Wearable, Healable, and Adhesive Epidermal Sensors As Conductive Hybrid Hydrogel Framework

Advanced Functional Materials 27, 1703852 DOI: 10.1002/adfm.201703852

Citation Report

#	Article	IF	CITATIONS
1	Mechanochemical Regulated Origami with Tough Hydrogels by Ion Transfer Printing. ACS Applied Materials & Interfaces, 2018, 10, 9077-9084.	4.0	51
2	Materials and Wearable Devices for Autonomous Monitoring of Physiological Markers. Advanced Materials, 2018, 30, e1705024.	11.1	145
3	Siteâ€Specific Surface Functionalization via Microchannel Cantilever Spotting (µCS): Comparison between Azide–Alkyne and Thiol–Alkyne Click Chemistry Reactions. Small, 2018, 14, e1800131.	5.2	29
4	Mussel-Inspired Cellulose Nanocomposite Tough Hydrogels with Synergistic Self-Healing, Adhesive, and Strain-Sensitive Properties. Chemistry of Materials, 2018, 30, 3110-3121.	3.2	627
5	A tough, stretchable, and extensively sticky hydrogel driven by milk protein. Polymer Chemistry, 2018, 9, 2617-2624.	1.9	76
6	Tough and Conductive Hybrid Hydrogels Enabling Facile Patterning. ACS Applied Materials & Interfaces, 2018, 10, 13685-13692.	4.0	82
7	Recyclable, stretchable and conductive double network hydrogels towards flexible strain sensors. Journal of Materials Chemistry C, 2018, 6, 13316-13324.	2.7	87
8	Tough and tissue-adhesive polyacrylamide/collagen hydrogel with dopamine-grafted oxidized sodium alginate as crosslinker for cutaneous wound healing. RSC Advances, 2018, 8, 42123-42132.	1.7	69
9	Superhydrophobic and superelastic conductive rubber composite for wearable strain sensors with ultrahigh sensitivity and excellent anti-corrosion property. Journal of Materials Chemistry A, 2018, 6, 24523-24533.	5.2	89
10	Gate-Free Hydrogel–Graphene Transistors as Underwater Microphones. ACS Applied Materials & Interfaces, 2018, 10, 42573-42582.	4.0	21
11	Conductive and Tough Hydrogels Based on Biopolymer Molecular Templates for Controlling in Situ Formation of Polypyrrole Nanorods. ACS Applied Materials & Interfaces, 2018, 10, 36218-36228.	4.0	181
12	Highly stretchable and fatigue resistant hydrogels with low Young's modulus as transparent and flexible strain sensors. Journal of Materials Chemistry C, 2018, 6, 11193-11201.	2.7	70
13	Ultrastretchable Strain Sensors and Arrays with High Sensitivity and Linearity Based on Super Tough Conductive Hydrogels. Chemistry of Materials, 2018, 30, 8062-8069.	3.2	318
14	Reducing Structural Defects and Oxygen-Containing Functional Groups in GO-Hybridized CNTs Aerogels: Simultaneously Improve the Electrical and Mechanical Properties To Enhance Pressure Sensitivity. ACS Applied Materials & Interfaces, 2018, 10, 39009-39017.	4.0	46
15	Rational Design of Self-Healing Tough Hydrogels: A Mini Review. Frontiers in Chemistry, 2018, 6, 497.	1.8	99
16	A Flexible Wearable Pressure Sensor with Bioinspired Microcrack and Interlocking for Fullâ€Range Human–Machine Interfacing. Small, 2018, 14, e1803018.	5.2	156
17	Rapid room-temperature self-healing conductive nanocomposites based on naturally dried graphene aerogels. Journal of Materials Chemistry C, 2018, 6, 10184-10191.	2.7	11
18	Ultratough, Self-Healing, and Tissue-Adhesive Hydrogel for Wound Dressing. ACS Applied Materials & Interfaces, 2018, 10, 33523-33531.	4.0	381

#	Article	IF	CITATIONS
19	Conductive Hydrogels as Smart Materials for Flexible Electronic Devices. Chemistry - A European Journal, 2018, 24, 16930-16943.	1.7	215
20	A bioinspired multilayer assembled microcrack architecture nanocomposite for highly sensitive strain sensing. Composites Science and Technology, 2018, 164, 51-58.	3.8	21
21	Aligned flexible conductive fibrous networks for highly sensitive, ultrastretchable and wearable strain sensors. Journal of Materials Chemistry C, 2018, 6, 6575-6583.	2.7	77
22	Wearable glove sensor for non-invasive organophosphorus pesticide detection based on a double-signal fluorescence strategy. Nanoscale, 2018, 10, 13722-13729.	2.8	71
23	Autonomous Flexible Sensors for Health Monitoring. Advanced Materials, 2018, 30, e1802337.	11.1	176
24	Flexible and Stretchable Smart Display: Materials, Fabrication, Device Design, and System Integration. Advanced Functional Materials, 2018, 28, 1801834.	7.8	357
25	Self-recoverable and mechanical-reinforced hydrogel based on hydrophobic interaction with self-healable and conductive properties. Chemical Engineering Journal, 2018, 353, 900-910.	6.6	69
26	Chemical Design of Functional Polymer Structures for Biosensors: From Nanoscale to Macroscale. Polymers, 2018, 10, 551.	2.0	37
27	Flexible, Stretchable Sensors for Wearable Health Monitoring: Sensing Mechanisms, Materials, Fabrication Strategies and Features. Sensors, 2018, 18, 645.	2.1	258
28	Shape morphing of anisotropy-encoded tough hydrogels enabled by asymmetrically-induced swelling and site-specific mechanical strengthening. Journal of Materials Chemistry B, 2018, 6, 4731-4737.	2.9	21
29	Softening and Shape Morphing of Stiff Tough Hydrogels by Localized Unlocking of the Trivalent Ionically Crossâ€Linked Centers. Macromolecular Rapid Communications, 2018, 39, e1800143.	2.0	38
30	Musselâ€Inspired Polydopamine Coating for Flexible Ternary Resistive Memory. Chemistry - an Asian Journal, 2018, 13, 1744-1750.	1.7	9
31	Robust and flexible strain sensors based on dual physically cross-linked double network hydrogels for monitoring human-motion. Chemical Engineering Journal, 2018, 354, 817-824.	6.6	193
32	High Performance Flexible Organic Electrochemical Transistors for Monitoring Cardiac Action Potential. Advanced Healthcare Materials, 2018, 7, e1800304.	3.9	50
33	Extremely stretchable and electrically conductive hydrogels with dually synergistic networks for wearable strain sensors. Journal of Materials Chemistry C, 2018, 6, 9200-9207.	2.7	154
34	Highly Stretchable and Biocompatible Strain Sensors Based on Mussel-Inspired Super-Adhesive Self-Healing Hydrogels for Human Motion Monitoring. ACS Applied Materials & Interfaces, 2018, 10, 20897-20909.	4.0	398
35	Highly Conformable, Transparent Electrodes for Epidermal Electronics. Nano Letters, 2018, 18, 4531-4540.	4.5	182
36	Tough and Conductive Dual Physically Cross-Linked Hydrogels for Wearable Sensors. Industrial & Engineering Chemistry Research, 2019, 58, 17001-17009.	1.8	22

