Reducing the stochasticity of crystal nucleation to enab

Science 358, 1423-1427

DOI: 10.1126/science.aao3212

Citation Report

#	Article	IF	CITATIONS
1	Speeding up crystallization. Science, 2017, 358, 1386-1386.	6.0	14
2	Samarium doped Sn15Sb85: a promising material for phase change memory applications. RSC Advances, 2017, 7, 56000-56005.	1.7	6
3	High performance Al ₃ Sc alloy doped Al ₃ Sc–Sb ₂ Te chalcogenides for phase change memory application. Journal of Materials Chemistry C, 2018, 6, 4177-4182.	2.7	19
4	Controllable SET process in O-Ti-Sb-Te based phase change memory for synaptic application. Applied Physics Letters, 2018, 112, 073106.	1.5	31
5	Evolution of short- and medium-range order in the melt-quenching amorphization of Ge ₂ Sb ₂ Te ₅ . Journal of Materials Chemistry C, 2018, 6, 5001-5011.	2.7	38
6	Quick-freezing alloy accelerates phase-change memory. Physics Today, 2018, 71, 16-18.	0.3	2
7	Study on the phase change behavior of nitrogen doped Bi 2 Te 3 films. Journal of Alloys and Compounds, 2018, 754, 227-231.	2.8	9
8	Scandium doping brings speed improvement in Sb2Te alloy for phase change random access memory application. Scientific Reports, 2018, 8, 6839.	1.6	24
9	Structural signature and transition dynamics of Sb ₂ Te ₃ melt upon fast cooling. Physical Chemistry Chemical Physics, 2018, 20, 11768-11775.	1.3	33
10	Crystallization characteristic and scaling behavior of germanium antimony thin films for phase change memory. Nanoscale, 2018, 10, 7228-7237.	2.8	33
11	Scandium doped Ge2Sb2Te5 for high-speed and low-power-consumption phase change memory. Applied Physics Letters, 2018, 112, .	1.5	45
12	Unconventional two-dimensional germanium dichalcogenides. Nanoscale, 2018, 10, 7363-7368.	2.8	26
13	Structural Evolution and Phase Change Properties of C-Doped Ge 2 Sb 2 Te 5 Films During Heating in Air. Chinese Physics Letters, 2018, 35, 126801.	1.3	3
14	High Endurance Phase Change Memory Chip Implemented based on Carbon-doped Ge <inf>2</inf> Sb <inf>2</inf> Te <inf>5</inf> in 40 nm Node for Embedded Application. , 2018, , .		19
15	Shortening Nucleation Time to Enable Ultrafast Phase Transition in Zn ₁ Sb ₇ Te ₁₂ Pseudo-Binary Alloy. Langmuir, 2018, 34, 15143-15149.	1.6	5
16	High-throughput first-principles-calculations based estimation of lithium ion storage in monolayer rhenium disulfide. Communications Chemistry, $2018,1,.$	2.0	22
17	Electronic Structures of Ge ₂ Sb ₂ Te ₅ /Co ₂ FeX (X: Al,) Tj ETQqC) 0.0 rgBT	Qverlock 10
18	Ultrafast Nanoscale Phase-Change Memory Enabled By Single-Pulse Conditioning. ACS Applied Materials & Samp; Interfaces, 2018, 10, 41855-41860.	4.0	36

#	Article	IF	CITATIONS
19	More on phase-change materials for data storage. Physics Today, 2018, 71, 13-13.	0.3	0
20	Reduction of Rocksalt Phase in		

#	Article	IF	CITATIONS
37	Understanding the crystallization behavior and structure of titanium addition in germanium antimony phase change thin films. Journal of Materials Chemistry C, 2018, 6, 9081-9092.	2.7	28
38	Laser-induced metastable phase in crystalline phase-change films by confocal Raman spectrometer. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 205, 551-556.	2.0	10
39	Crystal growth of Ge2Sb2Te5 at high temperatures. MRS Communications, 2018, 8, 1018-1023.	0.8	27
40	A tale about square dancers and maze runners. Nature Materials, 2018, 17, 655-656.	13.3	1
41	Optimization of the Phase Change Random Access Memory Employing Phase Change Materials. , 0, , .		0
42	From octahedral structure motif to sub-nanosecond phase transitions in phase change materials for data storage. Science China Information Sciences, 2018, 61, 1.	2.7	19
43	SiCâ€Doped Ge ₂ Sb ₂ Te ₅ Phaseâ€Change Material: A Candidate for Highâ€Density Embedded Memory Application. Advanced Electronic Materials, 2018, 4, 1800083.	2.6	25
44	Single-element glass to record data. Nature Materials, 2018, 17, 654-655.	13.3	43
45	Effect of Cu doping on microstructure and thermal stability of Ge2Sb2Te5 thin film. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	8
46	3D cross-point phase-change memory for storage-class memory. Journal Physics D: Applied Physics, 2019, 52, 473002.	1.3	62
47	Increasing Trapped Carrier Density in Nanoscale GeSeAs Films by As Ion Implantation for Selector Devices in 3D-Stacking Memory. ACS Applied Nano Materials, 2019, 2, 5373-5380.	2.4	12
48	Phase-change heterostructure enables ultralow noise and drift for memory operation. Science, 2019, 366, 210-215.	6.0	261
49	Threshold switching dynamics of pseudo-binary GeTe–Sb ₂ Te ₃ phase change memory devices. Journal Physics D: Applied Physics, 2019, 52, 375301.	1.3	6
50	Layerâ€Switching Mechanisms in Sb ₂ Te ₃ . Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900320.	1.2	20
51	The phase change memory features high-temperature characteristic based on Ge-Sb-Se-Te alloys. Materials Letters, 2019, 254, 182-185.	1.3	10
52	<i>In-situ</i> investigation on the crystallization property and microstructure evolution induced by thermal annealing and electron beam irradiation of titanium antimony thin film. Applied Physics Letters, 2019, 115, .	1.5	11
53	Impact of Bonding on the Stacking Defects in Layered Chalcogenides. Advanced Functional Materials, 2019, 29, 1902332.	7.8	21
54	Understanding CrGeTe ₃ : an abnormal phase change material with inverse resistance and density contrast. Journal of Materials Chemistry C, 2019, 7, 9025-9030.	2.7	28

#	Article	IF	CITATIONS
55	Cr-Triggered Local Structural Change in Cr ₂ Ge ₂ Te ₆ Phase Change Material. ACS Applied Materials & Samp; Interfaces, 2019, 11, 43320-43329.	4.0	26
56	Machine Learning Interatomic Potentials as Emerging Tools for Materials Science. Advanced Materials, 2019, 31, e1902765.	11.1	389
57	Direct Measurement of Crystal Growth Velocity in Epitaxial Phase-Change Material Thin Films. ACS Applied Materials & Samp; Interfaces, 2019, 11, 41544-41550.	4.0	13
58	Kinetics Features Conducive to Cache-Type Nonvolatile Phase-Change Memory. Chemistry of Materials, 2019, 31, 8794-8800.	3.2	35
59	Structural and electronic properties of liquid, amorphous, and supercooled liquid phases of In2Te5 from first-principles. Journal of Chemical Physics, 2019, 151, 134503.	1.2	8
60	Temperature dependence of structural, dynamical, and electronic properties of amorphous Bi ₂ Te ₃ : an ab initio study. New Journal of Physics, 2019, 21, 093062.	1.2	4
61	Exploring Chemical Bonding in Phaseâ€Change Materials with Orbitalâ€Based Indicators. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1800579.	1.2	22
62	Reducing structural change in the phase transition of Ge-doped Bi _{0.5} Sb _{1.5} Te ₃ to enable high-speed and low-energy memory switching. Journal of Materials Chemistry C, 2019, 7, 11813-11823.	2.7	10
63	Phase-change materials in electronics and photonics. MRS Bulletin, 2019, 44, 686-690.	1.7	44
64	Harnessing machine learning potentials to understand the functional properties of phase-change materials. MRS Bulletin, 2019, 44, 705-709.	1.7	24
65	Phase-change materials: Empowered by an unconventional bonding mechanism. MRS Bulletin, 2019, 44, 699-704.	1.7	15
66	Phase-change memory cycling endurance. MRS Bulletin, 2019, 44, 710-714.	1.7	43
67	Ovonic threshold switching selectors for three-dimensional stackable phase-change memory. MRS Bulletin, 2019, 44, 715-720.	1.7	70
68	Atomistic Simulations of Phase Change Materials for Electronic Memories. International Journal of Nanoscience, 2019, 18, 1940082.	0.4	0
69	Structure tailoring and nucleation behavior of Bi droplets embedded in a Zn matrix. Journal of Alloys and Compounds, 2019, 811, 152004.	2.8	4
70	Priming effects in the crystallization of the phase change compound GeTe from atomistic simulations. Faraday Discussions, 2019, 213, 287-301.	1.6	18
71	Subsystem under 3D-Storage Class Memory on a chip. Computers and Electrical Engineering, 2019, 74, 47-58.	3.0	1
72	High thermal stability and fast speed phase change memory by optimizing GeSbTe with Scandium doping. Scripta Materialia, 2019, 164, 25-29.	2.6	24

