Fully integrated silicon probes for high-density recording

Nature 551, 232-236 DOI: 10.1038/nature24636

Citation Report

#	Article	IF	CITATIONS
1	Neurons recorded en masse. Nature, 2017, 551, 172-173.	13.7	4
2	An International Laboratory for Systems and Computational Neuroscience. Neuron, 2017, 96, 1213-1218.	3.8	60
3	Local transformations of the hippocampal cognitive map. Science, 2018, 359, 1143-1146.	6.0	81
4	Talking to Cells: Semiconductor Nanomaterials at the Cellular Interface. Advanced Biology, 2018, 2, 1700242.	3.0	16
5	A Synchronous Neural Recording Platform for Multiple High-Resolution CMOS Probes and Passive Electrode Arrays. IEEE Transactions on Biomedical Circuits and Systems, 2018, 12, 532-542.	2.7	19
6	Genetic Dissection of Neural Circuits: A Decade of Progress. Neuron, 2018, 98, 256-281.	3.8	374
7	Different Neuronal Activity Patterns Induce Different Gene Expression Programs. Neuron, 2018, 98, 530-546.e11.	3.8	262
8	A micro-CT-based method for quantitative brain lesion characterization and electrode localization. Scientific Reports, 2018, 8, 5184.	1.6	26
9	Evaluating the potential of using quantum dots for monitoring electrical signals in neurons. Nature Nanotechnology, 2018, 13, 278-288.	15.6	96
10	A nanofabricated optoelectronic probe for manipulating and recording neural dynamics. Journal of Neural Engineering, 2018, 15, 046008.	1.8	16
11	Challenges and opportunities for large-scale electrophysiology with Neuropixels probes. Current Opinion in Neurobiology, 2018, 50, 92-100.	2.0	244
12	Transformative electrophysiology. Nature Methods, 2018, 15, 31-31.	9.0	4
14	Mind Reading and Writing: The Future of Neurotechnology. Trends in Cognitive Sciences, 2018, 22, 598-610.	4.0	65
15	Low-Dimensional and Monotonic Preparatory Activity in Mouse Anterior Lateral Motor Cortex. Journal of Neuroscience, 2018, 38, 4163-4185.	1.7	83
16	Tissue-like Neural Probes for Understanding and Modulating the Brain. Biochemistry, 2018, 57, 3995-4004.	1.2	33
17	A Circuit for Integration of Head- and Visual-Motion Signals in Layer 6 of Mouse Primary Visual Cortex. Neuron, 2018, 98, 179-191.e6.	3.8	128
18	Multifunctional Fibers as Tools for Neuroscience and Neuroengineering. Accounts of Chemical Research, 2018, 51, 829-838.	7.6	70
19	Towards high-density recording of brain-wide neural activity. Science China Materials, 2018, 61, 432-434.	3.5	1

#	Article	IF	CITATIONS
20	A future for neuronal oscillation research. Brain and Neuroscience Advances, 2018, 2, 239821281879482.	1.8	14
21	A Lightweight Deep Compressive Model for Large-Scale Spike Compression. , 2018, , .		5
22	A Micro-CT-based Method for Characterizing Lesions and Locating Electrodes in Small Animal Brains. Journal of Visualized Experiments, 2018, , .	0.2	4
23	Real- Time Spike Sorting for Multi-Electrode Arrays with Online Independent Component Analysis. , 2018, , .		2
24	Investigation of the Stimulation Capabilities of a High-Resolution Neurorecording Probe for the Application of Closed-Loop Deep Brain Stimulation. , 2018, 2018, 2166-2169.		0
25	Neural interfaces based on amorphous silicon carbide ultramicroelectrode arrays. Bioelectronics in Medicine, 2018, 1, 185-200.	2.0	8
26	Inorganic semiconductor biointerfaces. Nature Reviews Materials, 2018, 3, 473-490.	23.3	154
27	Locomotion modulates specific functional cell types in the mouse visual thalamus. Nature Communications, 2018, 9, 4882.	5.8	38
28	Amorphous Silicon Carbide Platform for Next Generation Penetrating Neural Interface Designs. Micromachines, 2018, 9, 480.	1.4	22
29	Membrane water for probing neuronal membrane potentials and ionic fluxes at the single cell level. Nature Communications, 2018, 9, 5287.	5.8	27
30	An Ultra-Wideband-Inspired System-on-Chip for an Optical Bidirectional Transcutaneous Biotelemetry. , 2018, , .		8
31	Real-Time Readout of Large-Scale Unsorted Neural Ensemble Place Codes. Cell Reports, 2018, 25, 2635-2642.e5.	2.9	20
32	Cracking the Function of Layers in the Sensory Cortex. Neuron, 2018, 100, 1028-1043.	3.8	90
33	<i>In Vivo</i> Two-Photon Voltage Imaging with Sulfonated Rhodamine Dyes. ACS Central Science, 2018, 4, 1371-1378.	5.3	41
34	The Role of the Locus Coeruleus in Cellular and Systems Memory Consolidation. Handbook of Behavioral Neuroscience, 2018, , 327-347.	0.7	3
35	Decoding Cognitive Processes from Neural Ensembles. Trends in Cognitive Sciences, 2018, 22, 1091-1102.	4.0	25
36	Ultrathin Trilayer Assemblies as Long-Lived Barriers against Water and Ion Penetration in Flexible Bioelectronic Systems. ACS Nano, 2018, 12, 10317-10326.	7.3	57
37	A Head-Mounted Camera System Integrates Detailed Behavioral Monitoring with Multichannel Electrophysiology in Freely Moving Mice. Neuron, 2018, 100, 46-60.e7.	3.8	116

#	Article	IF	CITATIONS
38	Acquisition of Neural Action Potentials Using Rapid Multiplexing Directly at the Electrodes. Micromachines, 2018, 9, 477.	1.4	32
39	Spikeling: A low-cost hardware implementation of a spiking neuron for neuroscience teaching and outreach. PLoS Biology, 2018, 16, e2006760.	2.6	4
40	Perceptual Decision-Making: A Field in the Midst of a Transformation. Neuron, 2018, 100, 453-462.	3.8	28
41	Autoregressive Point Processes as Latent State-Space Models: A Moment-Closure Approach to Fluctuations and Autocorrelations. Neural Computation, 2018, 30, 2757-2780.	1.3	6
42	Comparing Mouse and Rat Hippocampal Place Cell Activities and Firing Sequences in the Same Environments. Frontiers in Cellular Neuroscience, 2018, 12, 332.	1.8	18
43	Expanding the Optogenetics Toolkit by Topological Inversion of Rhodopsins. Cell, 2018, 175, 1131-1140.e11.	13.5	30
44	CMOS Neural Probe With 1600 Close-Packed Recording Sites and 32 Analog Output Channels. Journal of Microelectromechanical Systems, 2018, 27, 1023-1034.	1.7	29
45	Latent Factors and Dynamics in Motor Cortex and Their Application to Brain–Machine Interfaces. Journal of Neuroscience, 2018, 38, 9390-9401.	1.7	81
46	More than Just a "Motor― Recent Surprises from the Frontal Cortex. Journal of Neuroscience, 2018, 38, 9402-9413.	1.7	70
47	Fully Immersible Subcortical Neural Probes With Modular Architecture and a Delta-Sigma ADC Integrated Under Each Electrode for Parallel Readout of 144 Recording Sites. IEEE Journal of Solid-State Circuits, 2018, 53, 3111-3125.	3.5	62
48	Deep compressive autoencoder for action potential compression in large-scale neural recording. Journal of Neural Engineering, 2018, 15, 066019.	1.8	34
49	Transparent arrays of bilayer-nanomesh microelectrodes for simultaneous electrophysiology and two-photon imaging in the brain. Science Advances, 2018, 4, eaat0626.	4.7	114
50	Unsupervised clustering of temporal patterns in high-dimensional neuronal ensembles using a novel dissimilarity measure. PLoS Computational Biology, 2018, 14, e1006283.	1.5	26
51	BioNet: A Python interface to NEURON for modeling large-scale networks. PLoS ONE, 2018, 13, e0201630.	1.1	58
52	Learning of spatiotemporal patterns in a spiking neural network with resistive switching synapses. Science Advances, 2018, 4, eaat4752.	4.7	213
53	Identification of excitatory-inhibitory links and network topology in large-scale neuronal assemblies from multi-electrode recordings. PLoS Computational Biology, 2018, 14, e1006381.	1.5	66
54	Structural mechanisms of selectivity and gating in anion channelrhodopsins. Nature, 2018, 561, 349-354.	13.7	67
55	Graphene & two-dimensional devices for bioelectronics and neuroprosthetics. 2D Materials, 2018, 5, 042004.	2.0	40

#	Article	IF	CITATIONS
56	Neural data science: accelerating the experiment-analysis-theory cycle in large-scale neuroscience. Current Opinion in Neurobiology, 2018, 50, 232-241.	2.0	68
57	Fluorescence spectroscopy for revealing mechanisms in biology: Strengths and pitfalls. Journal of Biosciences, 2018, 43, 555-567.	0.5	17
58	Recent Advances in Materials, Devices, and Systems for Neural Interfaces. Advanced Materials, 2018, 30, e1800534.	11.1	148
59	Towards online spike sorting for high-density neural probes using discriminative template matching with suppression of interfering spikes. Journal of Neural Engineering, 2018, 15, 056005.	1.8	27
60	A method for single-neuron chronic recording from the retina in awake mice. Science, 2018, 360, 1447-1451.	6.0	132
61	Excitation wavelength optimization improves photostability of ASAP-family GEVIs. Molecular Brain, 2018, 11, 32.	1.3	13
62	Proximal and distal modulation of neural activity by spatially confined optogenetic activation with an integrated high-density optoelectrode. Journal of Neurophysiology, 2018, 120, 149-161.	0.9	29
63	Realizing flexible bioelectronic medicines for accessing the peripheral nerves – technology considerations. Bioelectronic Medicine, 2018, 4, 8.	1.0	45
64	Combining biophysical modeling and deep learning for multielectrode array neuron localization and classification. Journal of Neurophysiology, 2018, 120, 1212-1232.	0.9	33
65	The Psychiatric Cell Map Initiative: A Convergent Systems Biological Approach to Illuminating Key Molecular Pathways in Neuropsychiatric Disorders. Cell, 2018, 174, 505-520.	13.5	108
66	Syringe-injectable Mesh Electronics for Stable Chronic Rodent Electrophysiology. Journal of Visualized Experiments, 2018, , .	0.2	22
67	The Enlightened Brain: Novel Imaging Methods Focus on Epileptic Networks at Multiple Scales. Frontiers in Cellular Neuroscience, 2018, 12, 82.	1.8	13
68	Multisite Attenuated Intracellular Recordings by Extracellular Multielectrode Arrays, a Perspective. Frontiers in Neuroscience, 2018, 12, 212.	1.4	32
69	Microfluidics for electrophysiology, imaging, and behavioral analysis of <i>Hydra</i> . Lab on A Chip, 2018, 18, 2523-2539.	3.1	29
70	Nano functional neural interfaces. Nano Research, 2018, 11, 5065-5106.	5.8	23
71	Self-motion processing in visual and entorhinal cortices: inputs, integration, and implications for position coding. Journal of Neurophysiology, 2018, 120, 2091-2106.	0.9	31
72	Morphological and Biophysical Determinants of the Intracellular and Extracellular Waveforms in Nigral Dopaminergic Neurons: A Computational Study. Journal of Neuroscience, 2018, 38, 8295-8310.	1.7	10
73	Progress in Neuroengineering for brain repair: New challenges and open issues. Brain and Neuroscience Advances, 2018, 2, 239821281877647.	1.8	27

#	Article	IF	CITATIONS
74	Unsupervised Discovery of Demixed, Low-Dimensional Neural Dynamics across Multiple Timescales through Tensor Component Analysis. Neuron, 2018, 98, 1099-1115.e8.	3.8	193
75	Exploiting All Programmable SoCs in Neural Signal Analysis: A Closed-Loop Control for Large-Scale CMOS Multielectrode Arrays. IEEE Transactions on Biomedical Circuits and Systems, 2018, 12, 839-850.	2.7	17
76	t-SNE Visualization of Large-Scale Neural Recordings. Neural Computation, 2018, 30, 1750-1774.	1.3	44
77	A synaptic threshold mechanism for computing escape decisions. Nature, 2018, 558, 590-594.	13.7	326
78	Dorsal Striatal Circuits for Habits, Compulsions and Addictions. Frontiers in Systems Neuroscience, 2019, 13, 28.	1.2	105
79	Data-Driven Approaches to Understanding Visual Neuron Activity. Annual Review of Vision Science, 2019, 5, 451-477.	2.3	16
80	The quest for interpretable models of neural population activity. Current Opinion in Neurobiology, 2019, 58, 86-93.	2.0	24
81	Next-generation interfaces for studying neural function. Nature Biotechnology, 2019, 37, 1013-1023.	9.4	157
82	Developing Next-Generation Brain Sensing Technologies—A Review. IEEE Sensors Journal, 2019, 19, 10163-10175.	2.4	26
83	Signal-to-peak-interference ratio maximization with automatic interference weighting for threshold-based spike sorting of high-density neural probe data. , 2019, , .		3
84	High Density, Double-Sided, Flexible Optoelectronic Neural Probes With Embedded μLEDs. Frontiers in Neuroscience, 2019, 13, 745.	1.4	42
85	Leveraging Nonhuman Primate Multisensory Neurons and Circuits in Assessing Consciousness Theory. Journal of Neuroscience, 2019, 39, 7485-7500.	1.7	17
86	Long-Lived, Transferred Crystalline Silicon Carbide Nanomembranes for Implantable Flexible Electronics. ACS Nano, 2019, 13, 11572-11581.	7.3	101
87	Flexible electronic/optoelectronic microsystems with scalable designs for chronic biointegration. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15398-15406.	3.3	66
88	High-Density Electrical Recording and Impedance Imaging With a Multi-Modal CMOS Multi-Electrode Array Chip. Frontiers in Neuroscience, 2019, 13, 641.	1.4	43
89	A silicon-based spiky probe providing improved cell accessibility during in vitro slice recordings. Sensors and Actuators B: Chemical, 2019, 297, 126649.	4.0	2
90	Ensuring Robust and Tissue-Independent Operation of Implantable, Ingestible, and Injectable Antennas. , 2019, , .		0
91	Stereotactic system for accurately targeting deep brain structures in awake head-fixed mice. Journal of Neurophysiology, 2019, 122, 975-983.	0.9	3

#	Article	IF	CITATIONS
92	Cyborg Organoids: Implantation of Nanoelectronics via Organogenesis for Tissue-Wide Electrophysiology. Nano Letters, 2019, 19, 5781-5789.	4.5	121
93	Nanoenabled Direct Contact Interfacing of Syringe-Injectable Mesh Electronics. Nano Letters, 2019, 19, 5818-5826.	4.5	41
94	Sensor Modalities for Brain-Computer Interface Technology: A Comprehensive Literature Review. Neurosurgery, 2020, 86, E108-E117.	0.6	47
95	Robust Online Spike Recovery for High-Density Electrode Recordings using Convolutional Compressed Sensing. , 2019, , .		0
96	Neural engineering: the process, applications, and its role in the future of medicine. Journal of Neural Engineering, 2019, 16, 063002.	1.8	14
97	Revealing neural correlates of behavior without behavioral measurements. Nature Communications, 2019, 10, 4745.	5.8	96
98	Chronic Implantation of Multiple Flexible Polymer Electrode Arrays. Journal of Visualized Experiments, 2019, , .	0.2	11
99	Implantable and Flexible Electronics for In vivo Brain Activity Recordings. Chinese Journal of Analytical Chemistry, 2019, 47, 1549-1558.	0.9	10
100	Human motor decoding from neural signals: a review. BMC Biomedical Engineering, 2019, 1, 22.	1.7	44
101	A 512-Pixel, 51-kHz-Frame-Rate, Dual-Shank, Lens-Less, Filter-Less Single-Photon Avalanche Diode CMOS Neural Imaging Probe. IEEE Journal of Solid-State Circuits, 2019, 54, 2957-2968.	3.5	17
102	Misc. medical devices and technologies. Side Effects of Drugs Annual, 2019, , 573-615.	0.6	0
103	Decoding Neural Responses in Mouse Visual Cortex through a Deep Neural Network. , 2019, , .		5
104	A MEMS-Based Flexible High-Density Brain Electrode for Multi-Modal Neural Encoding/Decoding. , 2019, , .		3
105	Plugging in to Human Memory: Advantages, Challenges, and Insights from Human Single-Neuron Recordings. Cell, 2019, 179, 1015-1032.	13.5	42
106	Plugging Electronics Into Minds: Recent Trends and Advances in Neural Interface Microsystems. IEEE Solid-State Circuits Magazine, 2019, 11, 29-42.	0.5	8
107	Ultrafast Large-Scale Chemical Sensing With CMOS ISFETs: A Level-Crossing Time-Domain Approach. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13, 1201-1213.	2.7	19
108	Coarse Graining, Fixed Points, and Scaling in a Large Population of Neurons. Physical Review Letters, 2019, 123, 178103.	2.9	61
109	A scalable bonding technique for the development of nextgeneration brain-machine interfaces *. , 2019, , .		0

#	Article	IF	Citations
110	A Neuromorphic Prosthesis to Restore Communication in Neuronal Networks. IScience, 2019, 19, 402-414.	1.9	48
111	Development of neural interfaces and energy harvesters towards self-powered implantable systems for healthcare monitoring and rehabilitation purposes. Nano Energy, 2019, 65, 104039.	8.2	101
112	A model-based approach for targeted neurophysiology in the behaving non-human primate. , 2019, 2019, 195-198.		4
113	Multitaper Analysis of Evolutionary Spectral Density Matrix From Multivariate Spiking Observations. , 2019, , .		1
114	Fine-Pitch Bonding Methods for Integrating Asics with Flexible Polymer Mems. , 2019, , .		1
115	Can One Concurrently Record Electrical Spikes from Every Neuron in a Mammalian Brain?. Neuron, 2019, 103, 1005-1015.	3.8	46
116	A Closed-Loop System Processing High-Density Electrical Recordings and Visual Stimuli to Study Retinal Circuits Properties. , 2019, , .		1
117	Precision electronic medicine in the brain. Nature Biotechnology, 2019, 37, 1007-1012.	9.4	62
118	Pipette-integrated microelectrodes. Nature Biomedical Engineering, 2019, 3, 682-683.	11.6	0
119	Model-Based Inference of Synaptic Transmission. Frontiers in Synaptic Neuroscience, 2019, 11, 21.	1.3	12
120	Hybrid Microdrive System with Recoverable Opto-Silicon Probe and Tetrode for Dual-Site High Density Recording in Freely Moving Mice. Journal of Visualized Experiments, 2019, , .	0.2	9
121	A Compact Quad-Shank CMOS Neural Probe With 5,120 Addressable Recording Sites and 384 Fully Differential Parallel Channels. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13, 1625-1634.	2.7	46
122	Neuropixels Data-Acquisition System: A Scalable Platform for Parallel Recording of 10 000+ Electrophysiological Signals. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13, 1635-1644.	2.7	43
123	DeNeRD: high-throughput detection of neurons for brain-wide analysis with deep learning. Scientific Reports, 2019, 9, 13828.	1.6	19
124	Theta Oscillations Alternate With High Amplitude Neocortical Population Within Synchronized States. Frontiers in Neuroscience, 2019, 13, 316.	1.4	4
125	Neocortical Cell Classes: Essential Contributions fromÂElectrophysiology. Current Biology, 2019, 29, R871-R873.	1.8	2
126	Engineering a Less Artificial Intelligence. Neuron, 2019, 103, 967-979.	3.8	113
127	V1 microcircuits underlying mouse visual behavior. Current Opinion in Neurobiology, 2019, 58, 191-198.	2.0	4