#	Article	IF	CITATIONS
37	Ultrafast Selfâ€Healing and Injectable Conductive Hydrogel for Strain and Pressure Sensors. Advanced Materials Technologies, 2019, 4, 1900346.	3.0	56
38	Skin-Inspired Gels with Toughness, Antifreezing, Conductivity, and Remoldability. ACS Applied Materials & Interfaces, 2019, 11, 28336-28344.	4.0	111
39	Biomimetic printable nanocomposite for healable, ultrasensitive, stretchable and ultradurable strain sensor. Nano Energy, 2019, 63, 103898.	8.2	53
40	Chitosanâ€based double network hydrogels with selfâ€healing and dualâ€responsive shape memory abilities. Journal of Applied Polymer Science, 2019, 136, 48247.	1.3	17
41	Conductive, Tough, Transparent, and Self-Healing Hydrogels Based on Catechol–Metal Ion Dual Self-Catalysis. Chemistry of Materials, 2019, 31, 5625-5632.	3.2	214
42	Conductive MXene Nanocomposite Organohydrogel for Flexible, Healable, Lowâ€Temperature Tolerant Strain Sensors. Advanced Functional Materials, 2019, 29, 1904507.	7.8	560
43	Wearable, Antifreezing, and Healable Epidermal Sensor Assembled from Long-Lasting Moist Conductive Nanocomposite Organohydrogel. ACS Applied Materials & Interfaces, 2019, 11, 41701-41709.	4.0	94
44	Fiber forming mechanism and reaction kinetics of novel dynamic-crosslinking-spinning for Poly(ethylene glycol) diacrylate fiber fabrication. Polymer, 2019, 183, 121903.	1.8	9
45	Highly Stretchable, Adhesive, and Mechanical Zwitterionic Nanocomposite Hydrogel Biomimetic Skin. ACS Applied Materials & Interfaces, 2019, 11, 40620-40628.	4.0	120
46	Disease Detection with Molecular Biomarkers: From Chemistry of Body Fluids to Nature-Inspired Chemical Sensors. Chemical Reviews, 2019, 119, 11761-11817.	23.0	269
47	A novel dual-adhesive and bioactive hydrogel activated by bioglass for wound healing. NPG Asia Materials, 2019, 11, .	3.8	116
48	Highly sensitive and wearable gel-based sensors with a dynamic physically cross-linked structure for strain-stimulus detection over a wide temperature range. Journal of Materials Chemistry C, 2019, 7, 11303-11314.	2.7	65
49	A transparent, stretchable, stable, self-adhesive ionogel-based strain sensor for human motion monitoring. Journal of Materials Chemistry C, 2019, 7, 11244-11250.	2.7	90
50	A Highly Sensitive and Stretchable Yarn Strain Sensor for Human Motion Tracking Utilizing a Wrinkle-Assisted Crack Structure. ACS Applied Materials & Interfaces, 2019, 11, 36052-36062.	4.0	141
51	Superhydrophobic Foams with Chemical- and Mechanical-Damage-Healing Abilities Enabled by Self-Healing Polymers. ACS Applied Materials & amp; Interfaces, 2019, 11, 37285-37294.	4.0	69
52	DNA-Inspired Adhesive Hydrogels Based on the Biodegradable Polyphosphoesters Tackified by a Nucleobase. Biomacromolecules, 2019, 20, 3672-3683.	2.6	27
53	Fabrication of agarose hydrogel with patterned silver nanowires for motion sensor. Bio-Design and Manufacturing, 2019, 2, 269-277.	3.9	27
54	Composite polyurethane adhesives that debond-on-demand by hysteresis heating in an oscillating magnetic field. European Polymer Journal, 2019, 121, 109264.	2.6	39

			_
#		IF	CITATIONS
55	Constructing High Performance Hydrogels with Strong Underwater Adhesion through a a€œMussel Feet-Rockâ€Inspired Strategy. ACS Applied Polymer Materials, 2019, 1, 2883-2889.	2.0	26
56	Low temperature tolerant, ultrasensitive strain sensors based on self-healing hydrogel for self-monitor of human motion. Synthetic Metals, 2019, 257, 116177.	2.1	30
57	Skin-inspired flexible and high-sensitivity pressure sensors based on rGO films with continuous-gradient wrinkles. Nanoscale, 2019, 11, 4258-4266.	2.8	131
58	Rapid preparation of auto-healing gels with actuating behaviour. Soft Matter, 2019, 15, 2517-2525.	1.2	13
59	lonoprinting controlled information storage of fluorescent hydrogel for hierarchical and multi-dimensional decryption. Science China Materials, 2019, 62, 831-839.	3.5	51
60	A fast self-healing and conductive nanocomposite hydrogel as soft strain sensor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 567, 139-149.	2.3	88
61	Poly(vinyl alcohol)-Mediated Graphene Aerogels with Tailorable Architectures and Advanced Properties for Anisotropic Sensing. Journal of Physical Chemistry C, 2019, 123, 3781-3789.	1.5	23
62	Poly(N-isopropylacrylamide)/polydopamine/clay nanocomposite hydrogels with stretchability, conductivity, and dual light- and thermo- responsive bending and adhesive properties. Colloids and Surfaces B: Biointerfaces, 2019, 177, 149-159.	2.5	45
63	Multiple Weak H-Bonds Lead to Highly Sensitive, Stretchable, Self-Adhesive, and Self-Healing Ionic Sensors. ACS Applied Materials & amp; Interfaces, 2019, 11, 7755-7763.	4.0	264
64	An integrated transparent, UV-filtering organohydrogel sensor <i>via</i> molecular-level ion conductive channels. Journal of Materials Chemistry A, 2019, 7, 4525-4535.	5.2	143
65	Stimuli-Responsive Conductive Nanocomposite Hydrogels with High Stretchability, Self-Healing, Adhesiveness, and 3D Printability for Human Motion Sensing. ACS Applied Materials & Interfaces, 2019, 11, 6796-6808.	4.0	381
66	Flexible and wearable strain sensors based on tough and self-adhesive ion conducting hydrogels. Journal of Materials Chemistry B, 2019, 7, 24-29.	2.9	165
67	Recent progress on highly sensitive perovskite photodetectors. Journal of Materials Chemistry C, 2019, 7, 1741-1791.	2.7	353
68	Highly transparent, stretchable, and rapid self-healing polyvinyl alcohol/cellulose nanofibril hydrogel sensors for sensitive pressure sensing and human motion detection. Sensors and Actuators B: Chemical, 2019, 295, 159-167.	4.0	199
69	Highly Stretchable and Selfâ€Healable MXene/Polyvinyl Alcohol Hydrogel Electrode for Wearable Capacitive Electronic Skin. Advanced Electronic Materials, 2019, 5, 1900285.	2.6	288
70	Stretchable and self-healable hydrogel-based capacitance pressure and strain sensor for electronic skin systems. Materials Research Express, 2019, 6, 0850b9.	0.8	25
71	Surface Modification of Poly(lactic-co-glycolic acid) Microspheres with Enhanced Hydrophilicity and Dispersibility for Arterial Embolization. Materials, 2019, 12, 1959.	1.3	9
72	Ultrastretchable Wearable Strain and Pressure Sensors Based on Adhesive, Tough, and Self-healing Hydrogels for Human Motion Monitoring. ACS Applied Materials & Interfaces, 2019, 11, 25613-25623.	4.0	161