#	ARTICLE	IF	CITATIONS
73	Direct atomic identification of cation migration induced gradual cubic-to-hexagonal phase transition in Ge2Sb2Te5. Communications Chemistry, $2019, 2, .$	2.0	32
74	Stabilizing amorphous Sb by adding alien seeds for durable memory materials. Physical Chemistry Chemical Physics, 2019, 21, 4494-4500.	1.3	31
75	A Review of Germanium-Antimony-Telluride Phase Change Materials for Non-Volatile Memories and Optical Modulators. Applied Sciences (Switzerland), 2019, 9, 530.	1.3	143
76	Femtosecond x-ray diffraction reveals a liquid–liquid phase transition in phase-change materials. Science, 2019, 364, 1062-1067.	6.0	120
77	Catching structural transitions in liquids. Science, 2019, 364, 1032-1033.	6.0	34
78	Crystallization accompanied by local distortion behavior of Sn-doped amorphous Ge2Sb2Te5 induced by a picosecond pulsed laser. Journal of Non-Crystalline Solids, 2019, 516, 99-105.	1.5	12
79	Identifying optimal dopants for Sb2Te3 phase-change material by high-throughput ab initio calculations with experiments. Computational Materials Science, 2019, 165, 51-58.	1.4	34
80	Defect Engineering in Antimony Telluride Phase-Change Materials. Materials Science Forum, 0, 944, 607-612.	0.3	0
81	Memory Switching and Threshold Switching in a 3D Nanoscaled NbO _X System. IEEE Electron Device Letters, 2019, 40, 718-721.	2.2	25
82	Change in Crystallization Mechanism of Sb Film by Doping VO ₂ for Ultraretention and High-Speed Phase-Change Memory. Crystal Growth and Design, 2019, 19, 3477-3483.	1.4	10
83	Chemical Design Principles for Cache-Type Sc–Sb–Te Phase-Change Memory Materials. Chemistry of Materials, 2019, 31, 4008-4015.	3.2	44
84	Polarity-dependent resistance switching in crystalline Ge1Sb4Te7 film. AIP Advances, 2019, 9, .	0.6	4
85	Memristive Devices and Networks for Brainâ€Inspired Computing. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900029.	1.2	66
86	The role of structural order and stiffness in the simultaneous enhancement of optical contrast and thermal stability in phase change materials. Journal of Materials Chemistry C, 2019, 7, 4132-4142.	2.7	13
87	Growth study of GeTe phase change material using pulsed electron-beam deposition. Materials Science in Semiconductor Processing, 2019, 96, 73-77.	1.9	8
88	Systematic materials design for phase-change memory with small density changes for high-endurance non-volatile memory applications. Applied Physics Express, 2019, 12, 051008.	1.1	7
89	Nanocalorimetry: Door opened for in situ material characterization under extreme non-equilibrium conditions. Progress in Materials Science, 2019, 104, 53-137.	16.0	44
90	The investigations of characteristics of GeSe thin films and selector devices for phase change memory. Journal of Alloys and Compounds, 2019, 792, 510-518.	2.8	24

#	Article	IF	CITATIONS
91	Supercluster-coupled crystal growth in metallic glass forming liquids. Nature Communications, 2019, 10, 915.	5.8	30
92	Stability enhancement of the metastable cubic Sb2Te3 in supperlattice-like films. Materials Letters, 2019, 243, 153-156.	1.3	4
93	Sc-Centered Octahedron Enables High-Speed Phase Change Memory with Improved Data Retention and Reduced Power Consumption. ACS Applied Materials & Samp; Interfaces, 2019, 11, 10848-10855.	4.0	31
94	Local structure origin of ultrafast crystallization driven by high-fidelity octahedral clusters in amorphous Sc0.2Sb2Te3. Applied Physics Letters, 2019, 114, .	1.5	20
95	Enhancing the Performance of Phase Change Memory for Embedded Applications. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1800558.	1.2	30
96	Hardware Implementation of Energy Efficient Deep Learning Neural Network Based on Nanoscale Flash Computing Array. Advanced Materials Technologies, 2019, 4, 1800720.	3.0	10
97	Exploring ultrafast threshold switching in In3SbTe2 phase change memory devices. Scientific Reports, 2019, 9, 19251.	1.6	28
98	Designing Multiple Crystallization in Superlattice-like Phase-Change Materials for Multilevel Phase-Change Memory. ACS Applied Materials & Interfaces, 2019, 11, 45885-45891.	4.0	20
99	Phase change thin films for non-volatile memory applications. Nanoscale Advances, 2019, 1, 3836-3857.	2.2	97
100	The Structure of Phaseâ€Change Chalcogenides and Their Highâ€Pressure Behavior. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1800506.	1.2	23
101	Local Structural Origin of the Crystallization Tendency of Pure and Alloyed Sb. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1800552.	1.2	24
102	Simultaneously high thermal stability and low power based on Cu-doped GeTe phase change material. Materials Research Express, 2019, 6, 025907.	0.8	9
103	Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. Nature Reviews Materials, 2019, 4, 150-168.	23.3	572
104	Self-Limited Growth of Nanocrystals in Structural Heterogeneous Phase-Change Materials during the Heating Process. Crystal Growth and Design, 2019, 19, 1356-1363.	1.4	8
105	Chalcogenide Thermoelectrics Empowered by an Unconventional Bonding Mechanism. Advanced Functional Materials, 2020, 30, 1904862.	7.8	148
106	Impact of Thermal Boundary Resistance on the Performance and Scaling of Phase-Change Memory Device. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 1834-1840.	1.9	13
107	Band transport and localised states in modelling the electric switching of chalcogenide materials. Journal of Computational Electronics, 2020, 19, 128-136.	1.3	4
108	Ultrafast crystallization in nanoscale phase change film of monobasic antimony. Applied Surface Science, 2020, 505, 144337.	3.1	15

