, 76, 105051.	8.2	14
295	Self-powered electrocatalytic ammonia synthesis directly from air as driven by dual triboelectric nanogenerators. Energy and Environmental Science, 2020, 13, 2450-2458.	15.6	84
297	A self-powered and self-functional tracking system based on triboelectric-electromagnetic hybridized blue energy harvesting module. Nano Energy, 2020, 72, 104684.	8.2	58
298	Levitating oscillator-based triboelectric nanogenerator for harvesting from rotational motion and sensing seismic oscillation. Nano Energy, 2020, 72, 104674.	8.2	27
299	Triboelectric Nanogenerator (TENC)—Sparking an Energy and Sensor Revolution. Advanced Energy Materials, 2020, 10, 2000137.	10.2	430
300	Smart Textiles for Electricity Generation. Chemical Reviews, 2020, 120, 3668-3720.	23.0	644
301	Cumulative charging behavior of water droplet driven freestanding triboelectric nanogenerators toward hydrodynamic energy harvesting. Journal of Materials Chemistry A, 2020, 8, 7880-7888.	5.2	69
302	Grid of hybrid nanogenerators for improving ocean wave impact energy harvesting self-powered applications. Nano Energy, 2020, 72, 104701.	8.2	30
303	Liquid–polymer triboelectricity: chemical mechanisms in the contact electrification process. Soft Matter, 2020, 16, 7040-7051.	1.2	33
304	A novel hybridized blue energy harvester aiming at all-weather IoT applications. Nano Energy, 2020, 76, 105052.	8.2	86
305	Tumbler-shaped hybrid triboelectric nanogenerators for amphibious self-powered environmental monitoring. Nano Energy, 2020, 76, 104960.	8.2	49
306	A Self-Powered and Low Pressure Loss Gas Flowmeter Based on Fluid-Elastic Flutter Driven Triboelectric Nanogenerator. Sensors, 2020, 20, 729.	2.1	22
307	Environmental energy harvesting based on triboelectric nanogenerators. Nanotechnology, 2020, 31, 242001.	1.3	103
308	Meter-scale fabrication of water-driven triboelectric nanogenerator based on in-situ grown layered double hydroxides through a bottom-up approach. Nano Energy, 2020, 71, 104646.	8.2	32
309	Polydirectional Microvibration Energy Collection for Self-Powered Multifunctional Systems Based on Hybridized Nanogenerators. ACS Nano, 2020, 14, 3328-3336.	7.3	85
310	Optimizing energy harvesting performance of cone dielectric elastomer generator based on VHB elastomer. Nano Energy, 2020, 71, 104606.	8.2	54
311	Manufacturing routes toward flexible and smart energy harvesters and sensors based on functional nanomaterials. , 2020, , 381-437.		2

		CITATION REPORT		
#	Article		IF	CITATIONS
312	Self-driven power management system for triboelectric nanogenerators. Nano Energy, 20)20, 71, 104642.	8.2	129
313	Wind-Driven Radial-Engine-Shaped Triboelectric Nanogenerators for Self-Powered Absorp Degradation of NO _X . ACS Nano, 2020, 14, 2751-2759.	tion and	7.3	56
314	Inductor-Free Output Multiplier for Power Promotion and Management of Triboelectric Nanogenerators toward Self-Powered Systems. ACS Applied Materials & Interfaces, 3 5892-5900.	2020, 12,	4.0	30
315	Design, modeling and experiments of broadband tristable galloping piezoelectric energy Acta Mechanica Sinica/Lixue Xuebao, 2020, 36, 592-605.	harvester.	1.5	110
316	Design and Analysis of a Synchronized Interface Circuit for Triboelectric Energy Harvestin of Electronic Materials, 2020, 49, 2491-2501.	g. Journal	1.0	11
317	Dynamical charge transfer model for high surface charge density triboelectric nanogener. Energy, 2020, 70, 104513.	ators. Nano	8.2	31
318	Impact induced compound method for triboelectric-piezoelectric hybrid nanogenerators Watt level average power in low frequency rotations. Nano Energy, 2020, 70, 104500.	to achieve	8.2	32
319	Ultrathin unified harvesting module capable of generating electrical energy during rainy, sunny conditions. Nano Energy, 2020, 70, 104515.	windy, and	8.2	49
320	Nanogenerators with Superwetting Surfaces for Harvesting Water/Liquid Energy. Advanc Functional Materials, 2020, 30, 1908252.	ed	7.8	103
321	Unraveling Temperatureâ€Dependent Contact Electrification between Slidingâ€Mode Tri Advanced Functional Materials, 2020, 30, 1909384.	boelectric Pairs.	7.8	42
322	Monocharged electret based liquid-solid interacting triboelectric nanogenerator for its bo electrical output performance. Nano Energy, 2020, 70, 104541.	oosted	8.2	83
323	A self-powered character recognition device based on a triboelectric nanogenerator. Nan 2020, 70, 104534.	o Energy,	8.2	23
324	Tuning Techniques for Piezoelectric and Electromagnetic Vibration Energy Harvesters. En 13, 527.	ergies, 2020,	1.6	19
325	Development of Highly Durable Sliding Triboelectric Nanogenerator Using Diamond-Like Tribology Online, 2020, 15, 89-97.	Carbon Films.	0.2	12
326	Advancements of wave energy converters based on power take off (PTO) systems: A revi Engineering, 2020, 204, 107248.	ew. Ocean	1.9	171
327	Sweep-type triboelectric linear motion sensor with staggered electrode. Extreme Mechan 2020, 37, 100713.	ics Letters,	2.0	21
328	Toward wear-resistive, highly durable and high performance triboelectric nanogenerator t interface liquid lubrication. Nano Energy, 2020, 72, 104659.	:hrough	8.2	70
329	Boosting the output performance of volume effect electricity generator (VEEG) with wate Nano Energy, 2020, 73, 104748.	er column.	8.2	62

#	Article	IF	CITATIONS
330	Electro-blown spinning driven by cylindrical rotating triboelectric nanogenerator and its applications for fabricating nanofibers. Applied Materials Today, 2020, 19, 100631.	2.3	10
331	Charge Pumping Strategy for Rotation and Sliding Type Triboelectric Nanogenerators. Advanced Energy Materials, 2020, 10, 2000605.	10.2	124
332	A Self-Powered Rotating Speed Sensor for Downhole Motor Based on Triboelectric Nanogenerator. IEEE Sensors Journal, 2021, 21, 4310-4316.	2.4	19
333	Tribo-thermoelectric and tribovoltaic coupling effect at metal-semiconductor interface. Materials Today Physics, 2021, 16, 100295.	2.9	45
334	Triboelectric mechanical sensors—Progress and prospects. Extreme Mechanics Letters, 2021, 42, 101100.	2.0	70
335	Polymer chemistry underpinning materials for triboelectric nanogenerators (TENGs): Recent trends. European Polymer Journal, 2021, 142, 110163.	2.6	37
336	Suppressing the skeleton decomposition in Ti-doped NH4V4O10 for durable aqueous zinc ion battery. Journal of Power Sources, 2021, 484, 229284.	4.0	57
337	Solarâ€Driven Interfacial Evaporation and Selfâ€Powered Water Wave Detection Based on an All ellulose Monolithic Design. Advanced Functional Materials, 2021, 31, 2008681.	7.8	150
338	Investigation on energy efficiency of rolling triboelectric nanogenerator using cylinder-cylindrical shell dynamic model. Nano Energy, 2021, 80, 105583.	8.2	14
339	Review of vibrationâ€based electromagnetic–piezoelectric hybrid energy harvesters. International Journal of Energy Research, 2021, 45, 5058-5097.	2.2	37
340	Waste Plastic Triboelectric Nanogenerators Using Recycled Plastic Bags for Power Generation. ACS Applied Materials & Interfaces, 2021, 13, 400-410.	4.0	116
341	Hybrid energy harvesting technology: From materials, structural design, system integration to applications. Renewable and Sustainable Energy Reviews, 2021, 137, 110473.	8.2	185
342	Bolt-Shaped Triboelectric Nanogenerator for Rock-Climbing Training Trajectory Detection. IEEE Sensors Journal, 2021, 21, 2693-2701.	2.4	6
343	A compact model for the zigzag triboelectric nanogenerator energy harvester. International Journal of Energy Research, 2021, 45, 1645-1660.	2.2	6
344	Bioinspired Surface with Superwettability for Controllable Liquid Dynamics. Advanced Materials Interfaces, 2021, 8, 2000824.	1.9	21
345	Dynamic coordination of metal–alanine to control the multi-stimuli responsiveness of self-powered polymer hydrogels. Journal of Materials Chemistry A, 2021, 9, 16594-16604.	5.2	13
346	Multiscale surface modified magneto-mechano-triboelectric nanogenerator enabled by eco-friendly NaCl imprinting stamp for self-powered IoT applications. Nanoscale, 2021, 13, 8418-8424.	2.8	21
347	Synchronous Inductor Switched Energy Extraction Circuits for Triboelectric Nanogenerator. IEEE Access, 2021, 9, 76938-76954.	2.6	16