ARTICLE IF CITATIONS # A flexible, adhesive and self-healable hydrogel-based wearable strain sensor for human motion and 73 2.9 223 physiological signal monitoring. Journal of Materials Chemistry B, 2019, 7, 4638-4648. Electroconductive hydrogels for biomedical applications. Wiley Interdisciplinary Reviews: 74 3.3 Nanomedicine and Nanobiotechnology, 2019, 11, e1568. Transparent and conductive amino acid-tackified hydrogels as wearable strain sensors. Chemical 75 6.6 96 Engineering Journal, 2019, 375, 121915. A review of electro-stimulated gels and their applications: Present state and future perspectives. Materials Science and Engineering C, 2019, 103, 109852. Multifunctional Glycerol–Water Hydrogel for Biomimetic Human Skin with Resistance Memory 77 4.0 92 Function. ACS Applied Materials & amp; Interfaces, 2019, 11, 21117-21125. Transparent, Highly Stretchable, Rehealable, Sensing, and Fully Recyclable Ionic Conductors Fabricated by Oneâ€Step Polymerization Based on a Small Biological Molecule. Advanced Functional 7.8 154 Materials, 2019, 29, 1902467. A novel highly stretchable, adhesive and self-healing silk fibroin powder-based hydrogel containing 79 1.3 17 dual-network structure. Materials Letters, 2019, 252, 126-129. Skinâ€Inspired Antibacterial Conductive Hydrogels for Epidermal Sensors and Diabetic Foot Wound 371 Dressings. Advanced Functional Materials, 2019, 29, 1901474. Direct Current-Powered High-Performance Ionic Hydrogel Strain Sensor Based on Electrochemical 81 4.0 21 Redox Reaction. ACS Applied Materials & amp; Intérfaces, 2019, 11, 24289-24297. Design Molecular Topology for Wet–Dry Adhesion. ACS Applied Materials & amp; Interfaces, 2019, 11, 24802-24811. Three-Dimensional Printing and Injectable Conductive Hydrogels for Tissue Engineering Application. 83 2.5 65 Tissue Engineering - Part B. Reviews, 2019, 25, 398-411. Preparation of soft somatosensory-detecting materials <i>via</i> selective laser sintering. Journal of Materials Chemistry C, 2019, 7, 6786-6794. Robust and anti-fatigue hydrophobic association hydrogels assisted by titanium dioxide for 85 1.2 14 photocatalytic activity. Soft Matter, 2019, 15, 3897-3905. Highly transparent and stretchable hydrogels with rapidly responsive photochromic performance for UV-irradiated optical display devices. Reactive and Functional Polymers, 2019, 138, 88-95. Ion-conductive self-healing hydrogels based on an interpenetrating polymer network for a 87 135 6.6 multimodal sensor. Chemical Engineering Journal, 2019, 371, 452-460. Binder-Free Graphene/Silver Nanowire Gel-Like Composite with Tunable Properties and Multifunctional Applications. ACS Applied Materials & Amp; Interfaces, 2019, 11, 15028-15037. Highly Stretchable Room-Temperature Self-Healing Conductors Based on Wrinkled Graphene Films for 89 4.0 62 Flexible Electronics. ACS Applied Materials & amp; Interfaces, 2019, 11, 10736-10744. Multiple Physical Cross-Linker Strategy To Achieve Mechanically Tough and Reversible Properties of Double-Network Hydrogels in Bulk and on Surfaces. ACS Applied Polymer Materials, 2019, 1, 701-713.

#	Article	IF	CITATIONS
91	Highly stretchable and bio-based sensors for sensitive strain detection of angular displacements. Cellulose, 2019, 26, 3401-3413.	2.4	31
92	Supramolecular Fabrication of Complex 3D Hollow Polymeric Hydrogels with Shape and Function Diversity. ACS Applied Materials & amp; Interfaces, 2019, 11, 48564-48573.	4.0	11
93	A highly stretchable, ultra-tough, remarkably tolerant, and robust self-healing glycerol-hydrogel for a dual-responsive soft actuator. Journal of Materials Chemistry A, 2019, 7, 25969-25977.	5.2	111
94	Natural skin-inspired versatile cellulose biomimetic hydrogels. Journal of Materials Chemistry A, 2019, 7, 26442-26455.	5.2	236
95	Polyvinyl Alcohol-Stabilized Liquid Metal Hydrogel for Wearable Transient Epidermal Sensors. ACS Applied Materials & Interfaces, 2019, 11, 47358-47364.	4.0	148
96	One-pot preparation and applications of self-healing, self-adhesive PAA-PDMS elastomers. Journal of Semiconductors, 2019, 40, 112602.	2.0	4
97	Double-Network Physical Cross-Linking Strategy To Promote Bulk Mechanical and Surface Adhesive Properties of Hydrogels. Macromolecules, 2019, 52, 9512-9525.	2.2	59
98	Highly sensitive strain sensors based on hollow packaged silver nanoparticle-decorated three-dimensional graphene foams for wearable electronics. RSC Advances, 2019, 9, 39958-39964.	1.7	6
99	Electrically conductive hydrogels for flexible energy storage systems. Progress in Polymer Science, 2019, 88, 220-240.	11.8	260
100	Bioinspired and Microgel-Tackified Adhesive Hydrogel with Rapid Self-Healing and High Stretchability. Macromolecules, 2019, 52, 72-80.	2.2	76
101	Tough, Adhesive, Self-Healable, and Transparent Ionically Conductive Zwitterionic Nanocomposite Hydrogels as Skin Strain Sensors. ACS Applied Materials & Interfaces, 2019, 11, 3506-3515.	4.0	309
102	Supramolecular nanofibrillar hydrogels as highly stretchable, elastic and sensitive ionic sensors. Materials Horizons, 2019, 6, 326-333.	6.4	327
103	Mimicking Dynamic Adhesiveness and Strain-Stiffening Behavior of Biological Tissues in Tough and Self-Healable Cellulose Nanocomposite Hydrogels. ACS Applied Materials & Interfaces, 2019, 11, 5885-5895.	4.0	171
104	In-situ reduction of graphene oxide-wrapped porous polyurethane scaffolds: Synergistic enhancement of mechanical properties and piezoresistivity. Composites Part A: Applied Science and Manufacturing, 2019, 116, 106-113.	3.8	42
105	Oxidant-induced plant phenol surface chemistry for multifunctional coatings: Mechanism and potential applications. Journal of Membrane Science, 2019, 570-571, 176-183.	4.1	56
106	Self-healing hydroxypropyl guar gum/poly (acrylamide-co-3-acrylamidophenyl boronic acid) composite hydrogels with yield phenomenon based on dynamic PBA ester bonds and H-bond. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 561, 325-331.	2.3	31
107	Fatigue of hydrogels. European Journal of Mechanics, A/Solids, 2019, 74, 337-370.	2.1	206
108	Multifunctional cellulose-based hydrogels for biomedical applications. Journal of Materials Chemistry B, 2019, 7, 1541-1562.	2.9	172