#	Article	IF	CITATIONS
128	Reconstructing neuronal circuitry from parallel spike trains. Nature Communications, 2019, 10, 4468.	5.8	53
129	Single-trial neural dynamics are dominated by richly varied movements. Nature Neuroscience, 2019, 22, 1677-1686.	7.1	681
130	A new spin on fidgets. Nature Neuroscience, 2019, 22, 1614-1616.	7.1	3
131	Slow insertion of silicon probes improves the quality of acute neuronal recordings. Scientific Reports, 2019, 9, 111.	1.6	67
132	Advances in Nano Neuroscience: From Nanomaterials to Nanotools. Frontiers in Neuroscience, 2018, 12, 953.	1.4	46
133	How does the presence of neural probes affect extracellular potentials?. Journal of Neural Engineering, 2019, 16, 026030.	1.8	24
134	Nanotechnology: Managing Molecules for Modern Medicine. , 2019, , 133-143.		0
135	Hydrogel bioelectronics. Chemical Society Reviews, 2019, 48, 1642-1667.	18.7	1,267
136	Neuroethical considerations of high-density electrode arrays. Nature Biomedical Engineering, 2019, 3, 586-589.	11.6	4
137	A 32×32 ISFET Array with In-Pixel Digitisation and Column-Wise TDC for Ultra-Fast Chemical Sensing. , 2019, , .		3
138	Multifunctional Freestanding Microprobes for Potential Biological Applications. Sensors, 2019, 19, 2328.	2.1	0
139	Electrophysiological monitoring of inhibition in mammalian species, from rodents to humans. Neurobiology of Disease, 2019, 130, 104500.	2.1	16
140	A microfabricated, 3D-sharpened silicon shuttle for insertion of flexible electrode arrays through dura mater into brain. Journal of Neural Engineering, 2019, 16, 066021.	1.8	37
141	A parameterized digital 3D model of the Rhesus macaque face for investigating the visual processing of social cues. Journal of Neuroscience Methods, 2019, 324, 108309.	1.3	23
142	High-dimensional geometry of population responses in visual cortex. Nature, 2019, 571, 361-365.	13.7	370
143	DNA sequencing in high-throughput neuroanatomy. Journal of Chemical Neuroanatomy, 2019, 100, 101653.	1.0	1
144	Multichannel Silicon Probes for Awake Hippocampal Recordings in Large Animals. Frontiers in Neuroscience, 2019, 13, 397.	1.4	31
145	Accurate Estimation of Neural Population Dynamics without Spike Sorting. Neuron, 2019, 103, 292-308.e4.	3.8	195

#	Article	IF	CITATIONS
146	Barrier materials for flexible bioelectronic implants with chronic stability—Current approaches and future directions. APL Materials, 2019, 7, 050902.	2.2	27
147	Investigation of Low urrent Direct Stimulation for Rehabilitation Treatment Related to Muscle Function Loss Using Selfâ€Powered TENG System. Advanced Science, 2019, 6, 1900149.	5.6	97
148	In Vitro Neuronal Networks. Advances in Neurobiology, 2019, , .	1.3	12
149	Multisite Intracellular Recordings by MEA. Advances in Neurobiology, 2019, 22, 125-153.	1.3	11
150	Scaling Spike Detection and Sorting for Next-Generation Electrophysiology. Advances in Neurobiology, 2019, 22, 171-184.	1.3	14
151	Quantity versus quality: Convergent findings in effort-based choice tasks. Behavioural Processes, 2019, 164, 178-185.	0.5	6
152	Fabrication and Characterization of Micro-Nano Electrodes for Implantable BCI. Micromachines, 2019, 10, 242.	1.4	2
153	Open-Source Tools for Processing and Analysis of In Vitro Extracellular Neuronal Signals. Advances in Neurobiology, 2019, 22, 233-250.	1.3	8
154	Switch-Less Frequency-Domain Multiplexing of GFET Sensors and Low-Power CMOS Frontend for 1024-Channel μECoG. , 2019, , .		2
155	Active High-Density Electrode Arrays: Technology and Applications in Neuronal Cell Cultures. Advances in Neurobiology, 2019, 22, 253-273.	1.3	5
156	High-density multi-fiber photometry for studying large-scale brain circuit dynamics. Nature Methods, 2019, 16, 553-560.	9.0	154
157	Implantable micro and nanophotonic devices: toward a new generation of neural interfaces. Microelectronic Engineering, 2019, 215, 110979.	1.1	8
158	Spontaneous behaviors drive multidimensional, brainwide activity. Science, 2019, 364, 255.	6.0	1,013
159	Big data in nanoscale connectomics, and the greed for training labels. Current Opinion in Neurobiology, 2019, 55, 180-187.	2.0	15
160	Laminar (f)MRI: A short history and future prospects. NeuroImage, 2019, 197, 643-649.	2.1	45
161	Predictive and reactive reward signals conveyed by climbing fiber inputs to cerebellar Purkinje cells. Nature Neuroscience, 2019, 22, 950-962.	7.1	177
162	The Rise of Fiber Electronics. Angewandte Chemie, 2019, 131, 13778-13788.	1.6	12
163	The Rise of Fiber Electronics. Angewandte Chemie - International Edition, 2019, 58, 13643-13653.	7.2	86

#	Article	IF	CITATIONS
164	Optimal Electrode Size for Multi-Scale Extracellular-Potential Recording From Neuronal Assemblies. Frontiers in Neuroscience, 2019, 13, 385.	1.4	85
165	MEMS-Actuated Carbon Fiber Microelectrode for Neural Recording. IEEE Transactions on Nanobioscience, 2019, 18, 234-239.	2.2	13
166	Higher-Order Thalamic Circuits Channel Parallel Streams of Visual Information in Mice. Neuron, 2019, 102, 477-492.e5.	3.8	133
167	Silkâ€Enabled Conformal Multifunctional Bioelectronics for Investigation of Spatiotemporal Epileptiform Activities and Multimodal Neural Encoding/Decoding. Advanced Science, 2019, 6, 1801617.	5.6	52
168	Internal ion-gated organic electrochemical transistor: A building block for integrated bioelectronics. Science Advances, 2019, 5, eaau7378.	4.7	208
169	Novel electrode technologies for neural recordings. Nature Reviews Neuroscience, 2019, 20, 330-345.	4.9	436
170	Recent Progress on Non-Conventional Microfabricated Probes for the Chronic Recording of Cortical Neural Activity. Sensors, 2019, 19, 1069.	2.1	19
171	Correlation structure of grid cells is preserved during sleep. Nature Neuroscience, 2019, 22, 598-608.	7.1	76
172	Elastocapillary self-assembled neurotassels for stable neural activity recordings. Science Advances, 2019, 5, eaav2842.	4.7	142
173	High-density extracellular probes reveal dendritic backpropagation and facilitate neuron classification. Journal of Neurophysiology, 2019, 121, 1831-1847.	0.9	70
174	Noninvasive sub-organ ultrasound stimulation for targeted neuromodulation. Nature Communications, 2019, 10, 952.	5.8	121
175	Continuing progress of spike sorting in the era of big data. Current Opinion in Neurobiology, 2019, 55, 90-96.	2.0	47
176	Adaptive Stimulus Design for Dynamic Recurrent Neural Network Models. Frontiers in Neural Circuits, 2018, 12, 119.	1.4	2
177	Spike sorting with Gaussian mixture models. Scientific Reports, 2019, 9, 3627.	1.6	37
178	Optimal Radiation of Body-Implanted Capsules. Physical Review Letters, 2019, 122, 108101.	2.9	33
179	Myopic control of neural dynamics. PLoS Computational Biology, 2019, 15, e1006854.	1.5	5
180	Cre-Dependent Optogenetic Transgenic Mice Without Early Age-Related Hearing Loss. Frontiers in Aging Neuroscience, 2019, 11, 29.	1.7	13
181	Flexible Micropillar Electrode Arrays for In Vivo Neural Activity Recordings. Small, 2019, 15, e1900582.	5.2	21

#	Article	IF	CITATIONS
182	Multimodal in vivo brain electrophysiology with integrated glass microelectrodes. Nature Biomedical Engineering, 2019, 3, 741-753.	11.6	40
183	Analyzing biological and artificial neural networks: challenges with opportunities for synergy?. Current Opinion in Neurobiology, 2019, 55, 55-64.	2.0	71
184	Craniobot: A computer numerical controlled robot for cranial microsurgeries. Scientific Reports, 2019, 9, 1023.	1.6	30
185	Understanding Sensory Information Processing Through Simultaneous Multi-area Population Recordings. Frontiers in Neural Circuits, 2018, 12, 115.	1.4	9
186	Optimizing Strategies for Developing Genetically Encoded Voltage Indicators. Frontiers in Cellular Neuroscience, 2019, 13, 53.	1.8	30
187	Bioinspired neuron-like electronics. Nature Materials, 2019, 18, 510-517.	13.3	277
188	Distinct Structure of Cortical Population Activity on Fast and Infraslow Timescales. Cerebral Cortex, 2019, 29, 2196-2210.	1.6	50
189	Medial prefrontal cortex population activity is plastic irrespective of learning. Journal of Neuroscience, 2019, 39, 1370-17.	1.7	13
190	Re-evaluating Circuit Mechanisms Underlying Pattern Separation. Neuron, 2019, 101, 584-602.	3.8	166
191	Block-Sparse Modeling for Compressed Sensing of Neural Action Potentials and Local Field Potentials. , 2019, , .		1
192	\$mu ext{Radio}\$: First Characterization Results Towards a \$100 mumathrm{m}imes 100 mu mathrm{m}\$ Monolithic Radio with Bio-Electrical Interface. , 2019, , .		2
193	Design of a 180 nm CMOS transceiver for implantable wireline communication, achieving 800 Mbps at BER<1e-12 with 22.4 dB of channel loss. , 2019, , .		1
194	Editorial: An Ecological Perspective on Decision-Making: Empirical and Theoretical Studies in Natural and Natural-Like Environments. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	2
195	Towards Intelligent Intracortical BMI (i\$^2\$BMI): Low-Power Neuromorphic Decoders That Outperform Kalman Filters. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13, 1615-1624.	2.7	18
196	A Novel 3D-Printed Multi-Drive System for Synchronous Electrophysiological Recording in Multiple Brain Regions. Frontiers in Neuroscience, 2019, 13, 1322.	1.4	11
197	Refinement of Synaptic Connections. , 2019, , 269-309.		0
198	Occasion setting Behavioral Neuroscience, 2019, 133, 145-175.	0.6	53
199	Microfabricated bioelectronic systems for prevention, diagnostics and treatment of neurological disorders. , 2019, , .		2

# 200	ARTICLE Neural interfaces based on flexible graphene transistors: A new tool for electrophysiology. , 2019, , .	IF	CITATIONS
201	The Neuropixels probe: A CMOS based integrated microsystems platform for neuroscience and brain-computer interfaces. , 2019, , .		22
202	What directions of improvements in electrode designs should we expect in the next 5–10 years?. Bioelectronics in Medicine, 2019, 2, 119-122.	2.0	0
203	Unraveling the Brain With High-Density CMOS Neural Probes: Tackling the Challenges of Neural Interfacing. IEEE Solid-State Circuits Magazine, 2019, 11, 43-50.	0.5	23
204	Distributed coding of choice, action and engagement across the mouse brain. Nature, 2019, 576, 266-273.	13.7	452
205	Radiation Performance of Highly Miniaturized Implantable Devices. , 2019, , .		0
206	Materials and Devices for Micro-invasive Neural Interfacing. MRS Advances, 2019, 4, 2805-2816.	0.5	5
207	Chronic neural recording with probes of subcellular cross-section using 0.06 mmÂ ² dissolving microneedles as insertion device. Sensors and Actuators B: Chemical, 2019, 284, 369-376.	4.0	20
208	All the light that we can see: a new era in miniaturized microscopy. Nature Methods, 2019, 16, 11-13.	9.0	125
209	High-Density, Long-Lasting, and Multi-region Electrophysiological Recordings Using Polymer Electrode Arrays. Neuron, 2019, 101, 21-31.e5.	3.8	232
210	CABAergic Interneurons in Seizures: Investigating Causality With Optogenetics. Neuroscientist, 2019, 25, 344-358.	2.6	71
211	Artefact-free wireless closed-loop device. Nature Biomedical Engineering, 2019, 3, 3-4.	11.6	0
212	Probabilistic Encoding Models for Multivariate Neural Data. Frontiers in Neural Circuits, 2019, 13, 1.	1.4	49
213	SiNAPS: An implantable active pixel sensor CMOS-probe for simultaneous large-scale neural recordings. Biosensors and Bioelectronics, 2019, 126, 355-364.	5.3	110
214	An Area-Efficient 128-Channel Spike Sorting Processor for Real-Time Neural Recording With <inline-formula> <tex-math notation="LaTeX">\$0.175~mu\$ </tex-math> </inline-formula> W/Channel in 65-nm CMOS. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27, 126-137.	2.1	30
215	Reconstruction of ensembles of nonlinear neurooscillators with sigmoid coupling function. Nonlinear Dynamics, 2019, 95, 2103-2116.	2.7	12
216	Flexible and Implantable Microelectrodes for Chronically Stable Neural Interfaces. Advanced Materials, 2019, 31, e1804895.	11.1	66
217	Hippocampal coupling with cortical and subcortical structures in the context of memory consolidation. Neurobiology of Learning and Memory, 2019, 160, 21-31.	1.0	61

#	Article	IF	CITATIONS
218	The Future of Neuroimplantable Devices: A Materials Science and Regulatory Perspective. Advanced Materials, 2020, 32, e1901482.	11.1	74
219	Fabrication and validation of flexible 3D pillar electrodes for neural electrophysiological recording. Engineering Research Express, 2020, 2, 025025.	0.8	4
220	Printing Flexible and Hybrid Electronics for Human Skin and Eyeâ€Interfaced Health Monitoring Systems. Advanced Materials, 2020, 32, e1902051.	11.1	83
221	Open source silicon microprobes for high throughput neural recording. Journal of Neural Engineering, 2020, 17, 016036.	1.8	66
222	Simultaneous mesoscopic and two-photon imaging of neuronal activity in cortical circuits. Nature Methods, 2020, 17, 107-113.	9.0	102
223	Localization of movable electrodes in a multi-electrode microdrive in nonhuman primates. Journal of Neuroscience Methods, 2020, 330, 108505.	1.3	8
224	Is hippocampal remapping the physiological basis for context?. Hippocampus, 2020, 30, 851-864.	0.9	42
225	Cortical pattern generation during dexterous movement is input-driven. Nature, 2020, 577, 386-391.	13.7	196
226	Chitosanâ€Based, Biocompatible, Solution Processable Films for In Vivo Localization of Neural Interface Devices. Advanced Materials Technologies, 2020, 5, 1900663.	3.0	13
227	Why do we move to the beat? A multi-scale approach, from physical principles to brain dynamics. Neuroscience and Biobehavioral Reviews, 2020, 112, 553-584.	2.9	63
228	Understanding the circuit basis of cognitive functions using mouse models. Neuroscience Research, 2020, 152, 44-58.	1.0	12
229	Somatic and Dendritic Encoding of Spatial Variables in Retrosplenial Cortex Differs during 2D Navigation. Neuron, 2020, 105, 237-245.e4.	3.8	52
230	Reconfigurable 3D-Printed headplates for reproducible and rapid implantation of EEG, EMG and depth electrodes in mice. Journal of Neuroscience Methods, 2020, 333, 108566.	1.3	6
231	A large-scale standardized physiological survey reveals functional organization of the mouse visual cortex. Nature Neuroscience, 2020, 23, 138-151.	7.1	232
232	Nanoelectronics for Minimally Invasive Cellular Recordings. Advanced Functional Materials, 2020, 30, 1906210.	7.8	13
233	Parenting — a paradigm for investigating the neural circuit basis of behavior. Current Opinion in Neurobiology, 2020, 60, 84-91.	2.0	13
234	Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers. Nature Biomedical Engineering, 2020, 4, 159-171.	11.6	208
235	A CMOS NMR needle for probing brain physiology with high spatial and temporal resolution. Nature Methods, 2020, 17, 64-67.	9.0	28