#	Article	IF	Citations
π		п	CHAHONS
348	A β-cyclodextrin enhanced polyethylene terephthalate film with improved contact charging ability in a high humidity environment. Nanoscale Advances, 2021, 3, 6063-6073.	2.2	13
349	Orienting Z scheme charge transfer in graphitic carbon nitride-based systems for photocatalytic energy and environmental applications. Journal of Materials Chemistry A, 2021, 9, 10039-10080.	5.2	90
350	Advances in self-powered chemical sensing <i>via</i> a triboelectric nanogenerator. Nanoscale, 2021, 13, 2065-2081.	2.8	81
351	Advances in Nanostructures for Highâ€Performance Triboelectric Nanogenerators. Advanced Materials Technologies, 2021, 6, 2000916.	3.0	94
352	Air-gap embedded triboelectric nanogenerator <i>via</i> surface modification of non-contact layer using sandpapers. Nanoscale, 2021, 13, 8837-8847.	2.8	23
353	Electrodynamics of Free- and Bound-Charge Electricity Generators Using Impressed Sources. Physical Review Applied, 2021, 15, .	1.5	9
354	Superâ€Durable, Lowâ€Wear, and Highâ€Performance Furâ€Brush Triboelectric Nanogenerator for Wind and Water Energy Harvesting for Smart Agriculture. Advanced Energy Materials, 2021, 11, 2003066.	10.2	189
355	Shadow enhanced self-charging power system for wave and solar energy harvesting from the ocean. Nature Communications, 2021, 12, 616.	5.8	69
356	Hybrid Energy-Harvesting Systems Based on Triboelectric Nanogenerators. Matter, 2021, 4, 116-143.	5.0	94
357	Triboelectric Nanogenerator: Structure, Mechanism, and Applications. ACS Nano, 2021, 15, 258-287.	7.3	343
358	Parallelâ€Orientationâ€induced Strong Resonances Enable Ni Submicronâ€Wire Array: an Ultrathin and Ultralight Electromagnetic Wave Absorbing Material. Advanced Electronic Materials, 2021, 7, 2000970.	2.6	10
359	Expecting the unexpected: high pressure crystallization significantly boosts up triboelectric outputs of microbial polyesters. Journal of Materials Chemistry A, 2021, 9, 6306-6315.	5.2	11
360	Piezoelectric enhancement of an electrospun AlN-doped P(VDF-TrFE) nanofiber membrane. Materials Chemistry Frontiers, 2021, 5, 5679-5688.	3.2	17
361	Self-Powered Miniaturized Acceleration Sensor Based on Rationally Patterned Electrodes. IEEE Open Journal of Nanotechnology, 2021, 2, 78-85.	0.9	4
362	Enhanced Performance of Triboelectric Nanogenerator by Controlled Pore Size in Polydimethylsiloxane Composites with Au Nanoparticles. Macromolecular Research, 2021, 29, 98-104.	1.0	12
363	A Contact-Mode Triboelectric Nanogenerator for Energy Harvesting from Marine Pipe Vibrations. Sensors, 2021, 21, 1514.	2.1	32
364	A Nonresonant Hybridized Electromagnetic-Triboelectric Nanogenerator for Irregular and Ultralow Frequency Blue Energy Harvesting. Research, 2021, 2021, 5963293.	2.8	24
365	Freeâ€Fixed Rotational Triboelectric Nanogenerator for Selfâ€Powered Realâ€Time Wheel Monitoring. Advanced Materials Technologies, 2021, 6, 2000918.	3.0	46

#	Article	IF	CITATIONS
366	Hybrid Triboelectric Nanogenerators: From Energy Complementation to Integration. Research, 2021, 2021, 9143762.	2.8	32
367	Towards a larger scale energy harvesting from falling water droplets with an improved electrode configuration. Applied Energy, 2021, 285, 116428.	5.1	15
368	2D Nanomaterials for Effective Energy Scavenging. Nano-Micro Letters, 2021, 13, 82.	14.4	36
369	Design and engineering of <scp>highâ€performance</scp> triboelectric nanogenerator for ubiquitous unattended devices. EcoMat, 2021, 3, e12093.	6.8	39
370	The Triboelectric Nanogenerator as an Innovative Technology toward Intelligent Sports. Advanced Materials, 2021, 33, e2004178.	11.1	279
371	Current advances and future perspectives of additive manufacturing for functional polymeric materials and devices. SusMat, 2021, 1, 127-147.	7.8	135
372	A universal single electrode droplet-based electricity generator (SE-DEG) for water kinetic energy harvesting. Nano Energy, 2021, 82, 105735.	8.2	89
373	A High Sensitivity Self-Powered Wind Speed Sensor Based on Triboelectric Nanogenerators (TENGs). Sensors, 2021, 21, 2951.	2.1	17
374	Conformal, Ultraâ€ŧhin Skin ontactâ€Actuated Hybrid Piezo/Triboelectric Wearable Sensor Based on AlN and Paryleneâ€Encapsulated Elastomeric Blend. Advanced Functional Materials, 2021, 31, 2101047.	7.8	65
375	Enhancing the Performance of Fabric-Based Triboelectric Nanogenerators by Structural and Chemical Modification. ACS Applied Materials & amp; Interfaces, 2021, 13, 16916-16927.	4.0	89
376	Stackable triboelectric nanogenerators for self-powered marine monitoring buoy**. , 2021, , .		0
377	A Nonâ€Encapsulated Polymorphous Uâ€Shaped Triboelectric Nanogenerator for Multiform Hydropower Harvesting. Advanced Materials Technologies, 2021, 6, 2001199.	3.0	12
378	Stackable Disk-Shaped Triboelectric Nanogenerator to Generate Energy from Omnidirectional Wind. International Journal of Precision Engineering and Manufacturing - Green Technology, 2022, 9, 557-565.	2.7	8
379	The Recent Progress in Cellulose Paperâ€Based Triboelectric Nanogenerators. Advanced Sustainable Systems, 2021, 5, 2100034.	2.7	17
380	An electromagnetic-piezoelectric-triboelectric hybridized energy harvester towards blue energy. , 2021, , .		4
381	A superhydrophobic magnetoelectric generator for high-performance conversion from raindrops to electricity. Nano Energy, 2021, 83, 105846.	8.2	13
382	Biomimetic Hairy Whiskers for Robotic Skin Tactility. Advanced Materials, 2021, 33, e2101891.	11.1	72
383	Multifunctional sub-100â€ [–] µm thickness flexible piezo/triboelectric hybrid water energy harvester based on biocompatible AlN and soft parylene C-PDMS-Ecoflexâ"¢. Nano Energy, 2021, 83, 105811.	8.2	49

#	Article	IF	CITATIONS
384	Advanced designs for output improvement of triboelectric nanogenerator system. Materials Today, 2021, 45, 93-119.	8.3	86
385	Dielectric Hole Collector toward Boosting Charge Transfer of CsPbBr ₃ Hybrid Nanogenerator by Coupling Triboelectric and Photovoltaic Effects. Advanced Functional Materials, 2021, 31, 2101348.	7.8	30
386	Nodding Duck Structure Multi-track Directional Freestanding Triboelectric Nanogenerator toward Low-Frequency Ocean Wave Energy Harvesting. ACS Nano, 2021, 15, 9412-9421.	7.3	89
387	Self-powered electro-Fenton degradation system using oxygen-containing functional groups-rich biomass-derived carbon catalyst driven by 3D printed flexible triboelectric nanogenerator. Nano Energy, 2021, 83, 105720.	8.2	19
388	Natural silk-composite enabled versatile robust triboelectric nanogenerators for smart applications. Nano Energy, 2021, 83, 105819.	8.2	40
389	3D printed triboelectric nanogenerator self-powered electro-Fenton degradation of orange IV and crystal violet system using N-doped biomass carbon catalyst with tunable catalytic activity. Nano Energy, 2021, 83, 105824.	8.2	15
390	Transparent flexible graphene quantum dot-(PVDF-HFP) piezoelectric nanogenerator. Materials Letters, 2021, 290, 129493.	1.3	47
391	Rotary disk multi-phase freestanding-electret generator with enhanced power and low ripple output. Nano Energy, 2021, 83, 105787.	8.2	21
392	Semiconductor-based dynamic heterojunctions as an emerging strategy for high direct-current mechanical energy harvesting. Nano Energy, 2021, 83, 105849.	8.2	56
393	Organogel electrode based continuous fiber with large-scale production for stretchable triboelectric nanogenerator textiles. Nano Energy, 2021, 84, 105867.	8.2	39
394	Unraveling the anomalous channel-length-dependent blue energy conversion using engineered alumina nanochannels. Nano Energy, 2021, 84, 105930.	8.2	52
395	Triboelectric nanogenerator based self-powered sensor for artificial intelligence. Nano Energy, 2021, 84, 105887.	8.2	168
396	Nanoporous PVDF Hollow Fiber Employed Piezo–Tribo Nanogenerator for Effective Acoustic Harvesting. ACS Applied Materials & Interfaces, 2021, 13, 26981-26988.	4.0	42
397	Effects of interfacial acid–base on the performance of contact–separation mode triboelectric nanogenerator. Materials Today Energy, 2021, 20, 100686.	2.5	8
398	Advanced 3D printing-based triboelectric nanogenerator for mechanical energy harvesting and self-powered sensing. Materials Today, 2021, 50, 224-238.	8.3	73
399	Ionic liquid-based molecular design for transparent, flexible, and fire-retardant triboelectric nanogenerator (TENG) for wearable energy solutions. Nano Energy, 2021, 84, 105925.	8.2	56
400	Bioinspired designs and biomimetic applications of triboelectric nanogenerators. Nano Energy, 2021, 84, 105865.	8.2	53
401	Nanogenerators for smart cities in the era of 5G and Internet of Things. Joule, 2021, 5, 1391-1431.	11.7	261

