Salt-responsive gut commensal modulates TH17 axis an

Nature 551, 585-589 DOI: 10.1038/nature24628

Citation Report

#	ARTICLE	IF	CITATIONS
1	A high-pressure situation for bacteria. Nature, 2017, 551, 571-572.	13.7	13
2	Contactless health-care sensing. Nature, 2017, 551, 572-573.	13.7	3
3	Intersection of salt- and immune-mediated mechanisms of hypertension in the gut microbiome. Kidney International, 2018, 93, 532-534.	2.6	5
4	The Human Gut Microbiome: From Association to Modulation. Cell, 2018, 172, 1198-1215.	13.5	558
5	The role of salt for immune cell function and disease. Immunology, 2018, 154, 346-353.	2.0	30
7	The role of transforming growth factor <i>\hat{l}^2</i> in T helper 17 differentiation. Immunology, 2018, 155, 24-35.	2.0	115
8	High Salt Cross-Protects Escherichia coli from Antibiotic Treatment through Increasing Efflux Pump Expression. MSphere, 2018, 3, .	1.3	15
9	Prolonged Baby-Nursing–Related Sphygmomanometric Protection: Breast, Brain, Blood Biomolecules, or Bacteria?. American Journal of Hypertension, 2018, 31, 534-536.	1.0	0
10	Food, microbiome and colorectal cancer. Digestive and Liver Disease, 2018, 50, 647-652.	0.4	43
11	Impacts of microbiome metabolites on immune regulation and autoimmunity. Immunology, 2018, 154, 230-238.	2.0	185
12	The gut microbiota as a novel regulator of cardiovascular function and disease. Journal of Nutritional Biochemistry, 2018, 56, 1-15.	1.9	122
13	Molecular mechanisms underpinning T helper 17 cell heterogeneity and functions in rheumatoid arthritis. Journal of Autoimmunity, 2018, 87, 69-81.	3.0	128
14	Microbiome in psychiatry: where will we go?. European Archives of Psychiatry and Clinical Neuroscience, 2018, 268, 1-2.	1.8	1
15	Transcriptomics in Twins Separates Genetic From Environmental Effects on Gene Expression and Blood Pressure. Hypertension, 2018, 71, 406-408.	1.3	0
16	Novel mechanisms of hypertension and vascular dysfunction. Nature Reviews Nephrology, 2018, 14, 73-74.	4.1	12
17	The microbiome in precision medicine: the way forward. Genome Medicine, 2018, 10, 12.	3.6	81
18	The microbiome and autoimmunity: a paradigm from the gut–liver axis. Cellular and Molecular Immunology, 2018, 15, 595-609.	4.8	160
19	Predominant gut Lactobacillus murinus strain mediates anti-inflammaging effects in calorie-restricted mice. Microbiome, 2018, 6, 54.	4.9	141

TION RED

#	Article	IF	CITATIONS
20	High salt diet exacerbates colitis in mice by decreasing Lactobacillus levels and butyrate production. Microbiome, 2018, 6, 57.	4.9	176
21	Hypertension. Nature Reviews Disease Primers, 2018, 4, 18014.	18.1	636
22	When worlds collide: Th17 and Treg cells in cancer and autoimmunity. Cellular and Molecular Immunology, 2018, 15, 458-469.	4.8	331
23	The gut microbiota: An emerging risk factor for cardiovascular and cerebrovascular disease. European Journal of Immunology, 2018, 48, 564-575.	1.6	114
24	The immunology of hypertension. Journal of Experimental Medicine, 2018, 215, 21-33.	4.2	286
25	Salt: the microbiome, immune function and hypertension. Nature Reviews Nephrology, 2018, 14, 71-71.	4.1	7
27	High Osmolarity Modulates Bacterial Cell Size through Reducing Initiation Volume in Escherichia coli. MSphere, 2018, 3, .	1.3	17
28	Impacts of Diet and Exercise on Maternal Gut Microbiota Are Transferred to Offspring. Frontiers in Endocrinology, 2018, 9, 716.	1.5	47
29	The gut microbiota at the intersection of diet and human health. Science, 2018, 362, 776-780.	6.0	683
30	Metabolic, Mental and Immunological Effects of Normoxic and Hypoxic Training in Multiple Sclerosis Patients: A Pilot Study. Frontiers in Immunology, 2018, 9, 2819.	2.2	22
31	Increased Abundance of Lactobacillales in the Colon of Beta-Adrenergic Receptor Knock Out Mouse Is Associated With Increased Gut Bacterial Production of Short Chain Fatty Acids and Reduced IL17 Expression in Circulating CD4+ Immune Cells. Frontiers in Physiology, 2018, 9, 1593.	1.3	30
32	Effects of Gut Bacteria Depletion and Highâ€Na+and Lowâ€K+Intake on Circulating Levels of Biogenic Amines. Molecular Nutrition and Food Research, 2018, 63, 1801184.	1.5	12
33	Hypertension, dietary salt and cognitive impairment. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 2112-2128.	2.4	64
34	Alterations in the diversity and composition of mice gut microbiota by lytic or temperate gut phage treatment. Applied Microbiology and Biotechnology, 2018, 102, 10219-10230.	1.7	19
35	Too Fatty, Too Salty, Too Western. Hypertension, 2018, 72, 1078-1080.	1.3	2
36	Novel therapeutic targets in autoimmune hepatitis. Journal of Autoimmunity, 2018, 95, 34-46.	3.0	28
37	Salt-Responsive Metabolite, Î ² -Hydroxybutyrate, Attenuates Hypertension. Cell Reports, 2018, 25, 677-689.e4.	2.9	117
38	Alterations of Gut Microbiome in the Patients With Severe Fever With Thrombocytopenia Syndrome. Frontiers in Microbiology, 2018, 9, 2315.	1.5	8

#	Article	IF	CITATIONS
39	Activated β-catenin in Foxp3+ regulatory T cells links inflammatory environments to autoimmunity. Nature Immunology, 2018, 19, 1391-1402.	7.0	90
40	Ceftriaxone Administration Disrupts Intestinal Homeostasis, Mediating Noninflammatory Proliferation and Dissemination of Commensal Enterococci. Infection and Immunity, 2018, 86, .	1.0	31
41	Metabolic Dysfunction and Peroxisome Proliferator-Activated Receptors (PPAR) in Multiple Sclerosis. International Journal of Molecular Sciences, 2018, 19, 1639.	1.8	17
42	Emerging Role of Diet and Microbiota Interactions in Neuroinflammation. Frontiers in Immunology, 2018, 9, 2067.	2.2	26
43	Hypertension in HIV-Infected Adults. Hypertension, 2018, 72, 44-55.	1.3	123
44	Hypoxia induces senescence of bone marrow mesenchymal stem cells via altered gut microbiota. Nature Communications, 2018, 9, 2020.	5.8	82
45	Update on Endothelin Receptor Antagonists in Hypertension. Current Hypertension Reports, 2018, 20, 51.	1.5	17
46	The gut microbiota and the brain–gut–kidney axis in hypertension and chronic kidney disease. Nature Reviews Nephrology, 2018, 14, 442-456.	4.1	413
47	Salt Intake and Immunity. Hypertension, 2018, 72, 19-23.	1.3	34
48	Disparities in hypertension and cardiovascular disease in African Americans: Is the answer in the gut microbiota?. International Journal of Cardiology, 2018, 271, 340-342.	0.8	5
49	Future Direction for Using Artificial Intelligence to Predict and Manage Hypertension. Current Hypertension Reports, 2018, 20, 75.	1.5	62
50	Betaine Improves Intestinal Functions by Enhancing Digestive Enzymes, Ameliorating Intestinal Morphology, and Enriching Intestinal Microbiota in High-salt stressed Rats. Nutrients, 2018, 10, 907.	1.7	45
51	Could Sodium Chloride be an Environmental Trigger for Immune-Mediated Diseases? An Overview of the Experimental and Clinical Evidence. Frontiers in Physiology, 2018, 9, 440.	1.3	19
52	High-Salt Diet Induces IL-17-Dependent Gut Inflammation and Exacerbates Colitis in Mice. Frontiers in Immunology, 2017, 8, 1969.	2.2	70
53	Interrelation of Diet, Gut Microbiome, and Autoantibody Production. Frontiers in Immunology, 2018, 9, 439.	2.2	52
54	Dietary Influence on Body Fluid Acid-Base and Volume Balance: The Deleterious "Norm―Furthers and Cloaks Subclinical Pathophysiology. Nutrients, 2018, 10, 778.	1.7	5
55	The anti-inflammatory peptide Ac-SDKP: Synthesis, role in ACE inhibition, and its therapeutic potential in hypertension and cardiovascular diseases. Pharmacological Research, 2018, 134, 268-279.	3.1	43
56	Microbiota–Host Crosstalk: A Bridge Between Cardiovascular Risk Factors, Diet, and Cardiovascular Disease. American Journal of Hypertension, 2018, 31, 941-944.	1.0	10

#	Article	IF	CITATIONS
57	Whole fractions from probiotic bacteria induce in vitro Th17 responses in human peripheral blood mononuclear cells. Journal of Functional Foods, 2018, 48, 367-373.	1.6	2
58	The Microbiome and Risk for Atherosclerosis. JAMA - Journal of the American Medical Association, 2018, 319, 2381.	3.8	70
59	Microbial tryptophan catabolites in health and disease. Nature Communications, 2018, 9, 3294.	5.8	1,067
60	The gut microbiome and aquatic toxicology: An emerging concept for environmental health. Environmental Toxicology and Chemistry, 2018, 37, 2758-2775.	2.2	100
61	Disparate effects of antibiotics on hypertension. Physiological Genomics, 2018, 50, 837-845.	1.0	67
62	Influence of dietary protein on Dahl salt-sensitive hypertension: a potential role for gut microbiota. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 315, R907-R914.	0.9	13
63	A High Salt Diet Modulates the Gut Microbiota and Short Chain Fatty Acids Production in a Salt-Sensitive Hypertension Rat Model. Nutrients, 2018, 10, 1154.	1.7	148
64	Exercise benefits in cardiovascular disease: beyond attenuation of traditional risk factors. Nature Reviews Cardiology, 2018, 15, 731-743.	6.1	449
65	The causes and consequences of variation in human cytokine production in health. Current Opinion in Immunology, 2018, 54, 50-58.	2.4	40
68	Salt, inflammation, ILâ€17 and hypertension. British Journal of Pharmacology, 2019, 176, 1853-1863.	2.7	53
69	Sodium chloride triggers Th17 mediated autoimmunity. Journal of Neuroimmunology, 2019, 329, 9-13.	1.1	29
70	Dietary Fibers from Fruits and Vegetables and Their Health Benefits via Modulation of Gut Microbiota. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 1514-1532.	5.9	123
71	Study on the Antihypertensive Mechanism of <i> Astragalus membranaceus</i> and <i> Salvia miltiorrhiza</i> Based on Intestinal Flora-Host Metabolism. Evidence-based Complementary and Alternative Medicine, 2019, 2019, 1-16.	0.5	23
72	Role of diet and gut microbiota in multiple sclerosis: New findings on the role of highâ€salt intake in induction of neuroinflammation. Clinical and Experimental Neuroimmunology, 2019, 10, 149-151.	0.5	1
73	Interactions between microbiota, diet/nutrients and immune/inflammatory response in rheumatic diseases: focus on rheumatoid arthritis. Reumatologia, 2019, 57, 151-157.	0.5	21
74	Treatment with 6 ingerol Regulates Dendritic Cell Activity and Ameliorates the Severity of Experimental Autoimmune Encephalomyelitis. Molecular Nutrition and Food Research, 2019, 63, e1801356.	1.5	21
75	Inflammation, Immunity, and Oxidative Stress in Hypertension—Partners in Crime?. Advances in Chronic Kidney Disease, 2019, 26, 122-130.	0.6	66
77	Differential Analysis of Hypertension-Associated Intestinal Microbiota. International Journal of Medical Sciences, 2019, 16, 872-881.	1.1	91

#	Article	IF	Citations
78	The bidirectional relationship between host physiology and microbiota and health benefits of probiotics: A review. Trends in Food Science and Technology, 2019, 91, 426-435.	7.8	33
79	Alteration of the Gut Microbiota and Its Effect on AMPK/NADPH Oxidase Signaling Pathway in 2K1C Rats. BioMed Research International, 2019, 2019, 1-8.	0.9	8
80	ATP release drives heightened immune responses associated with hypertension. Science Immunology, 2019, 4, .	5.6	41
81	Implications of Diet and The Gut Microbiome in Neuroinflammatory and Neurodegenerative Diseases. International Journal of Molecular Sciences, 2019, 20, 3109.	1.8	75
82	Bridging intestinal immunity and gut microbiota by metabolites. Cellular and Molecular Life Sciences, 2019, 76, 3917-3937.	2.4	176
83	Food Components and Dietary Habits: Keys for a Healthy Gut Microbiota Composition. Nutrients, 2019, 11, 2393.	1.7	374
84	Framework for rational donor selection in fecal microbiota transplant clinical trials. PLoS ONE, 2019, 14, e0222881.	1.1	36
85	Demystifying the manipulation of host immunity, metabolism, and extraintestinal tumors by the gut microbiome. Signal Transduction and Targeted Therapy, 2019, 4, 41.	7.1	150
86	New Insights on the Role of Sodium in the Physiological Regulation of Blood Pressure and Development of Hypertension. Frontiers in Cardiovascular Medicine, 2019, 6, 136.	1.1	15
87	Novel paradigms linking salt and health. IOP Conference Series: Earth and Environmental Science, 2019, 333, 012036.	0.2	0
88	Guidelines for Transparency on Gut Microbiome Studies in Essential and Experimental Hypertension. Hypertension, 2019, 74, 1279-1293.	1.3	54
89	High-Salt Diet Causes Sleep Fragmentation in Young Drosophila Through Circadian Rhythm and Dopaminergic Systems. Frontiers in Neuroscience, 2019, 13, 1271.	1.4	12
90	Berry-Enriched Diet in Salt-Sensitive Hypertensive Rats: Metabolic Fate of (Poly)Phenols and the Role of Gut Microbiota. Nutrients, 2019, 11, 2634.	1.7	22
91	The emerging role of gut microbial metabolism on cardiovascular disease. Current Opinion in Microbiology, 2019, 50, 64-70.	2.3	36
92	Preventing dysbiosis of the neonatal mouse intestinal microbiome protects against late-onset sepsis. Nature Medicine, 2019, 25, 1772-1782.	15.2	91
93	Elevated aldosterone and blood pressure in a mouse model of familial hyperaldosteronism with ClC-2 mutation. Nature Communications, 2019, 10, 5155.	5.8	34
94	INTESTINAL FLORA AFFECTS GUT-BRAIN AXIS. Journal of the Siena Academy of Sciences, 2019, 10, .	0.0	0
95	The Microbiota-Gut-Brain Axis. Physiological Reviews, 2019, 99, 1877-2013.	13.1	2,304