#	Article	IF	CITATIONS
109	Sub-nanosecond threshold switching dynamics in GeSb ₂ Te ₄ phase change memory device. Journal Physics D: Applied Physics, 2020, 53, 025103.	1.3	7
110	A multilevel vertical photonic memory transistor based on organic semiconductor/inorganic perovskite quantum dot blends. Journal of Materials Chemistry C, 2020, 8, 2861-2869.	2.7	29
111	Deep Neural Network for Accurate and Efficient Atomistic Modeling of Phase Change Memory. IEEE Electron Device Letters, 2020, 41, 365-368.	2.2	8
112	Breakthrough in high ON-state current based on Ag–GeTe ₈ selectors. Journal of Materials Chemistry C, 2020, 8, 2517-2524.	2.7	18
113	Effect of vacancy disorder in phase-change materials. Journal of Physics Condensed Matter, 2020, 32, 175401.	0.7	1
114	Chemical understanding of resistance drift suppression in Ge–Sn–Te phase-change memory materials. Journal of Materials Chemistry C, 2020, 8, 71-77.	2.7	36
115	Quantifying the composition dependency of the ground-state structure, electronic property and phase-transition dynamics in ternary transition-metal-dichalcogenide monolayers. Journal of Materials Chemistry C, 2020, 8, 721-733.	2.7	7
116	Atomistic simulations of thermal conductivity in GeTe nanowires. Journal Physics D: Applied Physics, 2020, 53, 054001.	1.3	20
117	An extremely fast, energy-efficient RESET process in Ge ₂ Sb ₂ Te ₅ phase change memory device revealed by the choice of electrode materials and interface effects. Semiconductor Science and Technology, 2020, 35, 015022.	1.0	6
118	Zn-doped Sb70Se30 thin films with multiple phase transition for high storage density and low power consumption phase change memory applications. Scripta Materialia, 2020, 178, 324-328.	2.6	13
119	2D Layered Materials for Memristive and Neuromorphic Applications. Advanced Electronic Materials, 2020, 6, 1901107.	2.6	85
120	The crystallization mechanism of zirconium-doped Sb2Te3 material for phase-change random-access memory application. Journal of Materials Science: Materials in Electronics, 2020, 31, 5861-5865.	1.1	4
121	Nanoscale amorphous interfaces in phase-change memory materials: structure, properties and design. Journal Physics D: Applied Physics, 2020, 53, 114002.	1.3	4
122	Recipe for ultrafast and persistent phase-change memory materials. NPG Asia Materials, 2020, 12, .	3.8	29
123	lonâ€Gated Transistor: An Enabler for Sensing and Computing Integration. Advanced Intelligent Systems, 2020, 2, 2000156.	3.3	27
124	Progress in metasurfaces based on Ge–Sb–Te phase-change materials. Journal of Applied Physics, 2020, 128, 140904.	1.1	13
125	Phase change memory based on Ta–Sb–Te alloy –Towards a universal memory. Materials Today Physics, 2020, 15, 100266.	2.9	24
126	Ultra-low Energy Phase Change Memory with Improved Thermal Stability by Tailoring the Local Structure through Ag Doping. ACS Applied Materials & Structure through Ag Doping.	4.0	18

#	ARTICLE	IF	CITATIONS
127	The optimization effect of titanium on the phase change properties of SnSb ₄ thin films for phase change memory applications. CrystEngComm, 2020, 22, 5002-5009.	1.3	4
128	Photoexcitation Induced Ultrafast Nonthermal Amorphization in Sb ₂ Te ₃ . Journal of Physical Chemistry Letters, 2020, 11, 10242-10249.	2.1	12
129	Simulation of Phaseâ€Changeâ€Memory and Thermoelectric Materials using Machineâ€Learned Interatomic Potentials: Sb ₂ Te ₃ . Physica Status Solidi (B): Basic Research, 2021, 258, 2000416.	0.7	16
130	Microwave AC Resonance Induced Phase Change in Sb ₂ Te ₃ Nanowires. Nano Letters, 2020, 20, 8668-8674.	4.5	1
131	On-the-fly closed-loop materials discovery via Bayesian active learning. Nature Communications, 2020, 11, 5966.	5.8	167
132	Nanoscale phase change on Ge2Sb2Te5 thin films induced by optical near fields with photoassisted scanning tunneling microscope. Applied Physics Letters, 2020, 117, 211102.	1.5	3
133	Synthesis of Macroscopic Single Crystals of Ge2Sb2Te5 via Single-Shot Femtosecond Optical Excitation. Crystal Growth and Design, 2020, 20, 6660-6667.	1.4	0
134	Realization of 4-Bit Multilevel Optical Switching in Ge ₂ Sb ₂ Te ₅ and Ag ₅ In ₅ Sb ₆₀ Te ₃₀ Phase-Change Materials Enabled in the Visible Region. ACS Applied Electronic Materials, 2020, 2, 3977-3986.	2.0	6
135	Improved thermal stability and fast phase change speed of Y-doped Sb7Se3 thin film for phase change memory applications. Applied Surface Science, 2020, 532, 147370.	3.1	13
136	Unveiling the structural origin to control resistance drift in phase-change memory materials. Materials Today, 2020, 41, 156-176.	8.3	96
137	Memristive Devices for New Computing Paradigms. Advanced Intelligent Systems, 2020, 2, 2000105.	3.3	57
138	Recent Advances on Neuromorphic Devices Based on Chalcogenide Phaseâ€Change Materials. Advanced Functional Materials, 2020, 30, 2003419.	7.8	144
139	Quasicrystalline phase-change memory. Scientific Reports, 2020, 10, 13673.	1.6	2
140	In-Memory Logic Operations and Neuromorphic Computing in Non-Volatile Random Access Memory. Materials, 2020, 13, 3532.	1.3	31
141	Improving the performance of phase-change memory by grain refinement. Journal of Applied Physics, 2020, 128, 075101.	1.1	25
142	Optical subpicosecond nonvolatile switching and electron-phonon coupling in ferroelectric materials. Physical Review B, 2020, 102, .	1.1	9
143	Two-Dimensional Unipolar Memristors with Logic and Memory Functions. Nano Letters, 2020, 20, 4144-4152.	4.5	50
144	State dependence and temporal evolution of resistance in projected phase change memory. Scientific Reports, 2020, 10, 8248.	1.6	14

#	Article	IF	CITATIONS
145	In-memory computing to break the memory wall*. Chinese Physics B, 2020, 29, 078504.	0.7	28
146	Structural Transitions in Ge2Sb2Te5 Phase Change Memory Thin Films Induced by Nanosecond UV Optical Pulses. Materials, 2020, 13, 2082.	1.3	13
147	Monatomic 2D phase-change memory for precise neuromorphic computing. Applied Materials Today, 2020, 20, 100641.	2.3	46
148	In situ TEM revealing pretreatment and interface effects in Ge2Sb2Te5. Applied Physics Letters, 2020, 116, 222105.	1.5	6
149	Structural Metastability in Chalcogenide Semiconductors: The Role of Chemical Bonding. Physica Status Solidi (B): Basic Research, 2020, 257, 2000138.	0.7	3
150	Sub-nanosecond memristor based on ferroelectric tunnel junction. Nature Communications, 2020, 11, 1439.	5.8	163
151	Study on the Performance of Superlattice-Like Thin Film V ₂ O ₅ /Sb in Phase Change Memory. ECS Journal of Solid State Science and Technology, 2020, 9, 033003.	0.9	5
152	Phase stability and temperature effect in ScX (X=S, Se and Te) compounds. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126373.	0.9	1
153	Semiconductor Quantum Dots for Memories and Neuromorphic Computing Systems. Chemical Reviews, 2020, 120, 3941-4006.	23.0	203
154	Chalcogenides by Design: Functionality through Metavalent Bonding and Confinement. Advanced Materials, 2020, 32, e1908302.	11.1	179
155	Crystal-Like Glassy Structure in Sc-Doped BiSbTe Ensuring Excellent Speed and Power Efficiency in Phase Change Memory. ACS Applied Materials & Samp; Interfaces, 2020, 12, 16601-16608.	4.0	11
156	An Optimized Fast Stair-case Set Pulse with Variable Width for Phase Change Random Access Memory. ECS Journal of Solid State Science and Technology, 2020, 9, 025004.	0.9	0
157	"Stickier―Surface Sb ₂ Te ₃ Templates Enable Fast Memory Switching of Phase Change Material GeSb ₂ Te ₄ with Growth-Dominated Crystallization. ACS Applied Materials & Dominated Crystallization. ACS Applied Materials & Dominated Crystallization.	4.0	53
158	Nonvolatile Electrically Reconfigurable Integrated Photonic Switch Enabled by a Silicon PIN Diode Heater. Advanced Materials, 2020, 32, e2001218.	11.1	152
159	Chalcogenide materials for optoelectronic memory and neuromorphic computing., 2020,, 293-315.		2
160	Overview of Phase-Change Materials Based Photonic Devices. IEEE Access, 2020, 8, 121211-121245.	2.6	44
161	Bonding similarities and differences between Y–Sb–Te and Sc–Sb–Te phase-change memory materials. Journal of Materials Chemistry C, 2020, 8, 3646-3654.	2.7	28
162	Investigation of crystallization behavior and structure of nanocomposite multilayer phase change thin films with zinc antimony and germanium antimony. Journal Physics D: Applied Physics, 2020, 53, 135106.	1.3	О