#	Article	IF	CITATIONS
402	Enhanced frequency synchronization for concurrent aeroelastic and base vibratory energy harvesting using a softening nonlinear galloping energy harvester. Journal of Intelligent Material Systems and Structures, 2022, 33, 687-702.	1.4	13
403	Smart textile triboelectric nanogenerators: Current status and perspectives. MRS Bulletin, 2021, 46, 512-521.	1.7	111
404	Sandwich-like triboelectric nanogenerators integrated self-powered buoy for navigation safety. Nano Energy, 2021, 84, 105920.	8.2	60
405	Metastable quantum dot for photoelectric devices via flash-induced one-step sequential self-formation. Nano Energy, 2021, 84, 105889.	8.2	6
406	Advances in Smart Sensing and Medical Electronics by Self-Powered Sensors Based on Triboelectric Nanogenerators. Micromachines, 2021, 12, 698.	1.4	33
407	Algae-inspired multifunctional ocean solar-energy conversion chain enabled by coordination polymers. Cell Reports Physical Science, 2021, 2, 100466.	2.8	9
408	Emerging Energy Harvesting Materials and Devices for Selfâ€Powered Water Disinfection. Small Methods, 2021, 5, e2100093.	4.6	10
409	Recent Advances towards Ocean Energy Harvesting and Selfâ€Powered Applications Based on Triboelectric Nanogenerators. Advanced Electronic Materials, 2021, 7, 2100277.	2.6	58
410	Energy from greenhouse plastic films. Nano Energy, 2021, 89, 106328.	8.2	21
411	Swingâ€6tructured Triboelectric–Electromagnetic Hybridized Nanogenerator for Breeze Wind Energy Harvesting. Advanced Materials Technologies, 2021, 6, 2100496.	3.0	45
412	Extraction of Evaporation-Driven Electrokinetic Streaming Potential from V ₂ O ₅ Nanochannels through Secondary Sources. ACS Applied Energy Materials, 2021, 4, 8410-8420.	2.5	12
413	Biomaterial-Based Nonvolatile Resistive Memory Devices toward Ecofriendliness and Biocompatibility. ACS Applied Electronic Materials, 2021, 3, 2832-2861.	2.0	42
414	Ultra-robust and broadband rotary hybridized nanogenerator for self-sustained smart-farming applications. Nano Energy, 2021, 85, 105974.	8.2	33
415	A Triboelectric-Based Artificial Whisker for Reactive Obstacle Avoidance and Local Mapping. Research, 2021, 2021, .	2.8	18
416	Nanogenerator-based self-powered sensors for data collection. Beilstein Journal of Nanotechnology, 2021, 12, 680-693.	1.5	17
417	Arcâ€5haped Triboelectric Nanogenerator Based on Rolling Structure for Harvesting Lowâ€Frequency Water Wave Energy. Advanced Materials Technologies, 2021, 6, 2100359.	3.0	18
418	Technology evolution from micro-scale energy harvesters to nanogenerators. Journal of Micromechanics and Microengineering, 2021, 31, 093002.	1.5	53
419	Highâ€Performance Flexible Schottky DC Generator via Metal/Conducting Polymer Sliding Contacts. Advanced Functional Materials, 2021, 31, 2103132.	7.8	43

	CITATION REP	PORT	
ARTICLE Transparent, conductive cellulose hydrogel for flexible sensor and triboelectric nanoge	nerator at	IF	CITATIONS
subzero temperature. Carbohydrate Polymers, 2021, 265, 118078.		5.1	86
Segmented Swing‣tructured Furâ€Based Triboelectric Nanogenerator for Harvesting toward Marine Environmental Applications. Advanced Functional Materials, 2021, 31, 2	g Blue Energy 2106398.	7.8	95
A clover shaped triboelectric nanogenerator for self-powered grip strength test system Technology, 0, , 1-6.	. Materials	1.5	4
Optimization of a Rolling Triboelectric Nanogenerator Based on the Nano–Micro Str Ocean Environmental Monitoring. ACS Omega, 2021, 6, 21059-21065.	ucture for	1.6	13
Advances of High-Performance Triboelectric Nanogenerators for Blue Energy Harvestin Advances, 2021, 1, 32-57.	g. Nanoenergy	3.6	40
A stretchable, harsh condition-resistant and ambient-stable hydrogel and its application triboelectric nanogenerator. Nano Energy, 2021, 86, 106086.	ns in	8.2	46
MXene enhanced self-powered alternating current electroluminescence devices for par displays. Nano Energy, 2021, 86, 106077.	terned flexible.	8.2	44
Photo-thermoelectric generator integrated in graphene-based actuator for self-powere function. Nano Research, 2022, 15, 5376-5383.	d sensing	5.8	16
Simulation Guided Hand-Driven Portable Triboelectric Nanogenerator: Design, Optimis Evaluation. Micromachines, 2021, 12, 955.	ation, and	1.4	4
A bistable X-structured electromagnetic wave energy converter with a novel mechanical-motion-rectifier: Design, analysis, and experimental tests. Energy Conversion Management, 2021, 244, 114466.	on and	4.4	48
Triboelectric Nanogenerators for Energy Harvesting in Ocean: A Review on Application Hybridization. Energies, 2021, 14, 5600.	and	1.6	28
Triboelectric Nanogenerator for Ocean Wave Graded Energy Harvesting and Condition ACS Nano, 2021, 15, 16368-16375.	Monitoring.	7.3	64
Hybridized triboelectric-electromagnetic nanogenerators and solar cell for energy harve wireless power transmission. Nano Research, 2022, 15, 2069-2076.	esting and	5.8	10
Progress in the Triboelectric Human–Machine Interfaces (HMIs)-Moving from Smart Al/Haptic Enabled HMI in the 5G/IoT Era. Nanoenergy Advances, 2021, 1, 81-121.	Gloves to	3.6	59

434	From contact electrification to triboelectric nanogenerators. Reports on Progress in Physics, 2021, 84, 096502.	8.1	244
435	Quantitative characterization of the energy harvesting performance of soft-contact sphere triboelectric nanogenerator. Nano Energy, 2021, 87, 106186.	8.2	15
436	Resolving the Tribo-catalytic reaction mechanism for biochar regulated Zinc Oxide and its application in protein transformation. Journal of Colloid and Interface Science, 2022, 607, 1908-1918.	5.0	20
437	Piezophototronic Effect Enhanced Perovskite Solar Cell Based on P(VDFâ€TrFE). Solar Rrl, 2021, 5, 2100692.	3.1	8

#

420

422

424

426

428

430

432

#	Article	IF	CITATIONS
438	A bulk effect liquid-solid generator with 3D electrodes for wave energy harvesting. Nano Energy, 2021, 87, 106218.	8.2	41
439	Design Optimization of Softâ€Contact Freestanding Rotary Triboelectric Nanogenerator for Highâ€Output Performance. Advanced Energy Materials, 2021, 11, 2102106.	10.2	45
440	Potential of a vibro-impact nonlinear energy sink for energy harvesting. Mechanical Systems and Signal Processing, 2021, 159, 107827.	4.4	25
441	Recent progress of energy harvesting and conversion coupled with atmospheric water gathering. Energy Conversion and Management, 2021, 246, 114668.	4.4	29
442	Knowledge structuring for enhancing mechanical energy harvesting (MEH): An in-depth review from 2000 to 2020 using CiteSpace. Renewable and Sustainable Energy Reviews, 2021, 150, 111460.	8.2	51
443	3D printed bidirectional rotatory hybrid nanogenerator for mechanical energy harvesting. Nano Energy, 2021, 88, 106250.	8.2	18
444	Recent progress in blue energy harvesting for powering distributed sensors in ocean. Nano Energy, 2021, 88, 106199.	8.2	130
445	Promoting smart cities into the 5G era with multi-field Internet of Things (IoT) applications powered with advanced mechanical energy harvesters. Nano Energy, 2021, 88, 106304.	8.2	185
446	Emerging artificial intelligence in piezoelectric and triboelectric nanogenerators. Nano Energy, 2021, 88, 106227.	8.2	76
447	Development of triboelectric-enabled tunable Fabry-Pérot photonic-crystal-slab filter towards wearable mid-infrared computational spectrometer. Nano Energy, 2021, 89, 106446.	8.2	25
448	Nanogenerator-based devices for biomedical applications. Nano Energy, 2021, 89, 106461.	8.2	45
449	An electrostatic-electromagnetic hybrid generator with largely enhanced energy conversion efficiency. Nano Energy, 2021, 89, 106425.	8.2	10
450	A multifunctional robotic system toward moveable sensing and energy harvesting. Nano Energy, 2021, 89, 106368.	8.2	14
451	Enhanced output performance of ZnO thin film triboelectric nanogenerators by leveraging surface limited ga doping and insulting bulk. Nano Energy, 2021, 89, 106394.	8.2	15
452	Universal equivalent circuit model and verification of current source for triboelectric nanogenerator. Nano Energy, 2021, 89, 106335.	8.2	30
453	Self-powered pumping switched TENG enabled real-time wireless metal tin height and position recognition and counting for production line management. Nano Energy, 2021, 90, 106544.	8.2	14
454	An annularly-distributed poly-stable array for broadband vibrational energy. Sensors and Actuators A: Physical, 2021, 332, 113106.	2.0	1
455	High energy recovery from salinity gradients in a concentration flow cell enhanced by bioelectrochemical currents. Chemical Engineering Journal, 2021, 426, 130826.	6.6	3

CITATI)	_
	ZEDU	DT
CITAT		IC I

#	ARTICLE	IF	CITATIONS
456	Recent progress of self-powered respiration monitoring systems. Biosensors and Bioelectronics, 2021, 194, 113609.	5.3	33
457	Enhancing the output power density of polydimethylsiloxane-based flexible triboelectric nanogenerators with ultrathin nickel telluride nanobelts as a co-triboelectric layer. Nano Energy, 2021, 90, 106536.	8.2	15
458	Multistability phenomenon in signal processing, energy harvesting, composite structures, and metamaterials: A review. Mechanical Systems and Signal Processing, 2022, 166, 108419.	4.4	136
459	Double-spring-piece structured triboelectric sensor for broadband vibration monitoring and warning. Mechanical Systems and Signal Processing, 2022, 166, 108429.	4.4	12
460	Self-powered fault diagnosis of rolling bearings based on triboelectric effect. Mechanical Systems and Signal Processing, 2022, 166, 108382.	4.4	34
461	A new hybrid piezo/triboelectric SbSel nanogenerator. Energy, 2022, 238, 122048.	4.5	20
462	A Sliding Hybrid Triboelectric-Electromagnetic Nanogenerator with Staggered Electrodes for Human Motion Posture. SSRN Electronic Journal, 0, , .	0.4	0
463	Series to parallel structure of electrode fiber: an effective method to remarkably reduce inner resistance of triboelectric nanogenerator textiles. Journal of Materials Chemistry A, 2021, 9, 12331-12339.	5.2	24
464	Lignocellulose-derived hydrogel/aerogel-based flexible quasi-solid-state supercapacitors with high-performance: a review. Journal of Materials Chemistry A, 2021, 9, 14233-14264.	5.2	55
465	Displacement Current-Based Energy Harvesters in Power Grids: Topologies and Performance Evaluation. IEEE Industrial Electronics Magazine, 2022, 16, 52-66.	2.3	8
466	Up-scalable emerging energy conversion technologies enabled by 2D materials: from miniature power harvesters towards grid-connected energy systems. Energy and Environmental Science, 2021, 14, 3352-3392.	15.6	26
467	Droplet-based nanogenerators for energy harvesting and self-powered sensing. Nanoscale, 2021, 13, 17290-17309.	2.8	18
468	Flexible Triboelectric Nanogenerator Based on High Surface Area TiO ₂ Nanotube Arrays. Advanced Engineering Materials, 2018, 20, 1700767.	1.6	31
469	Graphitic carbon nitride (g ₃ N ₄)â€based nanosized heteroarrays: Promising materials for photoelectrochemical water splitting. , 2020, 2, 223-250.		114
470	A 24-hour thermoelectric generator simultaneous using solar heat energy and space cold energy. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 251, 107038.	1.1	11
471	Electricityâ^'free electroluminescence excited by droplet impact driven triboelectric field on Solidâ^'Liquid interface. Nano Energy, 2020, 75, 104823.	8.2	26
472	A pendulum hybrid generator for water wave energy harvesting and hydrophone-based wireless sensing. AIP Advances, 2020, 10, .	0.6	15
473	The need of the establishment of a marine renewables network within an academic cooperation. , 2018, , .		1