#	Article	IF	CITATIONS
109	pH and Thermo Dualâ€Responsive Fluorescent Hydrogel Actuator. Macromolecular Rapid Communications, 2019, 40, e1800648.	2.0	73
110	Archimedean Spiral Inspired Conductive Supramolecular Elastomer with Rapid Electrical and Mechanical Selfâ€Healing Capability for Sensor Application. Advanced Materials Technologies, 2019, 4, 1800424.	3.0	12
111	A highly stretchable, self-healing, recyclable and interfacial adhesion gel: Preparation, characterization and applications. Chemical Engineering Journal, 2019, 360, 334-341.	6.6	72
112	Characterization of Xanthan gum-based hydrogel with Fe3+ ions coordination and its reversible sol-gel conversion. Carbohydrate Polymers, 2019, 203, 139-147.	5.1	88
113	Hydrogel Adhesion: A Supramolecular Synergy of Chemistry, Topology, and Mechanics. Advanced Functional Materials, 2020, 30, 1901693.	7.8	507
114	Bio-inspired adhesive and self-healing hydrogels as flexible strain sensors for monitoring human activities. Materials Science and Engineering C, 2020, 106, 110168.	3.8	45
115	Room temperature readily self-healing polymer via rationally designing molecular chain and crosslinking bond for flexible electrical sensor. Journal of Colloid and Interface Science, 2020, 559, 152-161.	5.0	31
116	Pressure diffusion wave and shear wave in gels with tunable wave propagation properties. Journal of the Mechanics and Physics of Solids, 2020, 134, 103736.	2.3	Ο
117	Ionic Tactile Sensors for Emerging Humanâ€Interactive Technologies: A Review of Recent Progress. Advanced Functional Materials, 2020, 30, 1904532.	7.8	122
118	A bionic tactile plastic hydrogel-based electronic skin constructed by a nerve-like nanonetwork combining stretchable, compliant, and self-healing properties. Chemical Engineering Journal, 2020, 379, 122271.	6.6	171
119	Wearable Electronics Based on 2D Materials for Human Physiological Information Detection. Small, 2020, 16, e1901124.	5.2	97
120	Dual conductive network enabled superhydrophobic and high performance strain sensors with outstanding electro-thermal performance and extremely high gauge factors. Chemical Engineering Journal, 2020, 385, 123391.	6.6	149
121	Flexible porous silicone rubber-nanofiber nanocomposites generated by supercritical carbon dioxide foaming for harvesting mechanical energy. Nano Energy, 2020, 67, 104290.	8.2	56
122	Flexible, stretchable and conductive PVA/PEDOT:PSS composite hydrogels prepared by SIPN strategy. Polymer Testing, 2020, 81, 106213.	2.3	86
123	Autonomous Self-Healing, Antifreezing, and Transparent Conductive Elastomers. Chemistry of Materials, 2020, 32, 874-881.	3.2	138
124	Transfer Printing of Electronic Functions on Arbitrary Complex Surfaces. ACS Nano, 2020, 14, 12-20.	7.3	47
125	Self-healing conductive hydrogels: preparation, properties and applications. Nanoscale, 2020, 12, 1224-1246.	2.8	286
126	Tough polyacrylamide-tannic acid-kaolin adhesive hydrogels for quick hemostatic application. Materials Science and Engineering C, 2020, 109, 110649.	3.8	75

#	Article	IF	CITATIONS
127	Imparting Functionality to the Hydrogel by Magnetic-Field-Induced Nano-assembly and Macro-response. ACS Applied Materials & Interfaces, 2020, 12, 5177-5194.	4.0	80
128	A wearable, self-adhesive, long-lastingly moist and healable epidermal sensor assembled from conductive MXene nanocomposites. Journal of Materials Chemistry C, 2020, 8, 1788-1795.	2.7	91
129	Highly Morphology ontrollable and Highly Sensitive Capacitive Tactile Sensor Based on Epidermisâ€Dermisâ€Inspired Interlocked Asymmetricâ€Nanocone Arrays for Detection of Tiny Pressure. Small, 2020, 16, e1904774.	5.2	166
130	A semi-interpenetrating network ionic hydrogel for strain sensing with high sensitivity, large strain range, and stable cycle performance. Chemical Engineering Journal, 2020, 385, 123912.	6.6	128
131	Mussel-Inspired Highly Stretchable, Tough Nanocomposite Hydrogel with Self-Healable and Near-Infrared Actuated Performance. Industrial & Engineering Chemistry Research, 2020, 59, 166-174.	1.8	18
132	Conductive Self-Healing Nanocomposite Hydrogel Skin Sensors with Antifreezing and Thermoresponsive Properties. ACS Applied Materials & Interfaces, 2020, 12, 3068-3079.	4.0	140
133	Highâ€Resolution Patterning of Liquid Metal on Hydrogel for Flexible, Stretchable, and Selfâ€Healing Electronics. Advanced Electronic Materials, 2020, 6, 1900721.	2.6	76
134	Recent innovations in artificial skin. Biomaterials Science, 2020, 8, 776-797.	2.6	38
135	Recent advances in soft functional materials: preparation, functions and applications. Nanoscale, 2020, 12, 1281-1306.	2.8	56
136	An autonomously healable, highly stretchable and cyclically compressible, wearable hydrogel as a multimodal sensor. Polymer Chemistry, 2020, 11, 1327-1336.	1.9	32
137	Bioinspired tough, conductive hydrogels with thermally reversible adhesiveness based on nanoclay confined NIPAM polymerization and a dopamine modified polypeptide. Materials Chemistry Frontiers, 2020, 4, 189-196.	3.2	33
138	Highâ€Performance Flexible Sensors of Selfâ€Healing, Reversibly Adhesive, and Stretchable Hydrogels for Monitoring Large and Subtle Strains. Macromolecular Materials and Engineering, 2020, 305, 1900621.	1.7	19
139	Self-Healing and Highly Stretchable Gelatin Hydrogel for Self-Powered Strain Sensor. ACS Applied Materials & Interfaces, 2020, 12, 1558-1566.	4.0	174
140	Tough and Stretchable Dual Ionically Cross-Linked Hydrogel with High Conductivity and Fast Recovery Property for High-Performance Flexible Sensors. ACS Applied Materials & Interfaces, 2020, 12, 1577-1587.	4.0	105
141	Microgelâ€Based Devices as Wearable Capacitive Electronic Skins for Monitoring Cardiovascular Risks. Advanced Materials Technologies, 2020, 5, 1900818.	3.0	23
142	Musselâ€Inspired Flexible, Wearable, and Selfâ€Adhesive Conductive Hydrogels for Strain Sensors. Macromolecular Rapid Communications, 2020, 41, e1900450.	2.0	67
143	Study on mussel-inspired tough TA/PANI@CNCs nanocomposite hydrogels with superior self-healing and self-adhesive properties for strain sensors. Composites Part B: Engineering, 2020, 201, 108356.	5.9	74
144	Transparent Conductive Supramolecular Hydrogels with Stimuliâ€Responsive Properties for Onâ€Demand Dissolvable Diabetic Foot Wound Dressings. Macromolecular Rapid Communications, 2020, 41, e2000441.	2.0	41