#		IE	Citations
#	ARTICLE Alterations in the human gut microbiome in antiâ€ <i>N</i> â€methylâ€Dâ€aspartate receptor encephalitis.	IF	CHATIONS
96	Annals of Clinical and Translational Neurology, 2019, 6, 1771-1781.	1.7	16
97	Gut Microbiome and Response to Cardiovascular Drugs. Circulation Genomic and Precision Medicine, 2019, 12, 421-429.	1.6	74
98	Latent-period stool proteomic assay of multiple sclerosis model indicates protective capacity of host-expressed protease inhibitors. Scientific Reports, 2019, 9, 12460.	1.6	10
99	Immunology of the ageing kidney. Nature Reviews Nephrology, 2019, 15, 625-640.	4.1	73
100	New crosstalk between probiotics Lactobacillus plantarum and Bacillus subtilis. Scientific Reports, 2019, 9, 13151.	1.6	16
101	Treatment of Hypertension in Patients with Asthma. New England Journal of Medicine, 2019, 381, 1046-1057.	13.9	45
102	Effects of theabrownin on serum metabolites and gut microbiome in rats with a high-sugar diet. Food and Function, 2019, 10, 7063-7080.	2.1	75
103	Production of Indole-3-Lactic Acid by Bifidobacterium Strains Isolated fromHuman Infants. Microorganisms, 2019, 7, 340.	1.6	68
104	Ferulic acid increases intestinal Lactobacillus and improves cardiac function in TAC mice. Biomedicine and Pharmacotherapy, 2019, 120, 109482.	2.5	24
105	An overview of the current state of evidence for the role of specific diets in multiple sclerosis. Multiple Sclerosis and Related Disorders, 2019, 36, 101393.	0.9	35
106	Sodium, hypertension, and the gut: does the gut microbiota go salty?. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H1173-H1182.	1.5	37
107	Periodontitis and hypertension: causally linked by immune mechanisms. European Heart Journal, 2019, 40, 3471-3473.	1.0	14
108	Molecular Phenotyping and Genomic Characterization of a Novel Neuroactive Bacterium Strain, Lactobacillus murinus HU-1. Frontiers in Pharmacology, 2019, 10, 1162.	1.6	5
109	Interaction between gut microbiota and ethnomedicine constituents. Natural Product Reports, 2019, 36, 788-809.	5.2	67
110	Innate and Innate-Like Immune System in Hypertension and Vascular Injury. Current Hypertension Reports, 2019, 21, 4.	1.5	29
111	Fueling Ketone Metabolism Quenches Salt-Induced Hypertension. Trends in Endocrinology and Metabolism, 2019, 30, 145-147.	3.1	6
112	The role of chronic kidney disease-associated dysbiosis in cardiovascular disease. Experimental Biology and Medicine, 2019, 244, 514-525.	1.1	18
113	Endocrine organs of cardiovascular diseases: Gut microbiota. Journal of Cellular and Molecular Medicine, 2019, 23, 2314-2323.	1.6	27

#	Article	IF	Citations
114	Dietary Habits and Intestinal Immunity: From Food Intake to CD4+ TH Cells. Frontiers in Immunology, 2018, 9, 3177.	2.2	33
116	Impaired Autonomic Nervous System-Microbiome Circuit in Hypertension. Circulation Research, 2019, 125, 104-116.	2.0	73
117	The role of sodium in modulating immune cell function. Nature Reviews Nephrology, 2019, 15, 546-558.	4.1	74
118	Hypertension as a Metabolic Disorder and the Novel Role of the Gut. Current Hypertension Reports, 2019, 21, 63.	1.5	67
119	Intestinal microbiome and fitness in kidney disease. Nature Reviews Nephrology, 2019, 15, 531-545.	4.1	140
120	The gut microbiota perspective for interventions in MS. Autoimmunity Reviews, 2019, 18, 814-824.	2.5	19
121	High Salt Inhibits Tumor Growth by Enhancing Anti-tumor Immunity. Frontiers in Immunology, 2019, 10, 1141.	2.2	34
122	Autoimmunity in microbiome-mediated diseases and novel therapeutic approaches. Current Opinion in Pharmacology, 2019, 49, 34-42.	1.7	13
123	Elevated bone marrow sympathetic drive precedes systemic inflammation in angiotensin II hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H279-H289.	1.5	27
124	The intestinal microbiota and cardiovascular disease. Cardiovascular Research, 2019, 115, 1471-1486.	1.8	33
125	Gut Microbiota Plays a Central Role to Modulate the Plasma and Fecal Metabolomes in Response to Angiotensin II. Hypertension, 2019, 74, 184-193.	1.3	70
126	Candesartan attenuates hypertension-associated pathophysiological alterations in the gut. Biomedicine and Pharmacotherapy, 2019, 116, 109040.	2.5	38
127	Sex, gut microbiome, and cardiovascular disease risk. Biology of Sex Differences, 2019, 10, 29.	1.8	95
128	Dietary Habits Bursting into the Complex Pathogenesis of Autoimmune Diseases: The Emerging Role of Salt from Experimental and Clinical Studies. Nutrients, 2019, 11, 1013.	1.7	22
129	Implications of the Westernized Diet in the Onset and Progression of IBD. Nutrients, 2019, 11, 1033.	1.7	142
130	Intestinal Microbiota in Cardiovascular Health and Disease. Journal of the American College of Cardiology, 2019, 73, 2089-2105.	1.2	301
131	Obesity, kidney dysfunction and hypertension: mechanistic links. Nature Reviews Nephrology, 2019, 15, 367-385.	4.1	336
133	Molecular Mechanisms of Kidney Injury and Repair in Arterial Hypertension. International Journal of Molecular Sciences, 2019, 20, 2138.	1.8	16

# 134	ARTICLE Intestinal dysbacteriosis mediates the reference memory deficit induced by anaesthesia/surgery in aged mice. Brain, Behavior, and Immunity, 2019, 80, 605-615.	IF 2.0	CITATIONS
135	Immune mechanisms of hypertension. Nature Reviews Immunology, 2019, 19, 517-532.	10.6	281
136	Associations between usual diet and gut microbiota composition: results from the Milieu Intérieur cross-sectional study. American Journal of Clinical Nutrition, 2019, 109, 1472-1483.	2.2	66
137	Role of T-cell activation in salt-sensitive hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H1345-H1353.	1.5	23
140	Precarious Symbiosis Between Host and Microbiome in Cardiovascular Health. Hypertension, 2019, 73, 926-935.	1.3	10
141	Relationship between serum inflammatory cytokines and lifestyle factors in gastric cancer. Molecular and Clinical Oncology, 2019, 10, 401-414.	0.4	5
142	Mining the microbiota for microbial and metabolite-based immunotherapies. Nature Reviews Immunology, 2019, 19, 305-323.	10.6	211
143	Incorporation of Geneâ€Environment Interaction Terms Improved the Predictive Accuracy of Tacrolimus Stable Dose Algorithms in Chinese Adult Renal Transplant Recipients. Journal of Clinical Pharmacology, 2019, 59, 890-899.	1.0	7
144	Chronic kidney disease and the gut microbiome. American Journal of Physiology - Renal Physiology, 2019, 316, F1211-F1217.	1.3	147
145	Animal Models of Hypertension: A Scientific Statement From the American Heart Association. Hypertension, 2019, 73, e87-e120.	1.3	177
146	MNEMONIC: MetageNomic Experiment Mining to create an OTU Network of Inhabitant Correlations. BMC Bioinformatics, 2019, 20, 96.	1.2	1
147	Interplay of Na+ Balance and Immunobiology of Dendritic Cells. Frontiers in Immunology, 2019, 10, 599.	2.2	8
148	ATAT1 regulates forebrain development and stress-induced tubulin hyperacetylation. Cellular and Molecular Life Sciences, 2019, 76, 3621-3640.	2.4	20
150	SolidBin: improving metagenome binning with semi-supervised normalized cut. Bioinformatics, 2019, 35, 4229-4238.	1.8	52
151	Effects of Sleeve Gastrectomy on Blood Pressure and the Renal Renin–Angiotensin System in Rats with Dietâ€Induced Obesity. Obesity, 2019, 27, 785-792.	1.5	5
152	Pressure From the Bugs Within. Hypertension, 2019, 73, 977-979.	1.3	3
153	The effect of diet on hypertensive pathology: is there a link via gut microbiota-driven immunometabolism?. Cardiovascular Research, 2019, 115, 1435-1447.	1.8	58
154	Impact factors that modulate gastric cancer risk inHelicobacter pyloriâ€infected rodent models. Helicobacter, 2019, 24, e12580.	1.6	9

	СІТАТ	ION REPORT	
#	Article	IF	CITATIONS
155	Immunity, microbiota and kidney disease. Nature Reviews Nephrology, 2019, 15, 263-274.	4.1	80
156	Global Plasma Profiling for Colorectal Cancer-Associated Volatile Organic Compounds: a Proof-of-Principle Study. Journal of Chromatographic Science, 2019, 57, 385-396.	0.7	12
157	Diet modulates colonic T cell responses by regulating the expression of a <i>Bacteroides thetaiotaomicron</i> antigen. Science Immunology, 2019, 4, .	5.6	70
158	Germ-Free Mouse Technology in Cardiovascular Research. , 2019, , 13-25.		1
159	The Gut Microbiome and Metabolome in Multiple Sclerosis. , 2019, , 333-340.		11
160	Precision Medicine. , 2019, , 435-449.		1
161	Immune mechanisms of salt-sensitive hypertension and renal end-organ damage. Nature Reviews Nephrology, 2019, 15, 290-300.	4.1	86
162	Targeting the Gut Microbiota to Investigate the Mechanism of Lactulose in Negating the Effects of a Highâ€ S alt Diet on Hypertension. Molecular Nutrition and Food Research, 2019, 63, e1800941.	1.5	52
163	Sodium chloride is an ionic checkpoint for human T _H 2 cells and shapes the atopic skin microenvironment. Science Translational Medicine, 2019, 11, .	5.8	66
164	The gut microbiota and blood pressure in experimental models. Current Opinion in Nephrology and Hypertension, 2019, 28, 97-104.	1.0	44
165	Th17 and Cognitive Impairment: Possible Mechanisms of Action. Frontiers in Neuroanatomy, 2019, 13, 9	5. 0.9	81
166	Tissue Sodium Content and Arterial Hypertension in Obese Adolescents. Journal of Clinical Medicine, 2019, 8, 2036.	1.0	9
167	Microbial transmission from mother to child: improving infant intestinal microbiota development by identifying the obstacles. Critical Reviews in Microbiology, 2019, 45, 613-648.	2.7	30
168	Maternal elevated salt consumption and the development of autism spectrum disorder in the offspring. Journal of Neuroinflammation, 2019, 16, 265.	3.1	8
169	Timing of Calorie Restriction in Mice Impacts Host Metabolic Phenotype with Correlative Changes in Gut Microbiota. MSystems, 2019, 4, .	1.7	28
170	Gut microbiome and cardiometabolic risk. Reviews in Endocrine and Metabolic Disorders, 2019, 20, 399-406.	2.6	23
171	Effects of the DASH Diet and Sodium Intake on Bloating: Results From the DASH–Sodium Trial. American Journal of Gastroenterology, 2019, 114, 1109-1115.	0.2	11
172	Salt in stools is associated with obesity, gut halophilic microbiota and Akkermansia muciniphila depletion in humans. International Journal of Obesity, 2019, 43, 862-871.	1.6	57

#	Article	IF	CITATIONS
173	Short-Chain Fatty Acid Propionate Protects From Hypertensive Cardiovascular Damage. Circulation, 2019, 139, 1407-1421.	1.6	452
174	[Na+] Increases in Body Fluids Sensed by Central Nax Induce Sympathetically Mediated Blood Pressure Elevations via H+-Dependent Activation of ASIC1a. Neuron, 2019, 101, 60-75.e6.	3.8	70
175	High salt diet ameliorates functional, electrophysiological and histological characteristics of murine spontaneous autoimmune polyneuropathy. Neurobiology of Disease, 2019, 124, 240-247.	2.1	5
176	The interplay among gut microbiota, hypertension and kidney diseases: The role of short-chain fatty acids. Pharmacological Research, 2019, 141, 366-377.	3.1	94
177	Sodium in the microenvironment regulates immune responses and tissue homeostasis. Nature Reviews Immunology, 2019, 19, 243-254.	10.6	100
178	Enlisting commensal microbes to resist antibiotic-resistant pathogens. Journal of Experimental Medicine, 2019, 216, 10-19.	4.2	51
179	A Systematic Review of the Interaction Between Gut Microbiota and Host Health from a Symbiotic Perspective. SN Comprehensive Clinical Medicine, 2019, 1, 224-235.	0.3	6
180	Emerging evidence of an effect of salt on innate and adaptive immunity. Nephrology Dialysis Transplantation, 2019, 34, 2007-2014.	0.4	8
181	High-Salt Diet Gets Involved in Gastrointestinal Diseases through the Reshaping of Gastroenterological Milieu. Digestion, 2019, 99, 267-274.	1.2	25
182	Quorum sensing for population-level control of bacteria and potential therapeutic applications. Cellular and Molecular Life Sciences, 2020, 77, 1319-1343.	2.4	101
183	Hypertension in Chronic Kidney Disease: Novel Insights. Current Hypertension Reviews, 2020, 16, 45-54.	0.5	14
184	Fecal microbiota as a noninvasive biomarker to predict the tissue iron accumulation in intestine epithelial cells and liver. FASEB Journal, 2020, 34, 3006-3020.	0.2	12
185	Neuroimmune circuits in inter-organ communication. Nature Reviews Immunology, 2020, 20, 217-228.	10.6	132
186	Microbiota are critical for vascular physiology: Germ-free status weakens contractility and induces sex-specific vascular remodeling in mice. Vascular Pharmacology, 2020, 125-126, 106633.	1.0	24
187	Microbiome and hypertension: where are we now?. Journal of Cardiovascular Medicine, 2020, 21, 83-88.	0.6	35
188	Autoimmune diseases and immunosuppressive therapy in relation to the risk of glioma. Cancer Medicine, 2020, 9, 1263-1275.	1.3	11
189	Immunological mechanisms underpinning faecal microbiota transplantation for the treatment of inflammatory bowel disease. Clinical and Experimental Immunology, 2019, 199, 24-38.	1.1	40
190	Is too much salt harmful? Yes. Pediatric Nephrology, 2020, 35, 1777-1785.	0.9	16

#	Article	IF	CITATIONS
191	Changes to the gut microbiota induced by losartan contributes to its antihypertensive effects. British Journal of Pharmacology, 2020, 177, 2006-2023.	2.7	57
192	Transcriptomic signature of gut microbiome-contacting cells in colon of spontaneously hypertensive rats. Physiological Genomics, 2020, 52, 121-132.	1.0	20
193	Lowâ€Dose Aspirin Treatment Attenuates Male Rat Saltâ€5ensitive Hypertension via Platelet Cyclooxygenase 1 and Complement Cascade Pathway. Journal of the American Heart Association, 2020, 9, e013470.	1.6	15
194	Gut Microbiota in Hypertension and Atherosclerosis: A Review. Nutrients, 2020, 12, 2982.	1.7	183
195	Molecular patterns from a human gut-derived Lactobacillus strain suppress pathogenic infiltration of leukocytes into the central nervous system. Journal of Neuroinflammation, 2020, 17, 291.	3.1	5
197	Health and disease markers correlate with gut microbiome composition across thousands of people. Nature Communications, 2020, 11, 5206.	5.8	378
198	Interactions between host genetics and gut microbiota determine susceptibility to CNS autoimmunity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27516-27527.	3.3	58
199	Deconstructing Mechanisms of Diet-Microbiome-Immune Interactions. Immunity, 2020, 53, 264-276.	6.6	77
200	Intestinal barrier dysfunction as a therapeutic target for cardiovascular disease. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 319, H1227-H1233.	1.5	61
201	Gut microbiota-derived short-chain fatty acids and hypertension: Mechanism and treatment. Biomedicine and Pharmacotherapy, 2020, 130, 110503.	2.5	53
202	Effects of dietary restriction on gut microbiota and CNS autoimmunity. Clinical Immunology, 2022, 235, 108575.	1.4	10
203	Associations of sodium and potassium consumption with the gut microbiota and host metabolites in a population-based study in Chinese adults. American Journal of Clinical Nutrition, 2020, 112, 1599-1612.	2.2	9
204	Protocol of a multicenter, single-blind, randomised, parallel controlled feeding trial evaluating the effect of a Chinese Healthy Heart (CHH) diet in lowering blood pressure and other cardiovascular risk factors. BMJ Open, 2020, 10, e036394.	0.8	4
206	Hypothesis: Unrecognized actions of ENaC blockade in improving refractory-resistant hypertension and residual cardiovascular risk. International Journal of Cardiology: Hypertension, 2020, 7, 100048.	2.2	4
207	Paeoniflorin modulates gut microbial production of indole-3-lactate and epithelial autophagy to alleviate colitis in mice. Phytomedicine, 2020, 79, 153345.	2.3	51
208	From obesity through gut microbiota to cardiovascular diseases: a dangerous journey. International Journal of Obesity Supplements, 2020, 10, 35-49.	12.5	40
209	Predicting disease occurrence with high accuracy based on soil macroecological patterns of Fusarium wilt. ISME Journal, 2020, 14, 2936-2950.	4.4	157
210	Developmental Programming and Reprogramming of Hypertension and Kidney Disease: Impact of Tryptophan Metabolism. International Journal of Molecular Sciences, 2020, 21, 8705.	1.8	46