#	Article	IF	CITATIONS
236	Research on the Characteristics of Action Potentials and Local Field Potentials in Cortex of Parkinson's Disease Mode Monkey *. , 2020, 2020, 880-883.		0
237	Cellular-scale silicon probes for high-density, precisely localized neurophysiology. Journal of Neurophysiology, 2020, 124, 1578-1587.	0.9	11
238	Pupillary Dilations of Mice Performing a Vibrotactile Discrimination Task Reflect Task Engagement and Response Confidence. Frontiers in Behavioral Neuroscience, 2020, 14, 159.	1.0	14
239	Exploring internal state-coding across the rodent brain. Current Opinion in Neurobiology, 2020, 65, 20-26.	2.0	15
240	Circuit-Based Biomarkers for Mood and Anxiety Disorders. Trends in Neurosciences, 2020, 43, 902-915.	4.2	33
241	Inferring neural information flow from spiking data. Computational and Structural Biotechnology Journal, 2020, 18, 2699-2708.	1.9	5
242	Brain-wide, scale-wide physiology underlying behavioral flexibility in zebrafish. Current Opinion in Neurobiology, 2020, 64, 151-160.	2.0	14
243	Integrated Neurophotonics: Toward Dense Volumetric Interrogation of Brain Circuit Activity—at Depth and in Real Time. Neuron, 2020, 108, 66-92.	3.8	40
244	Silent Speech Interfaces for Speech Restoration: A Review. IEEE Access, 2020, 8, 177995-178021.	2.6	46
245	Multichannel parallel processing of neural signals in memristor arrays. Science Advances, 2020, 6, .	4.7	36
246	Low-cost and versatile electrodes for extracellular chronic recordings in rodents. Heliyon, 2020, 6, e04867.	1.4	14
247	Bioinspired Materials for InÂVivo Bioelectronic Neural Interfaces. Matter, 2020, 3, 1087-1113.	5.0	43
248	Dosage-sensitive genes in autism spectrum disorders: From neurobiology to therapy. Neuroscience and Biobehavioral Reviews, 2020, 118, 538-567.	2.9	17
249	Optoâ€Eâ€Dura: A Soft, Stretchable ECoG Array for Multimodal, Multiscale Neuroscience. Advanced Healthcare Materials, 2020, 9, e2000814.	3.9	48
250	Mapping Functional Connectivity from the Dorsal Cortex to the Thalamus. Neuron, 2020, 107, 1080-1094.e5.	3.8	23
251	Fabrication of Out-of-Plane High Channel Density Microelectrode Neural Array With 3D Recording and Stimulation Capabilities. Journal of Microelectromechanical Systems, 2020, 29, 522-531.	1.7	3
252	Intracranial EEG in the 21st Century. Epilepsy Currents, 2020, 20, 180-188.	0.4	65
253	Advanced Electrical and Optical Microsystems for Biointerfacing. Advanced Intelligent Systems, 2020, 2, 2000091.	3.3	16

#	Article	IF	CITATIONS
254	Optical Waveguides and Integrated Optical Devices for Medical Diagnosis, Health Monitoring and Light Therapies. Sensors, 2020, 20, 3981.	2.1	39
255	Neuroprosthesis Devices Based on Micro- and Nanosensors: A Systematic Review. Journal of Sensors, 2020, 2020, 1-19.	0.6	4
256	Whole-brain interactions underlying zebrafish behavior. Current Opinion in Neurobiology, 2020, 65, 88-99.	2.0	19
257	Brain mapping, from molecules to networks. Science, 2020, 370, 925-925.	6.0	1
258	Approaches to inferring multi-regional interactions from simultaneous population recordings. Current Opinion in Neurobiology, 2020, 65, 108-119.	2.0	11
259	Recent advances in neurotechnologies with broad potential for neuroscience research. Nature Neuroscience, 2020, 23, 1522-1536.	7.1	111
260	An Accurate and Robust Method for Spike Sorting Based on Convolutional Neural Networks. Brain Sciences, 2020, 10, 835.	1.1	20
261	Classifying Intracortical Brain-Machine Interface Signal Disruptions Based on System Performance and Applicable Compensatory Strategies: A Review. Frontiers in Neurorobotics, 2020, 14, 558987.	1.6	14
262	Brain connectomes come of age. Current Opinion in Neurobiology, 2020, 65, 152-161.	2.0	11
263	Spatially expandable fiber-based probes as a multifunctional deep brain interface. Nature Communications, 2020, 11, 6115.	5.8	44
264	Restoration of sensory information via bionic hands. Nature Biomedical Engineering, 2023, 7, 443-455.	11.6	111
265	Towards Cell and Subtype Resolved Functional Organization: Mouse as a Model for the Cortical Control of Movement. Neuroscience, 2020, 450, 151-160.	1.1	6
266	Power-saving design opportunities for wireless intracortical brain–computer interfaces. Nature Biomedical Engineering, 2020, 4, 984-996.	11.6	66
267	Recent advances in neural interfaces—Materials chemistry to clinical translation. MRS Bulletin, 2020, 45, 655-668.	1.7	29
268	Head Movements Control the Activity of Primary Visual Cortex in a Luminance-Dependent Manner. Neuron, 2020, 108, 500-511.e5.	3.8	53
269	2P or not 2P: The Question of Seizure Initiation. Epilepsy Currents, 2020, 20, 291-293.	0.4	1
270	The DMCdrive: practical 3D-printable micro-drive system for reliable chronic multi-tetrode recording and optogenetic application in freely behaving rodents. Scientific Reports, 2020, 10, 11838.	1.6	11
271	Extracellular recording of direct synaptic signals with a CMOS-nanoelectrode array. Lab on A Chip, 2020, 20, 3239-3248.	3.1	17

#	Article	IF	CITATIONS
272	A Neural Network-Based Spike Sorting Feature Map That Resolves Spike Overlap in the Feature Space. , 2020, , .		3
273	Multitaper Analysis of Semi-Stationary Spectra From Multivariate Neuronal Spiking Observations. IEEE Transactions on Signal Processing, 2020, 68, 4382-4396.	3.2	1
274	Recent Advances in Electrical Neural Interface Engineering: Minimal Invasiveness, Longevity, and Scalability. Neuron, 2020, 108, 302-321.	3.8	85
275	Challenges for Large-Scale Cortical Interfaces. Neuron, 2020, 108, 259-269.	3.8	51
276	Statistical decision theory and multiscale analyses of human brain data. Journal of Neuroscience Methods, 2020, 346, 108912.	1.3	5
277	Cortical State Fluctuations during Sensory Decision Making. Current Biology, 2020, 30, 4944-4955.e7.	1.8	48
278	Early adolescent adversity alters periaqueductal gray/dorsal raphe threat responding in adult female rats. Scientific Reports, 2020, 10, 18035.	1.6	1
279	Single-neuron representation of learned complex sounds in the auditory cortex. Nature Communications, 2020, 11, 4361.	5.8	29
280	A Versatile Sacrificial Layer for Transfer Printing of Wide Bandgap Materials for Implantable and Stretchable Bioelectronics. Advanced Functional Materials, 2020, 30, 2004655.	7.8	34
281	In vivo localization of chronically implanted electrodes and optic fibers in mice. Nature Communications, 2020, 11, 4686.	5.8	15
282	Lossless Compression of Intracortical Extracellular Neural Recordings using Non-Adaptive Huffman Encoding. , 2020, 2020, 4318-4321.		5
283	Neural signal analysis with memristor arrays towardsÂhigh-efficiency brain–machine interfaces. Nature Communications, 2020, 11, 4234.	5.8	82
284	A comparison of neuronal population dynamics measured with calcium imaging and electrophysiology. PLoS Computational Biology, 2020, 16, e1008198.	1.5	102
285	Deep posteromedial cortical rhythm in dissociation. Nature, 2020, 586, 87-94.	13.7	145
286	Looking at neurodevelopment through a big data lens. Science, 2020, 369, .	6.0	28
288	CHIME: CMOS-Hosted in vivo Microelectrodes for Massively Scalable Neuronal Recordings. Frontiers in Neuroscience, 2020, 14, 834.	1.4	15
289	Stimulus Feature-Specific Information Flow Along the Columnar Cortical Microcircuit Revealed by Multivariate Laminar Spiking Analysis. Frontiers in Systems Neuroscience, 2020, 14, 600601.	1.2	10
290	A FN-MdV pathway and its role in cerebellar multimodular control of sensorimotor behavior. Nature Communications, 2020, 11, 6050.	5.8	21

#	Article	IF	CITATIONS
291	Scalable method for micro-CT analysis enables large scale quantitative characterization of brain lesions and implants. Scientific Reports, 2020, 10, 20851.	1.6	8
292	ZyON: Enabling Spike Sorting on APSoC-Based Signal Processors for High-Density Microelectrode Arrays. IEEE Access, 2020, 8, 218145-218160.	2.6	5
293	A Diversity of Intrinsic Timescales Underlie Neural Computations. Frontiers in Neural Circuits, 2020, 14, 615626.	1.4	44
294	Modeling statistical dependencies in multi-region spike train data. Current Opinion in Neurobiology, 2020, 65, 194-202.	2.0	25
295	Perspective: Is Cortical Hyperexcitability the Only Path to Generalized Absence Epilepsy?. Epilepsy Currents, 2020, 20, 59S-61S.	0.4	3
296	A Multiplexed Electrochemical Measurement System for Characterization of Implanted Electrodes. , 2020, , .		2
297	Statistical methods for dissecting interactions between brain areas. Current Opinion in Neurobiology, 2020, 65, 59-69.	2.0	41
298	Principles of functional neural mapping using an intracortical ultra-density microelectrode array (ultra-density MEA). Journal of Neural Engineering, 2020, 17, 036018.	1.8	9
299	Solution-gated transistors of two-dimensional materials for chemical and biological sensors: status and challenges. Nanoscale, 2020, 12, 11364-11394.	2.8	41
300	Assembly and operation of an open-source, computer numerical controlled (CNC) robot for performing cranial microsurgical procedures. Nature Protocols, 2020, 15, 1992-2023.	5.5	18
301	Multisite cell―and neuralâ€dynamicsâ€resolving deep brain imaging in freely moving mice with implanted reconnectable fiber bundles. Journal of Biophotonics, 2020, 13, e202000081.	1.1	11
302	The Temporal Association Cortex Plays a Key Role in Auditory-Driven Maternal Plasticity. Neuron, 2020, 107, 566-579.e7.	3.8	61
303	Materials for flexible bioelectronic systems as chronic neural interfaces. Nature Materials, 2020, 19, 590-603.	13.3	277
304	Multimaterial and multifunctional neural interfaces: from surface-type and implantable electrodes to fiber-based devices. Journal of Materials Chemistry B, 2020, 8, 6624-6666.	2.9	41
305	Coaxial microneedle-electrode for multichannel and local-differential recordings of neuronal activity. Sensors and Actuators B: Chemical, 2020, 320, 128442.	4.0	2
306	Bioinspired flexible electronics for seamless neural interfacing and chronic recording. Nanoscale Advances, 2020, 2, 3095-3102.	2.2	20
307	Microelectrode recordings in human epilepsy: a case for clinical translation. Brain Communications, 2020, 2, fcaa082.	1.5	33
308	Innovative Methodology. Journal of Neurophysiology, 2020, 124, 102-114.	0.9	1

#	Article	IF	CITATIONS
309	A 512-Channel Multi-Layer Polymer-Based Neural Probe Array. Journal of Microelectromechanical Systems, 2020, 29, 1054-1058.	1.7	19
310	Flexible Electronics and Materials for Synchronized Stimulation and Monitoring in Multiâ€Encephalic Regions. Advanced Functional Materials, 2020, 30, 2002644.	7.8	27
311	Exciting Complexity: The Role of Motor Circuit Elements in ALS Pathophysiology. Frontiers in Neuroscience, 2020, 14, 573.	1.4	40
312	Translational Neuroelectronics. Advanced Functional Materials, 2020, 30, 1909165.	7.8	44
313	Arousal Modulates Retinal Output. Neuron, 2020, 107, 487-495.e9.	3.8	90
314	Flexible Fiber Probe for Efficient Neural Stimulation and Detection. Advanced Science, 2020, 7, 2001410.	5.6	19
315	Organizing principles of whole-brain functional connectivity in zebrafish larvae. Network Neuroscience, 2020, 4, 234-256.	1.4	30
316	Probing Cortical Activity During Head-Fixed Behavior. Frontiers in Molecular Neuroscience, 2020, 13, 30.	1.4	10
317	Simultaneous Electrophysiology and Fiber Photometry in Freely Behaving Mice. Frontiers in Neuroscience, 2020, 14, 148.	1.4	43
318	Biological Interfaces, Modulation, and Sensing with Inorganic Nanoâ€Bioelectronic Materials. Small Methods, 2020, 4, 1900868.	4.6	13
319	Context-Dependent Sensory Processing across Primary and Secondary Somatosensory Cortex. Neuron, 2020, 106, 515-525.e5.	3.8	49
320	Synaptic Recruitment Enhances Gap Termination Responses in Auditory Cortex. Cerebral Cortex, 2020, 30, 4465-4480.	1.6	9
321	Reconciling Current Theories of Consciousness. Journal of Neuroscience, 2020, 40, 1994-1996.	1.7	5
322	Spikes to Pixels: Camera Chips for Large-scale Electrophysiology. Trends in Neurosciences, 2020, 43, 269-271.	4.2	2
323	Switchless Multiplexing of Graphene Active Sensor Arrays for Brain Mapping. Nano Letters, 2020, 20, 3528-3537.	4.5	42
324	Systematic Integration of Structural and Functional Data into Multi-scale Models of Mouse Primary Visual Cortex. Neuron, 2020, 106, 388-403.e18.	3.8	163
325	64-Channel Carbon Fiber Electrode Arrays for Chronic Electrophysiology. Scientific Reports, 2020, 10, 3830.	1.6	34
326	Sputtered porous Pt for wafer-scale manufacture of low-impedance flexible microelectrodes. Journal of Neural Engineering, 2020, 17, 036029.	1.8	20

	CITATION	Report	
#	Article	IF	CITATIONS
327	Computation Through Neural Population Dynamics. Annual Review of Neuroscience, 2020, 43, 249-275.	5.0	319
328	Bidirectional Bioelectronic Interfaces: System Design and Circuit Implications. IEEE Solid-State Circuits Magazine, 2020, 12, 30-46.	0.5	34
329	A Parylene Neural Probe Array for Multi-Region Deep Brain Recordings. Journal of Microelectromechanical Systems, 2020, 29, 499-513.	1.7	40
330	Macroscopic gradients of synaptic excitation and inhibition in the neocortex. Nature Reviews Neuroscience, 2020, 21, 169-178.	4.9	188
331	Learning spatiotemporal signals using a recurrent spiking network that discretizes time. PLoS Computational Biology, 2020, 16, e1007606.	1.5	42
332	How do we know how the brain works?—Analyzing whole brain activities with classic mathematical and machine learning methods. Japanese Journal of Applied Physics, 2020, 59, 030501.	0.8	1
333	Injectable Biomedical Devices for Sensing and Stimulating Internal Body Organs. Advanced Materials, 2020, 32, e1907478.	11.1	42
334	An easy-to-assemble, robust, and lightweight drive implant for chronic tetrode recordings in freely moving animals. Journal of Neural Engineering, 2020, 17, 026044.	1.8	40
335	Twister3: a simple and fast microwire twister. Journal of Neural Engineering, 2020, 17, 026040.	1.8	4
336	A starting kit for training and establishing in vivo electrophysiology, intracranial pharmacology, and optogenetics. Journal of Neuroscience Methods, 2020, 336, 108636.	1.3	2
337	Multiplexed neural sensor array of graphene solution-gated field-effect transistors. 2D Materials, 2020, 7, 025046.	2.0	23
338	Bioelectronics for Millimeter-Sized Model Organisms. IScience, 2020, 23, 100917.	1.9	5
339	Heterogeneity in striatal dopamine circuits: Form and function in dynamic reward seeking. Journal of Neuroscience Research, 2020, 98, 1046-1069.	1.3	65
340	Reconfigurable nanophotonic silicon probes for sub-millisecond deep-brain optical stimulation. Nature Biomedical Engineering, 2020, 4, 223-231.	11.6	101
341	Biointegrated and Wirelessly Powered Implantable Brain Devices: A Review. IEEE Transactions on Biomedical Circuits and Systems, 2020, 14, 343-358.	2.7	100
342	A general method to generate artificial spike train populations matching recorded neurons. Journal of Computational Neuroscience, 2020, 48, 47-63.	0.6	4
343	Toward guiding principles for the design of biologically-integrated electrodes for the central nervous system. Journal of Neural Engineering, 2020, 17, 021001.	1.8	22
344	Oscillotherapeutics – Time-targeted interventions in epilepsy and beyond. Neuroscience Research, 2020, 152, 87-107.	1.0	45

#	Article	IF	CITATIONS
345	Navigating Through Time: A Spatial Navigation Perspective on How the Brain May Encode Time. Annual Review of Neuroscience, 2020, 43, 73-93.	5.0	42
346	Neurobiology of systems memory consolidation. European Journal of Neuroscience, 2021, 54, 6850-6863.	1.2	25
347	Artifact-free and high-temporal-resolution in vivo opto-electrophysiology with microLED optoelectrodes. Nature Communications, 2020, 11, 2063.	5.8	89
348	Potential factors influencing replay across CA1 during sharp-wave ripples. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190236.	1.8	20
349	Limitations to Estimating Mutual Information in Large Neural Populations. Entropy, 2020, 22, 490.	1.1	4
350	Brain-wide representations of ongoing behavior: a universal principle?. Current Opinion in Neurobiology, 2020, 64, 60-69.	2.0	62
351	Massively parallel microwire arrays integrated with CMOS chips for neural recording. Science Advances, 2020, 6, eaay2789.	4.7	115
352	Development of a neural interface for high-definition, long-term recording in rodents and nonhuman primates. Science Translational Medicine, 2020, 12, .	5.8	145
353	Modulation of Human Memory by Deep Brain Stimulation of the Entorhinal-Hippocampal Circuitry. Neuron, 2020, 106, 218-235.	3.8	72
354	Taken out of Context: A Novel Cognitive Role for a Premotor Circuit. Neuron, 2020, 106, 206-208.	3.8	1
355	Glymphatic clearance of simulated silicon dispersion in mouse brain analyzed by laser induced breakdown spectroscopy. Heliyon, 2020, 6, e03702.	1.4	2
356	A fiber-shaped neural probe with alterable elastic moduli for direct implantation and stable electronic–brain interfaces. Journal of Materials Chemistry B, 2020, 8, 4387-4394.	2.9	39
357	Toward Community-Driven Big Open Brain Science: Open Big Data and Tools for Structure, Function, and Genetics. Annual Review of Neuroscience, 2020, 43, 441-464.	5.0	12
358	Functionalized Silicon Electrodes in Electrochemistry. Annual Review of Analytical Chemistry, 2020, 13, 135-158.	2.8	17
359	The cellular and molecular basis of in vivo synaptic plasticity in rodents. American Journal of Physiology - Cell Physiology, 2020, 318, C1264-C1283.	2.1	14
360	Modeling the Short-Term Dynamics of <i>in Vivo</i> Excitatory Spike Transmission. Journal of Neuroscience, 2020, 40, 4185-4202.	1.7	20
361	Spatial Information Based OSort for Real-Time Spike Sorting Using FPGA. IEEE Transactions on Biomedical Engineering, 2021, 68, 99-108.	2.5	19
362	Long-range connections enrich cortical computations. Neuroscience Research, 2021, 162, 1-12.	1.0	0