#	Article	IF	CITATIONS
474	Recent advances in ocean wave energy harvesting by triboelectric nanogenerator: An overview. Nanotechnology Reviews, 2020, 9, 716-735.	2.6	35
475	Nanonetworks in Biomedical Applications. Current Drug Targets, 2019, 20, 800-807.	1.0	18
476	Emerging Devices Based on Two-Dimensional Monolayer Materials for Energy Harvesting. Research, 2019, 2019, 7367828.	2.8	39
477	Triboelectric Nanogenerator Enabled Smart Shoes for Wearable Electricity Generation. Research, 2020, 2020, 7158953.	2.8	67
478	Flexible sensor and energy storage device based on piezoelectric nanogenerator. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 170701.	0.2	5
479	Green plantâ€based triboelectricity system for green energy harvesting and contact warning. EcoMat, 2021, 3, e12145.	6.8	13
480	Acoustic Core–Shell Resonance Harvester for Application of Artificial Cochlea Based on the Piezo-Triboelectric Effect. ACS Nano, 2021, 15, 17499-17507.	7.3	25
482	A Triboelectric Nanogenerator Based on MgSiO3 Powder for a Human Motion Counter. Journal of Electronic Materials, 2021, 50, 6836-6843.	1.0	3
483	Nonintrusion Monitoring of Droplet Motion State <i>via</i> Liquid–Solid Contact Electrification. ACS Nano, 2021, 15, 18557-18565.	7.3	13
484	High-performance triboelectric nanogenerator based on carbon nanomaterials functionalized polyacrylonitrile nanofibers. Energy, 2022, 239, 122369.	4.5	27
485	Triboelectric Nanogenerators for Harvesting Wind Energy: Recent Advances and Future Perspectives. Energies, 2021, 14, 6949.	1.6	17
486	Maximizing the output power density enhancement of solid polymer electrolyte based-triboelectric nanogenerators via contact electrification-induced ionic polarization. Nano Energy, 2021, 90, 106616.	8.2	23
487	Recent advances in water-driven triboelectric nanogenerators based on hydrophobic interfaces. Nano Energy, 2021, 90, 106592.	8.2	35
488	Broadband rotary hybrid generator for wide-flow-rate fluid energy harvesting and bubble power generation. Energy Conversion and Management, 2021, 250, 114833.	4.4	16
489	A hybridized water wave energy harvester with a swing magnetic structure toward intelligent fishing ground. Nano Energy, 2021, 90, 106631.	8.2	31
490	Mechanically and environmentally stable triboelectric nanogenerator based on high-strength and anti-compression self-healing ionogel. Nano Energy, 2021, 90, 106645.	8.2	46
491	Brain-Machine Interfaces. , 2018, , 1-5.		1
492	Landscapes of Marine Energy: An Overview. , 2020, , 421-437.		0

	Сітл	ation Report	
#	Article	IF	CITATIONS
493	A Novel Triboelectric Material Based on Deciduous Leaf for Energy Harvesting. Micromachines, 2021, 12, 1314.	1.4	2
494	Recent Progress in Self-Powered Sensors Based on Triboelectric Nanogenerators. Sensors, 2021, 21, 7129.	2.1	33
495	Energy Harvesting From Water Wave Using Electromagnetic Generator. , 2020, , .		2
496	Advanced self-charging power packs: The assimilation of energy harvesting and storage systems. , 2022, , 441-477.		1
497	Nanonetworks. , 2020, , 955-955.		0
499	Brain-Machine Interfaces. , 2020, , 134-138.		0
500	Powering Healthcare IoT Sensors-Based Triboelectric Nanogenerator. Advances in Computer and Electrical Engineering Book Series, 2020, , 29-51.	0.2	2
501	Recent Progress in the Energy Harvesting Technology—From Self-Powered Sensors to Self-Sustained IoT, and New Applications. Nanomaterials, 2021, 11, 2975.	1.9	60
502	Natural cotton-based triboelectric nanogenerator as a self-powered system for efficient use of water and wind energy. Nano Energy, 2022, 92, 106685.	8.2	63
503	Alternating Current Electroluminescent Device Powered by Triboelectric Nanogenerator with Capacitively Driven Circuit Strategy. Advanced Functional Materials, 2022, 32, 2106411.	7.8	16
504	Theoretical model and optimal output of a cylindrical triboelectric nanogenerator. Nano Energy, 2022, 92, 106762.	8.2	19
505	Triboelectric nanogenerator and artificial intelligence to promote precision medicine for cancer. Nano Energy, 2022, 92, 106783.	8.2	31
506	Water wave vibration-promoted solar evaporation with super high productivity. Nano Energy, 2022, 92, 106745.	8.2	14
507	3D-printed bearing structural triboelectric nanogenerator for intelligent vehicle monitoring. Cell Reports Physical Science, 2021, 2, 100666.	2.8	10
508	High-voltage output triboelectric nanogenerator with DC/AC optimal combination method. Nano Research, 2022, 15, 3239-3245.	5.8	20
509	Numerical analysis and experimental study of an ocean wave tetrahedral triboelectric nanogenerator. Applied Energy, 2022, 307, 118174.	5.1	20
510	Characterization of Self-Powered Triboelectric Tachometer with Low Friction Force. Micromachines, 2021, 12, 1457.	1.4	1
511	Self-Powered Sensing for Smart Agriculture by Electromagnetic–Triboelectric Hybrid Generator. ACS Nano, 2021, 15, 20278-20286.	7.3	79

CITAT		DEDODT
UTAL	IUN	Report
	· · · ·	

#	Article	IF	CITATIONS
512	A Selfâ€powered Triboelectric Coralâ€Like Sensor Integrated Buoy for Irregular and Ultraâ€Low Frequency Ocean Wave Monitoring. Advanced Materials Technologies, 2022, 7, 2101098.	3.0	15
513	A High Output Triboelectric–Electromagnetic Hybrid Generator Based on Inâ€Phase Parallel Connection. Advanced Materials Technologies, 2022, 7, 2101485.	3.0	5
514	Self-powered antibacterial systems in environmental purification, wound healing, and tactile sensing applications. Nano Energy, 2022, 93, 106826.	8.2	8
515	Design and evaluate the wave driven- triboelectric nanogenerator under external wave parameters: Experiment and simulation. Nano Energy, 2022, 93, 106844.	8.2	9
516	Increased ion transport and high-efficient osmotic energy conversion through aqueous stable graphitic carbon nitride/cellulose nanofiber composite membrane. Carbohydrate Polymers, 2022, 280, 119023.	5.1	28
517	Fabrication of polyethyleneimine-paper composites with improved tribopositivity for triboelectric nanogenerators. Nano Energy, 2022, 93, 106859.	8.2	42
518	A half-wave rectifying triboelectric nanogenerator for self-powered water splitting towards hydrogen production. Nano Energy, 2022, 93, 106870.	8.2	37
519	A sliding hybrid triboelectric-electromagnetic nanogenerator with staggered electrodes for human motion posture. Energy Reports, 2022, 8, 617-625.	2.5	8
520	A Bio-Inspired Whisker Sensor Based on Triboelectric Nanogenerators. , 2020, , .		6
521	Analysis and Design of an X-Structured Nonlinear Energy Harvesting System: A Volterra Series-Based Frequency Domain Method. Lecture Notes in Electrical Engineering, 2022, , 70-81.	0.3	1
522	A Spring Structure Triboelectric Nanogenerator for Human Gait Monitoring System. Nano, 2022, 17, .	0.5	3
523	Humidity-resistant, durable, wearable single-electrode triboelectric nanogenerator for mechanical energy harvesting. Journal of Materials Science, 2022, 57, 2813-2824.	1.7	15
524	Triboelectric Nanogenerators as Active Tactile Stimulators for Multifunctional Sensing and Artificial Synapses. Sensors, 2022, 22, 975.	2.1	12
525	The evolution of surfaces and mechanisms of contact electrification between metals and polymers. Chinese Physics B, 0, , .	0.7	1
526	Comprehensive review on various additive manufacturing techniques and its implementation in electronic devices. Journal of Manufacturing Systems, 2022, 62, 477-502.	7.6	44
527	Energy Optimization of a Mirrorâ€ S ymmetric Spherical Triboelectric Nanogenerator. Advanced Functional Materials, 2022, 32, .	7.8	9
528	Harvesting thermal energy <i>via</i> tube-based triboelectric nanogenerators within an oscillating heat pipe. Sustainable Energy and Fuels, 2022, 6, 693-699.	2.5	6
529	Construction of MXene/PDMSâ€Based Triboelectric Nanogenerators for Highâ€Performance Cathodic Protection. Advanced Materials Interfaces, 2022, 9, .	1.9	15