#	Article	IF	CITATIONS
145	Biomimetic epidermal sensors assembled from polydopamine-modified reduced graphene oxide/polyvinyl alcohol hydrogels for the real-time monitoring of human motions. Journal of Materials Chemistry B, 2020, 8, 10549-10558.	2.9	31
146	Highly Strong and Transparent Ionic Conductive Hydrogel as Multifunctional Sensors. Macromolecular Materials and Engineering, 2020, 305, 2000475.	1.7	15
147	A Conductive, Self-Healing Hybrid Hydrogel with Excellent Water-Retention and Thermal Stability by Introducing Ethylene Glycol as a Crystallization Inhibitor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 607, 125443.	2.3	28
148	Antiswelling and Durable Adhesion Biodegradable Hydrogels for Tissue Repairs and Strain Sensors. Langmuir, 2020, 36, 10448-10459.	1.6	37
149	Bioinspired conductive cellulose liquid-crystal hydrogels as multifunctional electrical skins. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18310-18316.	3.3	177
150	High-strength, anti-fatigue, stretchable self-healing polyvinyl alcohol hydrogel based on borate bonds and hydrogen bonds. Journal of Dispersion Science and Technology, 2022, 43, 690-703.	1.3	22
151	Mussel-Inspired Adhesive Double-Network Hydrogel for Intraoral Ultrasound Imaging. ACS Applied Bio Materials, 2020, 3, 8943-8952.	2.3	17
152	Supramolecular adhesive materials from smallâ€molecule selfâ€assembly. SmartMat, 2020, 1, e1012.	6.4	79
153	Self-healing carrageenan-driven Polyacrylamide hydrogels for strain sensing. Science China Technological Sciences, 2020, 63, 2677-2686.	2.0	19
154	A direction-aware and ultrafast self-healing dual network hydrogel for a flexible electronic skin strain sensor. Journal of Materials Chemistry A, 2020, 8, 26109-26118.	5.2	122
155	Hydrogel soft robotics. Materials Today Physics, 2020, 15, 100258.	2.9	216
156	A semi-interpenetrating network ionic composite hydrogel with low modulus, fast self-recoverability and high conductivity as flexible sensor. Carbohydrate Polymers, 2020, 248, 116797.	5.1	85
157	Selfâ€healing Polyol/Borax Hydrogels: Fabrications, Properties and Applications. Chemical Record, 2020, 20, 1142-1162.	2.9	35
158	Inkâ€Based Additive Nanomanufacturing of Functional Materials for Humanâ€Integrated Smart Wearables. Advanced Intelligent Systems, 2020, 2, 2000117.	3.3	17
159	Nanocomposite hydrogel films and coatings – Features and applications. Applied Materials Today, 2020, 20, 100776.	2.3	37
160	Wearable MXene nanocomposites-based strain sensor with tile-like stacked hierarchical microstructure for broad-range ultrasensitive sensing. Nano Energy, 2020, 78, 105187.	8.2	140
161	Multifunctional Poly(vinyl alcohol) Nanocomposite Organohydrogel for Flexible Strain and Temperature Sensor. ACS Applied Materials & Interfaces, 2020, 12, 40815-40827.	4.0	141
162	Bioinspired Color-Changeable Organogel Tactile Sensor with Excellent Overall Performance. ACS Applied Materials & Interfaces, 2020, 12, 49866-49875.	4.0	31

#	Article	IF	CITATIONS
163	Flexible electronic skin sensor based on regenerated cellulose/carbon nanotube composite films. Cellulose, 2020, 27, 10199-10211.	2.4	41
164	Ctenophore-inspired hydrogels for efficient and repeatable underwater specific adhesion to biotic surfaces. Materials Horizons, 2020, 7, 2651-2661.	6.4	127
165	Nanocomposite hydrogel-based strain and pressure sensors: a review. Journal of Materials Chemistry A, 2020, 8, 18605-18623.	5.2	230
166	Biocompatible and Highly Stretchable PVA/AgNWs Hydrogel Strain Sensors for Human Motion Detection. Advanced Materials Technologies, 2020, 5, 2000426.	3.0	83
167	Three-Dimensional Binary-Conductive-Network Silver Nanowires@Thiolated Graphene Foam-Based Room-Temperature Self-Healable Strain Sensor for Human Motion Detection. ACS Applied Materials & Interfaces, 2020, 12, 44360-44370.	4.0	75
168	Highly Stretchable, Compressible, Adhesive, Conductive Self-healing Composite Hydrogels with Sensor Capacity. Chinese Journal of Polymer Science (English Edition), 2020, 38, 1221-1229.	2.0	24
169	Dual Cross-Linked Ion-Based Temperature-Responsive Conductive Hydrogels with Multiple Sensors and Steady Electrocardiogram Monitoring. Chemistry of Materials, 2020, 32, 7670-7678.	3.2	54
170	Recent Progress in Selfâ€healing Materials for Sensor Arrays. ChemNanoMat, 2020, 6, 1522-1538.	1.5	12
171	Highly adhesive and stretchable binder for silicon-based anodes in Li-ion batteries. Ionics, 2020, 26, 5889-5896.	1.2	10
172	Solvent-Resistant and Nonswellable Hydrogel Conductor toward Mechanical Perception in Diverse Liquid Media. ACS Nano, 2020, 14, 13709-13717.	7.3	128
173	Highly compressible hydrogel sensors with synergistic long-lasting moisture, extreme temperature tolerance and strain-sensitivity properties. Materials Chemistry Frontiers, 2020, 4, 3319-3327.	3.2	22
174	MXeneâ€Based Conductive Organohydrogels with Longâ€Term Environmental Stability and Multifunctionality. Advanced Functional Materials, 2020, 30, 2005135.	7.8	221
175	Skin-Contactable and Antifreezing Strain Sensors Based on Bilayer Hydrogels. Chemistry of Materials, 2020, 32, 8938-8946.	3.2	77
176	Highly Swellable and Stretchable Thermoresponsive Hydrogels Enabled by Functionalized Boron Nitride Nanosheets. Macromolecular Materials and Engineering, 2020, 305, 2000256.	1.7	11
177	Mussel-Inspired Redox-Active and Hydrophilic Conductive Polymer Nanoparticles for Adhesive Hydrogel Bioelectronics. Nano-Micro Letters, 2020, 12, 169.	14.4	98
178	Physical and Chemical Factors Influencing the Printability of Hydrogel-based Extrusion Bioinks. Chemical Reviews, 2020, 120, 10834-10886.	23.0	107
179	A facile approach to obtain highly tough and stretchable LAPONITE®-based nanocomposite hydrogels. Soft Matter, 2020, 16, 8394-8399.	1.2	21
180	Degradable self-adhesive epidermal sensors prepared from conductive nanocomposite hydrogel. Nanoscale, 2020, 12, 18771-18781.	2.8	44