#	Article	IF	CITATIONS
211	Obesity, kidney dysfunction, and inflammation: interactions in hypertension. Cardiovascular Research, 2021, 117, 1859-1876.	1.8	78
212	Food Additives, Gut Microbiota, and Irritable Bowel Syndrome: A Hidden Track. International Journal of Environmental Research and Public Health, 2020, 17, 8816.	1.2	35
213	Gut Microbiota-Related Evidence Provides New Insights Into the Association Between Activating Transcription Factor 4 and Development of Salt-Induced Hypertension in Mice. Frontiers in Cell and Developmental Biology, 2020, 8, 585995.	1.8	19
214	The role of the gut microbiota and microbial metabolites in neuroinflammation. European Journal of Immunology, 2020, 50, 1863-1870.	1.6	32
215	Inhibition of sodium-proton-exchanger subtype 3-mediated sodium absorption in the gut: A new antihypertensive concept. IJC Heart and Vasculature, 2020, 29, 100591.	0.6	9
216	High Salt Elicits Brain Inflammation and Cognitive Dysfunction, Accompanied by Alternations in the Gut Microbiota and Decreased SCFA Production. Journal of Alzheimer's Disease, 2020, 77, 629-640.	1.2	42
217	Reduction of gut microbial diversity and short chain fatty acids in BALB/c mice exposure to microcystin-LR. Ecotoxicology, 2020, 29, 1347-1357.	1.1	14
218	New developments in our understanding of ankylosing spondylitis pathogenesis. Immunology, 2020, 161, 94-102.	2.0	55
219	Association Between the Gut Microbiota and Blood Pressure in a Population Cohort of 6953 Individuals. Journal of the American Heart Association, 2020, 9, e016641.	1.6	67
220	Metagenomic analysis of gut microbiota in non-treated plaque psoriasis patients stratified by disease severity: development of a new Psoriasis-Microbiome Index. Scientific Reports, 2020, 10, 12754.	1.6	58
221	High salt diet may promote progression of breast tumor through eliciting immune response. International Immunopharmacology, 2020, 87, 106816.	1.7	15
222	Identification of a Signaling Mechanism by Which the Microbiome Regulates Th17 Cell-Mediated Depressive-Like Behaviors in Mice. American Journal of Psychiatry, 2020, 177, 974-990.	4.0	58
223	Neuroimmunogastroenterology: At the Interface of Neuroimmunology and Gastroenterology. Frontiers in Neurology, 2020, 11, 787.	1.1	7
224	The association of psoriasis and hypertension: focusing on antiâ€inflammatory therapies and immunological mechanisms. Clinical and Experimental Dermatology, 2020, 45, 836-840.	0.6	6
225	Salt-dependent hypertension and inflammation: targeting the gut–brain axis and the immune system with Brazilian green propolis. Inflammopharmacology, 2020, 28, 1163-1182.	1.9	10
226	CD4 T Helper Cell Subsets and Related Human Immunological Disorders. International Journal of Molecular Sciences, 2020, 21, 8011.	1.8	148
228	Associations between gut microbiota, faecal short-chain fatty acids, and blood pressure across ethnic groups: the HELIUS study. European Heart Journal, 2020, 41, 4259-4267.	1.0	124
229	The Gut Microbiome, Inflammation, and Salt-Sensitive Hypertension. Current Hypertension Reports, 2020, 22, 79.	1.5	52

	Сітатіс	on Report	
#	Article	IF	CITATIONS
230	Dietary potassium and the kidney: lifesaving physiology. CKJ: Clinical Kidney Journal, 2020, 13, 952-968.	1.4	32
231	Impact of Gut Microbiome on Hypertensive Patients With Low-Salt Intake: Shika Study Results. Frontiers in Medicine, 2020, 7, 475.	1.2	8
232	The effect of highâ€salt diet on t″ymphocyte subpopulations in healthy males—A pilot study. Journal of Clinical Hypertension, 2020, 22, 2152-2155.	1.0	8
233	Sacha inchi (<i>Plukenetia volubilis</i> L.) shell extract alleviates hypertension in association with the regulation of gut microbiota. Food and Function, 2020, 11, 8051-8067.	2.1	9
234	Amino Acid Metabolism in Rheumatoid Arthritis: Friend or Foe?. Biomolecules, 2020, 10, 1280.	1.8	26
235	Intestinal Microbes in Autoimmune and Inflammatory Disease. Frontiers in Immunology, 2020, 11, 597966.	2.2	28
236	Diet, Microbioma, and Diabetes in Aging. Current Geriatrics Reports, 2020, 9, 261-274.	1.1	0
237	Distinct Features of Gut Microbiota in High-Altitude Tibetan and Middle-Altitude Han Hypertensive Patients. Cardiology Research and Practice, 2020, 2020, 1-15.	0.5	6
238	Host variables confound gut microbiota studies of human disease. Nature, 2020, 587, 448-454.	13.7	324
239	Metabolites and Hypertension: Insights into Hypertension as a Metabolic Disorder. Hypertension, 2020, 75, 1386-1396.	1.3	32
240	Lactobacillus murinus Improved the Bioavailability of Orally Administered Glycyrrhizic Acid in Rats. Frontiers in Microbiology, 2020, 11, 597.	1,5	17
241	Modest Sodium Reduction Increases Circulating Short-Chain Fatty Acids in Untreated Hypertensives. Hypertension, 2020, 76, 73-79.	1.3	58
242	Friend or foe? Lactobacillus in the context of autoimmune disease. Advances in Immunology, 2020, 146, 29-56.	1.1	25
243	Intake of sucrose affects gut dysbiosis in patients with typeÂ2 diabetes. Journal of Diabetes Investigation, 2020, 11, 1623-1634.	1.1	35
244	Pharmacological inhibition of sodium-proton-exchanger subtype 3-mediated sodium absorption in the gut reduces atrial fibrillation susceptibility in obese spontaneously hypertensive rats. IJC Heart and Vasculature, 2020, 28, 100534.	0.6	4
245	Shift in rhizospheric and endophytic bacterial communities of tomato caused by salinity and grafting. Science of the Total Environment, 2020, 734, 139388.	3.9	15
246	Diurnal Timing Dependent Alterations in Gut Microbial Composition Are Synchronously Linked to Salt-Sensitive Hypertension and Renal Damage. Hypertension, 2020, 76, 59-72.	1.3	21
247	Whole brain radiotherapy induces cognitive dysfunction in mice: key role of gut microbiota. Psychopharmacology, 2020, 237, 2089-2101.	1.5	12

#	Article	IF	CITATIONS
248	Nutrition in RMDs: is it really food for thought? Focus on rheumatoid arthritis. BMC Rheumatology, 2020, 4, 10.	0.6	11
249	Potential Effects of Indole-3-Lactic Acid, a Metabolite of Human Bifidobacteria, on NGF-Induced Neurite Outgrowth in PC12 Cells. Microorganisms, 2020, 8, 398.	1.6	48
250	Microbiota-Propelled T Helper 17 Cells in Inflammatory Diseases and Cancer. Microbiology and Molecular Biology Reviews, 2020, 84, .	2.9	37
251	Nutrition and the Immune System: A Complicated Tango. Nutrients, 2020, 12, 818.	1.7	121
252	A high-salt diet compromises antibacterial neutrophil responses through hormonal perturbation. Science Translational Medicine, 2020, 12, .	5.8	45
253	Don't Take It With a Pinch of Salt. Circulation Research, 2020, 126, 854-856.	2.0	5
254	Gut dysbiosis and heart failure: navigating the universe within. European Journal of Heart Failure, 2020, 22, 629-637.	2.9	32
255	Role of diet in regulating the gut microbiota and multiple sclerosis. Clinical Immunology, 2022, 235, 108379.	1.4	19
256	Cross-omics analysis revealed gut microbiome-related metabolic pathways underlying atherosclerosis development after antibiotics treatment. Molecular Metabolism, 2020, 36, 100976.	3.0	46
257	Gut microbiota and cardiovascular disease: opportunities and challenges. Microbiome, 2020, 8, 36.	4.9	213
258	Inflammation in Mental Disorders: Is the Microbiota the Missing Link?. Neuroscience Bulletin, 2020, 36, 1071-1084.	1.5	10
259	Microbiota and Hypertension: Role of the Sympathetic Nervous System and the Immune System. American Journal of Hypertension, 2020, 33, 890-901.	1.0	28
260	Eriodictyol suppresses Th17 differentiation and the pathogenesis of experimental autoimmune encephalomyelitis. Food and Function, 2020, 11, 6875-6888.	2.1	13
261	Postbiotic-Enabled Targeting of the Host-Microbiota-Pathogen Interface: Hints of Antibiotic Decline?. Pharmaceutics, 2020, 12, 624.	2.0	20
262	Highâ€ S alt Dietâ€Induced Gastritis in C57BL/6 Mice is Associated with Microbial Dysbiosis and Alleviated by a Buckwheat Diet. Molecular Nutrition and Food Research, 2020, 64, e1900965.	1.5	13
263	Splenocyte transfer exacerbates saltâ€sensitive hypertension in rats. Experimental Physiology, 2020, 105, 864-875.	0.9	19
264	Gut microbiome of a porcine model of metabolic syndrome and HF-pEF. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H590-H603.	1.5	16
265	Calcium Oxalate Nephrolithiasis and Gut Microbiota: Not just a Gut-Kidney Axis. A Nutritional Perspective. Nutrients, 2020, 12, 548.	1.7	50

#	Article	IF	CITATIONS
266	Deficiency of Prebiotic Fiber and Insufficient Signaling Through Gut Metabolite-Sensing Receptors Leads to Cardiovascular Disease. Circulation, 2020, 141, 1393-1403.	1.6	176
267	Gut dysbiosis contributes to high fructose–induced salt-sensitive hypertension in Sprague-Dawley rats. Nutrition, 2020, 75-76, 110766.	1.1	18
268	Genomic Determinants of Hypertension With a Focus on Metabolomics and the Gut Microbiome. American Journal of Hypertension, 2020, 33, 473-481.	1.0	16
269	Salt Reduction to Prevent Hypertension and Cardiovascular Disease. Journal of the American College of Cardiology, 2020, 75, 632-647.	1.2	294
270	Altered nutrient status reprograms host inflammation and metabolic health via gut microbiota. Journal of Nutritional Biochemistry, 2020, 80, 108360.	1.9	31
271	Intestinal Flora Modulates Blood Pressure by Regulating the Synthesis of Intestinal-Derived Corticosterone in High Salt-Induced Hypertension. Circulation Research, 2020, 126, 839-853.	2.0	120
272	Report of the National Heart, Lung, and Blood Institute Working Group on Hypertension. Hypertension, 2020, 75, 902-917.	1.3	24
274	Thinking about the microbiome as a causal factor in human health and disease: philosophical and experimental considerations. Current Opinion in Microbiology, 2020, 54, 119-126.	2.3	5
275	Microbiota composition modulates inflammation and neointimal hyperplasia after arterial angioplasty. Journal of Vascular Surgery, 2020, 71, 1378-1389.e3.	0.6	4
276	B6.Rag1 Knockout Mice Generated at the Jackson Laboratory in 2009 Show a Robust Wild-Type Hypertensive Phenotype in Response to Ang II (Angiotensin II). Hypertension, 2020, 75, 1110-1116.	1.3	34
277	Foes or Friends? Bacteria Enriched in the Tumor Microenvironment of Colorectal Cancer. Cancers, 2020, 12, 372.	1.7	28
278	How Structure, Mechanics, and Function of the Vasculature Contribute to Blood Pressure Elevation in Hypertension. Canadian Journal of Cardiology, 2020, 36, 648-658.	0.8	44
279	Rational use of prebiotics for gut microbiota alterations: Specific bacterial phylotypes and related mechanisms. Journal of Functional Foods, 2020, 66, 103838.	1.6	70
280	Exposure to Amoxicillin in Early Life Is Associated With Changes in Gut Microbiota and Reduction in Blood Pressure: Findings From a Study on Rat Dams and Offspring. Journal of the American Heart Association, 2020, 9, e014373.	1.6	31
281	The Gastrointestinal Microbiome in Chronic Renal Diseases. Current Oral Health Reports, 2020, 7, 45-53.	0.5	0
282	Impaired T cell receptor signaling and development of T cell–mediated autoimmune arthritis. Immunological Reviews, 2020, 294, 164-176.	2.8	62
283	The gut microbiota and its interactions with cardiovascular disease. Microbial Biotechnology, 2020, 13, 637-656.	2.0	97
284	Neutrophils as regulators of cardiovascular inflammation. Nature Reviews Cardiology, 2020, 17, 327-340.	6.1	265

#	Article	IF	CITATIONS
285	Dietary natural products as epigenetic modifiers in aging-associated inflammation and disease. Natural Product Reports, 2020, 37, 653-676.	5.2	43
286	The Impact of Dietary Components on Regulatory T Cells and Disease. Frontiers in Immunology, 2020, 11, 253.	2.2	38
287	MiR-195 regulates CD40 to maintain Th17/Treg balance in rats with non-alcoholic fatty liver disease. Biomedicine and Pharmacotherapy, 2020, 124, 109930.	2.5	11
288	Combination of Chronic Alcohol Consumption and High-Salt Intake Elicits Gut Microbial Alterations and Liver Steatosis in Mice. Journal of Agricultural and Food Chemistry, 2020, 68, 1750-1759.	2.4	13
289	Dietary Protein: Mechanisms Influencing Hypertension and Renal Disease. Current Hypertension Reports, 2020, 22, 13.	1.5	10
290	The Correlation Between Metabolic Disorders And Tpoab/Tgab: A Cross-Sectional Population-Based Study. Endocrine Practice, 2020, 26, 869-882.	1.1	17
291	Microbiota Research: From History to Advances. E3S Web of Conferences, 2020, 145, 01014.	0.2	1
292	Challenges, Progress, and Prospects of Developing Therapies to Treat Autoimmune Diseases. Cell, 2020, 181, 63-80.	13.5	159
293	Gut microbiota in chronic inflammatory disorders: A focus on pediatric inflammatory bowel diseases and juvenile idiopathic arthritis. Clinical Immunology, 2020, 215, 108415.	1.4	19
294	Gut Microbial Metabolites of Aromatic Amino Acids as Signals in Host–Microbe Interplay. Trends in Endocrinology and Metabolism, 2020, 31, 818-834.	3.1	171
295	High-salt diet inhibits tumour growth in mice via regulating myeloid-derived suppressor cell differentiation. Nature Communications, 2020, 11, 1732.	5.8	41
296	Gut Microbiome, Intestinal Permeability, and Tissue Bacteria in Metabolic Disease: Perpetrators or Bystanders?. Nutrients, 2020, 12, 1082.	1.7	154
297	You Are What You Eat—The Relationship between Diet, Microbiota, and Metabolic Disorders—A Review. Nutrients, 2020, 12, 1096.	1.7	185
298	Insights into the reason of Human-Residential Bifidobacteria (HRB) being the natural inhabitants of the human gut and their potential health-promoting benefits. FEMS Microbiology Reviews, 2020, 44, 369-385.	3.9	69
299	Gut Microbiota and Pathogenesis of Organ Injury. Advances in Experimental Medicine and Biology, 2020, , .	0.8	7
300	Food ingredients in human health: Ecological and metabolic perspectives implicating gut microbiota function. Trends in Food Science and Technology, 2020, 100, 103-117.	7.8	18
301	Small molecules, big effects: microbial metabolites in intestinal immunity. American Journal of Physiology - Renal Physiology, 2020, 318, G907-G911.	1.6	4
302	The proportion of myeloid-derived suppressor cells in the spleen is related to the severity of the clinical course and tissue damage extent in a murine model of multiple sclerosis. Neurobiology of Disease, 2020, 140, 104869.	2.1	30