#	Article	IF	CITATIONS
163	Building memory devices from biocomposite electronic materials. Science and Technology of Advanced Materials, 2020, 21, 100-121.	2.8	39
164	Recent Progress in Synaptic Devices Based on 2D Materials. Advanced Intelligent Systems, 2020, 2, 1900167.	3.3	55
165	"All-crystalline―phase transition in nonmetal doped germanium–antimony–tellurium films for high-temperature non-volatile photonic applications. Acta Materialia, 2020, 188, 121-130.	3.8	17
166	A comprehensive review on emerging artificial neuromorphic devices. Applied Physics Reviews, 2020, 7,	5.5	417
167	Resistive switching materials forÂinformation processing. Nature Reviews Materials, 2020, 5, 173-195.	23.3	668
168	Memory materials and devices: From concept to application. InformaÄnÃ-Materiály, 2020, 2, 261-290.	8.5	181
169	Organismic materials for beyond von Neumann machines. Applied Physics Reviews, 2020, 7, .	5 . 5	30
170	Multiple phase transitions in Sc doped Sb2Te3 amorphous nanocomposites under high pressure. Applied Physics Letters, 2020, 116, .	1.5	4
171	In situ study of vacancy disordering in crystalline phase-change materials under electron beam irradiation. Acta Materialia, 2020, 187, 103-111.	3.8	27
172	Brain-inspired computing with memristors: Challenges in devices, circuits, and systems. Applied Physics Reviews, 2020, 7, .	5.5	217
173	Impact of process-induced variability on the performance and scaling of Ge ₂ Sb ₂ Te ₅ Phase-change memory device. Semiconductor Science and Technology, 2020, 35, 035031.	1.0	3
174	General Nanomolding of Ordered Phases. Physical Review Letters, 2020, 124, 036102.	2.9	21
175	First-principles prediction of the native filament: dielectric interfaces for the possible filamentary switching mechanism in chalcogenide selector devices. Journal of Applied Physics, 2020, 127, 045105.	1.1	3
176	Microscopic Mechanism of Carbon-Dopant Manipulating Device Performance in CGeSbTe-Based Phase Change Random Access Memory. ACS Applied Materials & Samp; Interfaces, 2020, 12, 23051-23059.	4.0	24
177	Synergy effect of co-doping Sc and Y in Sb ₂ Te ₃ for phase-change memory. Journal of Materials Chemistry C, 2020, 8, 6672-6679.	2.7	24
178	Applications of Phase Change Materials in Electrical Regime From Conventional Storage Memory to Novel Neuromorphic Computing. IEEE Access, 2020, 8, 76471-76499.	2.6	12
179	Time-dependent density-functional theory molecular-dynamics study on amorphization of Sc-Sb-Te alloy under optical excitation. Npj Computational Materials, 2020, 6, .	3.5	32
180	Polyamorphism in K ₂ Sb ₈ Se ₁₃ for multi-level phase-change memory. Journal of Materials Chemistry C, 2020, 8, 6364-6369.	2.7	14

#	Article	IF	CITATIONS
181	Modeling Electrical Switching of Nonvolatile Phase-Change Integrated Nanophotonic Structures with Graphene Heaters. ACS Applied Materials & Interfaces, 2020, 12, 21827-21836.	4.0	78
182	Origin of short- and medium-range order in supercooled liquid Ge ₃ Sb ₂ Te ₆ using <i>ab initio</i> molecular dynamics simulations. Physical Chemistry Chemical Physics, 2020, 22, 9759-9766.	1.3	4
183	Phase change memory applications: the history, the present and the future. Journal Physics D: Applied Physics, 2020, 53, 283002.	1.3	63
184	Y-Doped Sb ₂ Te ₃ Phase-Change Materials: Toward a Universal Memory. ACS Applied Materials & Documents and Supplied Materials & Documents & Doc	4.0	65
185	Temperature dependent evolution of local structure in chalcogenide-based superlattices. Applied Surface Science, 2021, 536, 147959.	3.1	42
186	Structure and Dynamics of Supercooled Liquid Ge ₂ Sb ₂ Te ₅ from Machineâ€Learningâ€Driven Simulations. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2000403.	1.2	4
187	Enhancing thermoelectric performance of Sb2Te3 through swapped bilayer defects. Nano Energy, 2021, 79, 105484.	8.2	32
188	Latent heat thermal energy storage: A bibliometric analysis explicating the paradigm from 2000–2019. Journal of Energy Storage, 2021, 33, 102027.	3.9	18
189	On the Chemical Bonding of Amorphous Sb ₂ Te ₃ . Physica Status Solidi - Rapid Research Letters, 2021, 15, 2000485.	1.2	13
190	Three distinct optical-switching states in phase-change materials containing impurities: From physical origin to material design. Journal of Materials Science and Technology, 2021, 75, 118-125.	5.6	9
191	Can two-dimensional confinement trigger the fragile-to-strong crossover in phase-change supercooled liquids. Scripta Materialia, 2021, 192, 89-93.	2.6	5
192	Nucleation Dynamics of Phaseâ€Change Memory Materials: Atomic Motion and Property Evolution. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2000441.	1.2	5
193	Multiâ€Center Hyperbonding in Phaseâ€Change Materials. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2000516.	1.2	19
194	Antimony thin films demonstrate programmable optical nonlinearity. Science Advances, 2021, 7, .	4.7	42
195	Scalable nanomanufacturing of chalcogenide inks: a case study on thermoelectric V–VI nanoplates. Journal of Materials Chemistry A, 2021, 9, 22555-22562.	5.2	10
196	The enhanced performance of a Si–As–Se ovonic threshold switching selector. Journal of Materials Chemistry C, 2021, 9, 13376-13383.	2.7	11
197	Enhanced reliability of phase-change memory <i>via</i> modulation of local structure and chemical bonding by incorporating carbon in Ge ₂ Sb ₂ Te ₅ . RSC Advances, 2021, 11, 22479-22488.	1.7	4
198	AlSc Alloy Doped Sb2Te as High Speed Phase-Change Material with Excellent Thermal Stability and Ultralow Density Change. ECS Journal of Solid State Science and Technology, 2021, 10, 014006.	0.9	1

#	Article	IF	CITATIONS
199	Reversible switching in bicontinuous structure for phase change random access memory application. Nanoscale, 2021, 13, 4678-4684.	2.8	5
200	Characterizations of electronic and optical properties of Sb-based phase-change material stabilized by alloying Cr. Applied Physics Letters, 2021, 118 , .	1.5	7
201	Interface controlled thermal resistancesÂof ultra-thin chalcogenide-based phase change memory devices. Nature Communications, 2021, 12, 774.	5.8	59
202	Exploring Phaseâ€Change Memory: From Material Systems to Device Physics. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2000394.	1.2	9
203	New Polymorphism for Ba 3 Zn 2 (BO 3) 3 F with Two Polymorphs Exhibiting Anomalous Phase Transition. European Journal of Inorganic Chemistry, 2021, 2021, 1117-1121.	1.0	1
204	Ab initio molecular dynamics and materials design for embedded phase-change memory. Npj Computational Materials, 2021, 7, .	3.5	44
205	Influence of Zr on Thermal Stability and Microstructure of Sb ₂ Te Film. ECS Journal of Solid State Science and Technology, 2021, 10, 024002.	0.9	0
206	Heterogeneously structured phase-change materials and memory. Journal of Applied Physics, 2021, 129,	1.1	10
207	Pt-Sb ₂ Te as high speed phase-change materials with excellent thermal stability. Materials Research Express, 2021, 8, 036404.	0.8	2
208	Change in Structure of Amorphous Sb–Te Phaseâ€Change Materials as a Function of Stoichiometry. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100064.	1.2	10
209	Preparation and modification of ZnSb-based phase change storage films. Journal of Materials Science: Materials in Electronics, 2021, 32, 8503-8513.	1.1	0
210	A scheme for enabling the ultimate speed of threshold switching in phase change memory devices. Scientific Reports, 2021, 11, 6111.	1.6	4
211	Polymerization-Induced Vitrification and Kinetic Heterogenization at the Onset of the Trommsdorff Effect. Macromolecules, 2021, 54, 3293-3303.	2.2	13
212	Three Resistance States Achieved by Nanocrystalline Decomposition in Geâ€Gaâ€Sb Compound for Multilevel Phase Change Memory. Advanced Electronic Materials, 2021, 7, 2100164.	2.6	16
213	Dimensional transformation of chemical bonding during crystallization in a layered chalcogenide material. Scientific Reports, 2021, 11, 4782.	1.6	16
214	Reliable 2D Phase Transitions for Low-Noise and Long-Life Memory Programming. Frontiers in Nanotechnology, 2021, 3, .	2.4	4
215	Highâ€Throughput Screening for Phaseâ€Change Memory Materials. Advanced Functional Materials, 2021, 31, 2009803.	7.8	43
216	Phase-change mechanism and role of each element in Ag-In-Sb-Te: Chemical bond evolution. Applied Surface Science, 2021, 544, 148838.	3.1	8