		Report	
#	ARTICLE	IF	CITATIONS
181	Strain-Responsiveness. ACS Sustainable Chemistry and Engineering, 2020, 8, 19117-19128.	3.2	27
182	<p>Potential Applications of Nanomaterials and Technology for Diabetic Wound Healing</p> . International Journal of Nanomedicine, 2020, Volume 15, 9717-9743.	3.3	106
183	Stretchable, Stable, and Room-Temperature Gas Sensors Based on Self-Healing and Transparent Organohydrogels. ACS Applied Materials & Interfaces, 2020, 12, 52070-52081.	4.0	57
184	Highly Sensitive Pressure and Strain Sensors Based on Stretchable and Recoverable Ion-Conductive Physically Cross-Linked Double-Network Hydrogels. ACS Applied Materials & Interfaces, 2020, 12, 51969-51977.	4.0	79
185	Protein Gel Phase Transition: Toward Superiorly Transparent and Hysteresisâ€Free Wearable Electronics. Advanced Functional Materials, 2020, 30, 1910080.	7.8	30
186	Sequential in-situ route to synthesize novel composite hydrogels with excellent mechanical, conductive, and magnetic responsive properties. Materials and Design, 2020, 193, 108759.	3.3	29
187	Mussel-inspired hydrogels: from design principles to promising applications. Chemical Society Reviews, 2020, 49, 3605-3637.	18.7	346
188	Synthesis of highly conductive hydrogel with high strength and super toughness. Polymer, 2020, 202, 122643.	1.8	40
189	Highly Sensitive Strain Sensor Based on a Stretchable and Conductive Poly(vinyl alcohol)/Phytic Acid/NH ₂ -POSS Hydrogel with a 3D Microporous Structure. ACS Applied Materials & Interfaces, 2020, 12, 26496-26508.	4.0	95
190	Advances in Synthesis and Applications of Self-Healing Hydrogels. Frontiers in Bioengineering and Biotechnology, 2020, 8, 654.	2.0	25
191	Mussel-inspired sandwich-like nanofibers/hydrogel composite with super adhesive, sustained drug release and anti-infection capacity. Chemical Engineering Journal, 2020, 399, 125668.	6.6	54
192	Mussel cuticle-mimetic ultra-tough, self-healing elastomers with double-locked nanodomains exhibit fast stimuli-responsive shape transformation. Journal of Materials Chemistry A, 2020, 8, 12463-12471.	5.2	22
193	Characterization of hydrogel structural damping. Extreme Mechanics Letters, 2020, 40, 100841.	2.0	11
194	Flexible and electrically conductive composites based on 3D hierarchical silver dendrites. Soft Matter, 2020, 16, 6765-6772.	1.2	12
195	Tough and conductive polymer hydrogel based on double network for photo-curing 3D printing. Materials Research Express, 2020, 7, 055304.	0.8	17
196	A Solvent Co-cross-linked Organogel with Fast Self-Healing Capability and Reversible Adhesiveness at Extreme Temperatures. ACS Applied Materials & Interfaces, 2020, 12, 29757-29766.	4.0	29
197	Diselenide-Bridged Carbon-Dot-Mediated Self-Healing, Conductive, and Adhesive Wireless Hydrogel Sensors for Label-Free Breast Cancer Detection. ACS Nano, 2020, 14, 8409-8420.	7.3	94
198	Multiple Stimuli Responsive and Identifiable Zwitterionic Ionic Conductive Hydrogel for Bionic Electronic Skin. Advanced Electronic Materials, 2020, 6, 2000239.	2.6	116

#	Article	IF	CITATIONS
199	Ultrastretchable, Selfâ€Healable, and Wearable Epidermal Sensors Based on Ultralong Ag Nanowires Composited Binaryâ€Networked Hydrogels. Advanced Electronic Materials, 2020, 6, 2000267.	2.6	52
200	Polymer nanocomposite meshes for flexible electronic devices. Progress in Polymer Science, 2020, 107, 101279.	11.8	119
201	Constructing Electrically and Mechanically Self-Healing Elastomers by Hydrogen Bonded Intermolecular Network. Langmuir, 2020, 36, 3029-3037.	1.6	45
202	Binary solvent systems for durable self-adhesive conductive hydrogels. Journal of Polymer Engineering, 2020, 40, 221-230.	0.6	Ο
203	Highly Transparent, Self-Healable, and Adhesive Organogels for Bio-Inspired Intelligent Ionic Skins. ACS Applied Materials & Interfaces, 2020, 12, 15657-15666.	4.0	95
204	Overview of Polyvinyl Alcohol Nanocomposite Hydrogels for Electroâ€ S kin, Actuator, Supercapacitor and Fuel Cell. Chemical Record, 2020, 20, 773-792.	2.9	55
205	Temperature/near-infrared light-responsive conductive hydrogels for controlled drug release and real-time monitoring. Nanoscale, 2020, 12, 8679-8686.	2.8	49
206	Highly transparent, self-healing conductive elastomers enabled by synergistic hydrogen bonding interactions. Chemical Engineering Journal, 2020, 393, 124685.	6.6	98
207	Robust Physically Linked Double-Network Ionogel as a Flexible Bimodal Sensor. ACS Applied Materials & Interfaces, 2020, 12, 14272-14279.	4.0	118
208	Ultrahigh-Sensitive Finlike Double-Sided E-Skin for Force Direction Detection. ACS Applied Materials & Interfaces, 2020, 12, 14136-14144.	4.0	44
209	Gallic acid modified alginate self-adhesive hydrogel for strain responsive transdermal delivery. International Journal of Biological Macromolecules, 2020, 163, 147-155.	3.6	44
210	Single network double cross-linker (SNDCL) hydrogels with excellent stretchability, self-recovery, adhesion strength, and conductivity for human motion monitoring. Soft Matter, 2020, 16, 7323-7331.	1.2	40
211	Ultra-Stretchable, durable and conductive hydrogel with hybrid double network as high performance strain sensor and stretchable triboelectric nanogenerator. Nano Energy, 2020, 76, 105035.	8.2	209
212	Flexible and wearable sensor based on graphene nanocomposite hydrogels. Smart Materials and Structures, 2020, 29, 075027.	1.8	53
213	Advances in Materials for Soft Stretchable Conductors and Their Behavior under Mechanical Deformation. Polymers, 2020, 12, 1454.	2.0	11
214	Highly Tough, Stretchable, Selfâ€Adhesive and Strainâ€5ensitive DNAâ€Inspired Hydrogels for Monitoring Human Motion. Chemistry - A European Journal, 2020, 26, 11604-11613.	1.7	13
215	Novel Elastically Stretchable Metal–Organic Framework Laden Hydrogel with Pearl–Net Microstructure and Freezing Resistance through Postâ€6ynthetic Polymerization. Macromolecular Rapid Communications, 2020, 41, e1900573.	2.0	10
216	Self-repairing flexible strain sensors based on nanocomposite hydrogels for whole-body monitoring. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 592, 124587.	2.3	35