#	Article	IF	CITATIONS
530	A highly temperature- and pressure-sensitive soft sensor self-powered by a galvanic cell design. Journal of Materials Chemistry A, 2022, 10, 4408-4417.	5.2	11
531	MOFs in photoelectrochemical water splitting: New horizons and challenges. International Journal of Hydrogen Energy, 2022, 47, 5192-5210.	3.8	14
532	Advances in Highâ€Performance Autonomous Energy and Selfâ€Powered Sensing Textiles with Novel 3D Fabric Structures. Advanced Materials, 2022, 34, e2109355.	11.1	118
533	A review of vibration energy harvesting in rail transportation field. IScience, 2022, 25, 103849.	1.9	46
534	Flexible alternating current electroluminescent devices integrated with high voltage triboelectric nanogenerators. Nanoscale, 2022, 14, 4244-4253.	2.8	20
535	Underwater Monitoring Networks Based on Cable-Structured Triboelectric Nanogenerators. Research, 2022, 2022, 9809406.	2.8	4
536	Recent Advances on Hybrid Piezo-Triboelectric Bio-Nanogenerators: Materials, Architectures and Circuitry. Nanoenergy Advances, 2022, 2, 64-109.	3.6	22
537	The coordination of displacement and conduction currents to boost the instantaneous power output of a water-tube triboelectric nanogenerator. Nano Energy, 2022, 95, 107050.	8.2	19
538	A triboelectric nanogenerator for mechanical energy harvesting and as self-powered pressure sensor. Microelectronic Engineering, 2022, 257, 111725.	1.1	10
539	On the expanded Maxwell's equations for moving charged media system – General theory, mathematical solutions and applications in TENG. Materials Today, 2022, 52, 348-363.	8.3	128
540	DC Output Water Droplet Energy Harvester Enhanced by Triboelectric Effect. SSRN Electronic Journal, 0, , .	0.4	0
541	Rain Energy Harvesting Using Atomically Thin Gadolinium Telluride Decorated 3D Printed Nanogenerator. SSRN Electronic Journal, 0, , .	0.4	0
542	Wearable, Freezing-Tolerant, and Self-Powered Electroluminescence System for Long-Term Cold-Resistant Displays. SSRN Electronic Journal, 0, , .	0.4	0
543	Current Progress on Power Management Systems for Triboelectric Nanogenerators. IEEE Transactions on Power Electronics, 2022, 37, 9850-9864.	5.4	24
544	Nanocrystalline triple perovskite compounds A ₃ Fe ₂ BO ₉ (A = Sr,) Tj ETQqQ Materials Chemistry Frontiers, 2022, 6, 1116-1128.) 0 0 rgBT 3.2	/Overlock 10 11
545	Tipping-Bucket Self-Powered Rain Gauge Based on Triboelectric Nanogenerators for Rainfall Measurement. SSRN Electronic Journal, 0, , .	0.4	0
546	Self-Propelled Pre-Biased Synchronous Charge Extraction Circuit for Triboelectric Nanogenerator. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11, 615-626.	3.7	2
547	Defect-Mediated Work Function Regulation in Graphene Film for High-Performing Triboelectric Nanogenerators. SSRN Electronic Journal, 0, , .	0.4	0

ARTICLE IF CITATIONS # A Sliding-Structure Direct-Current Triboelectric Nanogenerator Based on the Air Breakdown Effect 548 1.0 4 for Running Monitoring. Journal of Electronic Materials, 2022, 51, 2248-2255. Improving Wastewater Treatment by Triboelectric-Photo/Electric Coupling Effect. ACS Nano, 2022, 16, 549 3449-3475. Filling the gap between topological insulator nanomaterials and triboelectric nanogenerators. 550 5.8 42 Nature Communications, 2022, 13, 938. Multi-Tunnel Triboelectric Nanogenerator for Scavenging Mechanical Energy in Marine Floating 551 1.2 Bodies. Journal of Marine Science and Engineering, 2022, 10, 455. A flutter-driven triboelectric nanogenerator for harvesting energy of gentle breezes with a 552 8.2 31 rear-fixed fluttering film. Nano Energy, 2022, 98, 107197. Gyroscope-Structured Triboelectric Nanogenerator for Harvesting Multidirectional Ocean Wave 7.3 Energy. ACS Nano, 2022, 16, 6781-6788. Energy conversion mechanisms of a seesaw-type energy harvester. Journal Physics D: Applied Physics, 554 1.3 1 2022, 55, 255002. 3D fully-enclosed triboelectric nanogenerator with bionic fish-like structure for harvesting 5.8 20 hydrokinetic energy. Nano Research, 2022, 15, 5098-5104. Pendular-Translational Hybrid Nanogenerator Harvesting Water Wave Energy. ACS Applied Materials 556 4.0 18 & Interfaces, 2022, 14, 15187-15194. Validation of devices for characterization of hybrid 3D printed embroidery TENG for energy harvesting. Communications in Development and Assembling of Textile Products, 2022, 3, 1-8. Toward a New Era of Sustainable Energy: Advanced Triboelectric Nanogenerator for Harvesting High 558 5.2 45 Entropy Energy. Small, 2022, 18, e2107034. Isometric Double-Layer Staggered Chain Teeth Triboelectric Nanogenerator. Micromachines, 2022, 13, 1.4 421. Barycenter Selfâ€Adapting Triboelectric Nanogenerator for Sea Water Wave Highâ€Entropy Energy 560 Harvesting and Selfâ€Powered Forecasting in Marine Meteorology. Advanced Functional Materials, 7.8 19 2022, 32, Tipping-bucket self-powered rain gauge based on triboelectric nanogenerators for rainfall measurement. Nano Energy, 2022, 98, 107234. 8.2 14 A Triboelectric Nanogenerator Array for a Self-Powered Boxing Sensor System. Journal of Electronic 562 1.0 2 Materials, 2022, 51, 3308-3316. Maximum power point tracking for triboelectric nanogenerator based wave energy converters. Nano Energy, 2022, 98, 107249. Investigating the Influence of Friction and Material Wear on Triboelectric Charge Transfer in 564 1.2 9 Metal–Polymer Contacts. Tribology Letters, 2022, 70, 1. Novel 3D Printed Vortex-like Flexible Roller-Compacted Triboelectric Nanogenerator for Self-Powered Electrochemical Degradation of Organic Contaminants. ACS Applied Materials & amp; Interfaces, 2022, 14, 17426-17433.

#	Article	IF	CITATIONS
566	Development and Applications of Hydrogel-Based Triboelectric Nanogenerators: A Mini-Review. Polymers, 2022, 14, 1452.	2.0	6
567	Constructing high output performance triboelectric nanogenerator via V-shape stack and self-charge excitation. Nano Energy, 2022, 96, 107068.	8.2	22
568	Synthesis and characterization of nickel oxide (NiO) nanoparticles using an environmentally friendly method, and their biomedical applications. Chemical Physics Letters, 2022, 797, 139564.	1.2	30
569	Underwater bionic whisker sensor based on triboelectric nanogenerator for passive vortex perception. Nano Energy, 2022, 97, 107210.	8.2	25
570	Advanced triboelectric nanogenerators based on low-dimension carbon materials: A review. Carbon, 2022, 194, 81-103.	5.4	37
571	Development of a triboelectric palm-like sensor aiming at underwater perceptual construction. , 2021, , ,		0
572	Interaction between Water Wave and Geometrical Structures of Floating Triboelectric Nanogenerators. Advanced Energy Materials, 2022, 12, .	10.2	20
573	Hybrid Nanogenerator for Biomechanical Energy Harvesting, Motion State Detection, and Pulse Sensing. Advanced Materials Technologies, 2022, 7, .	3.0	21
574	Ultra-compact triboelectric bearing based on a ribbon cage with applications for fault diagnosis of rotating machinery. Nano Energy, 2022, 99, 107263.	8.2	29
575	Concise and Efficient Asymmetric Homogeneous Janus Membrane for High-Performance Osmotic Energy Conversion Based on Oppositely Charged Montmorillonite. SSRN Electronic Journal, 0, , .	0.4	0
576	Synchronous Pre-biasing of Triboelectric Nanogenerator for Enhanced Energy Extraction. IEEE Transactions on Power Electronics, 2022, 37, 11552-11566.	5.4	6
577	More Powerful Twistron Carbon Nanotube Yarn Mechanical Energy Harvesters. Advanced Materials, 2022, 34, e2201826.	11.1	20
578	A Flexible Lightweight Triboelectric Nanogenerator for Protector and Scoring System in Taekwondo Competition Monitoring. Electronics (Switzerland), 2022, 11, 1306.	1.8	20
579	A bio-inspired and self-powered triboelectric tactile sensor for underwater vehicle perception. Npj Flexible Electronics, 2022, 6, .	5.1	26
580	Anti-Overturning Fully Symmetrical Triboelectric Nanogenerator Based on an Elliptic Cylindrical Structure for All-Weather Blue Energy Harvesting. Nano-Micro Letters, 2022, 14, 124.	14.4	33
581	A Review on Epidermal Nanogenerators: Recent Progress of the Future Selfâ€Powered Skins. Small Structures, 2022, 3, .	6.9	5
582	A functional triboelectric nanogenerator based on the LiCl/PVA hydrogel for cheerleading training. Materials Technology, 2022, 37, 2752-2757.	1.5	8
583	Spherical Triboelectric Nanogenerator Based on Eccentric Structure for Omnidirectional Low Frequency Water Wave Energy Harvesting. Advanced Functional Materials, 2022, 32, .	7.8	35