#	Article	IF	CITATIONS
217	Phase transitions in 2D materials. Nature Reviews Materials, 2021, 6, 829-846.	23.3	205
219	Phaseâ€Changeâ€Memory Process at the Limit: A Proposal for Utilizing Monolayer Sb ₂ Te ₃ . Advanced Science, 2021, 8, 2004185.	5.6	25
220	High Thermal Stability and Fast Speed Phase Change Memory by Optimizing GeTe Alloys with Ru Doping. ECS Journal of Solid State Science and Technology, 2021, 10, 055009.	0.9	1
221	Effects of Ca doping on the crystallization kinetics of GeTe. Applied Physics Letters, 2021, 118, .	1.5	6
222	Electronic, optical, and water solubility properties of two-dimensional layered <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>SnSi</mml:mi><mml mathvariant="normal">N<mml:mn>4</mml:mn></mml></mml:msub></mml:mrow></mml:math> from first principles. Physical Review B, 2021, 103, .	:mn}2 <td>ıml;mn></td>	ıml;mn>
223	Ultrafast non-volatile 1x1 optical switch using phase change material Sc _{0.2} Sb ₂ Te ₃ . Journal of Physics: Conference Series, 2021, 1907, 012051.	0.3	0
224	Universal memory based on phase-change materials: From phase-change random access memory to optoelectronic hybrid storage*. Chinese Physics B, 2021, 30, 058504.	0.7	13
225	Emerging 2D Memory Devices for Inâ€Memory Computing. Advanced Materials, 2021, 33, e2007081.	11.1	92
226	Phase field study on the performance of artificial synapse device based on the motion of domain wall in ferroelectric thin films. Applied Physics Letters, $2021,118,.$	1,5	4
227	Down-Scalable and Ultra-fast Memristors with Ultra-high Density Three-Dimensional Arrays of Perovskite Quantum Wires. Nano Letters, 2021, 21, 5036-5044.	4.5	53
228	Uncovering Phase Change Memory Energy Limits by Subâ€Nanosecond Probing of Power Dissipation Dynamics. Advanced Electronic Materials, 2021, 7, 2100217.	2.6	8
229	The "gene―of reversible phase transformation of phase change materials: Octahedral motif. Nano Research, 2022, 15, 765-772.	5.8	22
230	Unraveling the optical contrast in Sb ₂ Te and AgInSbTe phase-change materials. JPhys Photonics, 2021, 3, 034011.	2.2	12
231	Metal chalcogenides for neuromorphic computing: emerging materials and mechanisms. Nanotechnology, 2021, 32, 372001.	1.3	16
232	Phaseâ€change memory based on matched <scp>Geâ€Te</scp> , <scp>Sbâ€Te,</scp> and <scp>Inâ€Te</scp> octahedrons: Improved electrical performances and robust thermal stability. InformaÄnÃ-Materiály, 2021, 3, 1008-1015.	8.5	16
233	Non-isothermal crystallization kinetics of Ge-Cu-Te thin films for phase-change memory. Journal of Crystal Growth, 2021, 565, 126159.	0.7	2
234	Investigation of Ru-doped Sb2Te alloy for high-speed and good thermal stability phase change memory applications. Journal of Materials Science: Materials in Electronics, 2021, 32, 20679-20683.	1.1	4
235	On the ultimate resolution of As2S3-based inorganic resists. Journal of Non-Crystalline Solids, 2021, 563, 120816.	1.5	3

#	Article	IF	CITATIONS
236	Improvements in Thermal Stability of Sb ₂ Te ₃ by Modulation of Microstructure via Carbon Incorporation. ACS Applied Electronic Materials, 2021, 3, 3472-3481.	2.0	4
237	Reprint of: Nanocalorimetry: Door opened for in situ material characterization under extreme non-equilibrium conditions. Progress in Materials Science, 2021, 120, 100819.	16.0	1
238	Understanding the low resistivity of the amorphous phase of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Cr</mml:mi><mml:m .<="" 2021,="" 5,="" clusters.="" cr="" evidence="" experimental="" for="" key="" material:="" materials,="" of="" phase-change="" physical="" review="" role="" td="" the=""><td>n>2<td>l:mn></td></td></mml:m></mml:msub></mml:mrow></mml:math>	n>2 <td>l:mn></td>	l:mn>
239	The coupling effect and phase transition behavior of multiple interfaces in GeTe/Sb superlattice-like films. Journal of Alloys and Compounds, 2021, 871, 159467.	2.8	21
240	Effect of Mo doping on phase change performance of Sb ₂ Te ₃ *. Chinese Physics B, 2021, 30, 086801.	0.7	4
241	The potential of chemical bonding to design crystallization and vitrification kinetics. Nature Communications, 2021, 12, 4978.	5.8	35
242	Reliable Ge2Sb2Te5 based phase-change electronic synapses using carbon doping and programmed pulses. Journal of Materiomics, 2022, 8, 382-391.	2.8	7
243	Structural features of chalcogenide glass SiTe: An ovonic threshold switching material. APL Materials, 2021, 9, .	2.2	12
244	Homogeneous neuromorphic hardware. Science, 2021, 373, 1310-1311.	6.0	4
245	Nonlinearity in Memristors for Neuromorphic Dynamic Systems. Small Science, 2022, 2, 2100049.	5.8	46
246	Performance Improvement of Sb Phase Change Thin Film by Y Doping. ECS Journal of Solid State Science and Technology, 2021, 10, 093002.	0.9	6
247	Thermodynamic modeling of the Te-X (X = Zr, Ce, Eu) systems. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2021, 74, 102281.	0.7	6
248	Orbital-selective electronic excitation in phase-change memory materials: a brief review. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2021, .	0.3	0
249	Enhancing the Data Reliability of Multilevel Storage in Phase Change Memory with 2T2R Cell Structure. Micromachines, 2021, 12, 1085.	1.4	2
250	Unveiling structural characteristics for ultralow resistance drift in BiSb-Ge2Sb2Te5 materials for phase-change neuron synaptic devices. Journal of Alloys and Compounds, 2022, 892, 162148.	2.8	4
251	Ultrafast crystallization mechanism of amorphous Ge15Sb85 unraveled by pressure-driven simulations. Acta Materialia, 2021, 216, 117123.	3.8	13
252	Multilevel Switching in Phaseâ€Change Photonic Memory Devices. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100291.	1.2	6
253	The role of oxidation level in mass-transport properties and dehumidification performance of graphene oxide membranes. Carbon, 2021, 183, 404-414.	5.4	26

