Genomic Reconstruction of the History of Native Sheep Nomads and the Expansion of Early Pastoralism in East

Molecular Biology and Evolution 34, 2380-2395

DOI: 10.1093/molbev/msx181

Citation Report

#	Article	IF	CITATIONS
1	Genetic Diversity and Population Structure of Ethiopian Sheep Populations Revealed by High-Density SNP Markers. Frontiers in Genetics, 2017, 8, 218.	1.1	87
2	Nucleotide variants in prion-related protein (testis-specific) gene (<i>PRNT</i>) and effects on Chinese and Mongolian sheep phenotypes. Prion, 2018, 12, 185-196.	0.9	15
3	Whole-genome sequences of 89 Chinese sheep suggest role of RXFP2 in the development of unique horn phenotype as response to semi-feralization. GigaScience, 2018, 7 , .	3.3	90
4	Genome-wide SNP profiling of worldwide goat populations reveals strong partitioning of diversity and highlights post-domestication migration routes. Genetics Selection Evolution, 2018, 50, 58.	1.2	87
5	Genetic structure of South African Nguni (Zulu) sheep populations reveals admixture with exotic breeds. PLoS ONE, 2018, 13, e0196276.	1.1	14
6	Contrasting Patterns of Genomic Diversity Reveal Accelerated Genetic Drift but Reduced Directional Selection on X-Chromosome in Wild and Domestic Sheep Species. Genome Biology and Evolution, 2018, 10, 1282-1297.	1.1	23
7	Population structure and genetic diversity of 25 Russian sheep breeds based on whole-genome genotyping. Genetics Selection Evolution, 2018, 50, 29.	1.2	76
8	Haplotype diversity in mitochondrial DNA reveals the multiple origins of Tibetan horse. PLoS ONE, 2018, 13, e0201564.	1.1	7
9	Global genomic diversity and conservation priorities for domestic animals are associated with the economies of their regions of origin. Scientific Reports, 2018, 8, 11677.	1.6	23
10	Genomic analysis of the origins of extant casein variation in goats. Journal of Dairy Science, 2019, 102, 5230-5241.	1.4	7
11	Gut microbiota adaptation to high altitude in indigenous animals. Biochemical and Biophysical Research Communications, 2019, 516, 120-126.	1.0	48
12	High-density genotyping reveals signatures of selection related to acclimation and economically important traits in 15 local sheep breeds from Russia. BMC Genomics, 2019, 20, 294.	1.2	57
13	Deep Genome Resequencing Reveals Artificial and Natural Selection for Visual Deterioration, Plateau Adaptability and High Prolificacy in Chinese Domestic Sheep. Frontiers in Genetics, 2019, 10, 300.	1.1	33
14	Population Structure and Genetic Diversity of Sheep Breeds in the Kyrgyzstan. Frontiers in Genetics, 2019, 10, 1311.	1.1	34
15	The Genome Landscape of Tibetan Sheep Reveals Adaptive Introgression from Argali and the History of Early Human Settlements on the Qinghai–Tibetan Plateau. Molecular Biology and Evolution, 2019, 36, 283-303.	3.5	84
16	Genome-wide analysis reveals the effects of artificial selection on production and meat quality traits in Qinchuan cattle. Genomics, 2019, 111, 1201-1208.	1.3	27
17	Copy number variation detection in Chinese indigenous cattle by whole genome sequencing. Genomics, 2020, 112, 831-836.	1.3	39
18	Paternal Origins and Migratory Episodes of Domestic Sheep. Current Biology, 2020, 30, 4085-4095.e6.	1.8	49