#	Article	IF	CITATIONS
217	Integrated wearable sensors with bending/stretching selectivity and extremely enhanced sensitivity derived from agarose-based ionic conductor and its 3D-shaping. Chemical Engineering Journal, 2020, 389, 124503.	6.6	16
218	Ionic Strength and Thermal Dualâ€Responsive Bilayer Hollow Spherical Hydrogel Actuator. Macromolecular Rapid Communications, 2020, 41, e1900543.	2.0	29
219	Alginate fiber toughened gels similar to skin intelligence as ionic sensors. Carbohydrate Polymers, 2020, 235, 116018.	5.1	45
220	Flexible room-temperature gas sensor based on poly (para-phenylene terephthalamide) fibers substrate coupled with composite NiO@CuO sensing materials for ammonia detection. Ceramics International, 2020, 46, 13827-13834.	2.3	16
221	Highly Stretchable and Self-Healing Strain Sensor Based on Gellan Gum Hybrid Hydrogel for Human Motion Monitoring. ACS Applied Polymer Materials, 2020, 2, 1325-1334.	2.0	47
222	Highly Stretchable and Compressible Carbon Nanofiber–Polymer Hydrogel Strain Sensor for Human Motion Detection. Macromolecular Materials and Engineering, 2020, 305, 1900813.	1.7	28
223	Highly electro-responsive plasticized PVC/FMWCNTs soft composites: A novel flex actuator with functional characteristics. European Polymer Journal, 2020, 126, 109556.	2.6	17
224	Nucleotide-driven skin-attachable hydrogels toward visual human–machine interfaces. Journal of Materials Chemistry A, 2020, 8, 4515-4523.	5.2	68
225	Two-Dimensional Nanocellulose-Enhanced High-Strength, Self-Adhesive, and Strain-Sensitive Poly(acrylic acid) Hydrogels Fabricated by a Radical-Induced Strategy for a Skin Sensor. ACS Sustainable Chemistry and Engineering, 2020, 8, 3427-3436.	3.2	51
226	Flexible TPU strain sensors with tunable sensitivity and stretchability by coupling AgNWs with rGO. Journal of Materials Chemistry C, 2020, 8, 4040-4048.	2.7	70
227	From design to applications of stimuli-responsive hydrogel strain sensors. Journal of Materials Chemistry B, 2020, 8, 3171-3191.	2.9	131
228	Skin-Inspired Multifunctional Luminescent Hydrogel Containing Layered Rare-Earth Hydroxide with 3D Printability for Human Motion Sensing. ACS Applied Materials & Interfaces, 2020, 12, 6797-6805.	4.0	33
229	A Robust, Tough and Multifunctional Polyurethane/Tannic Acid Hydrogel Fabricated by Physical-Chemical Dual Crosslinking. Polymers, 2020, 12, 239.	2.0	38
230	Doubleâ€Hydrophobicâ€Coating through Quenching for Hydrogels with Strong Resistance to Both Drying and Swelling. Advanced Science, 2020, 7, 1903145.	5.6	54
231	Multi-triggered and enzyme-mimicking graphene oxide/polyvinyl alcohol/G-quartet supramolecular hydrogels. Nanoscale, 2020, 12, 5186-5195.	2.8	22
232	A Flexible and Conductive Binder with Strong Adhesion for High Performance Siliconâ€Based Lithiumâ€lon Battery Anode. ChemElectroChem, 2020, 7, 1992-2000.	1.7	42
233	Stretchable and tough conductive hydrogels for flexible pressure and strain sensors. Journal of Materials Chemistry B, 2020, 8, 3437-3459.	2.9	372
234	A Highly Stretchable, Realâ€Time Selfâ€Healable Hydrogel Adhesive Matrix for Tissue Patches and Flexible Electronics. Advanced Healthcare Materials, 2020, 9, e1901423.	3.9	89

#	Article	IF	CITATIONS
235	Ultrasensitive, Lowâ€Voltage Operational, and Asymmetric Ionic Sensing Hydrogel for Multipurpose Applications. Advanced Functional Materials, 2020, 30, 1909616.	7.8	29
236	Mechanically Interlocked Hydrogel–Elastomer Hybrids for On‣kin Electronics. Advanced Functional Materials, 2020, 30, 1909540.	7.8	120
237	Stretchable, self-healing and tissue-adhesive zwitterionic hydrogels as strain sensors for wireless monitoring of organ motions. Materials Horizons, 2020, 7, 1872-1882.	6.4	273
238	Recent advances in designing conductive hydrogels for flexible electronics. InformaÄnÃ-Materiály, 2020, 2, 843-865.	8.5	150
239	Skin-inspired cellulose conductive hydrogels with integrated self-healing, strain, and thermal sensitive performance. Carbohydrate Polymers, 2020, 240, 116360.	5.1	71
240	Antibacterial, Self-Adhesive, Recyclable, and Tough Conductive Composite Hydrogels for Ultrasensitive Strain Sensing. ACS Applied Materials & Interfaces, 2020, 12, 22225-22236.	4.0	134
241	Anti-inflammatory catecholic chitosan hydrogel for rapid surgical trauma healing and subsequent prevention of tumor recurrence. Chinese Chemical Letters, 2020, 31, 1807-1811.	4.8	56
242	Self-healing flexible sensor based on metal-ligand coordination. Chemical Engineering Journal, 2020, 394, 124932.	6.6	46
243	Super-stretchable, elastic and recoverable ionic conductive hydrogel for wireless wearable, stretchable sensor. Journal of Materials Chemistry A, 2020, 8, 10291-10300.	5.2	130
244	Metalâ€Free and Stretchable Conductive Hydrogels for High Transparent Conductive Film and Flexible Strain Sensor with High Sensitivity. Macromolecular Chemistry and Physics, 2020, 221, 2000054.	1.1	26
245	Supramolecularly Mediated Robust, Antiâ€Fatigue, and Strainâ€Sensitive Macromolecular Microsphere Composite Hydrogels. Macromolecular Materials and Engineering, 2020, 305, 2000080.	1.7	19
246	Conductive and adhesive gluten ionic skin for eco-friendly strain sensor. Journal of Materials Science, 2021, 56, 3970-3980.	1.7	10
247	Star-nose-inspired multi-mode sensor for anisotropic motion monitoring. Nano Energy, 2021, 80, 105559.	8.2	21
248	An ultra-stretchable glycerol-ionic hybrid hydrogel with reversible gelid adhesion. Journal of Colloid and Interface Science, 2021, 582, 187-200.	5.0	37
249	Robust and sensitive pressure/strain sensors from solution processable composite hydrogels enhanced by hollow-structured conducting polymers. Chemical Engineering Journal, 2021, 403, 126307.	6.6	110
250	Anti-freezing, resilient and tough hydrogels for sensitive and large-range strain and pressure sensors. Chemical Engineering Journal, 2021, 403, 126431.	6.6	215
251	High-performance ionic conductive poly(vinyl alcohol) hydrogels for flexible strain sensors based on a universal soaking strategy. Materials Chemistry Frontiers, 2021, 5, 315-323.	3.2	51
252	Electrical bioadhesive interface for bioelectronics. Nature Materials, 2021, 20, 229-236.	13.3	361