#	Article	IF	CITATIONS
363	SHYBRID: A Graphical Tool for Generating Hybrid Ground-Truth Spiking Data for Evaluating Spike Sorting Performance. Neuroinformatics, 2021, 19, 141-158.	1.5	12
364	MEArec: A Fast and Customizable Testbench Simulator for Ground-truth Extracellular Spiking Activity. Neuroinformatics, 2021, 19, 185-204.	1.5	33
365	Core principles for the implementation of the neurodata without borders data standard. Journal of Neuroscience Methods, 2021, 348, 108972.	1.3	3
366	The <scp>McGillâ€Mouseâ€Miniscope</scp> platform: A standardized approach for highâ€throughput imaging of neuronal dynamics during behavior. Genes, Brain and Behavior, 2021, 20, e12686.	1.1	5
367	Growing evidence for separate neural mechanisms for attention and consciousness. Attention, Perception, and Psychophysics, 2021, 83, 558-576.	0.7	15
368	How is flexible electronics advancing neuroscience research?. Biomaterials, 2021, 268, 120559.	5.7	32
370	3D Interfacing between Soft Electronic Tools and Complex Biological Tissues. Advanced Materials, 2021, 33, e2004425.	11.1	48
371	Brain–Machine Interfaces: The Role of the Neurosurgeon. World Neurosurgery, 2021, 146, 140-147.	0.7	15
372	Feature-Selection-Based Transfer Learning for Intracortical Brain–Machine Interface Decoding. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29, 60-73.	2.7	5
373	Injectable fiber batteries for all-region power supply <i>in vivo</i> . Journal of Materials Chemistry A, 2021, 9, 1463-1470.	5.2	31
374	POEMS (Polymeric Opto-Electro-Mechanical Systems) for advanced neural interfaces. Materials Letters, 2021, 285, 129015.	1.3	7
375	Flexible GaAs Photodetectors with Ultrathin Thermally Grown Silicon Dioxide as a Longâ€Lived Barrier for Chronic Biomedical Implants. Advanced Photonics Research, 2021, 2, 2000051.	1.7	4
376	Electroenzymatic choline sensing at near the theoretical performance limit. Analyst, The, 2021, 146, 1040-1047.	1.7	5
377	Neuronal Circuits in Barrel Cortex for Whisker Sensory Perception. Physiological Reviews, 2021, 101, 353-415.	13.1	66
378	Measurement of Electrophysiological Signals In Vitro Using Highâ€Performance Organic Electrochemical Transistors. Advanced Functional Materials, 2021, 31, 2007086.	7.8	30
379	Introducing a biomimetic coating for graphene neuroelectronics: toward in-vivo applications. Biomedical Physics and Engineering Express, 2021, 7, 015006.	0.6	3
380	Flexible, Multi-Shank Stacked Array for High-Density Omini-Directional Intracortical Recording. , 2021,		1
383	Soft subdermal implant capable of wireless battery charging and programmable controls for applications in optogenetics. Nature Communications, 2021, 12, 535.	5.8	85

#	Article	IF	CITATIONS
384	FPGA Design Integration of a 32-Microelectrodes Low-Latency Spike Detector in a Commercial System for Intracortical Recordings. Digital, 2021, 1, 34-53.	1.1	7
387	A Compact, Low-Power Analog Front-End With Event-Driven Input Biasing for High-Density Neural Recording in 22-nm FDSOI. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 804-808.	2.2	10
388	Electrophysiological Analysis of Brain Organoids: Current Approaches and Advancements. Frontiers in Neuroscience, 2020, 14, 622137.	1.4	43
389	Liquid Crystalline Polymers: Opportunities to Shape Neural Interfaces. Neuromodulation, 2022, 25, 1259-1267.	0.4	8
390	Solution-based fabrication of mechanically transformative materials for implantable applications. Biomaterials Science, 2021, 9, 6950-6956.	2.6	4
392	Scaling Up to Meet New Challenges of Brain and Behaviour: Deep Brain Electrophysiology in Freely Moving Sheep. SSRN Electronic Journal, 0, , .	0.4	0
393	Electrophysiology Read-Out Tools for Brain-on-Chip Biotechnology. Micromachines, 2021, 12, 124.	1.4	26
394	Monosynaptic inference via finely-timed spikes. Journal of Computational Neuroscience, 2021, 49, 131-157.	0.6	5
395	A Miniaturized 256-Channel Neural Recording Interface With Area-Efficient Hybrid Integration of Flexible Probes and CMOS Integrated Circuits. IEEE Transactions on Biomedical Engineering, 2022, 69, 334-346.	2.5	17
396	3D-printed Recoverable Microdrive and Base Plate System for Rodent Electrophysiology. Bio-protocol, 2021, 11, e4137.	0.2	12
397	Striatal activity topographically reflects cortical activity. Nature, 2021, 591, 420-425.	13.7	139
398	Robust point-process Granger causality analysis in presence of exogenous temporal modulations and trial-by-trial variability in spike trains. PLoS Computational Biology, 2021, 17, e1007675.	1.5	6
399	Recording site placement on planar silicon-based probes affects signal quality in acute neuronal recordings. Scientific Reports, 2021, 11, 2028.	1.6	16
400	Micro-coil probes for magnetic intracortical neural stimulation: Trade-offs in materials and design. APL Materials, 2021, 9, 011102.	2.2	4
401	Restoring upper extremity function with brain-machine interfaces. International Review of Neurobiology, 2021, 159, 153-186.	0.9	0
402	A 32-Channel Time-Multiplexed Artifact-Aware Neural Recording System. IEEE Transactions on Biomedical Circuits and Systems, 2021, 15, 960-977.	2.7	11
403	Training-Free Deep Generative Networks for Compressed Sensing of Neural Action Potentials. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 5190-5199.	7.2	6
404	Mouse entorhinal cortex encodes a diverse repertoire of self-motion signals. Nature Communications, 2021, 12, 671.	5.8	19

		CITATION R	EPORT	
#	Article		IF	CITATIONS
406	Quantitative Assessment of the Mechanical Properties of the Neural Interface. , 2021,	, 1-47.		0
407	Unprotected sidewalls of implantable silicon-based neural probes and conformal coatir solution. Npj Materials Degradation, 2021, 5, .	ng as a	2.6	5
410	Integrated information structure collapses with anesthetic loss of conscious arousal in melanogaster. PLoS Computational Biology, 2021, 17, e1008722.	Drosophila	1.5	15
411	Neuronâ€Gated Silicon Nanowire Field Effect Transistors to Follow Single Spike Propag Neuronal Network. Advanced Engineering Materials, 2021, 23, 2001226.	gation within	1.6	5
412	Bonding Methods for Chip Integration with Parylene Devices. Journal of Micromechanic Microengineering, 2021, 31, .	cs and	1.5	5
415	Nano-optoelectrodes Integrated with Flexible Multifunctional Fiber Probes by High-Thro Scalable Fabrication. ACS Applied Materials & amp; Interfaces, 2021, 13, 9156-9165.	oughput	4.0	13
416	Compressed sensing of large-scale local field potentials using adaptive sparsity analysis non-convex optimization. Journal of Neural Engineering, 2021, 18, 026007.	s and	1.8	1
417	Motor Control: A Basal Ganglia Feedback Circuit forÂAction Suppression. Current Biolo R191-R193.	ogy, 2021, 31,	1.8	3
418	Implantable Thin Film Devices as Brain-Computer Interfaces: Recent Advances in Desig Approaches. Coatings, 2021, 11, 204.	n and Fabrication	1.2	6
420	Ceramic packaging in neural implants. Journal of Neural Engineering, 2021, 18, 02500.	2.	1.8	26
421	Wearable and Implantable Electroceuticals for Therapeutic Electrostimulations. Advance 2021, 8, 2004023.	ced Science,	5.6	73
422	Wireless and battery-free technologies for neuroengineering. Nature Biomedical Engine 405-423.	eering, 2023, 7,	11.6	141
423	Inflammatory Foreign Body Response Induced by Neuro-Implants in Rat Cortices Deple Microglia by a CSF1R Inhibitor and Its Implications. Frontiers in Neuroscience, 2021, 15	ted of Resident 5, 646914.	1.4	14
424	High-density neural recordings from feline sacral dorsal root ganglia with thin-film array Neural Engineering, 2021, 18, 046005.	y. Journal of	1.8	7
425	Population Coding of Natural Electrosensory Stimuli by Midbrain Neurons. Journal of N 2021, 41, 3822-3841.	euroscience,	1.7	11
427	Top-down coordination of local cortical state during selective attention. Neuron, 2021 894-904.e8.	, 109,	3.8	26
428	Microscale Physiological Events on the Human Cortical Surface. Cerebral Cortex, 2021	, 31, 3678-3700.	1.6	29
429	Learning compositional sequences with multiple time scales through a hierarchical net spiking neurons. PLoS Computational Biology, 2021, 17, e1008866.	work of	1.5	7

		CITATION REPORT	
#	Article	IF	CITATIONS
431	In Silico: Where Next?. ENeuro, 2021, 8, ENEURO.0131-21.2021.	0.9	4
433	Soft, wireless and subdermally implantable recording and neuromodulation tools. Journal of Neural Engineering, 2021, 18, 041001.	1.8	13
434	Behavior needs neural variability. Neuron, 2021, 109, 751-766.	3.8	141
435	State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering, 2021, 18, 036006.	1.8	20
436	The Future of Neuroscience: Flexible and Wireless Implantable Neural Electronics. Advanced Scienc 2021, 8, 2002693.	e, 5.6	47
437	Identification and quantification of neuronal ensembles in optical imaging experiments. Journal of Neuroscience Methods, 2021, 351, 109046.	1.3	6
439	Multimodal neural recordings with Neuro-FITM uncover diverse patterns of cortical–hippocampa interactions. Nature Neuroscience, 2021, 24, 886-896.	7.1	47
440	Evaluating State Space Discovery by Persistent Cohomology in the Spatial Representation System. Frontiers in Computational Neuroscience, 2021, 15, 616748.	1.2	13
441	Analysis and Reduction of Nonlinear Distortion in AC-Coupled CMOS Neural Amplifiers with Tunabl Cutoff Frequencies. Sensors, 2021, 21, 3116.	e 2.1	0
442	Light-induced uncertainty and information limits of optical neural recording. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 251, 119351.	2.0	1
443	An array of options for scaling up electrophysiology. Lab Animal, 2021, 50, 115-117.	0.2	0
444	Energy harvesting optical modulators with sub-attojoule per bit electrical energy consumption. Nature Communications, 2021, 12, 2326.	5.8	13
445	Outan: An On-Head System for Driving µLED Arrays Implanted in Freely Moving Mice. IEEE Transa on Biomedical Circuits and Systems, 2021, 15, 303-313.	tions 2.7	3
446	Wide-Band-Gap Semiconductors for Biointegrated Electronics: Recent Advances and Future Directions. ACS Applied Electronic Materials, 2021, 3, 1959-1981.	2.0	21
447	Creating and controlling visual environments using BonVision. ELife, 2021, 10, .	2.8	20
449	Three-micrometer-diameter needle electrode with an amplifier for extracellular in vivo recordings. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	6
450	High-fidelity estimates of spikes and subthreshold waveforms from 1-photon voltage imaging inÂvi Cell Reports, 2021, 35, 108954.	vo. 2.9	24
452	Heterogeneity across neural populations: Its significance for the dynamics and functions of neural circuits. Physical Review E, 2021, 103, 042308.	0.8	3

#	Article	IF	CITATIONS
453	Adaptive spike detection and hardware optimization towards autonomous, high-channel-count BMIs. Journal of Neuroscience Methods, 2021, 354, 109103.	1.3	26
454	MR. Estimator, a toolbox to determine intrinsic timescales from subsampled spiking activity. PLoS ONE, 2021, 16, e0249447.	1.1	12
455	Single cell plasticity and population coding stability in auditory thalamus upon associative learning. Nature Communications, 2021, 12, 2438.	5.8	37
456	Recent advances in electronic devices for monitoring and modulation of brain. Nano Research, 2021, 14, 3070-3095.	5.8	18
458	Expanding evolutionary neuroscience: insights from comparing variation in behavior. Neuron, 2021, 109, 1084-1099.	3.8	64
460	Scalable nanophotonic neural probes for multicolor and on-demand light delivery in brain tissue. Nanotechnology, 2021, 32, 265201.	1.3	1
461	Highâ€Frequency Oscillations in the Pallidum: A Pathophysiological Biomarker in Parkinson's Disease?. Movement Disorders, 2021, 36, 1332-1341.	2.2	17
462	Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain recordings. Science, 2021, 372, .	6.0	467
463	ELVISort: encoding latent variables for instant sorting, an artificial intelligence-based end-to-end solution. Journal of Neural Engineering, 2021, 18, 046033.	1.8	7
464	Hybrid Multisite Silicon Neural Probe with Integrated Flexible Connector for Interchangeable Packaging. Sensors, 2021, 21, 2605.	2.1	7
466	Distributed coding in auditory thalamus and basolateral amygdala upon associative fear learning. Current Opinion in Neurobiology, 2021, 67, 183-189.	2.0	13
467	Frequency-Division Multiplexing With Graphene Active Electrodes for Neurosensor Applications. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 1735-1739.	2.2	7
469	An update to Hippocampome.org by integrating single-cell phenotypes with circuit function in vivo. PLoS Biology, 2021, 19, e3001213.	2.6	26
470	A robust and automated algorithm that uses single-channel spike sorting to label multi-channel Neuropixels data. , 2021, , .		3
471	Brain–Machine Interfaces: Closed-Loop Control in an Adaptive System. Annual Review of Control, Robotics, and Autonomous Systems, 2021, 4, 167-189.	7.5	10
472	Vision: Depth perception in climbing mice. Current Biology, 2021, 31, R486-R488.	1.8	0
473	Responsive manipulation of neural circuit pathology by fully implantable, front-end multiplexed embedded neuroelectronics. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	12
474	Neural Functional Connectivity Reconstruction with Secondâ€Order Memristor Network. Advanced Intelligent Systems, 2021, 3, 2000276.	3.3	9

#	Article	IF	CITATIONS
475	PEDOT:PSSâ€Based Bioelectronic Devices for Recording and Modulation of Electrophysiological and Biochemical Cell Signals. Advanced Healthcare Materials, 2021, 10, e2100061.	3.9	92
476	What we can and what we cannot see with extracellular multielectrodes. PLoS Computational Biology, 2021, 17, e1008615.	1.5	3
477	Transparent and Flexible Electrocorticography Electrode Arrays Based on Silver Nanowire Networks for Neural Recordings. ACS Applied Nano Materials, 2021, 4, 5737-5747.	2.4	14
478	Electronic Drugs: Spatial and Temporal Medical Treatment of Human Diseases. Advanced Materials, 2021, 33, e2005930.	11.1	14
479	Inferring thalamocortical monosynaptic connectivity in vivo. Journal of Neurophysiology, 2021, 125, 2408-2431.	0.9	16
480	An electronic neuromorphic system for real-time detection of high frequency oscillations (HFO) in in intracranial EEG. Nature Communications, 2021, 12, 3095.	5.8	74
481	Inferring Morphology of a Neuron from In Vivo LFP Data. , 2021, 2021, 774-777. Reinforcement of Neuropixels probes for high-density neural recording in non-human primates**This		2
482	work is supported by National Key RD Program of China (Grant No. 2017YFA0701102), Shanghai Science and Technology Committee, China (Grant No. 18JC1415102), Shanghai Municipal Science and Technology Major Project (Grant No. 2018SHZDZX05), National Natural Science Foundation of China (Grant No.) Tj ETQq1 1	1 0.784314	rgBT /Overl
483	Bioelectrodes for high-channel count and small form factor CMOS neural probes. , 2021, , .		4
484	Improving reliability and reducing costs of cardiotoxicity assessments using laser-induced cell poration on microelectrode arrays. Toxicology and Applied Pharmacology, 2021, 418, 115480.	1.3	5
485	Hunger or thirst state uncertainty is resolved by outcome evaluation in medial prefrontal cortex to guide decision-making. Nature Neuroscience, 2021, 24, 907-912.	7.1	28
486	Metal microdrive and head cap system for silicon probe recovery in freely moving rodent. ELife, 2021, 10, .	2.8	28
487	3D Electrodes for Bioelectronics. Advanced Materials, 2021, 33, e2005805.	11.1	35
488	High-precision coding in visual cortex. Cell, 2021, 184, 2767-2778.e15.	13.5	91
489	Dendritic calcium signals in rhesus macaque motor cortex drive an optical brain-computer interface. Nature Communications, 2021, 12, 3689.	5.8	38
490	Two-photon calcium imaging of seizures in awake, head-fixed mice. Cell Calcium, 2021, 96, 102380.	1.1	19
491	From Univariate to Multivariate Coupling Between Continuous Signals and Point Processes: A Mathematical Framework. Neural Computation, 2021, 33, 1751-1817.	1.3	2
492	Multidimensional analysis and detection of informative features in human brain white matter. PLoS Computational Biology, 2021, 17, e1009136.	1.5	14

#	Article	IF	CITATIONS
494	MOD: A novel machine-learning optimal-filtering method for accurate and efficient detection of subthreshold synaptic events in vivo. Journal of Neuroscience Methods, 2021, 357, 109125.	1.3	4
495	Whole-brain functional ultrasound imaging in awake head-fixed mice. Nature Protocols, 2021, 16, 3547-3571.	5.5	52
496	Optogenetic fUSI for brain-wide mapping of neural activity mediating collicular-dependent behaviors. Neuron, 2021, 109, 1888-1905.e10.	3.8	39
497	Improving scalability in systems neuroscience. Neuron, 2021, 109, 1776-1790.	3.8	14
498	Stretchable and Transparent Metal Nanowire Microelectrodes for Simultaneous Electrophysiology and Optogenetics Applications. Photonics, 2021, 8, 220.	0.9	11
499	A bio-adhesive ion-conducting organohydrogel as a high-performance non-invasive interface for bioelectronics. Chemical Engineering Journal, 2022, 427, 130886.	6.6	29
500	A 250-600 MHz Ring Oscillator-Based Phase-Locked Loop for Implantable Wireline Applications, Using 1.0 V Supply in 180 nm CMOS. , 2021, , .		2
501	A cerebellar-thalamocortical pathway drives behavioral context-dependent movement initiation. Neuron, 2021, 109, 2326-2338.e8.	3.8	63
502	Implantation of Neuropixels probes for chronic recording of neuronal activity in freely behaving mice and rats. Nature Protocols, 2021, 16, 3322-3347.	5.5	32
504	Modular Data Acquisition System for Recording Activity and Electrical Stimulation of Brain Tissue Using Dedicated Electronics. Sensors, 2021, 21, 4423.	2.1	4
505	Improved neuronal ensemble inference with generative model and MCMC. Journal of Statistical Mechanics: Theory and Experiment, 2021, 2021, 063501.	0.9	2
506	Regenerative medicine for neurological diseases—will regenerative neurosurgery deliver?. BMJ, The, 2021, 373, n955.	3.0	11
507	Supporting generalization in non-human primate behavior by tapping into structural knowledge: Examples from sensorimotor mappings, inference, and decision-making. Progress in Neurobiology, 2021, 201, 101996.	2.8	14
508	Double-Layer Flexible Neural Probe With Closely Spaced Electrodes for High-Density in vivo Brain Recordings. Frontiers in Neuroscience, 2021, 15, 663174.	1.4	20
510	Close-Packed PEDOT:PSS-Coated Graphene Microelectrodes for High-Resolution Interrogation of Neural Activity. IEEE Transactions on Electron Devices, 2021, 68, 3080-3086.	1.6	5
511	Noise Efficient Integrated Amplifier Designs for Biomedical Applications. Electronics (Switzerland), 2021, 10, 1522.	1.8	9
512	Decentralized Motion Inference and Registration of Neuropixel Data. , 2021, , .		11
513	Flexible, high-resolution thin-film electrodes for human and animal neural research. Journal of	1.8	28