#	Article	IF	CITATIONS
303	The Redox-Metabolic Couple of T Lymphocytes: Potential Consequences for Hypertension. Antioxidants and Redox Signaling, 2021, 34, 915-935.	2.5	10
304	The Role and Mechanism of Intestinal Flora in Blood Pressure Regulation and Hypertension Development. Antioxidants and Redox Signaling, 2021, 34, 811-830.	2.5	28
305	The influence of wasabi on the gut microbiota of high-carbohydrate, high-fat diet-induced hypertensive Wistar rats. Journal of Human Hypertension, 2021, 35, 170-180.	1.0	17
306	A practical guide to amplicon and metagenomic analysis of microbiome data. Protein and Cell, 2021, 12, 315-330.	4.8	376
307	Dietary factors in experimental autoimmune encephalomyelitis and multiple sclerosis: A comprehensive review. Multiple Sclerosis Journal, 2021, 27, 494-502.	1.4	8
308	Inflammation and salt in young adults: the African-PREDICT study. European Journal of Nutrition, 2021, 60, 873-882.	1.8	5
309	Diet-related gut microbial metabolites and sensing in hypertension. Journal of Human Hypertension, 2021, 35, 162-169.	1.0	27
310	Amplification of Salt-Sensitive Hypertension and Kidney Damage by Immune Mechanisms. American Journal of Hypertension, 2021, 34, 3-14.	1.0	14
311	Liver X receptor regulates Th17 and RORγt+ Treg cells by distinct mechanisms. Mucosal Immunology, 2021, 14, 411-419.	2.7	9
312	Gut microbes in cardiovascular diseases and their potential therapeutic applications. Protein and Cell, 2021, 12, 346-359.	4.8	62
313	The role of inflammation in hypertension: novel concepts. Current Opinion in Physiology, 2021, 19, 92-98.	0.9	57
314	Food and salt structure design for salt reducing. Innovative Food Science and Emerging Technologies, 2021, 67, 102570.	2.7	30
315	Atorvastatin alleviates microglia-mediated neuroinflammation via modulating the microbial composition and the intestinal barrier function in ischemic stroke mice. Free Radical Biology and Medicine, 2021, 162, 104-117.	1.3	41
316	Nutrition and the Covid-19 pandemic: Three factors with high impact on community health. Nutrition, Metabolism and Cardiovascular Diseases, 2021, 31, 756-761.	1.1	3
317	Metabolites of microbiota response to tryptophan and intestinal mucosal immunity: A therapeutic target to control intestinal inflammation. Medicinal Research Reviews, 2021, 41, 1061-1088.	5.0	68
318	Gut microbiome - A potential mediator of pathogenesis in heart failure and its comorbidities: State-of-the-art review. Journal of Molecular and Cellular Cardiology, 2021, 152, 105-117.	0.9	58
319	Role of interleukin-23/interleukin-17 axis in T-cell-mediated actions in hypertension. Cardiovascular Research, 2021, 117, 1274-1283.	1.8	19
320	Sodium butyrate ameliorates deoxycorticosterone acetate/salt-induced hypertension and renal damage by inhibiting the MR/SGK1 pathway. Hypertension Research, 2021, 44, 168-178.	1.5	11

		Citation R	EPORT	
#	Article		IF	CITATIONS
321	Gut microbiota and hypertension. Arterial Hypertension (Russian Federation), 2021, 26	, 620-628.	0.1	3
322	On the Role of Salt in Immunoregulation and Autoimmunity. Mediterranean Journal of I 2021, 31, 3.	Rheumatology,	0.3	1
324	Impaired Intestinal Sodium Transport in Inflammatory Bowel Disease: From the Passeng Driver's Seat. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 277-		2.3	12
325	Interactions of Food With the Microbiota of the Digestive Tract. , 2022, , 1-11.			0
326	Effect of fermentation with single and co-culture of lactic acid bacteria on okara: evalua bioactive compounds and volatile profiles. Food and Function, 2021, 12, 3033-3043.	ation of	2.1	29
327	Fructooligosaccharides protect against OVA-induced food allergy in mice by regulating cell balance using tryptophan metabolites. Food and Function, 2021, 12, 3191-3205.	the Th17/Treg	2.1	26
328	Targeting Gut Microbiota to Treat Hypertension: A Systematic Review. International Jou Environmental Research and Public Health, 2021, 18, 1248.	ırnal of	1.2	29
329	Precision Medicine in Kidney Transplantation: Just Hype or a Realistic Hope?. Transplant 2021, 7, e650.	cation Direct,	0.8	8
330	Focus on the Gutâ \in "Kidney Axis in Health and Disease. Frontiers in Medicine, 2020, 7, (620102.	1.2	43
331	Gut microbiota and hypertension, diabetes, and other cardiovascular risk factors. , 202	1, , 375-390.		0
332	Myeloid cells, tissue homeostasis, and anatomical barriers as innate immune effectors i hypertension. Journal of Molecular Medicine, 2021, 99, 315-326.	n arterial	1.7	0
333	The deubiquitinase OTUD1 enhances iron transport and potentiates host antitumor im Reports, 2021, 22, e51162.	munity. EMBO	2.0	72
334	Typical gut indigenous bacteria in ICR mice fed a soy protein-based normal or low-prote Research in Food Science, 2021, 4, 295-300.	in diet. Current	2.7	11
335	Immune mechanisms in arterial hypertension. Recent advances. Cell and Tissue Researc 393-404.	:h, 2021, 385,	1.5	33
336	Interactions between hypertension and inflammatory tone and the effect on blood presoutcomes in patients with COVIDâ \in 19. Journal of Clinical Hypertension, 2021, 23, 238	ssure and -244.	1.0	5
338	Immunological Impact of Intestinal T Cells on Metabolic Diseases. Frontiers in Immunol 639902.	ogy, 2021, 12,	2.2	8
339	Kidney and epigenetic mechanisms of salt-sensitive hypertension. Nature Reviews Nepł 350-363.	1rology, 2021, 17,	4.1	38
341	Associations of Genetic Variants Contributing to Gut Microbiota Composition in Immu Nephropathy. MSystems, 2021, 6, .	noglobin A	1.7	18

#	Article	IF	CITATIONS
342	A cross-talk between gut microbiome, salt and hypertension. Biomedicine and Pharmacotherapy, 2021, 134, 111156.	2.5	56
343	Kidney–Gut Crosstalk in AKI. Kidney360, 2021, 2, 886-889.	0.9	7
344	What, When and How to Measure—Peripheral Biomarkers in Therapy of Huntington's Disease. International Journal of Molecular Sciences, 2021, 22, 1561.	1.8	21
345	Nutritional Components in Western Diet Versus Mediterranean Diet at the Gut Microbiota–Immune System Interplay. Implications for Health and Disease. Nutrients, 2021, 13, 699.	1.7	183
346	Innate Immune Cells and Hypertension: Neutrophils and Neutrophil Extracellular Traps (NETs). , 2021, 11, 1575-1589.		23
347	Rapid gut dysbiosis induced by stroke exacerbates brain infarction in turn. Gut, 2021, 70, 1486-1494.	6.1	129
348	Network and 16S rRNA Sequencing-Combined Approach Provides Insightal Evidence of Vitamin K2 for Salt-Sensitive Hypertension. Frontiers in Nutrition, 2021, 8, 639467.	1.6	7
349	Healthy Gut, Healthy Bones: Targeting the Gut Microbiome to Promote Bone Health. Frontiers in Endocrinology, 2020, 11, 620466.	1.5	25
350	Enterococcus faecalis contributes to hypertension and renal injury in Sprague-Dawley rats by disturbing lipid metabolism. Journal of Hypertension, 2021, 39, 1112-1124.	0.3	12
351	Dietary strategies may influence human nerves and emotions by regulating intestinal microbiota: an interesting hypothesis. International Journal of Food Science and Technology, 2021, 56, 3311-3321.	1.3	4
352	Damage-free light-induced assembly of intestinal bacteria with a bubble-mimetic substrate. Communications Biology, 2021, 4, 385.	2.0	18
354	Inflammatory Bowel Disease in Patients with Congenital Chloride Diarrhoea. Journal of Crohn's and Colitis, 2021, 15, 1679-1685.	0.6	14
355	Recent advances in understanding the Th1/Th2 effector choice. Faculty Reviews, 2021, 10, 30.	1.7	65
356	Gut-Derived Metabolite Indole-3-Propionic Acid Modulates Mitochondrial Function in Cardiomyocytes and Alters Cardiac Function. Frontiers in Medicine, 2021, 8, 648259.	1.2	39
357	Gut microbiota-derived metabolites in the regulation of host immune responses and immune-related inflammatory diseases. Cellular and Molecular Immunology, 2021, 18, 866-877.	4.8	175
358	Role of Rho in Salt-Sensitive Hypertension. International Journal of Molecular Sciences, 2021, 22, 2958.	1.8	11
359	Abundant Monovalent Ions as Environmental Signposts for Pathogens during Host Colonization. Infection and Immunity, 2021, 89, .	1.0	8
360	Gut Microbiome over a Lifetime and the Association with Hypertension. Current Hypertension Reports, 2021, 23, 15.	1.5	10

#	Article	IF	CITATIONS
361	Navigating the diverse immune landscapes of psoriatic arthritis. Seminars in Immunopathology, 2021, 43, 279-290.	2.8	7
362	High-salt diet suppresses autoimmune demyelination by regulating the blood–brain barrier permeability. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	25
363	How Changes in the Nutritional Landscape Shape Gut Immunometabolism. Nutrients, 2021, 13, 823.	1.7	14
364	Uraemic solutes as therapeutic targets in CKD-associated cardiovascular disease. Nature Reviews Nephrology, 2021, 17, 402-416.	4.1	51
365	Gestational gut microbial remodeling is impaired in a rat model of preeclampsia superimposed on chronic hypertension. Physiological Genomics, 2021, 53, 125-136.	1.0	8
366	Interleukin 17A: Key Player in the Pathogenesis of Hypertension and a Potential Therapeutic Target. Current Hypertension Reports, 2021, 23, 13.	1.5	26
367	Gut Dysbiosis–Induced Hypertension Is Ameliorated by Intermittent Fasting. Circulation Research, 2021, 128, 1255-1257.	2.0	4
368	Altered gut microbiome and autism like behavior are associated with parental high salt diet in male mice. Scientific Reports, 2021, 11, 8364.	1.6	20
369	Hypertension. Circulation Research, 2021, 128, 908-933.	2.0	95
370	The Gut Microbiome in Hypertension. Circulation Research, 2021, 128, 934-950.	2.0	86
370 371	The Gut Microbiome in Hypertension. Circulation Research, 2021, 128, 934-950. Dietary influences on the Dahl SS rat gut microbiota and its effects on saltâ€sensitive hypertension and renal damage. Acta Physiologica, 2021, 232, e13662.	2.0 1.8	86 24
	Dietary influences on the Dahl SS rat gut microbiota and its effects on saltâ€sensitive hypertension and		
371	Dietary influences on the Dahl SS rat gut microbiota and its effects on saltâ€sensitive hypertension and renal damage. Acta Physiologica, 2021, 232, e13662.	1.8	24
371 372	 Dietary influences on the Dahl SS rat gut microbiota and its effects on saltâ€sensitive hypertension and renal damage. Acta Physiologica, 2021, 232, e13662. Cytokine Regulation and Function in T Cells. Annual Review of Immunology, 2021, 39, 51-76. P2X7 Receptor–Mediated Inflammation in Cardiovascular Disease. Frontiers in Pharmacology, 2021, 12, 	1.8 9.5	24 199
371 372 373	Dietary influences on the Dahl SS rat gut microbiota and its effects on saltâ€sensitive hypertension and renal damage. Acta Physiologica, 2021, 232, e13662. Cytokine Regulation and Function in T Cells. Annual Review of Immunology, 2021, 39, 51-76. P2X7 Receptor–Mediated Inflammation in Cardiovascular Disease. Frontiers in Pharmacology, 2021, 12, 654425.	1.8 9.5 1.6	24 199 19
371 372 373 374	 Dietary influences on the Dahl SS rat gut microbiota and its effects on saltâ€sensitive hypertension and renal damage. Acta Physiologica, 2021, 232, e13662. Cytokine Regulation and Function in T Cells. Annual Review of Immunology, 2021, 39, 51-76. P2X7 Receptor–Mediated Inflammation in Cardiovascular Disease. Frontiers in Pharmacology, 2021, 12, 654425. Hypertension, a Moving Target in COVID-19. Circulation Research, 2021, 128, 1062-1079. Dietary conjugated linoleic acid links reduced intestinal inflammation to amelioration of CNS 	1.8 9.5 1.6 2.0	24 199 19 61
371 372 373 374 375	Dietary influences on the Dahl SS rat gut microbiota and its effects on saltâ€sensitive hypertension and renal damage. Acta Physiologica, 2021, 232, e13662. Cytokine Regulation and Function in T Cells. Annual Review of Immunology, 2021, 39, 51-76. P2X7 Receptor–Mediated Inflammation in Cardiovascular Disease. Frontiers in Pharmacology, 2021, 12, 654425. Hypertension, a Moving Target in COVID-19. Circulation Research, 2021, 128, 1062-1079. Dietary conjugated linoleic acid links reduced intestinal inflammation to amelioration of CNS autoimmunity. Brain, 2021, 144, 1152-1166. Ex Vivo High Salt Activated Tumor-Primed CD4+T Lymphocytes Exert a Potent Anti-Cancer Response.	1.8 9.5 1.6 2.0 3.7	24 199 19 61 28

#	Article	IF	CITATIONS
379	Pathophysiology of Hypertension. Circulation Research, 2021, 128, 847-863.	2.0	112
380	Long-term dietary patterns are associated with pro-inflammatory and anti-inflammatory features of the gut microbiome. Gut, 2021, 70, 1287-1298.	6.1	246
382	Microbiota and Metabolites as Factors Influencing Blood Pressure Regulation. , 2021, 11, 1731-1757.		3
383	Maternal microbiome in preeclampsia pathophysiology and implications on offspring health. Physiological Reports, 2021, 9, e14875.	0.7	24
384	Potential Modulatory Microbiome Therapies for Prevention or Treatment of Inflammatory Bowel Diseases. Pharmaceuticals, 2021, 14, 506.	1.7	8
385	Impact of Bacterial Metabolites on Gut Barrier Function and Host Immunity: A Focus on Bacterial Metabolism and Its Relevance for Intestinal Inflammation. Frontiers in Immunology, 2021, 12, 658354.	2.2	171
386	Host-microbial interactions in the metabolism of different dietary fats. Cell Metabolism, 2021, 33, 857-872.	7.2	29
387	Metabolic regulation on the immune environment of glioma through gut microbiota. Seminars in Cancer Biology, 2022, 86, 990-997.	4.3	20
388	Nutrition Education Toolbox for Hidradenitis Suppurativa. SKIN the Journal of Cutaneous Medicine, 2021, 5, 240-249.	0.1	2
389	What's for dinner? Why a close look at diet and microbiota is worthwhile in experimental hypertension research. Acta Physiologica, 2021, 232, e13704.	1.8	2
390	A transomic cohort as a reference point for promoting a healthy human gut microbiome. Medicine in Microecology, 2021, 8, 100039.	0.7	24
391	The role of T cells in age-related diseases. Nature Reviews Immunology, 2022, 22, 97-111.	10.6	80
392	The therapeutic potential of diet on immune-related diseases: based on the regulation on tryptophan metabolism. Critical Reviews in Food Science and Nutrition, 2022, 62, 8793-8811.	5.4	10
393	Sodium and its manifold impact on our immune system. Trends in Immunology, 2021, 42, 469-479.	2.9	46
394	Gut microbiota and bone metabolism. FASEB Journal, 2021, 35, e21740.	0.2	39
395	Diverse roles of microbial indole compounds in eukaryotic systems. Biological Reviews, 2021, 96, 2522-2545.	4.7	48
396	Gut microbiota contributes to the development of hypertension in a genetic mouse model of systemic lupus erythematosus. British Journal of Pharmacology, 2021, 178, 3708-3729.	2.7	21
397	Therapeutic and Improving Function of Lactobacilli in the Prevention and Treatment of Cardiovascular-Related Diseases: A Novel Perspective From Gut Microbiota. Frontiers in Nutrition, 2021, 8, 693412.	1.6	32