#	ARTICLE	IF	CITATIONS
19	A Hu sheep genome with the first ovine Y chromosome reveal introgression history after sheep domestication. Science China Life Sciences, 2021, 64, 1116-1130.	2.3	27
20	Genetic structure of Tunisian sheep breeds as inferred from genome-wide SNP markers. Small Ruminant Research, 2020, 191, 106192.	0.6	12
21	Genome-wide insights of Ethiopian indigenous sheep populations reveal the population structure related to tail morphology and phylogeography. Genes and Genomics, 2020, 42, 1169-1178.	0.5	8
22	Genetic Diversity of South African Indigenous Goat Population from Four Provinces Using Genome-Wide SNP Data. Sustainability, 2020, 12, 10361.	1.6	5
23	On the origin of European sheep as revealed by the diversity of the Balkan breeds and by optimizing population-genetic analysis tools. Genetics Selection Evolution, 2020, 52, 25.	1.2	58
24	Whole-genome resequencing of wild and domestic sheep identifies genes associated with morphological and agronomic traits. Nature Communications, 2020, 11, 2815.	5.8	142
25	Verification and Analysis of Sheep Tail Type-Associated PDGF-D Gene Polymorphisms. Animals, 2020, 10, 89.	1.0	16
26	Long-term herbivore population dynamics in the northeastern Qinghai-Tibetan Plateau and its implications for early human impacts. Review of Palaeobotany and Palynology, 2020, 275, 104171.	0.8	29
27	Historical Introgression from Wild Relatives Enhanced Climatic Adaptation and Resistance to Pneumonia in Sheep. Molecular Biology and Evolution, 2021, 38, 838-855.	3. 5	44
28	Whole Genome Sequencing Reveals the Effects of Recent Artificial Selection on Litter Size of Bamei Mutton Sheep. Animals, 2021, 11, 157.	1.0	9
29	Spatial dynamics of Chinese MuntjacÂrelated to past and future climate fluctuations. Environmental Epigenetics, 2021, 67, 361-370.	0.9	1
30	Genetic diversity and phylogenetic relationship of nine sheep populations based on microsatellite markers. Archives Animal Breeding, 2021, 64, 7-16.	0.5	7
31	Genetic diversity and population structure of Tibetan sheep breeds determined by whole genome resequencing. Tropical Animal Health and Production, 2021, 53, 174.	0.5	3
32	Insights into adaption and growth evolution: a comparative genomics study on two distinct cattle breeds from Northern and Southern China. Molecular Therapy - Nucleic Acids, 2021, 23, 959-967.	2.3	9
34	Tissue-specific regulatory mechanism of LncRNAs and methylation in sheep adipose and muscle induced by Allium mongolicum Regel extracts. Scientific Reports, 2021, 11, 9186.	1.6	8
35	Genomics of Adaptations in Ungulates. Animals, 2021, 11, 1617.	1.0	3
36	Genome-Wide Detection of Copy Number Variations and Their Association With Distinct Phenotypes in the World's Sheep. Frontiers in Genetics, 2021, 12, 670582.	1.1	11
37	Fungal spore record of pastoralism on the NE Qinghai-Tibetan Plateau since the middle Holocene. Science China Earth Sciences, 2021, 64, 1318-1331.	2.3	10