			0
#		IF	CITATIONS
514	rast, cell-resolution, configuous-wide two-photon imaging to reveal functional network architectures across multi-modal cortical areas. Neuron, 2021, 109, 1810-1824.e9.	3.8	60
515	The mouse prefrontal cortex: Unity in diversity. Neuron, 2021, 109, 1925-1944.	3.8	84
516	Towards a mathematical definition of functional connectivity. Comptes Rendus Mathematique, 2021, 359, 481-492.	0.1	3
518	Head-mounted microendoscopic calcium imaging in dorsal premotor cortex of behaving rhesus macaque. Cell Reports, 2021, 35, 109239.	2.9	35
519	Laser ablation of the pia mater for insertion of high-density microelectrode arrays in a translational sheep model. Journal of Neural Engineering, 2021, 18, 045008.	1.8	3
520	Classification of Cortical Neurons by Spike Shape and the Identification of Pyramidal Neurons. Cerebral Cortex, 2021, 31, 5131-5138.	1.6	19
521	Sparse Coding in Temporal Association Cortex Improves Complex Sound Discriminability. Journal of Neuroscience, 2021, 41, 7048-7064.	1.7	9
522	A data-driven spike sorting feature map for resolving spike overlap in the feature space. Journal of Neural Engineering, 2021, 18, 0460a7.	1.8	6
523	Recording Strategies for High Channel Count, Densely Spaced Microelectrode Arrays. Frontiers in Neuroscience, 2021, 15, 681085.	1.4	9
524	Photocurable bioresorbable adhesives as functional interfaces between flexible bioelectronic devices and soft biological tissues. Nature Materials, 2021, 20, 1559-1570.	13.3	114
525	Wireless Addressable Cortical Microstimulators Powered by Near-Infrared Harvesting. ACS Sensors, 2021, 6, 2728-2737.	4.0	5
526	Transection of the Superior Sagittal Sinus Enables Bilateral Access to the Rodent Midline Brain Structures. ENeuro, 2021, 8, ENEURO.0146-21.2021.	0.9	1
527	Sensory coding and the causal impact of mouse cortex in a visual decision. ELife, 2021, 10, .	2.8	63
528	Reconciling functional differences in populations of neurons recorded with two-photon imaging and electrophysiology. ELife, 2021, 10, .	2.8	28
529	The Brain-Machine Interface: Nanotechnology and Cybernetics 60 Years After Norbert Wiener. , 2021, , .		0
530	Chronic recordings from the marmoset motor cortex reveals modulation of neural firing and local field potentials overlap with macaques. Journal of Neural Engineering, 2021, 18, 0460b2.	1.8	0
531	Emergence of abstract sound representations in the ascending auditory system. Progress in Neurobiology, 2021, 202, 102049.	2.8	14
532	Do not waste your electrodes—principles of optimal electrode geometry for spike sorting. Journal of Neural Engineering, 2021, 18, 0460a8.	1.8	1

#	Article	IF	CITATIONS
533	Disrupting cortico-cerebellar communication impairs dexterity. ELife, 2021, 10, .	2.8	37
534	Conductive Polymerâ€Based Bioelectronic Platforms toward Sustainable and Biointegrated Devices: A Journey from Skin to Brain across Human Body Interfaces. Advanced Materials Technologies, 2022, 7, 2100293.	3.0	36
536	Modularity and robustness of frontal cortical networks. Cell, 2021, 184, 3717-3730.e24.	13.5	39
537	The impact of a closed-loop thalamocortical model on the spatiotemporal dynamics of cortical and thalamic traveling waves. Scientific Reports, 2021, 11, 14359.	1.6	10
538	Dataset of cortical activity recorded with high spatial resolution from anesthetized rats. Scientific Data, 2021, 8, 180.	2.4	5
539	Rodent somatosensory thalamocortical circuitry: Neurons, synapses, and connectivity. Neuroscience and Biobehavioral Reviews, 2021, 126, 213-235.	2.9	13
541	Mesoscale microscopy and image analysis tools for understanding the brain. Progress in Biophysics and Molecular Biology, 2022, 168, 81-93.	1.4	25
543	Neural anatomy and optical microscopy (NAOMi) simulation for evaluating calcium imaging methods. Journal of Neuroscience Methods, 2021, 358, 109173.	1.3	37
544	Microcircuits for spatial coding in the medial entorhinal cortex. Physiological Reviews, 2022, 102, 653-688.	13.1	36
545	Spatial organization and transitions of spontaneous neuronal activities in the developing sensory cortex. Development Growth and Differentiation, 2021, 63, 323-339.	0.6	7
546	Chronic, Multi-Site Recordings Supported by Two Low-Cost, Stationary Probe Designs Optimized to Capture Either Single Unit or Local Field Potential Activity in Behaving Rats. Frontiers in Psychiatry, 2021, 12, 678103.	1.3	5
547	Neurobiology of brain oscillations in acute and chronic pain. Trends in Neurosciences, 2021, 44, 629-642.	4.2	18
548	Large Animal Studies to Reduce the Foreign Body Reaction in Brain–Computer Interfaces: A Systematic Review. Biosensors, 2021, 11, 275.	2.3	4
552	Construction and Implementation of Carbon Fiber Microelectrode Arrays for Chronic and Acute In Vivo Recordings. Journal of Visualized Experiments, 2021, , .	0.2	0
553	Representational drift in the mouse visual cortex. Current Biology, 2021, 31, 4327-4339.e6.	1.8	96
554	Multi-scale neural decoding and analysis. Journal of Neural Engineering, 2021, 18, 045013.	1.8	16
555	Non-linear dimensionality reduction on extracellular waveforms reveals cell type diversity in premotor cortex. ELife, 2021, 10, .	2.8	41
556	Thresholding Functional Connectivity Matrices to Recover the Topological Properties of Large-Scale Neuronal Networks. Frontiers in Neuroscience, 2021, 15, 705103.	1.4	7

#	Article	IF	CITATIONS
557	Compressed Sensing of Extracellular Neurophysiology Signals: A Review. Frontiers in Neuroscience, 2021, 15, 682063.	1.4	4
558	Dentate spikes and external control of hippocampal function. Cell Reports, 2021, 36, 109497.	2.9	23
560	A modular strategy for next-generation upper-limb sensory-motor neuroprostheses. Med, 2021, 2, 912-937.	2.2	16
561	Integration of sensory evidence and reward expectation in mouse perceptual decision-making task with various sensory uncertainties. IScience, 2021, 24, 102826.	1.9	6
562	Nanoenabled Bioelectrical Modulation. Accounts of Materials Research, 2021, 2, 895-906.	5.9	3
564	Neural recording and stimulation using wireless networks of microimplants. Nature Electronics, 2021, 4, 604-614.	13.1	81
566	Advances in Neural Recording and Stimulation Integrated Circuits. Frontiers in Neuroscience, 2021, 15, 663204.	1.4	5
567	Extracellular Recording of Entire Neural Networks Using a Dual-Mode Microelectrode Array With 19 584 Electrodes and High SNR. IEEE Journal of Solid-State Circuits, 2021, 56, 2466-2475.	3.5	22
568	Flexible High-Resolution Force and Dimpling Measurement System for Pia and Dura Penetration During <i>In Vivo</i> Microelectrode Insertion Into Rat Brain. IEEE Transactions on Biomedical Engineering, 2021, 68, 2602-2612.	2.5	4
569	A Modified Miniscope System for Simultaneous Electrophysiology and Calcium Imaging in vivo. Frontiers in Integrative Neuroscience, 2021, 15, 682019.	1.0	17
570	AgRP neurons: Regulators of feeding, energy expenditure, and behavior. FEBS Journal, 2022, 289, 2362-2381.	2.2	46
571	Interference-free, lightweight wireless neural probe system for investigating brain activity during natural competition. Biosensors and Bioelectronics, 2022, 195, 113665.	5.3	13
572	Implanted microelectrode arrays for evaluating inhibited seizure modulated by light-responsive hydrogel. Journal of Micromechanics and Microengineering, 2021, 31, 105005.	1.5	3
573	Acceleration of the SPADE Method Using a Custom-Tailored FP-Growth Implementation. Frontiers in Neuroinformatics, 2021, 15, 723406.	1.3	2
574	Neural tuning and representational geometry. Nature Reviews Neuroscience, 2021, 22, 703-718.	4.9	80
575	Electrode pooling can boost the yield of extracellular recordings with switchable silicon probes. Nature Communications, 2021, 12, 5245.	5.8	4
576	Distance-tuned neurons drive specialized path integration calculations in medial entorhinal cortex. Cell Reports, 2021, 36, 109669.	2.9	40
578	Ambipolar inverters based on cofacial vertical organic electrochemical transistor pairs for biosignal amplification. Science Advances, 2021, 7, eabh1055.	4.7	46

#	Article	IF	CITATIONS
579	A dopamine gradient controls access to distributed working memory in the large-scale monkey cortex. Neuron, 2021, 109, 3500-3520.e13.	3.8	48
581	Historical perspectives, challenges, and future directions of implantable brain-computer interfaces for sensorimotor applications. Bioelectronic Medicine, 2021, 7, 14.	1.0	11
584	Spatial modulation of dark versus bright stimulus responses in the mouse visual system. Current Biology, 2021, 31, 4172-4179.e6.	1.8	26
585	Anipose: A toolkit for robust markerless 3D pose estimation. Cell Reports, 2021, 36, 109730.	2.9	109
587	Protocol for remapping of place cells in disease mouse models. STAR Protocols, 2021, 2, 100759.	0.5	1
588	Bridging neuronal correlations and dimensionality reduction. Neuron, 2021, 109, 2740-2754.e12.	3.8	24
589	Dynamic and reversible remapping of network representations in an unchanging environment. Neuron, 2021, 109, 2967-2980.e11.	3.8	25
592	Neuromorphic electronics based on copying and pasting the brain. Nature Electronics, 2021, 4, 635-644.	13.1	94
593	Building population models for large-scale neural recordings: Opportunities and pitfalls. Current Opinion in Neurobiology, 2021, 70, 64-73.	2.0	20
594	Anti-fouling peptide functionalization of ultraflexible neural probes for long-term neural activity recordings in the brain. Biosensors and Bioelectronics, 2021, 192, 113477.	5.3	13
595	Three dimensional bioelectronic interfaces to small-scale biological systems. Current Opinion in Biotechnology, 2021, 72, 1-7.	3.3	12
596	Implantable Brain Computer Interface Devices Based on Mems Technology. , 2021, , .		Ο
597	Holographic Imaging and Stimulation of Neural Circuits. Advances in Experimental Medicine and Biology, 2021, 1293, 613-639.	0.8	2
598	A Review: Electrode and Packaging Materials for Neurophysiology Recording Implants. Frontiers in Bioengineering and Biotechnology, 2020, 8, 622923.	2.0	31
599	Optimizing Neuroprosthetic Therapies via Autonomous Learning Agents. SSRN Electronic Journal, 0, , .	0.4	0
600	Survey of spiking in the mouse visual system reveals functional hierarchy. Nature, 2021, 592, 86-92.	13.7	284
601	GaN-on-silicon MicroLEDs for neural interfaces. Semiconductors and Semimetals, 2021, 106, 123-172.	0.4	3
606	Measurement, manipulation and modeling of brain-wide neural population dynamics. Nature Communications, 2021, 12, 633.	5.8	23

#	Article	IF	CITATIONS
607	Neural System Identification With Spike-Triggered Non-Negative Matrix Factorization. IEEE Transactions on Cybernetics, 2022, 52, 4772-4783.	6.2	9
608	3D high-density microelectrode array with optical stimulation and drug delivery for investigating neural circuit dynamics. Nature Communications, 2021, 12, 492.	5.8	101
609	A Guide to Fluorescence Lifetime Microscopy and Förster's Resonance Energy Transfer in Neuroscience. Current Protocols in Neuroscience, 2020, 94, e108.	2.6	8
610	Advances in Penetrating Multichannel Microelectrodes Based on the Utah Array Platform. Advances in Experimental Medicine and Biology, 2019, 1101, 1-40.	0.8	12
611	Future of Neural Interfaces. Advances in Experimental Medicine and Biology, 2019, 1101, 225-241.	0.8	7
612	Simultaneous monitoring of action potentials and neurotransmitter release from neuron-like PC12 cells. Analytica Chimica Acta, 2020, 1105, 74-81.	2.6	11
613	Micro- and nanotechnology for neural electrode-tissue interfaces. Biosensors and Bioelectronics, 2020, 170, 112645.	5.3	42
614	Purkinje Cell Activity Determines the Timing of Sensory-Evoked Motor Initiation. Cell Reports, 2020, 33, 108537.	2.9	20
615	Cell assemblies, sequences and temporal coding in the hippocampus. Current Opinion in Neurobiology, 2020, 64, 111-118.	2.0	32
616	Inside the mind of an animal. Nature, 2020, 584, 182-185.	13.7	10
616 617	Inside the mind of an animal. Nature, 2020, 584, 182-185. Social isolation uncovers a circuit underlying context-dependent territory-covering micturition. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	13.7 3.3	10 9
616 617 618	Inside the mind of an animal. Nature, 2020, 584, 182-185. Social isolation uncovers a circuit underlying context-dependent territory-covering micturition. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, . Computational challenges and opportunities for a bi-directional artificial retina. Journal of Neural Engineering, 2020, 17, 055002.	13.7 3.3 1.8	10 9 26
616 617 618 619	Inside the mind of an animal. Nature, 2020, 584, 182-185. Social isolation uncovers a circuit underlying context-dependent territory-covering micturition. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, . Computational challenges and opportunities for a bi-directional artificial retina. Journal of Neural Engineering, 2020, 17, 055002. High density carbon fiber arrays for chronic electrophysiology, fast scan cyclic voltammetry, and correlative anatomy. Journal of Neural Engineering, 2020, 17, 056029.	13.7 3.3 1.8 1.8	10 9 26 32
 616 617 618 619 620 	Inside the mind of an animal. Nature, 2020, 584, 182-185. Social isolation uncovers a circuit underlying context-dependent territory-covering micturition. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, . Computational challenges and opportunities for a bi-directional artificial retina. Journal of Neural Engineering, 2020, 17, 055002. High density carbon fiber arrays for chronic electrophysiology, fast scan cyclic voltammetry, and correlative anatomy. Journal of Neural Engineering, 2020, 17, 056029. The Argo: a high channel count recording system for neural recording in vivo. Journal of Neural Engineering, 2021, 18, 015002.	13.7 3.3 1.8 1.8 1.8	10 9 26 32 46
 616 617 618 619 620 621 	Inside the mind of an animal. Nature, 2020, 584, 182-185. Social isolation uncovers a circuit underlying context-dependent territory-covering micturition. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, . Computational challenges and opportunities for a bi-directional artificial retina. Journal of Neural Engineering, 2020, 17, 055002. High density carbon fiber arrays for chronic electrophysiology, fast scan cyclic voltammetry, and correlative anatomy. Journal of Neural Engineering, 2020, 17, 056029. The Argo: a high channel count recording system for neural recording in vivo. Journal of Neural Engineering, 2021, 18, 015002. Cross-species neuroscience: closing the explanatory gap. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20190633.	 13.7 3.3 1.8 1.8 1.8 1.8 	10 9 26 32 46 41
 616 617 618 619 620 621 716 	Inside the mind of an animal. Nature, 2020, 584, 182-185. Social isolation uncovers a circuit underlying context-dependent territory-covering micturition. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, . Computational challenges and opportunities for a bi-directional artificial retina. Journal of Neural Engineering, 2020, 17, 055002. High density carbon fiber arrays for chronic electrophysiology, fast scan cyclic voltammetry, and correlative anatomy. Journal of Neural Engineering, 2020, 17, 056029. The Argo: a high channel count recording system for neural recording in vivo. Journal of Neural Engineering, 2021, 18, 015002. Cross-species neuroscience: closing the explanatory gap. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20190633. Multi-Pattern Recognition Through Maximization of Signal-to-Peak-Interference Ratio With Application to Neural Spike Sorting. IEEE Transactions on Signal Processing, 2020, 68, 6240-6254.	 13.7 3.3 1.8 1.8 1.8 3.2 	10 9 26 32 46 41 6
 616 617 618 619 620 621 716 717 	Inside the mind of an animal. Nature, 2020, 584, 182-185. Social isolation uncovers a circuit underlying context-dependent territory-covering micturition. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, . Computational challenges and opportunities for a bi-directional artificial retina. Journal of Neural Engineering, 2020, 17, 055002. High density carbon fiber arrays for chronic electrophysiology, fast scan cyclic voltammetry, and correlative anatomy. Journal of Neural Engineering, 2020, 17, 056029. The Argo: a high channel count recording system for neural recording in vivo. Journal of Neural Engineering, 2021, 18, 015002. Cross-species neuroscience: closing the explanatory gap. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20190633. Multi-Pattern Recognition Through Maximization of Signal-to-Peak-Interference Ratio With Application to Neural Spike Sorting. IEEE Transactions on Signal Processing, 2020, 68, 6240-6254. Comparison between transgenic and AAV-PHP.eB-mediated expression of GCaMP6s using in vivo wide-field functional imaging of brain activity. Neurophotonics, 2019, 6, 1.	 13.7 3.3 1.8 1.8 1.8 3.2 1.7 	10 9 26 32 46 41 6 17