#	Article	IF	CITATIONS
398	Yearly changes in the composition of gut microbiota in the elderly, and the effect of lactobacilli intake on these changes. Scientific Reports, 2021, 11, 12765.	1.6	12
399	Lactobacillus rhamnosus GG modifies the metabolome of pathobionts in gnotobiotic mice. BMC Microbiology, 2021, 21, 165.	1.3	14
400	Regulation of host physiology and immunity by microbial indole-3-aldehyde. Current Opinion in Immunology, 2021, 70, 27-32.	2.4	35
401	Sex-dependent compensatory mechanisms preserve blood pressure homeostasis in prostacyclin receptor–deficient mice. Journal of Clinical Investigation, 2021, 131, .	3.9	1
402	Modification of Gut Microbiota in Inflammatory Arthritis: Highlights and Future Challenges. Current Rheumatology Reports, 2021, 23, 67.	2.1	13
403	Role of microbiota-derived short-chain fatty acids in nervous system disorders. Biomedicine and Pharmacotherapy, 2021, 139, 111661.	2.5	106
404	Salt sensitivity of blood pressure in childhood and adolescence. Pediatric Nephrology, 2021, , 1.	0.9	10
405	Direct and indirect effects of microbiota-derived metabolites on neuroinflammation in multiple sclerosis. Microbes and Infection, 2021, 23, 104814.	1.0	11
406	Cardiovascular Diseases of Developmental Origins: Preventive Aspects of Gut Microbiota-Targeted Therapy. Nutrients, 2021, 13, 2290.	1.7	33
407	Hypertension as Three Systematic Dysregulations of Na+ Homeostasis in Terrestrial Mammal, and Salt in Gut Might Cause Brain Inflammation. , 0, , .		1
408	Study design, general characteristics of participants, and preliminary findings from the metabolome, microbiome, and dietary salt intervention study (MetaSalt). Chronic Diseases and Translational Medicine, 2021, 7, 227-234.	0.9	0
409	Skin Sodium Accumulates in Psoriasis and Reflects Disease Severity. Journal of Investigative Dermatology, 2022, 142, 166-178.e8.	0.3	20
410	Salt Transiently Inhibits Mitochondrial Energetics in Mononuclear Phagocytes. Circulation, 2021, 144, 144-158.	1.6	32
411	Gut Microbiota Dysbiosis Is a Crucial Player for the Poor Outcomes for COVID-19 in Elderly, Diabetic and Hypertensive Patients. Frontiers in Medicine, 2021, 8, 644751.	1.2	17
412	Ethanol: striking the cardiovascular system by harming the gut microbiota. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H275-H291.	1.5	2
413	Washed Microbiota Transplantation Lowers Blood Pressure in Patients With Hypertension. Frontiers in Cellular and Infection Microbiology, 2021, 11, 679624.	1.8	34
415	Molecular biochemical aspects of salt (sodium chloride) in inflammation and immune response with reference to hypertension and type 2 diabetes mellitus. Lipids in Health and Disease, 2021, 20, 83.	1.2	5
416	Immune Mechanisms of Dietary Salt-Induced Hypertension and Kidney Disease: Harry Goldblatt Award for Early Career Investigators 2020. Hypertension, 2021, 78, 252-260.	1.3	19

#	Article	IF	CITATIONS
417	The Role of Gut Microbiota in Hypertension Pathogenesis and the Efficacy of Antihypertensive Drugs. Current Hypertension Reports, 2021, 23, 40.	1.5	15
418	Alteration of Gut Microbiota Relates to Metabolic Disorders in Primary Aldosteronism Patients. Frontiers in Endocrinology, 2021, 12, 667951.	1.5	21
419	Leveraging diet to engineer the gut microbiome. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 885-902.	8.2	86
420	Role of the gut microbiome in chronic diseases: a narrative review. European Journal of Clinical Nutrition, 2022, 76, 489-501.	1.3	168
421	Isolated systolic hypertension of the young and sodium intake. Minerva Medica, 2022, 113, .	0.3	4
422	Proton Pump Inhibitors Are Associated with Increased Risk of Psoriasis: A Nationwide Nested Case-Control Study. Dermatology, 2021, 237, 1-7.	0.9	1
423	Escherichia coli small molecule metabolism at the host–microorganism interface. Nature Chemical Biology, 2021, 17, 1016-1026.	3.9	11
424	High-salt diet mediates interplay between NK cells and gut microbiota to induce potent tumor immunity. Science Advances, 2021, 7, eabg5016.	4.7	58
425	Regulation of T Cell Responses by Ionic Salt Signals. Cells, 2021, 10, 2365.	1.8	5
426	Rodent models of hypertension. British Journal of Pharmacology, 2022, 179, 918-937.	2.7	25
427	Highâ€fat and highâ€sodium diet induces metabolic dysfunction in the absence of obesity. Obesity, 2021, 29, 1868-1881.	1.5	4
428	Gammaproteobacteria, a core taxon in the guts of soil fauna, are potential responders to environmental concentrations of soil pollutants. Microbiome, 2021, 9, 196.	4.9	46
429	Small Molecule Metabolites at the Host–Microbiota Interface. Journal of Immunology, 2021, 207, 1725-1733.	0.4	14
430	The Gut-Brain Axis in Multiple Sclerosis. Is Its Dysfunction a Pathological Trigger or a Consequence of the Disease?. Frontiers in Immunology, 2021, 12, 718220.	2.2	38
431	Influence of the gut microbiome on inflammatory and immune response after stroke. Neurological Sciences, 2021, 42, 4937-4951.	0.9	14
432	Sodium Intake as a Cardiovascular Risk Factor: A Narrative Review. Nutrients, 2021, 13, 3177.	1.7	24
433	Essential Hypertension Is Associated With Changes in Gut Microbial Metabolic Pathways: A Multisite Analysis of Ambulatory Blood Pressure. Hypertension, 2021, 78, 804-815.	1.3	42
434	Induction of IL-22-Producing CD4+ T Cells by Segmented Filamentous Bacteria Independent of Classical Th17 Cells. Frontiers in Immunology, 2021, 12, 671331.	2.2	7

#	Article	IF	CITATIONS
436	Targeted diets for the gut microbiota and the potential cardiovascular effects. Cardiovascular Research, 2021, 117, e135-e137.	1.8	0
437	Depressive hypertension: A proposed human endotype of brain/gut microbiome dysbiosis. American Heart Journal, 2021, 239, 27-37.	1.2	15
438	Gut Microbiota-Modulated Metabolomic Profiling Shapes the Etiology and Pathogenesis of Autoimmune Diseases. Microorganisms, 2021, 9, 1930.	1.6	9
439	Common Metabolites in Two Different Hypertensive Mouse Models: A Serum and Urine Metabolome Study. Biomolecules, 2021, 11, 1387.	1.8	4
440	A Pulmonary <i>Lactobacillus murinus</i> Strain Induces Th17 and RORÎ ³ t+ Regulatory T Cells and Reduces Lung Inflammation in Tuberculosis. Journal of Immunology, 2021, 207, 1857-1870.	0.4	17
441	Impact of different types of anthropogenic pollution on bacterial community and metabolic genes in urban river sediments. Science of the Total Environment, 2021, 793, 148475.	3.9	21
442	The Gut Microbiota and Their Metabolites in Human Arterial Stiffness. Heart Lung and Circulation, 2021, 30, 1716-1725.	0.2	12
443	Impact of maternal nutrition in viral infections during pregnancy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166231.	1.8	10
444	Gut Microbiota: A New Marker of Cardiovascular Disease. , 2022, , .		0
445	Diet-Induced Alterations in Gut Microbiota Composition and Function. , 2022, , .		1
445 446	Diet-Induced Alterations in Gut Microbiota Composition and Function. , 2022, , . The role of the human gut microbiota in colonization and infection with multidrug-resistant bacteria. Gut Microbes, 2021, 13, 1-13.	4.3	1
	The role of the human gut microbiota in colonization and infection with multidrug-resistant	4.3	
446	The role of the human gut microbiota in colonization and infection with multidrug-resistant bacteria. Gut Microbes, 2021, 13, 1-13. DOCAâ€salt hypertension and the role of the OVLTâ€sympatheticâ€gut microbiome axis. Clinical and		16
446 448	The role of the human gut microbiota in colonization and infection with multidrug-resistant bacteria. Gut Microbes, 2021, 13, 1-13. DOCAâ€salt hypertension and the role of the OVLTâ€sympatheticâ€gut microbiome axis. Clinical and Experimental Pharmacology and Physiology, 2021, 48, 490-497. Research Progress on the Influence of Gut Microbiota on Metabolic Syndrome-Associated Stroke.	0.9	16 0
446 448 449	The role of the human gut microbiota in colonization and infection with multidrug-resistant bacteria. Gut Microbes, 2021, 13, 1-13. DOCAâ€salt hypertension and the role of the OVLTâ€sympatheticâ€gut microbiome axis. Clinical and Experimental Pharmacology and Physiology, 2021, 48, 490-497. Research Progress on the Influence of Gut Microbiota on Metabolic Syndrome-Associated Stroke. Advances in Clinical Medicine, 2021, 11, 3481-3486. Sequence meets function—microbiota and cardiovascular disease. Cardiovascular Research, 2022, 118,	0.9	16 0 2
446 448 449 450	The role of the human gut microbiota in colonization and infection with multidrug-resistant bacteria. Gut Microbes, 2021, 13, 1-13. DOCAâ€salt hypertension and the role of the OVLTâ€sympatheticâ€gut microbiome axis. Clinical and Experimental Pharmacology and Physiology, 2021, 48, 490-497. Research Progress on the Influence of Gut Microbiota on Metabolic Syndrome-Associated Stroke. Advances in Clinical Medicine, 2021, 11, 3481-3486. Sequence meets function—microbiota and cardiovascular disease. Cardiovascular Research, 2022, 118, 399-412. Dietary habits in Japanese patients with palmoplantar pustulosis. Journal of Dermatology, 2021, 48,	0.9 0.0 1.8	16 0 2 24
446 448 449 450 451	The role of the human gut microbiota in colonization and infection with multidrug-resistant bacteria. Gut Microbes, 2021, 13, 1-13. DOCAâ€salt hypertension and the role of the OVLTâ€sympatheticâ€gut microbiome axis. Clinical and Experimental Pharmacology and Physiology, 2021, 48, 490-497. Research Progress on the Influence of Gut Microbiota on Metabolic Syndrome-Associated Stroke. Advances in Clinical Medicine, 2021, 11, 3481-3486. Sequence meets function—microbiota and cardiovascular disease. Cardiovascular Research, 2022, 118, 399-412. Dietary habits in Japanese patients with palmoplantar pustulosis. Journal of Dermatology, 2021, 48, 366-375. Gut Microbiota and Immune Responses. Advances in Experimental Medicine and Biology, 2020, 1238,	0.9 0.0 1.8 0.6	16 0 2 24 2

#	Article	IF	CITATIONS
458	Microbial Peer Pressure. Hypertension, 2020, 76, 1674-1687.	1.3	77
459	High dietary salt–induced DC activation underlies microbial dysbiosis-associated hypertension. JCI Insight, 2019, 4, .	2.3	105
460	Salt causes aging-associated hypertension via vascular Wnt5a under Klotho deficiency. Journal of Clinical Investigation, 2020, 130, 4152-4166.	3.9	24
461	Salt generates antiinflammatory Th17 cells but amplifies pathogenicity in proinflammatory cytokine microenvironments. Journal of Clinical Investigation, 2020, 130, 4587-4600.	3.9	42
462	The Effects of High-Salt Gastric Intake on the Composition of the Intestinal Microbiota in Wistar Rats. Medical Science Monitor, 2020, 26, e922160.	0.5	10
463	Metabolic Synergy to Uremic Toxicity: A Tale of Symbiosis and Dysbiosis in CKD. Nephrology Self-assessment Program: NephSAP, 2019, 18, 187-193.	3.0	3
464	Consuming cholera toxin counteracts age-associated obesity. Oncotarget, 2019, 10, 5497-5509.	0.8	3
465	Non-pharmacological Strategies Against Systemic Inflammation: Molecular Basis and Clinical Evidence. Current Pharmaceutical Design, 2020, 26, 2620-2629.	0.9	8
466	From intestinal dysbiosis to alcohol-associated liver disease. Clinical and Molecular Hepatology, 2020, 26, 595-605.	4.5	24
467	The Role of Nutritional Factors and Intestinal Microbiota in Rheumatoid Arthritis Development. Nutrients, 2021, 13, 96.	1.7	14
468	Intestinal Microbiota and Cardiovascular Diseases. International Journal of Cardiovascular Sciences, 2020, , .	0.0	2
469	The Role of Nutritional Lifestyle and Physical Activity in Multiple Sclerosis Pathogenesis and Management: A Narrative Review. Nutrients, 2021, 13, 3774.	1.7	18
470	Bacterial metabolites and cardiovascular risk in children with chronic kidney disease. Molecular and Cellular Pediatrics, 2021, 8, 17.	1.0	3
471	The Impact of Gut Microbiota on Post-Stroke Management. Frontiers in Cellular and Infection Microbiology, 2021, 11, 724376.	1.8	1
472	Bifidobacterium species associated with breastfeeding produce aromatic lactic acids in the infant gut. Nature Microbiology, 2021, 6, 1367-1382.	5.9	176
473	Table salt and added free sugar as nutrient "targets―in preventive dietetics in essential hypertension and associated diseases (literature review). Hypertension, 2021, 14, 26-39.	0.2	0
474	Differential Distribution of Tryptophan-Metabolites in Fetal and Maternal Circulations During Normotensive and Preeclamptic Pregnancies. Reproductive Sciences, 2022, 29, 1278-1286.	1.1	8
475	Oral microbiota transplantation fights against head and neck radiotherapy-induced oral mucositis in mice. Computational and Structural Biotechnology Journal, 2021, 19, 5898-5910.	1.9	20

ARTICLE IF CITATIONS # The Relationship among Physical Activity, Intestinal Flora, and Cardiovascular Disease. Cardiovascular 476 1.1 6 Therapeutics, 2021, 2021, 1-10. Salt: The paradoxical philosopher's stone of autonomic medicine. Autonomic Neuroscience: Basic and 1.4 Clinical, 2021, 236, 102895. Revisiting Salt Sensitivity and the Therapeutic Benefits of Salt Restriction in Hypertension. 480 0.1 0 Hypertension Journal, 2019, 5, 61-64. Wasser- und Mineralhaushalt von Kindern und Jugendlichen. Springer Reference Medizin, 2019, , 1-17. Regulation of Vaginal Microbiome by Nitric Oxide. Current Pharmaceutical Biotechnology, 2019, 20, 482 0.9 5 17-31. 484 IMMUNOLOGICAL ASPECTS OF ESSENTIAL HYPERTENSION. Medical Immunology (Russia), 2019, 21, 407-418. 0.1 485 Microbiota, mucosal immunity, and Colon cancer., 2020, , 157-209. 1 High dietary salt intake activates inflammatory cascades via Th17 immune cells: impact on health and 486 0.4 diseases. Archives of Medical Science, 2020, 18, 459-465. 487 Microbiota in Health and Diseaseâ€"Potential Clinical Applications. Nutrients, 2021, 13, 3866. 9 1.7 The gut-cardiovascular connection: new era for cardiovascular therapy. Medical Review, 2021, 1, 23-46. High salt diet impairs dermal tissue remodeling in a mouse model of IMQ induced dermatitis. PLoS ONE, 489 1.1 5 2021, 16, e0258502. Effect of a probiotic on blood pressure in grade 1 hypertension (HYPRO): protocol of a randomized controlled study. Trials, 2020, 21, 1032. Short-Term Intake of Hesperetin-7-<i>O</i> 491 2.4 7 Homeostasis in Mice. Journal of Agricultural and Food Chemistry, 2021, 69, 1478-1486. Gut–brain–bone marrow axis in hypertension. Current Opinion in Nephrology and Hypertension, 2021, 1.0 30, 159-165. 494 The gut microbiome and the kidney., 2022, , 147-161. 1 Immune Mechanisms in Vascular Remodeling in Hypertension. Updates in Hypertension and 0.1 Cardiovascular Protection, 2020, , 85-94. Arterial hypertension: The role of gut microbiota. Arterial Hypertension (Russian Federation), 2020, 497 0.1 2 25, 460-466. Wasser- und Mineralhaushalt. Springer Reference Medizin, 2020, , 389-405.