#	Article	IF	CITATIONS
584	High-performance triboelectric nanogenerator with synchronization mechanism by charge handling. Energy Conversion and Management, 2022, 263, 115655.	4.4	13
585	Dual-breakdown direct-current triboelectric nanogenerator with synergistically enhanced performance. Nano Energy, 2022, 99, 107355.	8.2	13
586	Electrowetting-on-dielectric powered by triboelectric nanogenerator. Nano Energy, 2022, 98, 107310.	8.2	8
587	Frequency-multiplied cylindrical triboelectric nanogenerator for harvesting low frequency wave energy to power ocean observation system. Nano Energy, 2022, 99, 107365.	8.2	24
588	Wearable, freezing-tolerant, and self-powered electroluminescence system for long-term cold-resistant displays. Nano Energy, 2022, 98, 107309.	8.2	36
589	Kirigami interactive triboelectric mechanologic. Nano Energy, 2022, 99, 107345.	8.2	11
590	Smart Pillow Based on Flexible and Breathable Triboelectric Nanogenerator Arrays for Head Movement Monitoring during Sleep. ACS Applied Materials & Interfaces, 2022, 14, 23998-24007.	4.0	47
591	Magnets Assisted Triboelectric Nanogenerator for Harvesting Water Wave Energy. Advanced Materials Technologies, 2022, 7, .	3.0	4
592	Driving-torque self-adjusted triboelectric nanogenerator for effective harvesting of random wind energy. Nano Energy, 2022, 99, 107389.	8.2	28
593	Concise and efficient asymmetric homogeneous Janus membrane for high-performance osmotic energy conversion based on oppositely charged montmorillonite. Electrochimica Acta, 2022, 423, 140581.	2.6	14
594	Assessment of Tidal Current Potential in the Pará River Estuary (Amazon Region – Brazil). SSRN Electronic Journal, 0, , .	0.4	0
595	Whisker-Inspired and Self-Powered Triboelectric Sensor for Underwater Obstacle Detection and Collision Avoidance. SSRN Electronic Journal, 0, , .	0.4	0
596	Effect of water and DMSO on mechanoelectrical conversion of Schottky DC generators. Journal of Materials Chemistry A, 2022, 10, 13055-13065.	5.2	5
597	An easy and efficient power generator with ultrahigh voltage for lighting, charging and self-powered systems. Nano Energy, 2022, 100, 107409.	8.2	13
598	DC Output Water Droplet Energy Harvester Enhanced by the Triboelectric Effect. ACS Applied Electronic Materials, 2022, 4, 2851-2858.	2.0	5
599	Interfacial structure design for triboelectric nanogenerators. , 2022, 1, .		14
600	The Major Mechanisms for Efficient Hybrid Energy Harvesting: Overview and Recent Developments. , 2021, 10, 10-23.		1
601	Facile Salt Spraying Construction for Triboelectric Nanogenerator Applied to Cathodic Protection. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
602	Omni-Directional Detectable Textile Brush-Based Triboelectric Nanogenerators. SSRN Electronic Journal, 0, , .	0.4	0
603	Allâ€Recyclable Triboelectric Nanogenerator for Sustainable Ocean Monitoring Systems. Advanced Energy Materials, 2022, 12, .	10.2	26
604	Powering data buoys using wave energy: a review of possibilities. Journal of Ocean Engineering and Marine Energy, 2022, 8, 417-432.	0.9	12
605	Toward 3D double-electrode textile triboelectric nanogenerators for wearable biomechanical energy harvesting and sensing. Chemical Engineering Journal, 2022, 450, 137491.	6.6	15
606	High-efficiency droplet triboelectric nanogenerators based on arc-surface and organic coating material for self-powered anti-corrosion. Applied Materials Today, 2022, 29, 101564.	2.3	13
607	Triboelectric nanogenerators for marine energy harvesting and sensing applications. Results in Engineering, 2022, 15, 100487.	2.2	13
608	A Review: Contact Electrification on Special Interfaces. Frontiers in Materials, 0, 9, .	1.2	8
609	Wearable fabric-based hybrid energy harvester from body motion and body heat. Nano Energy, 2022, 100, 107485.	8.2	12
610	Untethered triboelectric patch for wearable smart sensing and energy harvesting. Nano Energy, 2022, 100, 107500.	8.2	14
611	Modeling and optimization of a rotational symmetric spherical triboelectric generator. Nano Energy, 2022, 100, 107491.	8.2	7
612	Particle triboelectric nanogenerator (P-TENG). Nano Energy, 2022, 100, 107475.	8.2	17
613	Smart and autonomous (self-powered) nanosensor networks. , 2022, , 105-121.		0
614	Wireless-Controlled, Self-Powered, and Patterned Information Encryption Display System Based on Flexible Electroluminescence Devices. SSRN Electronic Journal, 0, , .	0.4	0
615	Selfâ€Powered Intelligent Buoy Based on Triboelectric Nanogenerator for Water Level Alarming. Advanced Functional Materials, 2022, 32, .	7.8	23
616	Review of wave power system development and research on triboelectric nano power systems. Frontiers in Energy Research, 0, 10, .	1.2	3
617	Durability Improvement of Breezeâ€Driven Triboelectricâ€Electromagnetic Hybrid Nanogenerator by a Travelâ€Controlled Approach. Advanced Functional Materials, 2022, 32, .	7.8	34
618	Liquid–Polymer Contact Electrification: Modeling the Dependence of Surface Charges and ξ-Potential on pH and Added-Salt Concentration. Langmuir, 2022, 38, 8817-8828.	1.6	8
619	High performance triboelectric nanogenerator based on bamboo fibers with trench structure for self-powered sensing. Sustainable Energy Technologies and Assessments, 2022, 53, 102489.	1.7	1

	CITATION	Report	
#	Article	IF	Citations
620	Bioinspired butterfly wings triboelectric nanogenerator with drag amplification for multidirectional underwater-wave energy harvesting. Applied Energy, 2022, 323, 119648.	5.1	15
621	A parametric frequency domain approach to analysis and design of critical design parameters of nonlinear energy harvesting systems: Parametric output spectrum and power generation functions. Mechanical Systems and Signal Processing, 2022, 181, 109506.	4.4	6
622	Liquid-Repellent Surfaces. Langmuir, 2022, 38, 9073-9084.	1.6	16
623	A dropletâ€based electricity generator with ultrahigh instantaneous output and short charging time. , 2022, 1, 56-64.		48
624	Whisker-inspired and self-powered triboelectric sensor for underwater obstacle detection and collision avoidance. Nano Energy, 2022, 101, 107633.	8.2	12
625	Surface engineering of a triboelectric nanogenerator for room temperature high-performance self-powered formaldehyde sensors. Journal of Materials Chemistry A, 2022, 10, 22373-22389.	5.2	14
626	Carbon nanofibers membrane bridged with graphene nanosheet and hyperbranched polymer for high-performance osmotic energy harvesting. Nano Research, 2023, 16, 1205-1211.	5.8	19
627	Realization of a Sustainable Charging Power Source by In Situ Lowâ€Frequency Water Wave Energy Harvesting with a Coaxial Triboelectric–Electromagnetic Hybrid Generator. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	2
628	Highly Adaptive Liquid–Solid Triboelectric Nanogenerator-Assisted Self-Powered Water Wave Motion Sensor. ACS Applied Electronic Materials, 2022, 4, 3870-3879.	2.0	10
629	Water Dropletâ€Based Nanogenerators. Advanced Energy Materials, 2022, 12, .	10.2	26
630	TENG Applications in Transportation and Surrounding Emergency Management. Advanced Sustainable Systems, 2022, 6, .	2.7	3
631	Maxwell's equations for a mechano-driven, shape-deformable, charged-media system, slowly moving at an arbitrary velocity field v(r ,t). Journal of Physics Communications, 2022, 6, 085013.	0.5	22
632	A Forestâ€Based Triboelectric Energy Harvester. Global Challenges, 2022, 6, .	1.8	5
633	Research Progress on Triboelectric Nanogenerator for Sports Applications. Energies, 2022, 15, 5807.	1.6	9
634	Nanofiber-Enhanced "Lucky-Bag―Triboelectric Nanogenerator for Efficient Wave Energy Harvesting by Soft-Contact Structure. Nanomaterials, 2022, 12, 2792.	1.9	2
635	Rationally Structured Triboelectric Nanogenerator Arrays for Harvesting Waterâ€Current Energy and Selfâ€Powered Sensing. Advanced Materials, 2022, 34, .	11.1	36
636	Lorentz Transformation in Maxwell Equations for Slowly Moving Media. Symmetry, 2022, 14, 1641.	1.1	4
637	Regulation of bioinspired ion diodes: From fundamental study to blue energy harvesting. Nano Today, 2022, 46, 101593.	6.2	11

#	Article	IF	CITATIONS
638	Nanogenerators integrated self-powered multi-functional wings for biomimetic micro flying robots. Nano Energy, 2022, 101, 107627.	8.2	5
639	Omni-directional detectable textile brush-based triboelectric nanogenerators. Sensors and Actuators A: Physical, 2022, 345, 113803.	2.0	4
640	Application, challenge and perspective of triboelectric nanogenerator as micro-nano energy and self-powered biosystem. Biosensors and Bioelectronics, 2022, 216, 114595.	5.3	36
641	Frequency modulated hybrid nanogenerator for efficient water wave energy harvesting. Nano Energy, 2022, 102, 107669.	8.2	24
642	Wireless-controlled, self-powered, and patterned information encryption display system based on flexible electroluminescence devices. Nano Energy, 2022, 102, 107653.	8.2	15
643	Recent advances in ocean energy harvesting based on triboelectric nanogenerators. Sustainable Energy Technologies and Assessments, 2022, 53, 102767.	1.7	14
644	GnPs/PVDF decorated thermoplastic veils to boost the triboelectric nanogenerator output performance toward highly efficient energy harvesting. Energy Conversion and Management, 2022, 270, 116204.	4.4	4
645	Copper particles-PTFE tube based triboelectric nanogenerator for wave energy harvesting. Nano Energy, 2022, 102, 107749.	8.2	16
646	Double-blade structured triboelectric–electromagnetic hybrid generator with aerodynamic enhancement for breeze energy harvesting. Applied Energy, 2022, 326, 119970.	5.1	18
647	Quantitative comparison between the effective energy utilization efficiency of triboelectric nanogenerator and electromagnetic generator post power management. Nano Energy, 2022, 103, 107760.	8.2	10
648	Molecular level manipulation of charge density for solid-liquid TENG system by proton irradiation. Nano Energy, 2022, 103, 107819.	8.2	49
649	Self-powered sensing of power transmission lines galloping based on piezoelectric energy harvesting. International Journal of Electrical Power and Energy Systems, 2023, 144, 108607.	3.3	11
650	Frequency Modulated Hybrid Nanogenerator for Efficient Water Wave Energy Harvesting. SSRN Electronic Journal, 0, , .	0.4	0
651	A nonlinear triboelectric nanogenerator with a broadened bandwidth for effective harvesting of vibration energy. , 2022, 1, 236-242.		7
652	A dual auxiliary beam galloping triboelectric nanogenerator for low speed wind energy harvesting. Applied Physics Letters, 2022, 121, .	1.5	3
653	Active Deformable and Flexible Triboelectric Nanogenerator Based on Super-Light Clay. ACS Applied Electronic Materials, 2022, 4, 4764-4771.	2.0	6
654	A Self-Powered Sport Sensor Based on Triboelectric Nanogenerator for Fosbury Flop Training. Journal of Sensors, 2022, 2022, 1-10.	0.6	0
655	Application of Triboelectric Nanogenerator in Fluid Dynamics Sensing: Past and Future. Nanomaterials, 2022, 12, 3261.	1.9	14