#	Article	IF	CITATIONS
719	Emerging ideas and tools to study the emergent properties of the cortical neural circuits for voluntary motor control in non-human primates. F1000Research, 2019, 8, 749.	0.8	18
720	NeuroChaT: A toolbox to analyse the dynamics of neuronal encoding in freely-behaving rodents in vivo. Wellcome Open Research, 2019, 4, 196.	0.9	7
721	An Active Visible Nanophotonics Platform for Sub-Millisecond Deep Brain Neural Stimulation. , 2018, , .		1
722	Performance evaluation of an implantable sensor for deep brain imaging: an analytical investigation. Optical Materials Express, 2019, 9, 3729.	1.6	5
723	Contribution of the Axon Initial Segment to Action Potentials Recorded Extracellularly. ENeuro, 2018, 5, ENEURO.0068-18.2018.	0.9	6
724	Rigbox: An Open-Source Toolbox for Probing Neurons and Behavior. ENeuro, 2020, 7, ENEURO.0406-19.2020.	0.9	19
725	Temporal Association Cortex - A Cortical Hub for Processing Infant Vocalizations. SSRN Electronic Journal, 0, , .	0.4	1
726	The SONATA Data Format for Efficient Description of Large-Scale Network Models. SSRN Electronic Journal, 0, , .	0.4	6
727	An Integrated Brain-Machine Interface Platform With Thousands of Channels. Journal of Medical Internet Research, 2019, 21, e16194.	2.1	526
728	Unsupervised discovery of temporal sequences in high-dimensional datasets, with applications to neuroscience. ELife, 2019, 8, .	2.8	85
729	Monkey EEG links neuronal color and motion information across species and scales. ELife, 2019, 8, .	2.8	24
730	Neural ensemble dynamics in dorsal motor cortex during speech in people with paralysis. ELife, 2019, 8,	2.8	64
731	Modular organization of cerebellar climbing fiber inputs during goal-directed behavior. ELife, 2019, 8,	2.8	40
732	Chronically implanted Neuropixels probes enable high-yield recordings in freely moving mice. ELife, 2019, 8, .	2.8	124
733	Brian 2, an intuitive and efficient neural simulator. ELife, 2019, 8, .	2.8	418
734	Velocity coupling of grid cell modules enables stable embedding of a low dimensional variable in a high dimensional neural attractor. ELife, 2019, 8, .	2.8	19
735	An arbitrary-spectrum spatial visual stimulator for vision research. ELife, 2019, 8, .	2.8	51
736	NINscope, a versatile miniscope for multi-region circuit investigations. ELife, 2020, 9, .	2.8	107

		Citation Re	PORT	
#	Article		IF	CITATIONS
737	A projection specific logic to sampling visual inputs in mouse superior colliculus. ELife, 2	2019, 8, .	2.8	53
738	Complexity of frequency receptive fields predicts tonotopic variability across species. El	Life, 2020, 9, .	2.8	17
739	SpikeForest, reproducible web-facing ground-truth validation of automated neural spike ELife, 2020, 9, .	? sorters.	2.8	72
740	A theory of joint attractor dynamics in the hippocampus and the entorhinal cortex acco artificial remapping and grid cell field-to-field variability. ELife, 2020, 9, .	unts for	2.8	28
741	A new no-report paradigm reveals that face cells encode both consciously perceived and stimuli. ELife, 2020, 9, .	d suppressed	2.8	29
742	An approach for long-term, multi-probe Neuropixels recordings in unrestrained rats. ELif	e, 2020, 9, .	2.8	39
743	SpikeInterface, a unified framework for spike sorting. ELife, 2020, 9, .		2.8	127
744	Canonical goal-selective representations are absent from prefrontal cortex in a spatial v memory task requiring behavioral flexibility. ELife, 2020, 9, .	vorking	2.8	15
745	Flexibility of Behavior-Related Multidimensional Neural Activity. The Brain & Neural Netv 28, 117-126.	vorks, 2021,	0.1	0
746	Flexible inhibitory control of visually evoked defensive behavior by the ventral lateral ge nucleus. Neuron, 2021, 109, 3810-3822.e9.	niculate	3.8	39
747	Self-assembled multifunctional neural probes for precise integration of optogenetics an electrophysiology. Nature Communications, 2021, 12, 5871.	d	5.8	29
748	Dynamic Rhythmogenic Network States Drive Differential Opioid Responses in the <i>In Vitro</i> Respiratory Network. Journal of Neuroscience, 2021, 41, 9919-9931.		1.7	11
749	Time for NanoNeuro. Nature Methods, 2021, 18, 1287-1293.		9.0	17
750	Neural implementations of Bayesian inference. Current Opinion in Neurobiology, 2021,	70, 121-129.	2.0	13
751	Neural circuit mechanisms that govern inter-male attack in mice. Cellular and Molecular Sciences, 2021, 78, 7289-7307.	Life	2.4	11
753	Accurate Localization of Linear Probe Electrode Arrays across Multiple Brains. ENeuro, 2 ENEURO.0241-21.2021.	021, 8,	0.9	16
754	Visualizing synaptic plasticity in vivo by large-scale imaging of endogenous AMPA recep 10, .	tors. ELife, 2021,	2.8	33
755	Removing independent noise in systems neuroscience data using DeepInterpolation. Na 2021, 18, 1401-1408.	ature Methods,	9.0	57

	CITATION RE	PORT	
#	Article	IF	CITATIONS
756	A photocurable bioelectronics–tissue interface. Nature Materials, 2021, 20, 1460-1461.	13.3	1
757	Uncovering spatial representations from spatiotemporal patterns of rodent hippocampal field potentials. Cell Reports Methods, 2021, 1, 100101.	1.4	6
758	A connectome of the Drosophila central complex reveals network motifs suitable for flexible navigation and context-dependent action selection. ELife, 2021, 10, .	2.8	168
760	Novel transducers for high-channel-count neuroelectronic recording interfaces. Current Opinion in Biotechnology, 2021, 72, 39-47.	3.3	3
801	Implanting and Recycling Neuropixels Probes for Recordings in Freely Moving Mice. Bio-protocol, 2020, 10, e3503.	0.2	0
802	Towards Automated Processing and Analysis of Neuronal Big Data Acquired Using High-Resolution Brain-Chip Interfaces. Brain Informatics and Health, 2020, , 175-191.	0.1	1
814	Wide Field Two-photon Excitation Microscope for <i>In Vivo</i> Calcium Imaging with Single Cell Resolution. The Brain & Neural Networks, 2020, 27, 55-65.	0.1	0
826	The diversity and specificity of functional connectivity across spatial and temporal scales. NeuroImage, 2021, 245, 118692.	2.1	15
827	Modulusâ€Tailorable, Stretchable, and Biocompatible Carbonene Fiber for Adaptive Neural Electrode. Advanced Functional Materials, 2022, 32, 2107360.	7.8	15
829	Electrophysiology and the magnetic sense: a guide to best practice. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2021, 208, 185.	0.7	5
830	Nonlinear visuoauditory integration in the mouse superior colliculus. PLoS Computational Biology, 2021, 17, e1009181.	1.5	7
831	From Neurons to Cognition: Technologies for Precise Recording of Neural Activity Underlying Behavior. BME Frontiers, 2020, 2020, .	2.2	7
832	Two-Photon Microscopy for Studying Reward Circuits of the Brain. Neuromethods, 2021, , 339-363.	0.2	0
834	Large-scale Recording and the Next-generation System Neuroscience. The Brain & Neural Networks, 2020, 27, 152-164.	0.1	0
835	Which Should Come First in Neuroscience: Theory or Experiment?. The Brain & Neural Networks, 2020, 27, 118-126.	0.1	0
839	Technological Challenges in the Development of Optogenetic Closed-Loop Therapy Approaches in Epilepsy and Related Network Disorders of the Brain. Micromachines, 2021, 12, 38.	1.4	8
841	Neuronal Mechanisms Underlying Motor Planning. The Brain & Neural Networks, 2020, 27, 97-106.	0.1	0
845	A Compact Chopper Stabilized Δ-ΔΣ Neural Readout IC With Input Impedance Boosting. IEEE Open Journal of the Solid-State Circuits Society, 2021, 1, 67-78.	2.0	12

#	Article	IF	CITATIONS
846	Biopotential Measurements and Electrodes. , 2020, , 65-96.		6
847	Network Properties of Visual Cortex. , 2020, , 413-422.		0
849	Possibilities of using a miniature fluorescence microscope. E3S Web of Conferences, 2020, 224, 02005.	0.2	0
850	Challenges in the Design of Large-Scale, High-Density, Wireless Stimulation and Recording Interface. , 2020, , 1-28.		1
852	Biofluid Barrier Materials and Encapsulation Strategies for Flexible, Chronically Stable Neural Interfaces. , 2020, , 267-280.		1
854	A Platform for Brain-Wide Functional Ultrasound Imaging and Analysis of Circuit Dynamics in Behaving Mice. SSRN Electronic Journal, 0, , .	0.4	1
860	Interpreting the Entire Connectivity of Individual Neurons in Micropatterned Neural Culture With an Integrated Connectome Analyzer of a Neuronal Network (iCANN). Frontiers in Neuroanatomy, 2021, 15, 746057.	0.9	9
861	Visual thalamocortical mechanisms of waking state-dependent activity and alpha oscillations. Neuron, 2022, 110, 120-138.e4.	3.8	43
862	Materials Chemistry of Neural Interface Technologies and Recent Advances in Three-Dimensional Systems. Chemical Reviews, 2022, 122, 5277-5316.	23.0	31
864	Three dimensional microelectrodes enable high signal and spatial resolution for neural seizure recordings in brain slices and freely behaving animals. Scientific Reports, 2021, 11, 21952.	1.6	4
872	Neural Interface Devices: Connecting Electronics to the Brain. Journal of the Institute of Electrical Engineers of Japan, 2020, 140, 668-671.	0.0	0
880	Improving Neural Simulations with the EMI Model. Simula SpringerBriefs on Computing, 2021, , 87-98.	0.8	2
884	Scaling the Poisson GLM to massive neural datasets through polynomial approximations. Advances in Neural Information Processing Systems, 2018, 31, 3517-3527.	2.8	3
885	Neural population geometry: An approach for understanding biological and artificial neural networks. Current Opinion in Neurobiology, 2021, 70, 137-144.	2.0	112
886	Towards the next generation of recurrent network models for cognitive neuroscience. Current Opinion in Neurobiology, 2021, 70, 182-192.	2.0	19
887	Simultaneous Two-Photon Voltage or Calcium Imaging and Multi-Channel Local Field Potential Recordings in Barrel Cortex of Awake and Anesthetized Mice. Frontiers in Neuroscience, 2021, 15, 741279.	1.4	6
888	Carbon fiber electrodes for intracellular recording and stimulation. Journal of Neural Engineering, 2021, 18, 066033.	1.8	17
889	Cross-population coupling of neural activity based on Gaussian process current source densities. PLoS Computational Biology, 2021, 17, e1009601.	1.5	3

#	Article	IF	CITATIONS
890	Nanofibrous PEDOT-Carbon Composite on Flexible Probes for Soft Neural Interfacing. Frontiers in Bioengineering and Biotechnology, 2021, 9, 780197.	2.0	5
891	Geodesic-based distance reveals nonlinear topological features in neural activity from mouse visual cortex. Biological Cybernetics, 2022, 116, 53-68.	0.6	4
892	Projections of the Mouse Primary Visual Cortex. Frontiers in Neural Circuits, 2021, 15, 751331.	1.4	5
893	A Multimodal Multiâ€Shank Fluorescence Neural Probe for Cellâ€Typeâ€Specific Electrophysiology in Multiple Regions across a Neural Circuit. Advanced Science, 2022, 9, e2103564.	5.6	10
894	Single-neuron firing cascades underlie global spontaneous brain events. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	15
895	Multisensory coding of angular head velocity in the retrosplenial cortex. Neuron, 2022, 110, 532-543.e9.	3.8	32
896	Freeâ€Standing Nanofilm Electrode Arrays for Longâ€Term Stable Neural Interfacings. Advanced Materials, 2022, 34, e2107343.	11.1	11
897	Longevity and reliability of chronic unit recordings using the Utah, intracortical multi-electrode arrays. Journal of Neural Engineering, 2021, 18, 066044.	1.8	14
898	Implantable aptamer–field-effect transistor neuroprobes for in vivo neurotransmitter monitoring. Science Advances, 2021, 7, eabj7422.	4.7	68
900	Inhibitory control of synaptic signals preceding locomotion in mouse frontal cortex. Cell Reports, 2021, 37, 110035.	2.9	3
901	Dense Packed Drivable Optrode Array for Precise Optical Stimulation and Neural Recording in Multiple-Brain Regions. ACS Sensors, 2021, 6, 4126-4135.	4.0	9
903	Recent advances in recording and modulation technologies for next-generation neural interfaces. IScience, 2021, 24, 103550.	1.9	9
905	The Hybrid Drive: A Chronic Implant Device Combining Tetrode Arrays with Silicon Probes for Layer-Resolved Ensemble Electrophysiology in Freely Moving Mice. SSRN Electronic Journal, 0, , .	0.4	0
908	Low-cost and easy-fabrication lightweight drivable electrode array for multiple-regions electrophysiological recording in free-moving mice. Journal of Neural Engineering, 2022, , .	1.8	4
909	Drifting neuronal representations: Bug or feature?. Biological Cybernetics, 2022, 116, 253-266.	0.6	13
910	A 3.1-5.2GHz, Energy-Efficient Single Antenna, Cancellation-Free, Bitwise Time-Division Duplex Transceiver for High Channel Count Optogenetic Neural Interface. IEEE Transactions on Biomedical Circuits and Systems, 2022, 16, 52-63.	2.7	7
911	Reconfigurable Dual-Band Capsule-Conformal Antenna Array for In-Body Bioelectronics. IEEE Transactions on Antennas and Propagation, 2022, 70, 3749-3761.	3.1	17
912	An automatic three dimensional markerless behavioral tracking system of free-moving mice. , 2021, , .		3

#	Article	IF	CITATIONS
913	A New Multilevel Pulsed Modulation Technique for Low Power High Data Rate Optical Biotelemetry. , 2021, , .		2
914	Coupling SiNAPS High-density Neural Recording CMOS-Probes with Optogenetic Light Stimulation. , 2021, , .		2
915	The impact of reducing signal acquisition specifications on neuronal spike sorting. , 2021, 2021, 5914-5918.		0
916	Multisite Simultaneous Neural Recording of Motor Pathway in Free-Moving Rats. Biosensors, 2021, 11, 503.	2.3	2
917	Deep brain electrophysiology in freely moving sheep. Current Biology, 2022, 32, 763-774.e4.	1.8	4
919	Orthogonalization of far-field detection in tapered optical fibers for depth-selective fiber photometry in brain tissue. APL Photonics, 2022, 7, 026106.	3.0	6
920	A 16-Channel Fully Configurable Neural SoC With 1.52 \$mu\$W/Ch Signal Acquisition, 2.79 \$mu\$W/Ch Real-Time Spike Classifier, and 1.79 TOPS/W Deep Neural Network Accelerator in 22 nm FDSOI. IEEE Transactions on Biomedical Circuits and Systems, 2022, 16, 94-107.	2.7	15
921	Toroidal topology of population activity in grid cells. Nature, 2022, 602, 123-128.	13.7	152
922	Large-scale neural recordings with single neuron resolution using Neuropixels probes in human cortex. Nature Neuroscience, 2022, 25, 252-263.	7.1	112
923	Electrical cross-sectional imaging of human motor units in vivo. Clinical Neurophysiology, 2022, 136, 82-92.	0.7	4
924	Engineering strategies towards overcoming bleeding and glial scar formation around neural probes. Cell and Tissue Research, 2022, 387, 461-477.	1.5	14
925	Stretchable Mesh Nanoelectronics for 3D Singleâ€Cell Chronic Electrophysiology from Developing Brain Organoids. Advanced Materials, 2022, 34, e2106829.	11.1	44
926	The fast continuous wavelet transformation (fCWT) for real-time, high-quality, noise-resistant time–frequency analysis. Nature Computational Science, 2022, 2, 47-58.	3.8	39
927	New Era of Electroceuticals: Clinically Driven Smart Implantable Electronic Devices Moving towards Precision Therapy. Micromachines, 2022, 13, 161.	1.4	8
928	Planning in the brain. Neuron, 2022, 110, 914-934.	3.8	37
929	Design of implantable microprobe for silicon wet bulk micromachining. , 2022, , .		0
931	Biomedical Sensors Based on Micro- and Nanotechnology. IFMBE Proceedings, 2022, , 568-576.	0.2	0
932	Multi-Shank Thin-Film Neural Probes and Implantation System for High-Resolution Neural Recording Applications. SSRN Electronic Journal, 0, , .	0.4	1

#	Article	IF	CITATIONS
933	Accurate determination of marker location within whole-brain microscopy images. Scientific Reports, 2022, 12, 867.	1.6	21
934	Representation Learning for Dynamic Functional Connectivities via Variational Dynamic Graph Latent Variable Models. Entropy, 2022, 24, 152.	1.1	1
935	A Light-Tolerant Wireless Neural Recording IC for Motor Prediction With Near-Infrared-Based Power and Data Telemetry. IEEE Journal of Solid-State Circuits, 2022, 57, 1061-1074.	3.5	19
936	Assessing the Feasibility of Developing in vivo Neuroprobes for Parallel Intracellular Recording and Stimulation: A Perspective. Frontiers in Neuroscience, 2021, 15, 807797.	1.4	1
937	Neurophysiology of the Developing Cerebral Cortex: What We Have Learned and What We Need to Know. Frontiers in Cellular Neuroscience, 2021, 15, 814012.	1.8	6
938	Brief Stimuli Cast a Persistent Long-Term Trace in Visual Cortex. Journal of Neuroscience, 2022, 42, 1999-2010.	1.7	14
940	A floating 5 μm-diameter needle electrode on the tissue for damage-reduced chronic neuronal recording in mice. Lab on A Chip, 2022, 22, 747-756.	3.1	4
941	Neuroscience in the 21st century: circuits, computation, and behaviour. Lancet Neurology, The, 2022, 21, 19-21.	4.9	4
942	Parametric Copula-GP model for analyzing multidimensional neuronal and behavioral relationships. PLoS Computational Biology, 2022, 18, e1009799.	1.5	2
943	On the longevity of flexible neural interfaces: Establishing biostability of polyimide-based intracortical implants. Biomaterials, 2022, 281, 121372.	5.7	27
944	jULIEs: nanostructured polytrodes for low traumatic extracellular recordings and stimulation in the mammalian brain. Journal of Neural Engineering, 2022, , .	1.8	2
945	Probe captures neuronal conversations in people. Spectrum, 0, , .	0.0	0
947	Current approaches to characterize micro- and macroscale circuit mechanisms of Parkinson's disease in rodent models. Experimental Neurology, 2022, 351, 114008.	2.0	4
948	Multi-regional module-based signal transmission in mouse visual cortex. Neuron, 2022, 110, 1585-1598.e9.	3.8	27
949	Four concurrent feedforward and feedback networks with different roles in the visual cortical hierarchy. PLoS Biology, 2022, 20, e3001534.	2.6	8
951	Fluorescence spectroscopy for revealing mechanisms in biology: Strengths and pitfalls. Journal of Biosciences, 2018, 43, 555-567.	0.5	6
952	A Fast and Efficient Change-Point Detection Framework Based on Approximate \$k\$-Nearest Neighbor Graphs. IEEE Transactions on Signal Processing, 2022, 70, 1976-1986.	3.2	3
953	Data Transformation in the Processing of Neuronal Signals: A Powerful Tool to Illuminate Informative Contents. IEEE Reviews in Biomedical Engineering, 2023, 16, 611-626.	13.1	2