~				
(ПТ	ΔTIC	JNI I	2 F D	ORT
	$\pi \Pi \Lambda$		VLI -	

#	Article	IF	CITATIONS
499	Sex Differences in Cardiovascular Impact of Early Metabolic Impairment: Interplay between Dysbiosis and Adipose Inflammation. Molecular Pharmacology, 2022, 102, 60-79.	1.0	2
501	Tenâ€week high fat and high sugar diets in mice alter gutâ€brain axis cytokines in a sexâ€dependent manner. Journal of Nutritional Biochemistry, 2022, 100, 108903.	1.9	4
502	Gut Microbiome and Gastrointestinal Diseases. Korean Journal of Clinical Laboratory Science, 2018, 50, 11-19.	0.1	2
504	The Correlation Between Heart Failure and Gut Microbiome Metabolites. Infectious Microbes & Diseases, 2020, 2, 136-143.	0.5	2
505	Recent advances in managing primary hypertension. Faculty Reviews, 2020, 9, 4.	1.7	1
506	Understanding the Effects of Metabolites on the Gut Microbiome and Severe Acute Pancreatitis. BioMed Research International, 2021, 2021, 1516855.	0.9	0
507	Lifestyle Modifications. , 2022, , 264-272.		0
508	High salt activates p97 to reduce host antiviral immunity by restricting Viperin induction. EMBO Reports, 2021, , e53466.	2.0	7
509	Human immune diversity: from evolution to modernity. Nature Immunology, 2021, 22, 1479-1489.	7.0	64
510	An Integrated Taxonomy for Monogenic Inflammatory Bowel Disease. Gastroenterology, 2022, 162, 859-876.	0.6	37
511	Coix Seed Consumption Affects the Gut Microbiota and the Peripheral Lymphocyte Subset Profiles of Healthy Male Adults. Nutrients, 2021, 13, 4079.	1.7	10
512	Aging Affects KV7 Channels and Perivascular Adipose Tissue-Mediated Vascular Tone. Frontiers in Physiology, 2021, 12, 749709.	1.3	6
513	Linking Gut Microbiota, Metabolic Syndrome and Metabolic Health among a Sample of Obese Egyptian Females. Open Access Macedonian Journal of Medical Sciences, 2021, 9, 1123-1131.	0.1	2
514	Interaction Between Commensal Bacteria, Immune Response and the Intestinal Barrier in Inflammatory Bowel Disease. Frontiers in Immunology, 2021, 12, 761981.	2.2	55
515	Insights into Salt Handling and Blood Pressure. New England Journal of Medicine, 2021, 385, 1981-1993.	13.9	61
516	Gut Microbiota Dysbiosis in Systemic Lupus Erythematosus: Novel Insights into Mechanisms and Promising Therapeutic Strategies. Frontiers in Immunology, 2021, 12, 799788.	2.2	40
517	Exploring the Microbiome Analysis and Visualization Landscape. Frontiers in Bioinformatics, 2021, 1, .	1.0	4
518	VIII. Association between <i>Helicobacter Pylori</i> Infection and Gut Microbiota. The Journal of the Japanese Society of Internal Medicine, 2021, 110, 64-70.	0.0	0

#	ARTICLE	IF	Citations
519	Machine Learning Predicts the Impact of Antibiotic Properties on Composition and Functions of Bacterial Community in Aquatic Habitat. SSRN Electronic Journal, 0, , .	0.4	0
520	Role of Biological Sex in the Cardiovascular-Gut Microbiome Axis. Frontiers in Cardiovascular Medicine, 2021, 8, 759735.	1.1	14
521	EasyMicroPlot: An Efficient and Convenient R Package in Microbiome Downstream Analysis and Visualization for Clinical Study. Frontiers in Genetics, 2021, 12, 803627.	1.1	8
522	What we know about protein gut metabolites: Implications and insights for human health and diseases. Food Chemistry: X, 2022, 13, 100195.	1.8	16
523	Recent advances in managing primary hypertension. Faculty Reviews, 2020, 9, 4.	1.7	4
524	Understanding the Effects of Metabolites on the Gut Microbiome and Severe Acute Pancreatitis. BioMed Research International, 2021, 2021, 1-10.	0.9	8
525	The Human Microbiome in Chronic Kidney Disease: A Double-Edged Sword. Frontiers in Medicine, 2021, 8, 790783.	1.2	31
526	Gut microbiota–derived metabolite 3-idoleacetic acid together with LPS induces IL-35+ B cell generation. Microbiome, 2022, 10, 13.	4.9	29
527	Bicyclol Alleviates Atherosclerosis by Manipulating Gut Microbiota. Small, 2022, , 2105021.	5.2	6
528	Salt, Aldosterone, and the Renin–Angiotensin System in Pregnancy. , 2022, , 335-353.		1
529	Sodium-containing acetaminophen and cardiovascular outcomes in individuals with and without hypertension. European Heart Journal, 2022, 43, 1743-1755.	1.0	19
530	The impact of excessive salt intake on human health. Nature Reviews Nephrology, 2022, 18, 321-335.	4.1	46
531	Increased Salt Intake Decreases Diet-Induced Thermogenesis in Healthy Volunteers: A Randomized Placebo-Controlled Study. Nutrients, 2022, 14, 253.	1.7	3
532	Immune System and Microvascular Remodeling in Humans. Hypertension, 2022, 79, 691-705.	1.3	30
533	T Cell Responses to the Microbiota. Annual Review of Immunology, 2022, 40, 559-587.	9.5	42
534	Salt-Induced Hepatic Inflammatory Memory Contributes to Cardiovascular Damage Through Epigenetic Modulation of SIRT3. Circulation, 2022, 145, 375-391.	1.6	38
535	Tryptophan-derived microbial metabolites activate the aryl hydrocarbon receptor in tumor-associated macrophages to suppress anti-tumor immunity. Immunity, 2022, 55, 324-340.e8.	6.6	179
536	Hypotension as a marker or mediator of perioperative organ injury: a narrative review. British Journal of Anaesthesia, 2022, 128, 915-930.	1.5	17

#	Article	IF	CITATIONS
537	Human Gut Microbes Associated with Systolic Blood Pressure. International Journal of Hypertension, 2022, 2022, 1-12.	0.5	1
538	Antibiotic Disruption of the Gut Microbiota Enhances the Murine Hepatic Dysfunction Associated With a High-Salt Diet. Frontiers in Pharmacology, 2022, 13, 829686.	1.6	3
539	Gut Microbiome and Neuroinflammation in Hypertension. Circulation Research, 2022, 130, 401-417.	2.0	46
540	Selenium-enriched and ordinary green tea extracts prevent high blood pressure and alter gut microbiota composition of hypertensive rats caused by high-salt diet. Food Science and Human Wellness, 2022, 11, 738-751.	2.2	14
541	Role of the microbiota in hypertension and antihypertensive drug metabolism. Hypertension Research, 2022, 45, 246-253.	1.5	26
542	T Cell Immunometabolism and Redox Signaling in Hypertension. Current Hypertension Reports, 2021, 23, 45.	1.5	6
543	Secondary Immunodeficiency Related to Kidney Disease (SIDKD)—Definition, Unmet Need, and Mechanisms. Journal of the American Society of Nephrology: JASN, 2022, 33, 259-278.	3.0	35
544	New Insights Into Gut-Bacteria-Derived Indole and Its Derivatives in Intestinal and Liver Diseases. Frontiers in Pharmacology, 2021, 12, 769501.	1.6	50
545	Regulation of Host Immunity by the Gut Microbiota. , 2022, , 105-140.		1
546	Salt Sensitivity in Childhood Hypertension. , 2022, , 1-19.		0
546 548	Salt Sensitivity in Childhood Hypertension. , 2022, , 1-19. Relationships Among Gut Microbiota, Ischemic Stroke and Its Risk Factors: Based on Research Evidence. International Journal of General Medicine, 0, Volume 15, 2003-2023.	0.8	0
	Relationships Among Gut Microbiota, Ischemic Stroke and Its Risk Factors: Based on Research Evidence.	0.8	
548	Relationships Among Gut Microbiota, Ischemic Stroke and Its Risk Factors: Based on Research Evidence. International Journal of General Medicine, 0, Volume 15, 2003-2023. Effect of fecal microbiota transplantation on primary hypertension and the underlying mechanism of gut microbiome restoration: protocol of a randomized, blinded, placebo-controlled study. Trials,		1
548 549	Relationships Among Gut Microbiota, Ischemic Stroke and Its Risk Factors: Based on Research Evidence. International Journal of General Medicine, 0, Volume 15, 2003-2023. Effect of fecal microbiota transplantation on primary hypertension and the underlying mechanism of gut microbiome restoration: protocol of a randomized, blinded, placebo-controlled study. Trials, 2022, 23, 178. Role of Oxidative Stress in Vascular Low-Grade Inflammation Initiation Due to Acute Salt Loading in	0.7	1 9
548 549 550	Relationships Among Gut Microbiota, Ischemic Stroke and Its Risk Factors: Based on Research Evidence. International Journal of General Medicine, 0, Volume 15, 2003-2023. Effect of fecal microbiota transplantation on primary hypertension and the underlying mechanism of gut microbiome restoration: protocol of a randomized, blinded, placebo-controlled study. Trials, 2022, 23, 178. Role of Oxidative Stress in Vascular Low-Grade Inflammation Initiation Due to Acute Salt Loading in Young Healthy Individuals. Antioxidants, 2022, 11, 444. Dietary Supplementation with Cysteine during Pregnancy Rescues Maternal Chronic Kidney Disease-Induced Hypertension in Male Rat Offspring: The Impact of Hydrogen Sulfide and	0.7	1 9 6
548 549 550 551	Relationships Among Gut Microbiota, Ischemic Stroke and Its Risk Factors: Based on Research Evidence. International Journal of General Medicine, 0, Volume 15, 2003-2023. Effect of fecal microbiota transplantation on primary hypertension and the underlying mechanism of gut microbiome restoration: protocol of a randomized, blinded, placebo-controlled study. Trials, 2022, 23, 178. Role of Oxidative Stress in Vascular Low-Grade Inflammation Initiation Due to Acute Salt Loading in Young Healthy Individuals. Antioxidants, 2022, 11, 444. Dietary Supplementation with Cysteine during Pregnancy Rescues Maternal Chronic Kidney Disease-Induced Hypertension in Male Rat Offspring: The Impact of Hydrogen Sulfide and Microbiota-Derived Tryptophan Metabolites. Antioxidants, 2022, 11, 483. Neuroimmune axis of cardiovascular control: mechanisms and therapeutic implications. Nature	0.7 2.2 2.2	1 9 6 14
548 549 550 551 552	Relationships Among Gut Microbiota, Ischemic Stroke and Its Risk Factors: Based on Research Evidence. International Journal of General Medicine, 0, Volume 15, 2003-2023. Effect of fecal microbiota transplantation on primary hypertension and the underlying mechanism of gut microbiome restoration: protocol of a randomized, blinded, placebo-controlled study. Trials, 2022, 23, 178. Role of Oxidative Stress in Vascular Low-Grade Inflammation Initiation Due to Acute Salt Loading in Young Healthy Individuals. Antioxidants, 2022, 11, 444. Dietary Supplementation with Cysteine during Pregnancy Rescues Maternal Chronic Kidney Disease-Induced Hypertension in Male Rat Offspring: The Impact of Hydrogen Sulfide and Microbiota-Derived Tryptophan Metabolites. Antioxidants, 2022, 11, 483. Neuroimmune axis of cardiovascular control: mechanisms and therapeutic implications. Nature Reviews Cardiology, 2022, 19, 379-394. Mosaic theory revised: inflammation and salt play central roles in arterial hypertension., 2022, 19,	0.7 2.2 2.2	1 9 6 14 21

#	Article	IF	CITATIONS
558	Alternations in the gut microbiota and metabolome with newly diagnosed unstable angina. Journal of Genetics and Genomics, 2022, 49, 240-248.	1.7	3
559	High-Salt Diet Induces Depletion of Lactic Acid-Producing Bacteria in Murine Gut. Nutrients, 2022, 14, 1171.	1.7	12
560	The Contribution of Gut Microbiota and Endothelial Dysfunction in the Development of Arterial Hypertension in Animal Models and in Humans. International Journal of Molecular Sciences, 2022, 23, 3698.	1.8	15
561	Reduction of sodium chloride: a review. Journal of the Science of Food and Agriculture, 2022, 102, 3931-3939.	1.7	12
562	Serving Up a Mediterranean Remission in Severe Ulcerative Colitis. Digestive Diseases and Sciences, 2022, 67, 1205-1208.	1.1	0
563	Lactobacillus and intestinal diseases: Mechanisms of action and clinical applications. Microbiological Research, 2022, 260, 127019.	2.5	37
564	A Polyphenolâ€Rich Diet Increases the Gut Microbiota Metabolite Indole 3â€Propionic Acid in Older Adults with Preserved Kidney Function. Molecular Nutrition and Food Research, 2022, 66, e2100349.	1.5	12
565	Natural biopolymer masks the bitterness of potassium chloride to achieve a highly efficient salt reduction for future foods. Biomaterials, 2022, 283, 121456.	5.7	7
566	Is Salt at Fault? Dietary Salt Consumption and Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2023, 29, 140-150.	0.9	12
567	The microbiota-gut-kidney axis mediates host osmoregulation in a small desert mammal. Npj Biofilms and Microbiomes, 2022, 8, 16.	2.9	9
568	Microbial habitat specificity largely affects microbial co-occurrence patterns and functional profiles in wetland soils. Geoderma, 2022, 418, 115866.	2.3	20
569	Machine learning predicts the impact of antibiotic properties on the composition and functioning of bacterial community in aquatic habitats. Science of the Total Environment, 2022, 828, 154412.	3.9	10
570	Fermented products and bioactive food compounds as a tool to activate autophagy and promote the maintenance of the intestinal barrier function. Trends in Food Science and Technology, 2021, 118, 905-919.	7.8	13
571	The Bidirectional Signal Communication of Microbiota-Gut-Brain Axis in Hypertension. International Journal of Hypertension, 2021, 2021, 1-9.	0.5	8
572	Particle Radiation Side-Effects: Intestinal Microbiota Composition Shapes Interferon-Î ³ -Induced Osteo-Immunogenicity. Radiation Research, 2021, 197, 184-192.	0.7	2
573	<i>Bifidobacterium longum</i> CCFM752 prevented hypertension and aortic lesion, improved antioxidative ability, and regulated the gut microbiome in spontaneously hypertensive rats. Food and Function, 2022, 13, 6373-6386.	2.1	10
574	Dietary salt and arterial stiffness. , 2022, , 851-864.		0
575	Lactobacillus rhamnosus Encapsulated in Alginate/Chitosan Microgels Manipulates the Gut Microbiome to Ameliorate Salt-Induced Hepatorenal Injury. Frontiers in Nutrition, 2022, 9, 872808.	1.6	6