#	Article	IF	CITATIONS
656	Liquid-liquid triboelectric nanogenerator based on the immiscible interface of an aqueous two-phase system. Nature Communications, 2022, 13, .	5.8	33
657	Emerging Deep-Sea Smart Composites: Advent, Performance, and Future Trends. Materials, 2022, 15, 6469.	1.3	2
658	Enhanced Triboelectric Nanogenerator Performance Based on Mechanical Imprinting PDMS Microstructures. Advanced Materials Interfaces, 2022, 9, .	1.9	2
659	Active Electric Dipole Energy Sources: Transduction via Electric Scalar and Vector Potentials. Sensors, 2022, 22, 7029.	2.1	4
660	Design and Simulation of Broadband Piezoelectric Energy Harvester with Multi-Cantilever. Mechanisms and Machine Science, 2023, , 841-851.	0.3	1
661	Electromechanical Modeling of Rolling Spherical Triboelectric Nanogenerators Considering Nonlinear Effects. Advanced Theory and Simulations, 2022, 5, .	1.3	1
662	Recent progress of triboelectric nanogenerators as self-powered sensors in transportation engineering. Measurement: Journal of the International Measurement Confederation, 2022, 203, 112010.	2.5	15
663	Highly Stable and Endâ€group Tuneable Metal–Organic Framework/Polymer Composite for Superior Triboelectric Nanogenerator Application. Advanced Materials Interfaces, 2022, 9, .	1.9	10
664	Experimental and theoretical investigations of a novel electret-based wave energy converter. Nano Energy, 2022, 103, 107854.	8.2	2
665	Magnetic-field-controlled counterion migration within polyionic liquid micropores enables nano-energy harvest. Nanoscale Horizons, 0, , .	4.1	0
666	0.5Âm Triboelectric Nanogenerator for Efficient Blue Energy Harvesting of Allâ€5ea Areas. Advanced Science, 2022, 9, .	5.6	29
667	Liquid-solid contact electrification when water droplets hit living plant leaves. Communications Materials, 2022, 3, .	2.9	3
668	Artificial intelligenceâ€enhanced skinâ€like sensors based on flexible nanogenerators. View, 2022, 3, .	2.7	18
669	Experimental Investigation of Reynolds Number and Spring Stiffness Effects on Vortex-Induced Vibration Driven Wind Energy Harvesting Triboelectric Nanogenerator. Nanomaterials, 2022, 12, 3595.	1.9	4
670	A Stretchable and Human-Compatible Triboelectric Nanogenerator Integrated with LiCl Liquid Electrode for Volleyball Monitoring. Journal of Electronic Materials, 2022, 51, 7304-7312.	1.0	1
671	Roadmap on nanogenerators and piezotronics. APL Materials, 2022, 10, .	2.2	22
672	Rain Energy Harvesting Using Atomically Thin Gadolinium Telluride Decorated 3D Printed Nanogenerator. Advanced Sustainable Systems, 2022, 6, .	2.7	1
673	Magneto-active soft matter with reprogrammable shape-morphing and self-sensing capabilities. Composites Science and Technology, 2022, 230, 109789.	3.8	5

# 674	ARTICLE Sisal cellulose paper based triboelectric nanogenerator with high performance for detection of chemical group substitution degree. Nano Energy, 2022, 104, 107937.	IF 8.2	CITATIONS
675	Polydopamine functionalized graphene oxide membrane with the sandwich structure for osmotic energy conversion. Journal of Colloid and Interface Science, 2023, 630, 795-803.	5.0	21
676	A triboelectric–electromagnetic hybrid generator for scavenging low-frequency oscillation energy from the environment and human body. Journal of Materials Science, 2022, 57, 21143-21155.	1.7	5
677	Triboelectric Nanogenerator Enabled Wearable Sensors and Electronics for Sustainable Internet of Things Integrated Green Earth. Advanced Energy Materials, 2023, 13, .	10.2	79
678	REWoD-based vibrational energy harvesting exploiting saline-solutions loaded PAAm hydrogels on micro-structured aluminium oxides electrodes. Applied Surface Science, 2023, 611, 155522.	3.1	1
679	Cellulosic gel-based triboelectric nanogenerators for energy harvesting and emerging applications. Nano Energy, 2023, 106, 108079.	8.2	28
680	Organic tribovoltaic nanogenerator with electrically and mechanically tuned flexible semiconductor textile. Nano Energy, 2023, 106, 108075.	8.2	9
681	Dynamical modeling and parametric analysis of an electret-based wave energy converter. International Journal of Mechanical Sciences, 2023, 243, 108049.	3.6	0
682	PDMS Surface-Area Optimization for High-Performance Oscillatory Motion Harvesting Pendulum-Type Triboelectric Nanogenerators for Energy Harvesting and Sensor Applications. ACS Applied Electronic Materials, 2022, 4, 5933-5940.	2.0	3
683	Triboelectric Fluid Sensors: Principles, Development, and Perspectives. Advanced Materials Technologies, 2023, 8, .	3.0	6
684	Smart Solarâ€Panel Umbrella toward Highâ€Efficient Hybrid Solar and Rain Energy Harvesting. Energy Technology, 2023, 11, .	1.8	2
685	The expanded Maxwell's equations for a mechano-driven media system that moves with acceleration. International Journal of Modern Physics B, 2023, 37, .	1.0	14
686	Marine monitoring based on triboelectric nanogenerator: Ocean energy harvesting and sensing. Frontiers in Marine Science, 0, 9, .	1.2	1
687	Output characteristics of series-parallel triboelectric nanogenerators. Nanotechnology, 2023, 34, 155403.	1.3	3
688	Pendulum Energy Harvesters: A Review. Energies, 2022, 15, 8674.	1.6	6
689	Highâ€Performance Flexible Piezo–Tribo Hybrid Nanogenerator Based on MoS ₂ @ZnOâ€Assisted <i>β</i> â€Phaseâ€Stabilized Poly(Vinylidene Fluoride) Nanocomposite. Energy Technology, 2023, 11, .	1.8	4
690	Direct current triboelectric nanogenerators: a review. Journal of Micromechanics and Microengineering, 2023, 33, 013001.	1.5	8
691	Intelligent electronic passworded locker with unique and personalized security barriers for home security. Nano Research, 2023, 16, 7568-7574.	5.8	7

#	Article	IF	CITATIONS
692	Achieving a Large Driving Force on Triboelectric Nanogenerator by Waveâ€Driven Linkage Mechanism for Harvesting Blue Energy toward Marine Environment Monitoring. Advanced Energy Materials, 2023, 13, .	10.2	37
693	Heart Energy Harvesting and Cardiac Bioelectronics: Technologies and Perspectives. Nanoenergy Advances, 2022, 2, 344-385.	3.6	4
694	Asymmetric-Internal-Capacitance-Induced Charge Aggregation for the Hot-Surface Triboelectric Nanogenerator. ACS Applied Materials & amp; Interfaces, 2022, 14, 56827-56835.	4.0	0
695	Cellulose-based superhydrophobic wrinkled paper and electrospinning film as green tribolayer for water wave energy harvesting. International Journal of Biological Macromolecules, 2023, 234, 122903.	3.6	6
696	Multidiscipline Applications of Triboelectric Nanogenerators for the Intelligent Era of Internet of Things. Nano-Micro Letters, 2023, 15, .	14.4	69
697	Enhanced Durability and Robustness of Triboelectric Nanogenerators with Bladeâ€Enclosed Structure for Breeze Energy Harvesting. Advanced Sustainable Systems, 2023, 7, .	2.7	5
698	Highly Adaptive Triboelectricâ€Electromagnetic Hybrid Nanogenerator for Scavenging Flow Energy and Selfâ€Powered Marine Wireless Sensing. Advanced Materials Technologies, 2023, 8, .	3.0	14
699	Enhancing the Performance of Triboelectric Nanogenerator Via Facile PDMS Surface Modification. Advanced Engineering Materials, 2023, 25, .	1.6	3
700	Power Generation with Raindrops. Lecture Notes in Mechanical Engineering, 2023, , 391-404.	0.3	0
701	Triboelectricâ€Electromagnetic Hybrid Generator with Single Timer Under Monostable Operation for Wind Energy Harvesting. Energy Technology, 2023, 11, .	1.8	5
702	The sealed bionic fishtail-structured TENG based on anticorrosive paint for ocean sensor systems. Nano Energy, 2023, 108, 108210.	8.2	15
703	Triboelectric Nanogenerators for Ocean Wave Energy Harvesting: Unit Integration and Network Construction. Electronics (Switzerland), 2023, 12, 225.	1.8	9
704	Fluidics for energy harvesting: from nano to milli scales. Lab on A Chip, 2023, 23, 1034-1065.	3.1	5
705	A Method of Vibration Measurement with the Triboelectric Sensor during Geo-Energy Drilling. Energies, 2023, 16, 770.	1.6	2
706	Leafâ€Like TENGs for Harvesting Gentle Wind Energy at An Air Velocity as Low as 0.2ÂmÂs ^{â^'1} . Advanced Functional Materials, 2023, 33, .	7.8	19
707	Triboelectric Nanogenerators for Transportation. , 2023, , 1-31.		0
708	A Nanogenerator Enabled by a Perfect Combination and Synergetic Utilization of Triboelectrification, Charge Excitation and Electromagnetic Induction to Reach Efficient Energy Conversion. Advanced Functional Materials, 2023, 33, .	7.8	7
709	Interfacial Roughness Enhanced Gel/Elastomer Interfacial Bonding Enables Robust and Stretchable Triboelectric Nanogenerator for Reliable Energy Harvesting. Small, 2023, 19, .	5.2	5