#	Article	IF	CITATIONS
955	Multichannel optogenetics combined with laminar recordings for ultra-controlled neuronal interrogation. Nature Communications, 2022, 13, 985.	5.8	6
958	Mechanisms of distributed working memory in a large-scale network of macaque neocortex. ELife, 2022, 11, .	2.8	48
959	Flexible Electronics and Devices as Human–Machine Interfaces for Medical Robotics. Advanced Materials, 2022, 34, e2107902.	11.1	211
961	ProbeInterface: A Unified Framework for Probe Handling in Extracellular Electrophysiology. Frontiers in Neuroinformatics, 2022, 16, 823056.	1.3	1
962	High-Density, Actively Multiplexed µECoG Array on Reinforced Silicone Substrate. Frontiers in Nanotechnology, 2022, 4, .	2.4	7
964	Longitudinal manganeseâ€enhanced magnetic resonance imaging of neural projections and activity. NMR in Biomedicine, 2022, 35, e4675.	1.6	8
965	A Fully Adapted Headstage With Custom Electrode Arrays Designed for Electrophysiological Experiments. Frontiers in Neuroscience, 2021, 15, 691788.	1.4	2
966	Recent advances in wireless epicortical and intracortical neuronal recording systems. Science China Information Sciences, 2022, 65, 1.	2.7	12
967	PtNPs/Short MWCNT-PEDOT: PSS-Modified Microelectrode Array to Detect Neuronal Firing Patterns in the Dorsal Raphe Nucleus and Hippocampus of Insomnia Rats. Micromachines, 2022, 13, 488.	1.4	4
968	Direct Discriminative Decoder Models for Analysis of High-Dimensional Dynamical Neural Data. Neural Computation, 2022, 34, 1100-1135.	1.3	2
969	A midbrain-thalamus-cortex circuit reorganizes cortical dynamics to initiate movement. Cell, 2022, 185, 1065-1081.e23.	13.5	83
970	Low-Noise Amplifier for Deep-Brain Stimulation (DBS). Electronics (Switzerland), 2022, 11, 939.	1.8	5
971	Motor cortical output for skilled forelimb movement is selectively distributed across projection neuron classes. Science Advances, 2022, 8, eabj5167.	4.7	33
972	1024-channel electrophysiological recordings in macaque V1 and V4 during resting state. Scientific Data, 2022, 9, 77.	2.4	9
973	Neural Algorithms and Circuits for Motor Planning. Annual Review of Neuroscience, 2022, 45, 249-271.	5.0	28
974	Gentle Patterning Approaches toward Compatibility with Bioâ€Organic Materials and Their Environmental Aspects. Small, 2022, 18, e2200476.	5.2	7
975	Recent Technical Advances in Accelerating the Clinical Translation of Small Animal Brain Imaging: Hybrid Imaging, Deep Learning, and Transcriptomics. Frontiers in Medicine, 2022, 9, 771982.	1.2	10
976	Neural correlates of blood flow measured by ultrasound. Neuron, 2022, 110, 1631-1640.e4.	3.8	40

#	Article	IF	CITATIONS
977	Neurotechnological Approaches to the Diagnosis and Treatment of Alzheimer's Disease. Frontiers in Neuroscience, 2022, 16, 854992.	1.4	12
978	Metastable dynamics of neural circuits and networks. Applied Physics Reviews, 2022, 9, 011313.	5.5	25
980	Sharp Tuning of Head Direction and Angular Head Velocity Cells in the Somatosensory Cortex. Advanced Science, 2022, 9, e2200020.	5.6	6
982	Grid-cell modules remain coordinated when neural activity is dissociated from external sensory cues. Neuron, 2022, 110, 1843-1856.e6.	3.8	19
983	Neuronal ensemble dynamics in associative learning. Current Opinion in Neurobiology, 2022, 73, 102530.	2.0	8
984	Breaking trade-offs: Development of fast, high-resolution, wide-field two-photon microscopes to reveal the computational principles of the brain. Neuroscience Research, 2022, 179, 3-14.	1.0	8
986	Ionic communication for implantable bioelectronics. Science Advances, 2022, 8, eabm7851.	4.7	25
987	Recent advancements in Micro-engineered devices for surface and deep brain animal studies: A review. Sensing and Bio-Sensing Research, 2022, 36, 100483.	2.2	2
988	A real-time correlational combination algorithm to improve SNR for multi-channel neural recordings. , 2021, , .		1
989	Neurons as will and representation. Nature Reviews Neuroscience, 2022, 23, 104-114.	4.9	13
990	Functional Characterization of Human Pluripotent Stem Cell-Derived Models of the Brain with Microelectrode Arrays. Cells, 2022, 11, 106.	1.8	23
991	The Future of Mammalian Whole-brain Simulations Estimated from Technological Trends in Supercomputers and Brain Measurements. The Brain & Neural Networks, 2021, 28, 172-182.	0.1	0
997	Electrophysiology. , 2022, , 85-113.		0
998	Deep brain stimulation for Parkinson's Disease: A Review and Future Outlook. Biomedical Engineering Letters, 2022, 12, 303-316.	2.1	6
999	Researchers' Ethical Concerns About Using Adaptive Deep Brain Stimulation for Enhancement. Frontiers in Human Neuroscience, 2022, 16, 813922.	1.0	10
1000	The Hybrid Drive: a chronic implant device combining tetrode arrays with silicon probes for layer-resolved ensemble electrophysiology in freely moving mice. Journal of Neural Engineering, 2022, 19, 036030.	1.8	5
1018	HectoSTAR μLED Optoelectrodes for Large‧cale, Highâ€Precision In Vivo Optoâ€Electrophysiology. Advanced Science, 2022, 9, e2105414.	5.6	20
1019	Bringing Anatomical Information into Neuronal Network Models. Advances in Experimental Medicine and Biology, 2022, 1359, 201-234.	0.8	12

	CITATION R	EPORT	
#	Article	IF	Citations
1020	Taking stock of value in the orbitofrontal cortex. Nature Reviews Neuroscience, 2022, 23, 428-438.	4.9	32
1021	Ripple-selective GABAergic projection cells in the hippocampus. Neuron, 2022, 110, 1959-1977.e9.	3.8	24
1022	Spike sorting: new trends and challenges of the era of high-density probes. Progress in Biomedical Engineering, 2022, 4, 022005.	2.8	19
1023	Movement-specific signaling is differentially distributed across motor cortex layer 5 projection neuron classes. Cell Reports, 2022, 39, 110801.	2.9	9
1024	Distributed implantation of a flexible microelectrode array for neural recording. Microsystems and Nanoengineering, 2022, 8, 50.	3.4	15
1026	Low-Power Lossless Data Compression for Wireless Brain Electrophysiology. Sensors, 2022, 22, 3676.	2.1	2
1027	Ultramicro-sized sputtered iridium oxide electrodes in buffered saline: Behavior, stability, and the effect of the perimeter to area ratio on their electrochemical properties. Electrochimica Acta, 2022, 423, 140514.	2.6	1
1028	Tangential high-density electrode insertions allow to simultaneously measure neuronal activity across an extended region of the visual field in mouse superior colliculus. Journal of Neuroscience Methods, 2022, 376, 109622.	1.3	9
1029	Unsupervised discovery of behaviorally relevant brain states in rats playing hide-and-seek. Current Biology, 2022, 32, 2640-2653.e4.	1.8	5
1030	Harmonics of the social brain: How diverse brain regions coordinate appetitive social behavior. Neuron, 2022, 110, 1608-1610.	3.8	1
1031	Scalable Three-Dimensional Recording Electrodes for Probing Biological Tissues. Nano Letters, 2022, 22, 4552-4559.	4.5	9
1033	Cortical adaptation to sound reverberation. ELife, 0, 11, .	2.8	7
1034	Breathable and Skinâ€Conformal Electronics with Hybrid Integration of Microfabricated Multifunctional Sensors and Kirigamiâ€Structured Nanofibrous Substrates. Advanced Functional Materials, 2022, 32, .	7.8	20
1037	Advancements in the Quest to Map, Monitor, and Manipulate Neural Circuitry. Frontiers in Neural Circuits, 0, 16, .	1.4	14
1038	Semi-Implantable Bioelectronics. Nano-Micro Letters, 2022, 14, .	14.4	14
1039	Deconvolution improves the detection and quantification of spike transmission gain from spike trains. Communications Biology, 2022, 5, .	2.0	6
1041	Minian, an open-source miniscope analysis pipeline. ELife, 0, 11, .	2.8	12
1042	Realâ€time fiberâ€optic recording of acuteâ€ischemicâ€stroke signatures. Journal of Biophotonics, 2022, 15, .	1.1	3

#	Article	IF	CITATIONS
1043	Learning the Architectural Features That Predict Functional Similarity of Neural Networks. Physical Review X, 2022, 12, .	2.8	2
1044	Stable Neural Population Dynamics in the Regression Subspace for Continuous and Categorical Parameters in the Monkey Orbitofrontal Cortex and Hippocampus. SSRN Electronic Journal, 0, , .	0.4	0
1046	Representation of ethological events by basolateral amygdala neurons. Cell Reports, 2022, 39, 110921.	2.9	3
1048	Neural microprobe modelling and microfabrication for improved implantation and mechanical failure mitigation. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, .	1.6	8
1051	Electro-optical mechanically flexible coaxial microprobes for minimally invasive interfacing with intrinsic neural circuits. Nature Communications, 2022, 13, .	5.8	8
1052	Impedance Imaging of Cells and Tissues: Design and Applications. BME Frontiers, 2022, 2022, .	2.2	16
1053	High-density single-unit human cortical recordings using the Neuropixels probe. Neuron, 2022, 110, 2409-2421.e3.	3.8	36
1054	The structures and functions of correlations in neural population codes. Nature Reviews Neuroscience, 2022, 23, 551-567.	4.9	63
1055	Minimally-invasive and non-invasive flexible devices for robust characterizations of deep tissues. Scientia Sinica Chimica, 2022, , .	0.2	0
1056	Implantable Micro-Light-Emitting Diode (µLED)-based optogenetic interfaces toward human applications. Advanced Drug Delivery Reviews, 2022, 187, 114399.	6.6	6
1057	In Vivo Neural Interfaces—From Small- to Large-Scale Recording. Frontiers in Nanotechnology, 0, 4, .	2.4	4
1058	Transparent neural implantable devices: a comprehensive review of challenges and progress. Npj Flexible Electronics, 2022, 6, .	5.1	25
1061	Fear Learning: An Evolving Picture for Plasticity at Synaptic Afferents to the Amygdala. Neuroscientist, 2024, 30, 87-104.	2.6	3
1062	Inspiratory rhythm generation is stabilized by <i>I_h</i> . Journal of Neurophysiology, 2022, 128, 181-196.	0.9	4
1063	Theory of the Multiregional Neocortex: Large-Scale Neural Dynamics and Distributed Cognition. Annual Review of Neuroscience, 2022, 45, 533-560.	5.0	30
1065	Nanoneedle-Electrode Devices for <i>In Vivo</i> Recording of Extracellular Action Potentials. ACS Nano, 2022, 16, 10692-10700.	7.3	2
1067	Optogenetics for light control of biological systems. Nature Reviews Methods Primers, 2022, 2, .	11.8	95
1068	Classification of overlapping spikes using convolutional neural networks and long short term memory. Computers in Biology and Medicine, 2022, 148, 105888.	3.9	4

ARTICLE IF CITATIONS # Functional neuronal circuitry and oscillatory dynamics in human brain organoids. Nature 1069 5.8 57 Communications, 2022, 13, . Thin-Film Electrodes Based on Two-Dimensional Nanomaterials for Neural Interfaces. ACS Applied 1070 2.4 Nano Materials, 2022, 5, 10137-10150. Network States Classification based on Local Field Potential Recordings in the Awake Mouse 1071 0.9 1 Neocortex. ENeuro, 2022, 9, ENEURO.0073-22.2022. Delay-related activity in marmoset prefrontal cortex. Cerebral Cortex, 2023, 33, 3523-3537. 1072 Functional Fiber Materials to Smart Fiber Devices. Chemical Reviews, 2023, 123, 613-662. 1073 23.0 69 Inferring monosynaptic connections from paired dendritic spine Ca²⁺ imaging and 1074 1.8 large-scale recording of extracellular spiking. Journal of Neural Engineering, 2022, 19, 046044. Disentangling the flow of signals between populations of neurons. Nature Computational Science, 1075 3.8 8 2022, 2, 512-525. Review of data processing of functional optical microscopy for neuroscience. Neurophotonics, 2022, 1.7 9, . <i>Colloquium</i>: Multiscale modeling of brain network organization. Reviews of Modern Physics, 1078 16.4 12 2022, 94, . An open-source, ready-to-use and validated ripple detector plugin for the Open Ephys GUI. Journal of 1079 1.8 Neural Engineering, 2022, 19, 046040. Probing the human brain at single-neuron resolution with high-density cortical recordings. Neuron, 1082 3.8 3 2022, 110, 2353-2355. Representational drift: Emerging theories for continual learning and experimental future directions. 1084 2.0 Current Opinion in Neurobiology, 2022, 76, 102609. Hippocampus-guided engineering of memory prosthesis. Current Opinion in Biomedical Engineering, 1085 1.8 1 2022, , 100415. Flexible electrodes for non-invasive brainâ€" computer interfaces: A perspective. APL Materials, 2022, 10, . 1086 2.2 An Implantable Neuromorphic Sensing System Featuring Near-Sensor Computation and Send-on-Delta Transmission for Wireless Neural Sensing of Peripheral Nerves. IEEE Journal of Solid-State Circuits, 1087 3.515 2022, 57, 3058-3070. Automated and parallelized spike collision tests to identify spike signal projections. IScience, 2022, 25, 1088 1.9 105071. Refinements to rodent head fixation and fluid/food control for neuroscience. Journal of 1089 1.36 Neuroscience Methods, 2022, 381, 109705. Sensors for brain temperature measurement and monitoring – a review. Neuroscience Informatics, 1090 2.8 2022, 2, 100106.

#	Article	IF	Citations
1091	Geometric basis of action potential of skeletal muscle cells and neurons. Open Life Sciences, 2022, 17, 1191-1199.	0.6	0
1092	A CMOS Microelectrode Array System With Reconfigurable Sub-Array Multiplexing Architecture Integrating 24,320 Electrodes and 380 Readout Channels. IEEE Transactions on Biomedical Circuits and Systems, 2022, 16, 1044-1056.	2.7	1
1093	Multimodal Charting of Molecular and Functional Cell States via <i>in situ</i> Electro-Seq. SSRN Electronic Journal, 0, , .	0.4	0
1094	Multichannel Many-Class Real-Time Neural Spike Sorting With Convolutional Neural Networks. IEEE Open Journal of Circuits and Systems, 2022, 3, 168-179.	1.4	2
1095	Actively Multiplexed μECoG Brain Implant System With Incremental-ΔΣ ADCs Employing Bulk-DACs. IEEE Journal of Solid-State Circuits, 2022, 57, 3312-3323.	3.5	10
1096	A Multilevel Synchronized Optical Pulsed Modulation for High Efficiency Biotelemetry. IEEE Transactions on Biomedical Circuits and Systems, 2022, 16, 1313-1324.	2.7	1
1097	Memory Consolidation: Neural Data Analysis and Mathematical Modeling. , 2022, , 1-37.		0
1098	PyMiceTracking: An Open-Source Toolbox For Real-Time Behavioral Neuroscience Experiments. , 2022, , .		0
1099	Acute in vivo Recording with a Generic Parylene Microelectrode Array Implanted with Dip-coating Method into the Rat Brain. , 2022, , .		5
1100	Contribution of behavioural variability to representational drift. ELife, 0, 11, .	2.8	21
1101	A scale-dependent measure of system dimensionality. Patterns, 2022, 3, 100555.	3.1	11
1103	How to incorporate biological insights into network models and why it matters. Journal of Physiology, 2023, 601, 3037-3053.	1.3	3
1104	Mixed vine copula flows for flexible modeling of neural dependencies. Frontiers in Neuroscience, 0, 16, .	1.4	1
1105	A Standardized Nonvisual Behavioral Event Is Broadcasted Homogeneously across Cortical Visual Areas without Modulating Visual Responses. ENeuro, 2022, 9, ENEURO.0491-21.2022.	0.9	2
1107	A tassel-type multilayer flexible probe for invasive neural recording. , 2022, 1, 100024.		0
1108	Deep learning-based feature extraction for prediction and interpretation of sharp-wave ripples in the rodent hippocampus. ELife, 0, 11, .	2.8	10
1109	High-density electrode recordings reveal strong and specific connections between retinal ganglion cells and midbrain neurons. Nature Communications, 2022, 13, .	5.8	35
1111	Flexible organic transistors for neural activity recording. Applied Physics Reviews, 2022, 9, .	5.5	8