#	Article	IF	CITATIONS
254	Point defects in disordered and stable GeSbTe phase-change materials. Materials Science in Semiconductor Processing, 2021, 133, 105948.	1.9	4
255	Low resistance-drift characteristics in Cr2Ge2Te6-based phase change memory devices with a high-resistance crystalline phase. Materials Science in Semiconductor Processing, 2021, 133, 105961.	1.9	10
256	Thermodynamics and kinetics of glassy and liquid phase-change materials. Materials Science in Semiconductor Processing, 2021, 135, 106094.	1.9	7
257	Bonding nature and optical contrast of TiTe2/Sb2Te3 phase-change heterostructure. Materials Science in Semiconductor Processing, 2021, 135, 106080.	1.9	13
258	Recent developments concerning the sputter growth of chalcogenide-based layered phase-change materials. Materials Science in Semiconductor Processing, 2021, 135, 106079.	1.9	12
259	Boosting crystallization speed in ultrathin phase-change bridge memory device using Sb2Te3. Materials Science in Semiconductor Processing, 2021, 134, 105999.	1.9	10
260	Glass transition of the phase change material AIST and its impact on crystallization. Materials Science in Semiconductor Processing, 2021, 134, 105990.	1.9	10
261	Vacancy-mediated electronic localization and phase transition in cubic Sb2Te3. Materials Science in Semiconductor Processing, 2021, 135, 106052.	1.9	8
262	Ta-doped Ge5Sb95 phase change thin films for high speed and low power application. Journal of Non-Crystalline Solids, 2021, 571, 121069.	1.5	6
263	Multi-level phase-change memory with ultralow power consumption and resistance drift. Science Bulletin, 2021, 66, 2217-2224.	4.3	41
264	Artificial intelligence model for efficient simulation of monatomic phase change material antimony. Materials Science in Semiconductor Processing, 2021, 136, 106146.	1.9	7
265	Observing the spontaneous formation of a sub-critical nucleus in a phase-change amorphous material from ab initio molecular dynamics. Materials Science in Semiconductor Processing, 2021, 136, 106102.	1.9	5
266	Water-repellent surfaces of metallic glasses: fabrication and application. Materials Today Advances, 2021, 12, 100164.	2.5	8
267	High performance of Er-doped Sb2Te material used in phase change memory. Journal of Alloys and Compounds, 2021, 889, 161701.	2.8	14
268	Materials Screening for Disorderâ€Controlled Chalcogenide Crystals for Phaseâ€Change Memory Applications. Advanced Materials, 2021, 33, e2006221.	11.1	32
269	12-state multi-level cell storage implemented in a 128 Mb phase change memory chip. Nanoscale, 2021, 13, 10455-10461.	2.8	14
270	Design of low loss $1\ \tilde{A}-1$ and $1\ \tilde{A}-2$ phase-change optical switches with different crystalline phases of Ge ₂ Sb _{Te₅ films. Nanotechnology, 2020, 31, 455206.}	1.3	5
271	Rapid threshold switching dynamics of co-sputtered chalcogenide Ge ₁₅ Te ₈₅ device for selector application. Semiconductor Science and Technology, 2021, 36, 015013.	1.0	6

#	ARTICLE	IF	CITATIONS
272	Phase change memory materials: Rationalizing the dominance of Ge/Sb/Te alloys. Physical Review B, 2020, 101, .	1.1	22
273	Correlating ultrafast calorimetry, viscosity, and structural measurements in liquid GeTe and mml:math Ge/mml:mi>Ge/mml:mi>Ge/mml:mi>Ge/mml:mi>Comml:mi>Ge/mml:mi>Ge/mml:mi>Comml:mi>Ge/mml:mi>Ge/mml:mi>Comml:mi>Ge/mml:mi>Comml:mi>Ge/mml:mi>Comml:mi>Ge/mml:mi>Comml:m</td><td>1919</mm</td><td>ո<mark>! 3</mark>
n!:mn> </mn</td></tr><tr><td>274</td><td>mathvariant=" normal"="">G<mml:msub><mml:mi mathvariant="normal">e</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mi mathvariant="normal">S</mml:mi><mml:msub><mml:mi< td=""><td>0.9</td><td>3</td></mml:mi<></mml:msub>	0.9	3
275	mathvariant="normal">b <mml:mn>2</mml:mn> <mml:mi mathvariant="normal"> Fragile-to-strong crossover in optimized In-Sb-Te phase-change supercooled liquids. Physical Review Materials, 2020, 4, .</mml:mi>	0.9	6
276	Dynamic control of mode modulation and spatial multiplexing using hybrid metasurfaces. Optics Express, 2019, 27, 18740.	1.7	13
277	Multilevel accumulative switching processes in growth-dominated AgInSbTe phase change material. Optics Letters, 2019, 44, 3134.	1.7	14
278	Fast and reliable storage using a 5  bit, nonvolatile photonic memory cell. Optica, 2019, 6, 1.	4.8	195
279	MOFâ∈Based Sustainable Memory Devices. Advanced Functional Materials, 2022, 32, 2107949.	7.8	31
280	High-throughput computational screening of Sb–Te binary alloys for phase-change storage applications. Journal of Materials Research and Technology, 2021, 15, 4243-4256.	2.6	3
281	Near-threshold SIDO DC-DC converter with a high-precision ZCD for phase change memory chip. IEICE Electronics Express, 2019, 16, 20190250-20190250.	0.3	1
282	Reliability Modelling and Prediction Method for Phase Change Memory Using Optimal Pulse Conditions. Journal of Shanghai Jiaotong University (Science), 2020, 25, 1-9.	0.5	2
284	Design of Phaseâ€Change Memory Using Apertureless Scanning Nearâ€Field Optical Microscopy in the Nearâ€Infrared Region. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2000488.	1.2	1
285	Chromium doped GeTe for low-power-consumption phase change memory. EPJ Applied Physics, 2020, 92, 30101.	0.3	3
286	Application of Ge ₅₀ 50/Zn ₁₅ Sb ₈₅ nanocomposite multilayer films in high thermal stability and low power phase change memory. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 146101.	t; 0.2	1
287	Rules of hierarchical melt and coordinate bond to design crystallization in doped phase change materials. Nature Communications, 2021, 12, 6473.	5.8	17
288	In-memory computing with emerging nonvolatile memory devices. Science China Information Sciences, $2021, 64, 1.$	2.7	31
289	Nanofabrication through molding. Progress in Materials Science, 2022, 125, 100891.	16.0	39
290	Tailoring the Structural and Optical Properties of Germanium Telluride Phase-Change Materials by Indium Incorporation. Nanomaterials, 2021, 11, 3029.	1.9	9

#	Article	IF	CITATIONS
291	A scheme for simulating multi-level phase change photonics materials. Npj Computational Materials, $2021, 7, \dots$	3.5	27
292	Nano-composite phase-change antimony thin film for fast and persistent memory operations. Materials Today Physics, 2022, 22, 100584.	2.9	6
293	Materials challenges and opportunities for brain-inspired computing. MRS Bulletin, 2021, 46, 978-986.	1.7	5
294	Influence of Thomson effect on amorphization in phase-change memory: dimensional analysis based on Buckingham's ĐŸ theorem for Ge ₂ Sb ₂ Te ₅ . Materials Research Express, 2021, 8, 115902.	0.8	4
295	Tailoring Crystallization Kinetics of Chalcogenides for Photonic Applications. Advanced Electronic Materials, 2022, 8, 2100974.	2.6	10
296	Roomâ€√emperature Nonvolatile Molecular Memory Based on Partially Unzipped Nanotube. Advanced Functional Materials, 2022, 32, 2107224.	7.8	1
297	Assessing the Possibilities of NMx(Sb2Te3)1â^'x Solid Solutions (NM = Noble Metal) for Phase-Change Memory Applications Using High-throughput Calculations. Journal of Electronic Materials, 2022, 51, 1272-1287.	1.0	2
298	Revealing the crystallization kinetics and phase transitions in Mg65Zn30Ca5 metallic glass by nanocalorimetry. Journal of Alloys and Compounds, 2022, 899, 163353.	2.8	9
299	Intelligent all-fiber device: storage and logic computing. Photonics Research, 2022, 10, 357.	3.4	8
300	Enhanced performance of phase change memory by grain size reduction. Journal of Materials Chemistry C, 2022, 10, 3585-3592.	2.7	10
301	An engineering model for high-speed switching in GeSbTe phase-change memory. Applied Physics Express, 2022, 15, 025505.	1.1	0
302	Ultrafast and stable phase transition realized in MoTe ₂ -based memristive devices. Materials Horizons, 2022, 9, 1036-1044.	6.4	9
303	Monatomic phase-change switch. Science Bulletin, 2022, 67, 888-890.	4.3	7
304	Amorphous Hf–O–Te as a selector via a modified conduction mechanism by Te content control. APL Materials, 2022, 10, .	2.2	3
305	Simultaneously higher thermal stability and lower resistance drifting for Sb/In _{48.9} 5b _{15.5} Te _{35.6} nanocomposite multilayer films. CrystEngComm, 2022, 24, 1638-1644.	1.3	5
306	Designing Conductiveâ€Bridge Phaseâ€Change Memory to Enable Ultralow Programming Power. Advanced Science, 2022, 9, e2103478.	5.6	26
307	Bonding Nature and Optical Properties of As ₂ Te ₃ Phaseâ€Change Material. Physica Status Solidi - Rapid Research Letters, 2022, 16, .	1.2	5
308	Unraveling Crystallization Mechanisms and Electronic Structure of Phaseâ€Change Materials by Largeâ€Scale Ab Initio Simulations. Advanced Materials, 2022, 34, e2109139.	11.1	21