#	ARTICLE	IF	Citations
38	Mutations in $\langle i \rangle$ FGFR1 $\langle i \rangle$ were associated with growth traits in sheep ($\langle i \rangle$ Ovis aries $\langle i \rangle$). Animal Biotechnology, 2023, 34, 1-7.	0.7	4
39	Exceptional ancient DNA preservation and fibre remains of a Sasanian saltmine sheep mummy in ChehrÄbÄd, Iran. Biology Letters, 2021, 17, 20210222.	1.0	7
40	SNP-Based Genotyping Provides Insight Into the West Asian Origin of Russian Local Goats. Frontiers in Genetics, 2021, 12, 708740.	1.1	12
41	Ancient Faunal History Revealed by Interdisciplinary Biomolecular Approaches. Diversity, 2021, 13, 370.	0.7	7
42	iSheep: an Integrated Resource for Sheep Genome, Variant and Phenotype. Frontiers in Genetics, 2021, 12, 714852.	1.1	10
43	Trends towards revealing the genetic architecture of sheep tail patterning: Promising genes and investigatory pathways. Animal Genetics, 2021, 52, 799-812.	0.6	23
44	Combined approaches identify known and novel genes associated with sheep litter size and nonâ€seasonal breeding. Animal Genetics, 2021, 52, 857-867.	0.6	3
45	Genome-wide DNA arrays profiling unravels the genetic structure of Iranian sheep and pattern of admixture with worldwide coarse-wool sheep breeds. Genomics, 2021, 113, 3501-3511.	1.3	2
47	Whole-Genome Selective Scans Detect Genes Associated With Important Phenotypic Traits in Sheep (Ovis aries). Frontiers in Genetics, 2021, 12, 738879.	1.1	9
48	Whole-genome sequence analysis unveils different origins of European and Asiatic mouflon and domestication-related genes in sheep. Communications Biology, 2021, 4, 1307.	2.0	38
49	An ancient positively selected BMPRIB missense variant increases litter size of Mongolian sheep populations following latitudinal gradient. Molecular Genetics and Genomics, 2022, 297, 155-167.	1.0	3
50	Farmers or Nomads: Isotopic Evidence of Human–Animal Interactions (770BCE to 221BCE) in Northern Shaanxi, China. Frontiers in Earth Science, 2022, 9, .	0.8	1
51	Microsatellite Genotyping of Two Bulgarian Sheep Breeds. Diversity, 2022, 14, 210.	0.7	3
52	Sheep Post-Domestication Expansion in the Context of Mitochondrial and Y Chromosome Haplogroups and Haplotypes. Genes, 2022, 13, 613.	1.0	8
53	Whole-Genome Resequencing of Worldwide Wild and Domestic Sheep Elucidates Genetic Diversity, Introgression, and Agronomically Important Loci. Molecular Biology and Evolution, 2022, 39, .	3.5	50
72	Whole-genome resequencing reveals domestication and signatures of selection in Ujimqin, Sunit, and Wu Ranke Mongolian sheep breeds. Animal Bioscience, 2022, 35, 1303-1313.	0.8	1
73	Humanâ€mediated ecoâ€evolutionary processes of the herbivorous insect <i>Hyalopterus arundiniformis</i> during the Holocene. Diversity and Distributions, 0, , .	1.9	1
74	Machine-Learning Prospects for Detecting Selection Signatures Using Population Genomics Data. Journal of Computational Biology, 2022, 29, 943-960.	0.8	9

#	Article	IF	CITATIONS
75	A Search for Eurasian Sheep Relationships: Genomic Assessment of the Autochthonous Sheep Breeds in Russia and the Persian Plateau. Diversity, 2022, 14, 445.	0.7	1
77	Analysis of the Genetic Diversity and Population Structure of Four Senegalese Sheep Breeds Using Medium-Density Single-Nucleotide Polymorphisms. Animals, 2022, 12, 1512.	1.0	3
78	Whole-genome resequencing reveals molecular imprints of anthropogenic and natural selection in wild and domesticated sheep. Zoological Research, 2022, 43, 695-705.	0.9	6
79	Trajectory of livestock genomics in South Asia: A comprehensive review. Gene, 2022, 843, 146808.	1.0	16
80	The genomic history and global expansion of domestic donkeys. Science, 2022, 377, 1172-1180.	6.0	17
81	High-Altitude Stress Orchestrates mRNA Expression and Alternative Splicing of Ovarian Follicle Development Genes in Tibetan Sheep. Animals, 2022, 12, 2812.	1.0	4
82	Markhor-derived Introgression of a Genomic Region Encompassing <i>PAPSS2 </i> Confers High-altitude Adaptability in Tibetan Goats. Molecular Biology and Evolution, 2022, 39, .	3 . 5	9
83	m6A Methylation Analysis Reveals Networks and Key Genes Underlying the Coarse and Fine Wool Traits in a Full-sib Merino Family. Biology, 2022, 11 , 1637 .	1.3	3
84	187. Markhor-derived introgression of <i>PAPSS2</i> confers high-altitude adaptability in Tibetan goats., 2022,,.		0
85	Establishment of Tibetan-Sheep-Specific SNP Genetic Markers. Agriculture (Switzerland), 2023, 13, 322.	1.4	0
86	Long divergent haplotypes introgressed from wild sheep are associated with distinct morphological and adaptive characteristics in domestic sheep. PLoS Genetics, 2023, 19, e1010615.	1.5	10