#	Article	IF	CITATIONS
576	Quorum Sensing of Lactic Acid Bacteria: Progress and Insights. Food Reviews International, 2023, 39, 4781-4792.	4.3	6
577	Hypertension of Developmental Origins: Consideration of Gut Microbiome in Animal Models. Biomedicines, 2022, 10, 875.	1.4	12
578	The fecal microbiota of Thai school-aged children associated with demographic factors and diet. PeerJ, 2022, 10, e13325.	0.9	1
579	The Emerging Role of the Gut Microbiome in Cardiovascular Disease: Current Knowledge and Perspectives. Biomedicines, 2022, 10, 948.	1.4	14
580	The gut-brain axis and sodium appetite: Can inflammation-related signaling influence the control of sodium intake?. Appetite, 2022, 175, 106050.	1.8	0
601	Microbiota-derived tryptophan metabolites in vascular inflammation and cardiovascular disease. Amino Acids, 2022, 54, 1339-1356.	1.2	50
602	Recent advances in modulation of cardiovascular diseases by the gut microbiota. Journal of Human Hypertension, 2022, 36, 952-959.	1.0	37
604	GIDALARDA SODYUM AZALTIMI. Gıda, 0, , 231-251.	0.1	0
605	Chronic Systemic Low-Grade Inflammation and Modern Lifestyle: The Dark Role of Gut Microbiota on Related Diseases with a Focus on COVID-19 Pandemic. Current Medicinal Chemistry, 2022, 29, 5370-5396.	1.2	8
606	HDHL-INTIMIC: A European Knowledge Platform on Food, Diet, Intestinal Microbiomics, and Human Health. Nutrients, 2022, 14, 1881.	1.7	4
607	Intestinal Microbiota-Derived Short Chain Fatty Acids in Host Health and Disease. Nutrients, 2022, 14, 1977.	1.7	65
608	Renal medullary osmolytes NaCl and urea differentially modulate human tubular cell cytokine expression and monocyte recruitment. European Journal of Immunology, 2022, 52, 1258-1272.	1.6	1
610	The immunology of multiple sclerosis. Nature Reviews Immunology, 2022, 22, 734-750.	10.6	96
611	Green and Oolong Tea Extracts With Different Phytochemical Compositions Prevent Hypertension and Modulate the Intestinal Flora in a High-Salt Diet Fed Wistar Rats. Frontiers in Nutrition, 2022, 9, .	1.6	9
612	Gut microbiota: Role and Association with Tumorigenesis in Different Malignancies. Molecular Biology Reports, 2022, 49, 8087-8107.	1.0	4
613	Public Policies, Traffic Light Signpost Labeling, and Their Implications. Advances in Electronic Government, Digital Divide, and Regional Development Book Series, 2022, , 234-254.	0.2	1
614	lncRNA STAT4-AS1 Inhibited TH17 Cell Differentiation by Targeting RORÎ ³ t Protein. Journal of Immunology Research, 2022, 2022, 1-15.	0.9	5
615	è"'-è,è½′在缺血性脑å³ä¸åŠå…¶å¹¶å⁵ç—‡ä,的机å^¶æŽ¢ç´¢ä¸Žåº"用展望. Scientia Sinica Vitae, 2022, , .	0.1	0

#	Article	IF	CITATIONS
616	Transcriptome Analysis of Multiple Metabolic Tissues in High-Salt Diet–Fed Mice. Frontiers in Endocrinology, 2022, 13, .	1.5	3
617	Genome Editing with Cas9 in Lactobacilli. Methods in Molecular Biology, 2022, 2479, 245-261.	0.4	3
618	Identification of a Gut Commensal That Compromises the Blood Pressure-Lowering Effect of Ester Angiotensin-Converting Enzyme Inhibitors. Hypertension, 2022, 79, 1591-1601.	1.3	19
619	The Immune System in Hypertension: a Lost Shaker of Salt 2021 Lewis K. Dahl Memorial Lecture. Hypertension, 2022, 79, 1339-1347.	1.3	5
620	Alterations of the gut microbial community structure and function with aging in the spontaneously hypertensive stroke prone rat. Scientific Reports, 2022, 12, .	1.6	6
621	$\hat{I}^{3}\hat{I}$ T Cells in Brain Homeostasis and Diseases. Frontiers in Immunology, 2022, 13, .	2.2	8
622	Interleukin 17A infusion has no acute or long-term hypertensive action in conscious unrestrained male mice. Pflugers Archiv European Journal of Physiology, 2022, 474, 709-719.	1.3	1
623	An adaptive direction-assisted test for microbiome compositional data. Bioinformatics, 2022, 38, 3493-3500.	1.8	2
624	Low-Salt Diet Reduces Anti-CTLA4 Mediated Systemic Immune-Related Adverse Events while Retaining Therapeutic Efficacy against Breast Cancer. Biology, 2022, 11, 810.	1.3	2
625	Lactobacillus: Friend or Foe for Systemic Lupus Erythematosus?. Frontiers in Immunology, 2022, 13, .	2.2	1
626	Gut microbiome and autoimmune disorders. Clinical and Experimental Immunology, 2022, 209, 161-174.	1.1	20
627	Multiple sclerosis and the microbiota. Evolution, Medicine and Public Health, 2022, 10, 277-294.	1.1	5
628	Effect of Intestinal Flora on Composition of Urinary Calculi. Advances in Clinical Medicine, 2022, 12, 5356-5363.	0.0	0
629	Moderation of gut microbiota and bile acid metabolism by chlorogenic acid improves high-fructose-induced salt-sensitive hypertension in mice. Food and Function, 2022, 13, 6987-6999.	2.1	6
630	Immune system changes in those with hypertension when infected with SARS-CoV-2. Cellular Immunology, 2022, 378, 104562.	1.4	2
632	The modulatory effect of high salt on immune cells and related diseases. Cell Proliferation, 2022, 55, .	2.4	15
633	Increases in Circulating and Fecal Butyrate are Associated With Reduced Blood Pressure and Hypertension: Results From the SPIRIT Trial. Journal of the American Heart Association, 2022, 11, .	1.6	12
634	The Gut Microbiota and Vascular Aging: A State-of-the-Art and Systematic Review of the Literature. Journal of Clinical Medicine, 2022, 11, 3557.	1.0	13

#	Article	IF	Citations
635	Dual Role of Indoles Derived From Intestinal Microbiota on Human Health. Frontiers in Immunology, 0, 13, .	2.2	45
636	Gut Microbial Profile in Asymptomatic Gallstones. Frontiers in Microbiology, 0, 13, .	1.5	4
637	Update on Immune Mechanisms in Hypertension. American Journal of Hypertension, 0, , .	1.0	3
638	Gut microbiota is associated with dietary intake and metabolic markers in healthy individuals. Food and Nutrition Research, 0, 66, .	1.2	8
639	Rethinking healthy eating in light of the gut microbiome. Cell Host and Microbe, 2022, 30, 764-785.	5.1	65
640	Pivotal Role of Inflammation in Celiac Disease. International Journal of Molecular Sciences, 2022, 23, 7177.	1.8	12
641	Fecal microbiota in congenital chloride diarrhea and inflammatory bowel disease. PLoS ONE, 2022, 17, e0269561.	1.1	5
642	Gut Microbiota and Sex Hormones: Crosstalking Players in Cardiometabolic and Cardiovascular Disease. International Journal of Molecular Sciences, 2022, 23, 7154.	1.8	10
643	Reciprocal Interactions Between Regulatory T Cells and Intestinal Epithelial Cells. Frontiers in Immunology, 0, 13, .	2.2	3
644	Tryptophan regulates bile and nitrogen metabolism in two pig gut lactobacilli species in vitro based on metabolomics study. Amino Acids, 2022, 54, 1421-1435.	1.2	8
645	The role of microbiome: a novel insight into urolithiasis. Critical Reviews in Microbiology, 2023, 49, 177-196.	2.7	7
646	Gut Microbiome and Kidney Disease. Clinical Journal of the American Society of Nephrology: CJASN, 2022, 17, 1694-1696.	2.2	8
647	Gut microbiota diversity in middle-aged and elderly patients with end-stage diabetic kidney disease. Annals of Translational Medicine, 2022, 10, 750-750.	0.7	11
648	Editorial: Impact of the gut microbiota on cardiovascular medicine. Frontiers in Medicine, 0, 9, .	1.2	2
649	High salt diet does not impact the development of acute myeloid leukemia in mice. Cancer Immunology, Immunotherapy, 2023, 72, 265-273.	2.0	2
650	Xiong Fu Powder Regulates the Intestinal Microenvironment to Protect Bones Against Destruction in Collagen-Induced Arthritis Rat Models. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	3
651	Association Between the Gut Microbiome and Their Metabolites With Human Blood Pressure Variability. Hypertension, 2022, 79, 1690-1701.	1.3	11
652	A comparative study of vestibular improvement and gastrointestinal effect of betahistine and gastrodin in mice. Biomedicine and Pharmacotherapy, 2022, 153, 113344.	2.5	3

#	Article	IF	CITATIONS
653	Dietary regulation in health and disease. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	47
654	Gut Microbiota-Derived Tryptophan Metabolites Maintain Gut and Systemic Homeostasis. Cells, 2022, 11, 2296.	1.8	73
655	Potential roles of gut microbial tryptophan metabolites in the complex pathogenesis of acne vulgaris. Frontiers in Microbiology, 0, 13, .	1.5	6
656	Dietary Component-Induced Inflammation and Its Amelioration by Prebiotics, Probiotics, and Synbiotics. Frontiers in Nutrition, 0, 9, .	1.6	15
657	Salt-Sensitive Ileal Microbiota Plays a Role in Atrial Natriuretic Peptide Deficiency-Induced Cardiac Injury. Nutrients, 2022, 14, 3129.	1.7	2
658	Jiedu-Yizhi Formula Alleviates Neuroinflammation in AD Rats by Modulating the Gut Microbiota. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-19.	0.5	5
659	Th17 cells and inflammation in neurological disorders: Possible mechanisms of action. Frontiers in Immunology, 0, 13, .	2.2	17
660	Regulatory effect of gut microbes on blood pressure. Animal Models and Experimental Medicine, 2022, 5, 513-531.	1.3	10
661	Quantifying the impact of gut microbiota on inflammation and hypertensive organ damage. Cardiovascular Research, 2023, 119, 1441-1452.	1.8	15
662	Influence of the gut microbiota on endometriosis: Potential role of chenodeoxycholic acid and its derivatives. Frontiers in Pharmacology, 0, 13, .	1.6	1
663	Neuroprotective Natural Products' Regulatory Effects on Depression via Gut–Brain Axis Targeting Tryptophan. Nutrients, 2022, 14, 3270.	1.7	13
664	Gut Dysbiosis Promotes Preeclampsia by Regulating Macrophages and Trophoblasts. Circulation Research, 2022, 131, 492-506.	2.0	41
666	Identification of biomarkers, pathways and potential therapeutic agents for salt-sensitive hypertension using RNA-seq. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	1
667	Short-Chain Fatty Acid Receptors and Blood Pressure Regulation: Council on Hypertension Mid-Career Award for Research Excellence 2021. Hypertension, 2022, 79, 2127-2137.	1.3	8
668	Eucommia ulmoides bark extract reduces blood pressure and inflammation by regulating the gut microbiota and enriching the Parabacteroides strain in high-salt diet and N(omega)-nitro-L-arginine methyl ester induced mice. Frontiers in Microbiology, 0, 13, .	1.5	3
669	Gut Microbiota Modulation as a Novel Therapeutic Strategy in Cardiometabolic Diseases. Foods, 2022, 11, 2575.	1.9	14
670	Analyzing the Complicated Connection Between Intestinal Microbiota and Cardiovascular Diseases. Cureus, 2022, , .	0.2	3
671	The Important Role of TaohongSiwu Decoction in Gut Microbial Modulation in Response to High-Salt Diet-Induced Hypertensive Mice. Natural Product Communications, 2022, 17, 1934578X2211181.	0.2	0

#	Article	IF	CITATIONS
672	Individual Nutrition Is Associated with Altered Gut Microbiome Composition for Adults with Food Insecurity. Nutrients, 2022, 14, 3407.	1.7	5
673	Effects of sea salt intake on metabolites, steroid hormones, and gut microbiota in rats. PLoS ONE, 2022, 17, e0269014.	1.1	2
674	Emerging trends and focus for the link between the gastrointestinal microbiome and kidney disease. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	0
675	Resveratrol suppresses microglial activation and promotes functional recovery of traumatic spinal cord via improving intestinal microbiota. Pharmacological Research, 2022, 183, 106377.	3.1	19
676	Gut microbiota in systemic lupus erythematosus: A fuse and a solution. Journal of Autoimmunity, 2022, 132, 102867.	3.0	22
677	The gut microbiome and Alzheimer's disease: Complex and bidirectional interactions. Neuroscience and Biobehavioral Reviews, 2022, 141, 104814.	2.9	16
678	Microbiota-derived metabolite Indoles induced aryl hydrocarbon receptor activation and inhibited neuroinflammation in APP/PS1 mice. Brain, Behavior, and Immunity, 2022, 106, 76-88.	2.0	38
679	Blood pressure and the kidney cortex transcriptome response to high-sodium diet challenge in female nonhuman primates. Physiological Genomics, 2022, 54, 443-454.	1.0	3
680	Chinese herbal medicine anticancer cocktail soup activates immune cells to kill colon cancer cells by regulating the gut microbiota-Th17 axis. Frontiers in Pharmacology, 0, 13, .	1.6	1
681	Research Progress on the Relationship between Urinary Sodium and Potassium Excretion and Hypertension. Advances in Clinical Medicine, 2022, 12, 8481-8486.	0.0	0
682	Human microbiome and cardiovascular diseases. Progress in Molecular Biology and Translational Science, 2022, , 231-279.	0.9	3
683	Study on the Relationship between Intestinal Flora and Coronary Heart Disease. Advances in Clinical Medicine, 2022, 12, 8823-8830.	0.0	0
684	Polyphenols–Gut–Heart: An Impactful Relationship to Improve Cardiovascular Diseases. Antioxidants, 2022, 11, 1700.	2.2	6
685	Local and systemic effects of microbiomeâ€derived metabolites. EMBO Reports, 2022, 23, .	2.0	15
686	Bifidobacterium breve MCC1274 Supplementation Increased the Plasma Levels of Metabolites with Potential Anti-Oxidative Activity in APP Knock-In Mice. Journal of Alzheimer's Disease, 2022, 89, 1413-1425.	1.2	7
688	Risk Factors, Mechanisms, and Causes of Essential Hypertension. Nephrology Self-assessment Program: NephSAP, 2022, 21, 276-283.	3.0	0
689	Crosstalk between the Gut Microbiome and Colonic Motility in Chronic Constipation: Potential Mechanisms and Microbiota Modulation. Nutrients, 2022, 14, 3704.	1.7	24
691	Changes in immunological parameters by ageing in rural healthy Indian adults and their associations with sex and lifestyle. Scientific Reports, 2022, 12, .	1.6	1