#	ARTICLE	IF	CITATIONS
309	Study of Er-Sb and Er-Te parental alloys used in phase change memory. Journal of Alloys and Compounds, 2022, 904, 164057.	2.8	4
310	The origin of hexagonal phase and its evolution process in Ge2Sb2Te5 alloy. APL Materials, 2022, 10, .	2.2	11
311	Density dependent local structures in InTe phase-change materials. APL Materials, 2021, 9, 121105.	2.2	3
312	Elemental electrical switch enabling phase segregation–free operation. Science, 2021, 374, 1390-1394.	6.0	73
313	Unusual phase transitions in two-dimensional telluride heterostructures. Materials Today, 2022, 54, 52-62.	8.3	9
314	锑碲å•̂金Sb2Te3ä¸ç©ºä½æ—åºåŒ–的原ä½ç"µåæ~¾å¾®å¦ç"ç©¶. Chinese Science Bulletin, 2022, , .	0.4	1
315	Design of Ultra-High Extinction Ratio TM- and TE-Pass Polarizers Based on Si-Sc0.2Sb2Te3 Hybrid Waveguide. Micromachines, 2022, 13, 495.	1.4	2
316	Design strategy of phase change material properties for low-energy memory application. Materials and Design, 2022, 216, 110560.	3.3	10
317	PCRAM electronic synapse measurements based on pulse programming engineering. Microelectronic Engineering, 2022, 258, 111773.	1.1	8
318	A Hierarchically Encoded Data Storage Device with Controlled Transiency. Advanced Materials, 2022, , 2201035.	11.1	4
319	Ultrafast Threshold Switching Dynamics in Phaseâ€Change Materials. Physica Status Solidi - Rapid Research Letters, 2022, 16, .	1.2	6
320	Time-Domain Analysis of Chalcogenide Threshold Switching: From ns to ps Scale. Frontiers in Physics, 2022, 10, .	1.0	0
321	Chemically-invariant percolation in silver thioarsenate glasses and two ion-transport regimes over 5 orders of magnitude in Ag content. Journal of Non-Crystalline Solids, 2022, 584, 121513.	1.5	0
322	Cr-doped Sb2Te materials promising for high performance phase-change random access memory. Journal of Alloys and Compounds, 2022, 908, 164593.	2.8	12
323	Spatially inhomogeneous operation of phase-change memory. Applied Surface Science, 2022, 589, 153026.	3.1	1
325	Deep machine learning unravels the structural origin of midâ€gap states in chalcogenide glass for highâ€density memory integration. InformaÄnÃ-Materiály, 2022, 4, .	8.5	34
326	Structural Phase Transitions between Layered Indium Selenide for Integrated Photonic Memory. Advanced Materials, 2022, 34, e2108261.	11,1	16
327	Excellent performance Ruthenium doped Sb2Te3 alloy for phase change memory. Journal of Alloys and Compounds, 2022, 911, 165100.	2.8	4

#	Article	IF	CITATIONS
328	Improved multilevel storage capacity in Ge2Sb2Te5-based phase-change memory using a high-aspect-ratio lateral structure. Science China Materials, 2022, 65, 2818-2825.	3.5	11
329	Thermodynamic Modelling of the Te-X (X = Cu, Ga, Li, Sr) Systems. Journal of Phase Equilibria and Diffusion, 2022, 43, 193-213.	0.5	5
330	Flash memory based on MoTe2/boron nitride/graphene semi-floating gate heterostructure with non-volatile and dynamically tunable polarity. Nano Research, 2022, 15, 6507-6514.	5.8	6
331	Low power reconfigurable multilevel nanophotonic devices based on Sn-doped Ge2Sb2Te5 thin films. Acta Materialia, 2022, 234, 117994.	3.8	11
332	Doping effects of Ru on Sb2Te and Sb2Te3 as phase change materials studied by first-principles calculations. Materials Today Communications, 2022, 31, 103669.	0.9	5
333	Memristive brain-like computing. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 140501.	0.2	1
334	Metallic glass nanostructures: Forming strategies and functional applications. Materials Today Advances, 2022, 15, 100253.	2.5	3
335	How arsenic makes amorphous GeSe a robust chalcogenide glass for advanced memory integration. Scripta Materialia, 2022, 218, 114834.	2.6	17
336	Optical and optoelectronic neuromorphic devices based on emerging memory technologies. Nanotechnology, 2022, 33, 372001.	1.3	5
337	First-principles investigation of amorphous Ge-Sb-Se-Te optical phase-change materials. Optical Materials Express, 2022, 12, 2497.	1.6	12
338	Computational understanding role of vacancies and distortions in wurtzite ferroelectric memory materials: implications for device miniaturization. Materials Advances, 2022, 3, 5532-5539.	2.6	2
339	Pt Modified Sb2Te3 Alloy Ensuring Highâ^'Performance Phase Change Memory. Nanomaterials, 2022, 12, 1996.	1.9	2
340	Neuromorphic Photonic Memory Devices Using Ultrafast, Nonâ€Volatile Phaseâ€Change Materials. Advanced Materials, 2023, 35, .	11.1	33
341	Exploring "No Man's Landâ€â€"Arrhenius Crystallization of Thinâ€Film Phase Change Material at 1Â000Â000 I s ^{â°1} via Nanocalorimetry. Advanced Materials Interfaces, 2022, 9, .	<1.9	5
342	Realization of long retention properties of quantum conductance through confining the oxygen vacancy diffusion. Applied Physics Reviews, 2022, 9, .	5.5	4
343	Structural optimization of integrated non-volatile photonic memory towards high storage density and low energy consumption. Optical Materials Express, 2022, 12, 2668.	1.6	2
344	Enhancing the adjustable range of saturation in color reflectors using a phase-change material as an effective absorption base. Journal Physics D: Applied Physics, 2022, 55, 375105.	1.3	1
345	In-situ growth of ruthenium-based nanostructure on carbon cloth for superior electrocatalytic activity towards HER and OER. Applied Catalysis B: Environmental, 2022, 317, 121729.	10.8	77