#	Article	IF	CITATIONS
710	Triboelectric nanogenerators for blue energy harvesting in simulated wave conditions. Nano Energy, 2023, 107, 108157.	8.2	8
711	A rotating tower-like triboelectric nanogenerator for ultrahigh charge density breakthrough. Nano Energy, 2023, 108, 108204.	8.2	4
712	Energy Storage Triboelectric Nanogenerator Based on Ratchet Mechanism for Random Ocean Energy Harvesting. ACS Omega, 2023, 8, 1362-1368.	1.6	3
713	Double-Layer Hydrogels with Tunable Mechanofluorochromic Response for Smart Display. Chinese Journal of Polymer Science (English Edition), 2023, 41, 547-555.	2.0	1
714	Harvesting Water Wave Energy by Triboelectric Nanogenerators. , 2023, , 1-36.		0
715	High Efficient and High Durability Triboelectric Nanogenerators for Blue Energy. , 2023, , 1-34.		0
716	Deep-Learning-Assisted Underwater 3D Tactile Tensegrity. Research, 2023, 6, .	2.8	8
717	Superâ€Aerophilic Biomimetic Cactus for Underwater Dispersed Microbubble Capture, Selfâ€Transport, Coalescence, and Energy Harvesting. Small, 2023, 19, .	5.2	3
718	Multilayered Helical Spherical Triboelectric Nanogenerator with Charge Shuttling for Water Wave Energy Harvesting. Small Methods, 2023, 7, .	4.6	10
719	Environmentally friendly natural materials for triboelectric nanogenerators: a review. Journal of Materials Chemistry A, 2023, 11, 9270-9299.	5.2	6
720	Research progress of applications of freestanding single crystal oxide thin film. Wuli Xuebao/Acta Physica Sinica, 2023, .	0.2	0
721	Device for Simultaneous Wind and Raindrop Energy Harvesting Operating on the Surface of Plant Leaves. IEEE Robotics and Automation Letters, 2023, 8, 2269-2276.	3.3	4
722	Advances in triboelectric pressure sensors. Sensors and Actuators A: Physical, 2023, 355, 114331.	2.0	4
723	A biocompatible, eco-friendly, and high-performance triboelectric nanogenerator based on sepiolite, bentonite, and kaolin decorated chitosan composite film. Nano Energy, 2023, 110, 108354.	8.2	13
724	Self-powered angle-resolved triboelectric nanogenerator for underwater vibration localization. Nano Energy, 2023, 110, 108392.	8.2	4
725	Liquid-solid contact electrification and its effect on the formation of electric double layer: An atomic-level investigation. Nano Energy, 2023, 111, 108442.	8.2	3
726	Mechanical intelligent wave energy harvesting and self-powered marine environment monitoring. Nano Energy, 2023, 108, 108222.	8.2	37
727	Triboelectric-Electromagnetic Hybrid Wind-Energy Harvester with a Low Startup Wind Speed in Urban Self-Powered Sensing. Micromachines, 2023, 14, 298.	1.4	6

#	Article	IF	CITATIONS
728	Achieving Highâ€Performance Triboelectric Nanogenerator by DC Pump Strategy. Advanced Materials Technologies, 2023, 8, .	3.0	4
729	Quantification of Triboelectric Charge Density for a Solid. , 2023, , 1-49.		0
730	Rationally Designed Antiâ€Clare Panel Arrays as Highway Wind Energy Harvester. Advanced Functional Materials, 2023, 33, .	7.8	22
731	An Advanced Strategy to Enhance TENG Output: Reducing Triboelectric Charge Decay. Advanced Materials, 2023, 35, .	11.1	38
732	TENG Harvesting Blue Energy for Carbon Neutralization. , 2023, , 1-27.		0
733	Fabrication and feasibility study of polymer-based triboelectric nanogenerator towards blue energy harvesting. , 2023, 1, 100006.		2
734	Recent Advances in Mechanical Vibration Energy Harvesters Based on Triboelectric Nanogenerators. Small, 2023, 19, .	5.2	9
735	Advanced ocean wave energy harvesting: current progress and future trends. Journal of Zhejiang University: Science A, 2023, 24, 91-108.	1.3	7
736	Robust Solidâ€Liquid Triboelectric Nanogenerators: Mechanisms, Strategies and Applications. Advanced Functional Materials, 2023, 33, .	7.8	13
737	A hybrid piezoelectric and triboelectric nanogenerator with lead-free BZT–BCT/PDMS composite and PVA film for scavenging mechanical energy. RSC Advances, 2023, 13, 7921-7928.	1.7	3
738	Hybrid Nanogenerators for Ocean Energy Harvesting: Mechanisms, Designs, and Applications. Small, 2023, 19, .	5.2	28
739	Opportunities and Challenges in Power Management Systems for Triboelectric Nanogenerators. ACS Applied Electronic Materials, 2023, 5, 1347-1375.	2.0	19
740	Advances in solid–solid contacting triboelectric nanogenerator for ocean energy harvesting. Materials Today, 2023, 65, 166-188.	8.3	11
741	Triboelectric Film with Electrochemical Surface Modification for Multiple Mechanical Energy Harvesting with High Storage Efficiency and Sensing Applications. ACS Applied Electronic Materials, 2023, 5, 2073-2081.	2.0	5
742	The Advances in Conversion Techniques in Triboelectric Energy Harvesting: A Review. IEEE Transactions on Circuits and Systems I: Regular Papers, 2023, 70, 3049-3062.	3.5	1
743	Triboelectric Nanogenerators for Efficient Low-Frequency Ocean Wave Energy Harvesting with Swinging Boat Configuration. Micromachines, 2023, 14, 748.	1.4	2
744	Recent Advances in Triboelectric Nanogenerators for Marine Exploitation. Advanced Energy Materials, 2023, 13, .	10.2	21
745	Triboelectric nanogenerators: the beginning of blue dream. Frontiers of Chemical Science and Engineering, 2023, 17, 635-678.	2.3	21

#	Article	IF	CITATIONS
746	Multistage SrBaTiO ₃ /PDMS Composite Filmâ€Based Hybrid Nanogenerator for Efficient Floor Energy Harvesting Applications. Small, 2023, 19, .	5.2	7
747	Pyro-Phototronic Effect for Advanced Photodetectors and Novel Light Energy Harvesting. Nanomaterials, 2023, 13, 1336.	1.9	4
748	Boosted energy harvesting in droplet electrochemical cell with non-equilibrium electrical double layer. Nano Energy, 2023, 112, 108437.	8.2	3
749	Characteristics and Biological Applications of Green Nickel Oxide Synthesised by Hibiscus Sabdariffa Flowers. Materials Science Forum, 0, 1084, 31-40.	0.3	0
750	Zeta potential variations in bonding states of fluorocarbon films deposited by plasma-enhanced chemical vapor deposition. Japanese Journal of Applied Physics, 0, , .	0.8	0
754	Triboelectric Nanogenerators as a High-Voltage Source. , 2023, , 1-42.		0
775	Fundamentals of Triboelectric Nanogenerators. , 2023, , 1-30.		1
776	Service behavior of triboelectric nanogenerators: Bridging the gap between prototypes and applications. Nano Research, 0, , .	5.8	0
797	The new focus of energy storage: flexible wearable supercapacitors. Carbon Letters, 2023, 33, 1461-1483.	3.3	2
799	Applications of multifunctional triboelectric nanogenerator (TENG) devices: materials and prospects. Sustainable Energy and Fuels, 2023, 7, 3796-3831.	2.5	7
812	Triboelectric nanogenerator assisted synthesis and detection of chemical compounds. Journal of Materials Chemistry A, 2023, 11, 19244-19280.	5.2	2
814	Harvesting Water Wave Energy by Triboelectric Nanogenerators. , 2023, , 1079-1114.		Ο
815	TENG Harvesting Blue Energy for Carbon Neutralization. , 2023, , 1115-1141.		0
816	Triboelectric Nanogenerators for Transportation. , 2023, , 705-735.		0
817	High Efficient and High Durability Triboelectric Nanogenerators for Blue Energy. , 2023, , 1377-1410.		0
818	Introduction to Triboelectric Nanogenerators. , 2023, , 3-32.		0
826	Triboelectric Nanogenerators as a High-Voltage Source. , 2023, , 1771-1812.		0
829	Quantification of Triboelectric Charge Density for a Solid. , 2023, , 243-291.		Ο

#	Article	IF	CITATIONS
836	Energy Harvesting Systems. Advances in Systems Analysis, Software Engineering, and High Performance Computing Book Series, 2023, , 247-295.	0.5	0
839	Mathematical Modelling of a TENG-Powered Data Buoy. , 2023, , .		0
850	Boosting the output performance of triboelectric nanogenerators via surface engineering and structure designing. Materials Horizons, 0, , .	6.4	0
853	Computing of Neuromorphic Materials: An Emerging Approach for Bioengineering Solutions. Materials Advances, 0, , .	2.6	0
857	A Review on Triboelectric Nanogenerators, Recent Applications, and Challenges. International Journal of Precision Engineering and Manufacturing - Green Technology, 0, , .	2.7	0
895	Bird-Inspired Nonlinear Oscillator withÂTriboelectric Nanogenerator forÂVibration Control andÂEnergy Harvesting. Lecture Notes in Electrical Engineering, 2024, , 761-774.	0.3	0
903	Self-Powered Real-Time Wireless Communication System Using Wearable Fabric Based Triboelectric Nanogenerator and Inductor. , 2024, , .		0