#	Article	IF	CITATIONS
692	Maternal Supplementation of Probiotics, Prebiotics or Postbiotics to Prevent Offspring Metabolic Syndrome: The Gap between Preclinical Results and Clinical Translation. International Journal of Molecular Sciences, 2022, 23, 10173.	1.8	2
693	The potential impact of a probiotic: Akkermansia muciniphila in the regulation of blood pressure—the current facts and evidence. Journal of Translational Medicine, 2022, 20, .	1.8	11
694	Pharmacotherapeutic potential of pomegranate in age-related neurological disorders. Frontiers in Aging Neuroscience, 0, 14, .	1.7	5
695	The Pathogenicity and Synergistic Action of Th1 and Th17 Cells in Inflammatory Bowel Diseases. Inflammatory Bowel Diseases, 2023, 29, 818-829.	0.9	11
696	High salt intake damages myocardial viability and induces cardiac remodeling via chronic inflammation in the elderly. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	7
697	Deeper insight into the role of IL-17 in the relationship beween hypertension and intestinal physiology. Journal of Inflammation, 2022, 19, .	1.5	5
698	Targeting the gut microbiota to investigate the mechanism of Lactiplantibacillus plantarum 1201 in negating colitis aggravated by a high-salt diet. Food Research International, 2022, 162, 112010.	2.9	6
699	Effects of Psidium guajava L. leaves extract on blood pressure control and IL-10 production in salt-dependent hypertensive rats. Biomedicine and Pharmacotherapy, 2022, 155, 113796.	2.5	2
700	Microbiome Derived Metabolites in CKD and ESRD. , 2022, , 45-60.		0
701	The Effect of Indole-3-Lactic Acid from Lactiplantibacillus plantarum ZJ316 on Human Intestinal Microbiota In Vitro. Foods, 2022, 11, 3302.	1.9	6
702	Causality of Opportunistic Pathogen <i>Klebsiella pneumoniae</i> to Hypertension Development. Hypertension, 2022, 79, 2743-2754.	1.3	7
703	The potential of tailoring the gut microbiome to prevent and treat cardiometabolic disease. Nature Reviews Cardiology, 2023, 20, 217-235.	6.1	31
704	Gut microbial evidence chain in high-salt diet exacerbates intestinal aging process. Frontiers in Nutrition, 0, 9, .	1.6	1
705	Social Hierarchy Dictates Intestinal Radiation Injury in a Gut Microbiota-Dependent Manner. International Journal of Molecular Sciences, 2022, 23, 13189.	1.8	5
706	The role of the gut microbiota in health and cardiovascular diseases. Molecular Biomedicine, 2022, 3, .	1.7	22
707	Advances in pathogenesis and treatment of essential hypertension. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	8
708	Inflammatory Bowel Disease and Customized Nutritional Intervention Focusing on Gut Microbiome Balance. Nutrients, 2022, 14, 4117.	1.7	5
709	Crosstalk between the Gut and Brain in Ischemic Stroke: Mechanistic Insights and Therapeutic Options. Mediators of Inflammation, 2022, 2022, 1-17.	1.4	2

# 710	ARTICLE Introductory Chapter: Hypertension – A Perspective. , 0, , .	IF	Citations 0
711	IgG subclass and Fc glycosylation shifts are linked to the transition from pre- to inflammatory autoimmune conditions. Frontiers in Immunology, 0, 13, .	2.2	10
712	Gut-Immune-Kidney Axis: Influence of Dietary Protein in Salt-Sensitive Hypertension. Hypertension, 2022, 79, 2397-2408.	1.3	11
713	Genetic Engineering of Lymphangiogenesis in Skin Does Not Affect Blood Pressure in Mouse Models of Salt-Sensitive Hypertension. Hypertension, 2022, 79, 2451-2462.	1.3	12
714	Rare Variants in Genes Encoding Subunits of the Epithelial Na ⁺ Channel Are Associated With Blood Pressure and Kidney Function. Hypertension, 2022, 79, 2573-2582.	1.3	10
715	Ultra-processed foods as a possible culprit for the rising prevalence of inflammatory bowel diseases. Frontiers in Medicine, 0, 9, .	1.2	4
716	Fat not so bad? The role of ketone bodies and ketogenic diet in the treatment of endothelial dysfunction and hypertension. Biochemical Pharmacology, 2022, 206, 115346.	2.0	2
717	Intestinal microbiota: A promising therapeutic target for hypertension. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	3
718	Effects of altered salt intake and diet on cytokines in humans: A 20â€week randomized crossâ€over intervention study. European Journal of Immunology, 2023, 53, .	1.6	1
719	Advantages and limitations of experimental autoimmune encephalomyelitis in breaking down the role of the gut microbiome in multiple sclerosis. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	4
720	Update on gut microbiota in cardiovascular diseases. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	16
721	Gut microbiota: A new target for traditional Chinese medicine in the treatment of depression. Journal of Ethnopharmacology, 2023, 303, 116038.	2.0	7
722	Gut Microbiota and Cardiovascular System: An Intricate Balance of Health and the Diseased State. Life, 2022, 12, 1986.	1.1	8
723	Lactobacillus reuteri tryptophan metabolism promotes host susceptibility to CNS autoimmunity. Microbiome, 2022, 10, .	4.9	27
724	Ready-To-Eat Rocket Salads as Potential Reservoir of Bacteria for the Human Microbiome. Microbiology Spectrum, 2023, 11, .	1.2	3
725	Salt Sensitivity in Childhood Hypertension. , 2023, , 229-247.		0
726	Risk Factors of Severe COVID-19: A Review of Host, Viral and Environmental Factors. Viruses, 2023, 15, 175.	1.5	33
727	Anti–PD-L1 Antibody and/or 17β-Estradiol Treatment Induces Changes in the Gut Microbiome in MC38 Colon Tumor Model. Cancer Research and Treatment, 2023, 55, 894-909.	1.3	3

#	Article	IF	Citations
728	The role of Th17 cells in endocrine organs: Involvement of the gut, adipose tissue, liver and bone. Frontiers in Immunology, 0, 13, .	2.2	1
729	Fatty acid overproduction by gut commensal microbiota exacerbates obesity. Cell Metabolism, 2023, 35, 361-375.e9.	7.2	28
730	Effects of probiotics on hypertension. Applied Microbiology and Biotechnology, 2023, 107, 1107-1117.	1.7	5
731	Editorial: Inflammation in hypertensive disorders. Frontiers in Physiology, 0, 13, .	1.3	Ο
732	TH17 cell heterogeneity and its role in tissue inflammation. Nature Immunology, 2023, 24, 19-29.	7.0	38
733	The gut microbiome and hypertension. Nature Reviews Nephrology, 2023, 19, 153-167.	4.1	46
734	Microcirculation and Physical Exercise In Hypertension. Hypertension, 0, , .	1.3	7
735	The Gut Microbiota and Its Metabolites Contribute to Ageing and Ageing-Related Diseases. Healthy Ageing and Longevity, 2023, , 3-22.	0.2	0
736	Advantageous tactics with certain probiotics for the treatment of graft-versus-host-disease after hematopoietic stem cell transplantation. World Journal of Hematology, 0, 10, 15-24.	0.1	0
737	Does the Composition of Gut Microbiota Affect Hypertension? Molecular Mechanisms Involved in Increasing Blood Pressure. International Journal of Molecular Sciences, 2023, 24, 1377.	1.8	9
738	Skatole: A thin red line between its benefits and toxicity. Biochimie, 2023, 208, 1-12.	1.3	7
739	Sodium chloride-induced changes in oxidative stress, inflammation, and dysbiosis in experimental multiple sclerosis. Nutritional Neuroscience, 0, , 1-13.	1.5	1
740	Crosstalk between Gut Microbiota and Host Immunity: Impact on Inflammation and Immunotherapy. Biomedicines, 2023, 11, 294.	1.4	31
741	Effect of climatic environment on immunological features of rheumatoid arthritis. Scientific Reports, 2023, 13, .	1.6	2
742	Evolving interplay between natural products and gut microbiota. European Journal of Pharmacology, 2023, 949, 175557.	1.7	3
743	Single and combined effects of microplastics and cadmium on the sea cucumber Apostichopus japonicus. Marine Environmental Research, 2023, 186, 105927.	1.1	5
744	Western diet influences on microbiome and carcinogenesis. Seminars in Immunology, 2023, 67, 101756.	2.7	2
745	T helper 17 (Th17) cell responses to the gut microbiota in human diseases. Biomedicine and Pharmacotherapy, 2023, 161, 114483.	2.5	5

#	Article	IF	CITATIONS
746	Enhancement of sodium salty taste modulate by protease-hydrolyzed Gum Arabic. Food Hydrocolloids, 2023, 141, 108759.	5.6	4
747	Microbial metabolites and immunotherapy: Basic rationale and clinical indications. Seminars in Immunology, 2023, 67, 101755.	2.7	4
748	Immune communication between the intestinal microbiota and the cardiovascular system. Immunology Letters, 2023, 254, 13-20.	1.1	4
749	The ion transporter Na ⁺ -K ⁺ -ATPase enables pathological B cell survival in the kidney microenvironment of lupus nephritis. Science Advances, 2023, 9, .	4.7	3
750	Designing healthier bread through the lens of the gut microbiota. Trends in Food Science and Technology, 2023, 134, 13-28.	7.8	13
751	Intestinal barrier dysfunction in murine sickle cell disease is associated with small intestine neutrophilic inflammation, oxidative stress, and dysbiosis. FASEB BioAdvances, 2023, 5, 199-210.	1.3	4
752	A High-Salt Diet Exacerbates Liver Fibrosis through <i>Enterococcus</i> -Dependent Macrophage Activation. Microbiology Spectrum, 2023, 11, .	1.2	4
753	Identification of a Novel Strain <i>Lactobacillus Reuteri</i> and Anti-Obesity Effect through Metabolite Indole-3-Carboxaldehyde in Diet-Induced Obese Mice. Journal of Agricultural and Food Chemistry, 2023, 71, 3239-3249.	2.4	1
754	The role of gut microbiota and metabolites in regulating the immune response in drug-induced enteritis. Journal of Applied Microbiology, 2023, 134, .	1.4	2
755	Efficacy and Mechanism of Qianshan Huoxue Gao in Acute Coronary Syndrome via Regulation of Intestinal Flora and Metabolites. Drug Design, Development and Therapy, 0, Volume 17, 579-595.	2.0	2
756	Topography of respiratory tract and gut microbiota in mice with influenza A virus infection. Frontiers in Microbiology, 0, 14, .	1.5	3
758	A New Understanding of Potassium's Influence Upon Human Health and Renal Physiology. , 2023, 30, 137-147.		1
759	Fecal Microbiota Composition as a Metagenomic Biomarker of Dietary Intake. International Journal of Molecular Sciences, 2023, 24, 4918.	1.8	1
760	Role of the Gut Microbiome in the Development of Atherosclerotic Cardiovascular Disease. International Journal of Molecular Sciences, 2023, 24, 5420.	1.8	10
761	The role of gut microbiota in T cell immunity and immune mediated disorders. International Journal of Biological Sciences, 2023, 19, 1178-1191.	2.6	20
762	Effects of ultra-processed foods on the microbiota-gut-brain axis: The bread-and-butter issue. Food Research International, 2023, 167, 112730.	2.9	11
763	A highâ€salt diet induces synaptic loss and memory impairment via gut microbiota and butyrate in mice. , 2023, 2, .		0
764	Impact of High Salt-Intake on a Natural Gut Ecosystem in Wildling Mice. Nutrients, 2023, 15, 1565.	1.7	3

#	Article	IF	CITATIONS
765	<i>Acanthopanax senticosus</i> extract alleviates radiationâ€induced learning and memory impairment based on neurotransmitterâ€gut microbiota communication. CNS Neuroscience and Therapeutics, 2023, 29, 129-145.	1.9	1
766	Sodium in the skin: a summary of the physiology and a scoping review of disease associations. Clinical and Experimental Dermatology, 0, , .	0.6	0
767	Gut microbiota and hypertension: association, mechanisms and treatment. Clinical and Experimental Hypertension, 2023, 45, .	0.5	21
768	è…,内ç″°èŒå¢ã«å½±éŸįã,'ä,Žã•̂ã,‹é£Ÿä²‹å›å• Kagaku To Seibutsu, 2022, 60, 156-160.	0.0	0
769	Is the Gut Microbiome Implicated in the Excess Risk of Hypertension Associated with Obstructive Sleep Apnea? A Contemporary Review. Antioxidants, 2023, 12, 866.	2.2	2
770	Gut microbiota dependant trimethylamine N-oxide and hypertension. Frontiers in Physiology, 0, 14, .	1.3	8
771	An engineered <i>Escherichia coli</i> Nissle 1917 increase the production of indole lactic acid in the gut. FEMS Microbiology Letters, 2023, 370, .	0.7	1
772	Innate Immunity System in Patients With Cardiovascular and Kidney Disease. Circulation Research, 2023, 132, 915-932.	2.0	8
773	Commensal Microbiota Regulate Renal Gene Expression in a Sex-Specific Manner. American Journal of Physiology - Renal Physiology, 0, , .	1.3	1
774	Microbiota-derived tryptophan catabolites mediate the chemopreventive effects of statins on colorectal cancer. Nature Microbiology, 2023, 8, 919-933.	5.9	21
775	Microbiota-derived tryptophan metabolites indole-3-lactic acid is associated with intestinal ischemia/reperfusion injury via positive regulation of YAP and Nrf2. Journal of Translational Medicine, 2023, 21, .	1.8	5
780	Immune Responses at Host Barriers and Their Importance in Systemic Autoimmune Diseases. Advances in Experimental Medicine and Biology, 2023, , 3-24.	0.8	1
781	A high-salt diet promotes atherosclerosis by altering haematopoiesis. Nature Reviews Cardiology, 2023, 20, 435-436.	6.1	1
799	Gut Microbial Mechanisms in Nutrition and Health. , 2023, , 147-177.		0
818	Gut Microbial Metabolism in Heart Failure. Endocrinology, 2023, , 1-22.	0.1	0
826	Diet and Hypertension. , 2024, , 17-48.		0
827	Inflammation and Immunity in Hypertension. , 2024, , 93-100.		0
828	Obesity and Hypertension: Pathophysiology and Treatment. , 2024, , 413-426.		0

#	Article	IF	CITATIONS
838	Salt Behind the Scenes of Systemic Lupus Erythematosus and Rheumatoid Arthritis. Current Nutrition Reports, 0, , .	2.1	0
845	Microbiome-based approaches to food allergy treatment. , 2023, , .		0
853	Gut Microbiome in Dyslipidemia and Atherosclerosis. Endocrinology, 2023, , 1-29.	0.1	0
863	Immune and inflammatory mechanisms in hypertension. Nature Reviews Cardiology, 0, , .	6.1	2
873	Potentials of berries and pomegranate in management of the neurodegenerative disorders. , 2024, , 277-300.		0
877	Gut Microbial Metabolism in Heart Failure. Endocrinology, 2024, , 259-279.	0.1	0
878	Gut Microbiome in Dyslipidemia and Atherosclerosis. Endocrinology, 2024, , 231-258.	0.1	0
881	A review of the world's salt reduction policies and strategies – preparing for the upcoming year 2025. Food and Function, 2024, 15, 2836-2859.	2.1	0
884	Differential Effects of Carbohydrates on the Generation of Hydrogen and Methane in Low- and High-Methane-Producing Rats. , 2024, , 339-358.		0
887	The Influence of Celery (Apium graveolens) Juice on Hypertension. Reference Series in Phytochemistry, 2024, , 1-23.	0.2	0
891	Microbiota, Diet, Oral Health, and Vascular Aging. , 2024, , 277-289.		0