#	Article	IF	CITATIONS
346	Introducing Spontaneously Phaseâ€Separated Heterogeneous Interfaces Enables Low Power Consumption and High Reliability for Phase Change Memory. Advanced Electronic Materials, 2022, 8, .	2.6	2
348	Enabling Active Nanotechnologies by Phase Transition: From Electronics, Photonics to Thermotics. Chemical Reviews, 2022, 122, 15450-15500.	23.0	14
349	Transient nucleation in the rapid crystallization of Mg65Zn30Ca5 metallic glass revealed by nanocalorimetry. Journal of Non-Crystalline Solids, 2022, 594, 121811.	1.5	1
350	Electrical bistability based on metal–organic frameworks. Chemical Communications, 2022, 58, 9971-9978.	2.2	6
351	Anomalous crystallization kinetics of ultrafast ScSbTe phase-change memory materials induced by nitrogen doping. Acta Materialia, 2022, 238, 118211.	3.8	4
352	Exploration of Scandium Doping in SbTe for Phase Change Memory Application (sub /> (sub /> . IEEE Transactions on Electron Devices, 2022, 69, 6106-6112.	1.6	3
353	Minimizing the Programming Power of Phase Change Memory by Using Graphene Nanoribbon Edgeâ€Contact. Advanced Science, 2022, 9, .	5.6	12
354	Photoinduced Ultrafast Transition of the Local Correlated Structure in Chalcogenide Phase-Change Materials. Physical Review Letters, 2022, 129, .	2.9	7
355	Ultra-Stable, Endurable, and Flexible Sb ₂ Te _{<i>x</i>} Se _{3–<i>x</i>} Phase Change Devices for Memory Application and Wearable Electronics. ACS Applied Materials & Acs Acs Applied Materials & Acs Acs Applied Materials & Acs Applied Materials & Acs	4.0	4
356	In situ characterization of vacancy ordering in Ge-Sb-Te phase-change memory alloys. Fundamental Research, 2022, , .	1.6	4
357	Understanding the switching mechanism of oxygen-doped Sb phase-change material: Insights from first principles. Journal of Applied Physics, 2022, 132, 115110.	1.1	1
358	New phase change materials for active photonics. , 2022, , .		0
359	The effect of slurry pH on the chemical mechanical planarization of a carbon-doped Ge ₂ Sb ₂ Te ₅ phase change material. Journal of Materials Chemistry C, 0, , .	2.7	0
360	First-Principles Investigation of Morphological Evolution of Tungsten Growth on Alumina Surfaces: Implications for Thin-Film Growth. ACS Applied Nano Materials, 2022, 5, 16365-16375.	2.4	2
361	Essential Characteristics of Memristors for Neuromorphic Computing. Advanced Electronic Materials, 2023, 9, .	2.6	21
362	Microporous Structure Formation of Poly(methyl methacrylate) via Polymerization-Induced Phase Separation in the Presence of Poly(ethylene glycol). ACS Omega, 2022, 7, 38933-38941.	1.6	2
363	Recent Advances in Synaptic Nonvolatile Memory Devices and Compensating Architectural and Algorithmic Methods Toward Fully Integrated Neuromorphic Chips. Advanced Materials Technologies, 2023, 8, .	3.0	15
364	Effect of temperature on structural, dynamical, and electronic properties of Sc ₂ Te ₃ from first-principles calculations. RSC Advances, 2022, 12, 32796-32802.	1.7	1

#	Article	IF	CITATIONS
365	Tailoring the oxygen concentration in Ge-Sb-O alloys to enable femtojoule-level phase-change memory operations. Materials Futures, 2022, 1, 045302.	3.1	9
366	Crystal nucleation in Au49Ag5.5Pd2.3Cu26.9Si16.3 glass and undercooled melt. Journal of Alloys and Compounds, 2023, 935, 167953.	2.8	1
367	Impact of process-induced variability on multi-bit phase change memory devices. Microelectronics Journal, 2022, 130, 105638.	1,1	1
368	Ultrafast phase change speed and high thermal stability of antimony and zinc co-sputtering thin film for phase change random access memory application. Thin Solid Films, 2022, 763, 139579.	0.8	2
369	Ultrahigh overall-performance phase-change memory by yttrium dragging. Journal of Materials Chemistry C, 2023, 11, 1360-1368.	2.7	6
370	Simultaneously introducing tetrahedral and pseudo-octahedron by single-element doping enables faster and more stable phase change memory. Journal of Alloys and Compounds, 2023, 936, 168217.	2.8	1
371	Highly tunable \hat{l}^2 -relaxation enables the tailoring of crystallization in phase-change materials. Nature Communications, 2022, 13, .	5.8	9
372	Ultrafast Temporal-Spatial Dynamics of Phase Transition in N-Doped Ge2Sb2Te5 Film Induced by Femtosecond Laser Pulse Irradiation. Micromachines, 2022, 13, 2168.	1.4	1
373	Study on the Crystallization Behavior of Sb2Te Thin Films for Phase-Change Memory Applications. Journal of Electronic Materials, 2023, 52, 1493-1506.	1.0	3
374	Structural Color of Multi-Order Fabry–Perot Resonator Based on Sc0.2Sb2Te3 Enhanced Saturated Reflection Color. Photonics, 2023, 10, 70.	0.9	1
375	埪ªŽGe-Ga-Sb介èʻ的全ç¸å•脉冲神ç»ç½ʻ络的设计. Science China Materials, 2023, 66, 1551-1558	3. 3 . 5	5
376	Inorganic Halide Perovskite Quantum Dots: A Versatile Nanomaterial Platform for Electronic Applications. Nano-Micro Letters, 2023, 15, .	14.4	36
377	Optical excitation-induced ultrafast amorphization in the Y-Sb-Te alloy system: Insights from real-time time-dependent DFT with molecular dynamics calculations. Physical Review B, 2022, 106, .	1.1	4
378	Nanoscale electronic synapses for neuromorphic computing., 2023,, 189-218.		0
379	Advantages of Ta-Doped Sb3Te1 Materials for Phase Change Memory Applications. Nanomaterials, 2023, 13, 633.	1.9	2
380	Precise Electronic Structures of Amorphous Solids: Unraveling the Color Origin and Photocatalysis of Black Titania. Journal of Physical Chemistry C, 2023, 127, 7268-7274.	1.5	2
381	Diffusion-assisted displacive transformation in Yttrium-doped Sb2Te3 phase change materials. Acta Materialia, 2023, 249, 118809.	3.8	3
382	Tradeâ€Off between Multilevel Characteristics and Power Consumption of Highâ€Aspectâ€Ratio Phaseâ€Change Memory. Physica Status Solidi - Rapid Research Letters, 0, , 2200463.	1.2	0

#	Article	IF	CITATIONS
383	Toward the Speed Limit of Phaseâ€Change Memory. Advanced Materials, 2023, 35, .	11.1	14
385	The Effect of Carbon Doping on the Crystal Structure and Electrical Properties of Sb2Te3. Nanomaterials, 2023, 13, 671.	1.9	3
386	Enhanced pseudo-atomic layer deposition of antimony telluride thin films by co-injecting NH ₃ gas with both precursors. Journal of Materials Chemistry C, 2023, 11, 3726-3735.	2.7	0
387	Screening (SbTe)1â^'xNMx Solid Solutions Towards to Phase-Change Memory Materials Applications: A High-Throughput Computational Study. Journal of Electronic Materials, 2023, 52, 3068-3082.	1.0	O
388	Fabrication of stable multi-level resistance states in a Nb-doped Ge ₂ Sb ₂ Te ₅ device. Journal of Materials Chemistry C, 2023, 11, 3770-3777.	2.7	5
389	Set/Reset Bilaterally Controllable Resistance Switching Gaâ€doped Ge ₂ Sb ₂ Te ₅ Longâ€√erm Electronic Synapses for Neuromorphic Computing. Advanced Functional Materials, 2023, 33, .	7.8	8
390	GeTe ultrathin film based phase-change memory with extreme thermal stability, fast SET speed, and low RESET power energy. AIP Advances, 2023, 13, .	0.6	1
391	Nanoscale Chemical Heterogeneity Ensures Unprecedently Low Resistance Drift in Cache-Type Phase-Change Memory Materials. Nano Letters, 2023, 23, 2362-2369.	4.5	10
392	A Heterogeneous Parallel Non-von Neumann Architecture System for Accurate and Efficient Machine Learning Molecular Dynamics. IEEE Transactions on Circuits and Systems I: Regular Papers, 2023, , 1-11.	3.5	0
393	Nanoscale Phase Change Material Array by Sub-Resolution Assist Feature for Storage Class Memory Application. Nanomaterials, 2023, 13, 1050.	1.9	0
394	Monatomic Sb thin films alloyed with Sb2S3 enables superior thermal stability and resistance drift by spontaneous self-decomposition. Ceramics International, 2023, 49, 19960-19965.	2.3	3
395	Colloidal Ternary Telluride Quantum Dots for Tunable Phase Change Optics in the Visible and Near-Infrared. ACS Nano, 2023, 17, 6985-6997.	7.3	7
396	Metavalent Bonding in Layered Phaseâ€Change Memory Materials. Advanced Science, 2023, 10, .	5.6	9
397	Temperature-dependent thermal conductivity of Ge ₂ Sb ₂ Te ₅ polymorphs from 80 to 500 K. Journal of Applied Physics, 2023, 133, 135105.	1.1	1
419	In-memory computing based on phase change memory for high energy efficiency. Science China Information Sciences, 2023, 66, .	2.7	0
447	New phase-change materials for photonic computing and beyond. , 2024, , 145-192.		0
448	Challenges associated with phase-change material selection. , 2024, , 233-250.		0