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
1112	SPP2411: â€~Sensing LOOPS: cortico-subcortical interactions for adaptive sensing'. Neuroforum, 2022, .	0.2	0
1113	High-resolution optogenetics in space and time. Trends in Neurosciences, 2022, 45, 854-864.	4.2	7
1114	Understanding Electrical Failure of Polyimide-Based Flexible Neural Implants: The Role of Thin Film Adhesion. Polymers, 2022, 14, 3702.	2.0	7
1116	A Review of Neurologgers for Extracellular Recording of Neuronal Activity in the Brain of Freely Behaving Wild Animals. Micromachines, 2022, 13, 1529.	1.4	2
1117	Two-photon calcium imaging of neuronal activity. Nature Reviews Methods Primers, 2022, 2, .	11.8	30
1118	How Do Spike Collisions Affect Spike Sorting Performance?. ENeuro, 2022, 9, ENEURO.0105-22.2022.	0.9	5
1119	Large-Scale Mapping of Vocalization-Related Activity in the Functionally Diverse Nuclei in Rat Posterior Brainstem. Journal of Neuroscience, 2022, 42, 8252-8261.	1.7	5
1121	Ultraflexible electrode arrays for months-long high-density electrophysiological mapping of thousands of neurons in rodents. Nature Biomedical Engineering, 2023, 7, 520-532.	11.6	45
1122	Galvanic-Coupled Trans-Dural Data Transfer for High-Bandwidth Intracortical Neural Sensing. IEEE Transactions on Microwave Theory and Techniques, 2022, 70, 4579-4589.	2.9	3
1124	A Multifunctional Hybrid Graphene and Microfluidic Platform to Interface Topological Neuron Networks. Advanced Functional Materials, 2022, 32, .	7.8	4
1125	Multiscale imaging informs translational mouse modeling of neurological disease. Neuron, 2022, 110, 3688-3710.	3.8	3
1126	Multiregion neuronal activity: the forest and the trees. Nature Reviews Neuroscience, 2022, 23, 683-704.	4.9	21
1128	CMU Array: A 3D nanoprinted, fully customizable high-density microelectrode array platform. Science Advances, 2022, 8, .	4.7	24
1129	Memory Consolidation: Neural Data Analysis and Mathematical Modeling. , 2022, , 973-1009.		0
1130	Large-scale, closed-loop interrogation of neural circuits underlying cognition. Trends in Neurosciences, 2022, 45, 968-983.	4.2	9
1131	A perspective on electroencephalography sensors for brain-computer interfaces. Progress in Biomedical Engineering, 2022, 4, 043002.	2.8	4
1134	Thin flexible arrays for long-term multi-electrode recordings in macaque primary visual cortex. Journal of Neural Engineering, 2022, 19, 066039.	1.8	4
1135	Brainstem networks construct threat probability and prediction error from neuronal building blocks. Nature Communications, 2022, 13, .	5.8	5

#	Article	IF	CITATIONS
1138	Explaining integration of evidence separated by temporal gaps with frontoparietal circuit models. Neuroscience, 2022, , .	1.1	1
1139	Reliable, Fast and Stable Contrast Response Function Estimation. Vision (Switzerland), 2022, 6, 62.	0.5	1
1140	A 0.00426 mm2 77.6-dB Dynamic Range VCO-Based CTDSM for Multi-Channel Neural Recording. Electronics (Switzerland), 2022, 11, 3477.	1.8	0
1141	Cone opponent functional domains in primary visual cortex combine signals for color appearance mechanisms. Nature Communications, 2022, 13, .	5.8	11
1142	Next-generation brain observatories. Neuron, 2022, 110, 3661-3666.	3.8	7
1144	Population burst propagation across interacting areas of the brain. Journal of Neurophysiology, 2022, 128, 1578-1592.	0.9	3
1145	Functional interactions among neurons within single columns of macaque V1. ELife, 0, 11, .	2.8	11
1146	Attractor and integrator networks in the brain. Nature Reviews Neuroscience, 2022, 23, 744-766.	4.9	66
1147	Heterogeneous Integration of Thin-Film Organic and Inorganic Devices for Optical Based Bioelectrical and Chemical Sensing. IEEE Journal of Selected Topics in Quantum Electronics, 2022, , 1-8.	1.9	0
1148	A closed-loop automated craniotomy system with real-time bio-impedance feedback. IEEE Sensors Journal, 2022, , 1-1.	2.4	0
1149	An Energy-Efficient and High-Data-Rate IR-UWB Transmitter for Intracortical Neural Sensing Interfaces. IEEE Journal of Solid-State Circuits, 2022, 57, 3656-3668.	3.5	6
1150	a-IGZO thin-film transistors with transparent ultrathin Al/Ag bilayer source and drain for active neural interfaces. Materials Science in Semiconductor Processing, 2023, 154, 107188.	1.9	2
1151	Improvements in the Analysis of Neuronal Interactions. Springer Series in Computational Neuroscience, 2023, , 415-461.	0.3	0
1152	pyNeurode: a real-time neural signal processing framework. , 2022, , .		0
1153	Inverter-Based Pseudo-Differential Reconfigurable Pixel Circuit Array for Multimodal and High-Density Neural Recordings. , 2022, , .		0
1154	Data Compression versus Signal Fidelity Trade-off in Wired-OR ADC Arrays for Neural Recording. , 2022, , .		1
1155	Efficient training approaches for optimizing behavioral performance and reducing head fixation time. PLoS ONE, 2022, 17, e0276531.	1.1	0
1156	Making Sense of the Multiplicity and Dynamics of Navigational Codes in the Brain. Journal of Neuroscience, 2022, 42, 8450-8459.	1.7	7

#	ARTICLE A silk-based self-adaptive flexible opto-electro neural probe. Microsystems and Nanoengineering, 2022,	IF 3.4	CITATIONS
1107		5.7	10
1160	Influence of claustrum on cortex varies by area, layer, and cell type. Neuron, 2023, 111, 275-290.e5.	3.8	15
1162	Robotic multi-probe single-actuator inchworm neural microdrive. ELife, 0, 11, .	2.8	1
1163	Statistical perspective on functional and causal neural connectomics: The Time-Aware PC algorithm. PLoS Computational Biology, 2022, 18, e1010653.	1.5	5
1166	Flexible and Implantable Polyimide Aptamer-Field-Effect Transistor Biosensors. ACS Sensors, 2022, 7, 3644-3653.	4.0	9
1167	Chemical polymerization of conducting polymer poly(3,4-ethylenedioxythiophene) onto neural microelectrodes. Sensors and Actuators A: Physical, 2023, 349, 114022.	2.0	4
1168	Multimaterial Glass Fiber Probe for Deep Neural Stimulation and Detection. Advanced Optical Materials, 2023, 11, .	3.6	3
1169	Developing Clinical Grade Flexible Implantable Electronics. Flexible and Printed Electronics, 0, , .	1.5	1
1170	Neuromorphic-Based Neuroprostheses for Brain Rewiring: State-of-the-Art and Perspectives in Neuroengineering. Brain Sciences, 2022, 12, 1578.	1.1	8
1171	In Vivo Penetrating Microelectrodes for Brain Electrophysiology. Sensors, 2022, 22, 9085.	2.1	3
1172	A large-scale neural network training framework for generalized estimation of single-trial population dynamics. Nature Methods, 2022, 19, 1572-1577.	9.0	17
1173	Cortical Pyramidal and Parvalbumin Cells Exhibit Distinct Spatiotemporal Extracellular Electric Potentials. ENeuro, 2022, 9, ENEURO.0265-22.2022.	0.9	5
1174	Multishank Thinâ€Film Neural Probes and Implantation System for Highâ€Resolution Neural Recording Applications. Advanced Electronic Materials, 2023, 9, .	2.6	2
1175	A cortico-collicular circuit for orienting to shelter during escape. Nature, 2023, 613, 111-119.	13.7	18
1176	Age- and sex-related dynamics of structural and functional motor behavior interactions in striatum neurons in rats. SeÄenovskij Vestnik, 2022, 13, 20-29.	0.3	0
1177	Acute head-fixed recordings in awake mice with multiple Neuropixels probes. Nature Protocols, 2023, 18, 424-457.	5.5	15
1180	Rostral and caudal basolateral amygdala engage distinct circuits in the prelimbic and infralimbic prefrontal cortex. ELife, 0, 11, .	2.8	6
1181	The role of endogenous opioid neuropeptides in neurostimulation-driven analgesia. Frontiers in Systems Neuroscience, 0, 16, .	1.2	6

#	Article	IF	CITATIONS
1182	A brainstem integrator for self-location memory and positional homeostasis in zebrafish. Cell, 2022, 185, 5011-5027.e20.	13.5	16
1186	Behavioral origin of sound-evoked activity in mouse visual cortex. Nature Neuroscience, 2023, 26, 251-258.	7.1	39
1187	Neuroprosthetics: from sensorimotor to cognitive disorders. Communications Biology, 2023, 6, .	2.0	19
1188	Implantable intracortical microelectrodes: reviewing the present with a focus on the future. Microsystems and Nanoengineering, 2023, 9, .	3.4	20
1190	Structural and functional map for forelimb movement phases between cortex and medulla. Cell, 2023, 186, 162-177.e18.	13.5	12
1191	Emerging Bioâ€Interfacing Wearable Devices for Signal Monitoring: Overview of the Mechanisms and Diverse Sensor Designs to Target Distinct Physiological Bioâ€Parameters. , 2023, 2, .		5
1192	An AC-Coupled 1st-Order Δ-ΔΣ Readout IC for Area-Efficient Neural Signal Acquisition. IEEE Journal of Solid-State Circuits, 2023, 58, 949-960.	3.5	4
1193	Significantly reduced inflammatory foreign-body-response to neuroimplants and improved recording performance in young compared to adult rats. Acta Biomaterialia, 2023, , .	4.1	1
1196	Recent developments in multifunctional neural probes for simultaneous neural recording and modulation. Microsystems and Nanoengineering, 2023, 9, .	3.4	10
1198	Recent Development of Neural Microelectrodes with Dual-Mode Detection. Biosensors, 2023, 13, 59.	2.3	3
1199	Stretchable Surface Electrode Arrays Using an Alginate/PEDOT:PSS-Based Conductive Hydrogel for Conformal Brain Interfacing. Polymers, 2023, 15, 84.	2.0	3
1200	Neuronal Approaches to Epilepsy. , 2022, , 86-98.		0
1201	Channels, Layout and Size Scalability of Implantable CMOS-Based Multielectrode Array Probes. , 2022, ,		1
1202	Neurosurgical Considerations for the Brain Computer Interface. , 2023, , 3567-3604.		0
1203	Towards a Wireless Implantable Brain-Machine Interface for Locomotion Control. , 2023, , 1003-1022.		0
1204	Failure Reason of PI Test Samples of Neural Implants. Sensors, 2023, 23, 1340.	2.1	1
1207	Toward a Brain-Inspired Theory of Artificial Learning. Cognitive Computation, 0, , .	3.6	0
1208	Surround suppression in mouse auditory cortex underlies auditory edge detection. PLoS Computational Biology, 2023, 19, e1010861.	1.5	1

		CITATION REPORT		
# 1209	ARTICLE Quantitative Assessment of the Mechanical Properties of the Neural Interface. , 2023,	, 213-259.	IF	Citations 0
1211	Organoid intelligence (OI): the new frontier in biocomputing and intelligence-in-a-dish.	, 2023, 1, .		49
1212	A reservoir of foraging decision variables in the mouse brain. Nature Neuroscience, 202	23, 26, 840-849.	7.1	11
1213	Uncovering the organization of neural circuits with Generalized Phase Locking Analysis Computational Biology, 2023, 19, e1010983.	s. PLoS	1.5	1
1214	Resolving the prefrontal mechanisms of adaptive cognitive behaviors: A cross-species Neuron, 2023, 111, 1020-1036.	perspective.	3.8	5
1215	Wireless in vivo recording of cortical activity by an ion-sensitive field effect transistor. Actuators B: Chemical, 2023, 382, 133549.	Sensors and	4.0	1
1216	Edge computing on TPU for brain implant signal analysis. Neural Networks, 2023, 162	, 212-224.	3.3	1
1217	Single trial variability in neural activity during a working memory task reveals multiple information processing sequences. NeuroImage, 2023, 269, 119895.	distinct	2.1	3
1218	Flexible brain–computer interfaces. Nature Electronics, 2023, 6, 109-118.		13.1	48
1220	Advances in High-Resolution, Miniaturized Bioelectrical Neural Interface Design. , 2023	s,,721-760.		0
1221	Multi-area recordings and optogenetics in the awake, behaving marmoset. Nature Con 2023, 14, .	nmunications,	5.8	6
1222	Highâ€Conductivity Stoichiometric Titanium Nitride for Bioelectronics. Advanced Elect 2023, 9, .	ronic Materials,	2.6	2
1223	Semiconducting electrodes for neural interfacing: a review. Chemical Society Reviews, 1491-1518.	2023, 52,	18.7	5
1224	An integrated perspective for the diagnosis and therapy of neurodevelopmental disorce engineering point of view. Advanced Drug Delivery Reviews, 2023, 194, 114723.	ers – From an	6.6	2
1228	Soft Fiber Electronics Based on Semiconducting Polymer. Chemical Reviews, 2023, 12	3, 4693-4763.	23.0	40
1229	Electrophysiology as a Tool to Decipher the Network Mechanism of Visceral Pain in Fu Gastrointestinal Disorders. Diagnostics, 2023, 13, 627.	nctional	1.3	2
1230	Cortico-thalamo-cortical interactions modulate electrically evoked EEG responses in m	ice. ELife, 0, 12,	2.8	1
1232	Sleep/wake changes in perturbational complexity in rats and mice. IScience, 2023, 26,	106186.	1.9	7

#	Article	IF	CITATIONS
1233	Proof of Concept for Sustainable Manufacturing of Neural Electrode Array for In Vivo Recording. Biosensors, 2023, 13, 280.	2.3	1
1237	Improved space breakdown method – A robust clustering technique for spike sorting. Frontiers in Computational Neuroscience, 0, 17, .	1.2	0
1238	Flexible and Stretchable Organic Electrochemical Transistors for Physiological Sensing Devices. Advanced Materials, 2023, 35, .	11.1	27
1239	Synthetic Data Resource and Benchmarks for Time Cell Analysis and Detection Algorithms. ENeuro, 2023, 10, ENEURO.0007-22.2023.	0.9	0
1240	Illuminating Neural Computation Using Precision Optogenetics-Controlled Synthetic Perception. Neuromethods, 2023, , 363-392.	0.2	0
1241	A stable, distributed code for cue value in mouse cortex during reward learning. ELife, 0, 12, .	2.8	10
1242	Post-explant profiling of subcellular-scale carbon fiber intracortical electrodes and surrounding neurons enables modeling of recorded electrophysiology. Journal of Neural Engineering, 2023, 20, 026019.	1.8	4
1244	Decoding behavior from global cerebrovascular activity using neural networks. Scientific Reports, 2023, 13, .	1.6	2
1245	First Organoid Intelligence (OI) workshop to form an OI community. Frontiers in Artificial Intelligence, 0, 6, .	2.0	13
1246	Graph-Based Change-Point Analysis. Annual Review of Statistics and Its Application, 2023, 10, 475-499.	4.1	1
1247	A study of autoencoders as a feature extraction technique for spike sorting. PLoS ONE, 2023, 18, e0282810.	1.1	2
1250	Calcium imaging and analysis of the jugular-nodose ganglia enables identification of distinct vagal sensory neuron subsets. Journal of Neural Engineering, 2023, 20, 026014.	1.8	0
1251	Listening loops and the adapting auditory brain. Frontiers in Neuroscience, 0, 17, .	1.4	1
1252	Multilayer Arrays for Neurotechnology Applications (MANTA): Chronically Stable Thinâ€Film Intracortical Implants. Advanced Science, 2023, 10, .	5.6	7
1253	Electrodeposited NaYF ₄ :Yb ³⁺ , Er ³⁺ up-conversion films for flexible neural device construction and near-infrared optogenetics. Journal of Materials Chemistry B, 2023, 11, 5565-5573.	2.9	1
1254	Interhemispheric competition during sleep. Nature, 2023, 616, 312-318.	13.7	11
1255	A 384-Channel Online-Spike-Sorting IC Using Unsupervised Geo-OSort Clustering and Achieving 0.0013mm ² /Ch and \$1.78mu ext{W/ch}\$. , 2023, , .		4
1257	Spike sorting algorithms and their efficient hardware implementation: a comprehensive survey. Journal of Neural Engineering, 2023, 20, 021001.	1.8	1

# 1259	ARTICLE PtNPs/rGO-GluOx/mPD Directionally Electroplated Dual-Mode Microelectrode Arrays for Detecting the Synergistic Relationship between the Cortex and Hippocampus of Epileptic Rats. ACS Sensors, 2023,	IF 4.0	CITATIONS
1262	8, 1810-1818. Autonomous optimization of neuroprosthetic stimulation parameters that drive the motor cortex and spinal cord outputs in rats and monkeys. Cell Reports Medicine, 2023, 4, 101008.	3.3	6
1264	Neurotechnologies to restore hand functions. , 2023, 1, 390-407.		5
1266	Multimodal charting of molecular and functional cell states via in situ electro-sequencing. Cell, 2023, 186, 2002-2017.e21.	13.5	2
1267	Translational opportunities and challenges of invasive electrodes for neural interfaces. Nature Biomedical Engineering, 2023, 7, 424-442.	11.6	17
1268	A novel task to investigate vibrotactile detection in mice. PLoS ONE, 2023, 18, e0284735.	1.1	0
1274	Inferring Pyramidal Neuron Morphology using EAP Data. , 2023, , .		0
1283	Electrochemical and electrophysiological considerations for clinical high channel count neural interfaces. MRS Bulletin, 0, , .	1.7	1
1303	A closer look at jGCaMP8. Lab Animal, 2023, 52, 147-148.	0.2	0
1313	Robust Online Multiband Drift Estimation in Electrophysiology Data. , 2023, , .		5
1317	Recent developments in implantable neural probe technologies. MRS Bulletin, 2023, 48, 484-494.	1.7	2
1318	Microscopic Characterization of Failure Mechanisms in Long-Term Implanted Microwire Neural Electrodes. , 2023, , .		0
1326	Circuits and Architectures for Neural Recording Interfaces. , 2023, , 45-57.		0
1330	A Neural-Recording 0.2-V VCO-based ADC with Machine-Learning-Programmable Coupled Oscillator Ensembles. , 2023, , .		0
1341	Lighting up action potentials with fast and bright voltage sensors. Nature Methods, 2023, 20, 990-992.	9.0	2
1356	A Compact 16-Channel Neural Signal Recorder with Wireless Power and Data Transmission. , 2023, , .		0
1357	Multiplexed Detection of Spike Patterns using Active Graphene Neurosensors. , 2023, , .		0
1368	A Neural Recording System with 16 Reconfigurable Front-end Channels and Memristive Processing/Memory Unit. , 2023, , .		1

IF CITATIONS ARTICLE # How Can Laminar Microelectrodes Contribute to Human Neurophysiology?. Studies in Neuroscience, 1397 0.1 0 Psychology and Behavioral Economics, 2023, , 739-760. Plasmonics for neuroengineering. Communications Materials, 2023, 4, . 1439 Sparse Coding-based Multichannel Spike Sorting with the Locally Competitive Algorithm., 2023,,. 1488 0 Comparing Spike Sorting Algorithms on Simulated Extracellular Multi-Electrode Array Recordings. , 1490 A 128-electrodes Neural Probe with 30*55 µm² Channel Area Low-power CCO-based ADC., 1498 0 2023,,. Brain-Controlled Assistive Robotics and Prosthetics. , 0, , 129-147. How speech is produced and perceived in the human cortex. Nature, 2024, 626, 485-486. 1508 13.7 0

CITATION REPORT