#	Article	IF	CITATIONS
253	Facile biomimetic self-coacervation of tannic acid and polycation: Tough and wide pH range of underwater adhesives. Chemical Engineering Journal, 2021, 404, 127069.	6.6	113
254	Multifunctional conductive hydrogel-based flexible wearable sensors. TrAC - Trends in Analytical Chemistry, 2021, 134, 116130.	5.8	207
255	Rational design of multiple hydrogen bonds to improve the mechanical property of rigid PANI. Extreme Mechanics Letters, 2021, 42, 101136.	2.0	8
256	Liquid metal-created macroporous composite hydrogels with self-healing ability and multiple sensations as artificial flexible sensors. Journal of Materials Chemistry A, 2021, 9, 875-883.	5.2	119
257	Mussel-inspired double cross-linked hydrogels with desirable mechanical properties, strong tissue-adhesiveness, self-healing properties and antibacterial properties. Materials Science and Engineering C, 2021, 120, 111690.	3.8	18
258	Materials, Actuators, and Sensors for Soft Bioinspired Robots. Advanced Materials, 2021, 33, e2003139.	11.1	209
259	Salt-mediated triple shape-memory ionic conductive polyampholyte hydrogel for wearable flexible electronics. Journal of Materials Chemistry A, 2021, 9, 1048-1061.	5.2	78
260	From wearables to implantables—clinical drive and technical challenges. , 2021, , 29-84.		8
261	Biosafe, self-adhesive, recyclable, tough, and conductive hydrogels for multifunctional sensors. Biomaterials Science, 2021, 9, 5884-5896.	2.6	25
262	Highly compliant and low strain hysteresis sensory electronic skins based on solution processable hybrid hydrogels. Journal of Materials Chemistry C, 2021, 9, 1822-1828.	2.7	19
263	Preparation of conductive self-healing hydrogels <i>via</i> an interpenetrating polymer network method. RSC Advances, 2021, 11, 6620-6627.	1.7	7
264	Ultra-stretchable, self-adhesive, transparent, and ionic conductive organohydrogel for flexible sensor. APL Materials, 2021, 9, .	2.2	23
265	Non-covalent assembly of a super-tough, highly stretchable and environmentally adaptable self-healing material inspired by nacre. Journal of Materials Chemistry A, 2021, 9, 20737-20747.	5.2	31
266	Skin-inspired self-healing semiconductive touch panel based on novel transparent stretchable hydrogels. Journal of Materials Chemistry A, 2021, 9, 14806-14817.	5.2	17
267	Tissue adhesive hydrogel bioelectronics. Journal of Materials Chemistry B, 2021, 9, 4423-4443.	2.9	129
268	Including fluorescent nanoparticle probes within injectable gels for remote strain measurements and discrimination between compression and tension. Soft Matter, 2021, 17, 1048-1055.	1.2	2
269	Transforming non-adhesive hydrogels to reversible tough adhesives <i>via</i> mixed-solvent-induced phase separation. Journal of Materials Chemistry A, 2021, 9, 9706-9718.	5.2	43
270	A highly sensitive strain sensor based on a silica@polyaniline core–shell particle reinforced hydrogel with excellent flexibility, stretchability, toughness and conductivity. Soft Matter, 2021, 17, 2142-2150.	1.2	32

#	Article	IF	CITATIONS
271	Mussel-inspired hydrogels as tough, self-adhesive and conductive bioelectronics: a review. Soft Matter, 2021, 17, 8786-8804.	1.2	17
272	High strength and flexible aramid nanofiber conductive hydrogels for wearable strain sensors. Journal of Materials Chemistry C, 2021, 9, 575-583.	2.7	60
273	Sprayâ€Painted Hydrogel Coating for Marine Antifouling. Advanced Materials Technologies, 2021, 6, 2000911.	3.0	49
274	Highly Stretchable, Transparent, and Self-Adhesive Ionic Conductor for High-Performance Flexible Sensors. ACS Applied Polymer Materials, 2021, 3, 1610-1617.	2.0	38
275	Polypyrrole-Doped Conductive Self-Healing Composite Hydrogels with High Toughness and Stretchability. Biomacromolecules, 2021, 22, 1273-1281.	2.6	36
276	Graphene assisted ion-conductive hydrogel with super sensitivity for strain sensor. Polymer, 2021, 215, 123340.	1.8	41
277	A Multifunctional, Self-Healing, Self-Adhesive, and Conductive Sodium Alginate/Poly(vinyl alcohol) Composite Hydrogel as a Flexible Strain Sensor. ACS Applied Materials & Interfaces, 2021, 13, 11344-11355.	4.0	208
278	Selfâ€Healing Soft Sensors: From Material Design to Implementation. Advanced Materials, 2021, 33, e2004190.	11.1	106
279	Ultrarobust, tough and highly stretchable self-healing materials based on cartilage-inspired noncovalent assembly nanostructure. Nature Communications, 2021, 12, 1291.	5.8	254
280	Topologically Enhanced Dual-Network Hydrogels with Rapid Recovery for Low-Hysteresis, Self-Adhesive Epidemic Electronics. ACS Applied Materials & Interfaces, 2021, 13, 12531-12540.	4.0	53
281	Recent progress in self-healing conductive materials and flexible sensors with desired functional repairability. Multifunctional Materials, 2021, 4, 012002.	2.4	2
282	A conductive rubber with selfâ€healing ability enabled by metalâ€ligand coordination. Polymers for Advanced Technologies, 2021, 32, 2531-2540.	1.6	8
283	Material Design for 3D Multifunctional Hydrogel Structure Preparation. Macromolecular Materials and Engineering, 2021, 306, 2100007.	1.7	5
284	A review on recent advances in gel adhesion and their potential applications. Journal of Molecular Liquids, 2021, 325, 115254.	2.3	33
285	Healable, Degradable, and Conductive MXene Nanocomposite Hydrogel for Multifunctional Epidermal Sensors. ACS Nano, 2021, 15, 7765-7773.	7.3	259
286	Recent advances of hydrogel network models for studies on mechanical behaviors. Acta Mechanica Sinica/Lixue Xuebao, 2021, 37, 367-386.	1.5	56
287	Supplementary Networking of Interpenetrating Polymer System (SNIPSy) Strategy to Develop Strong & High Water Content Ionic Hydrogels for Solid Electrolyte Applications. Advanced Functional Materials, 2021, 31, 2100251.	7.8	22
288	A plant-inspired long-lasting adhesive bilayer nanocomposite hydrogel based on redox-active Ag/Tannic acid-Cellulose nanofibers. Carbohydrate Polymers, 2021, 255, 117508.	5.1	77

#	Article	IF	CITATIONS
289	Cellulose nanocrystal reinforced conductive nanocomposite hydrogel with fast self-healing and self-adhesive properties for human motion sensing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 613, 126076.	2.3	35
290	A Highly Stable and Durable Capacitive Strain Sensor Based on Dynamically Superâ€Tough Hydro/Organoâ€Gels. Advanced Functional Materials, 2021, 31, 2010830.	7.8	84
291	The composite hydrogel with " <scp>2D</scp> flexible crosslinking point―of <scp>reduced graphene oxide</scp> for strain sensor. Journal of Applied Polymer Science, 2021, 138, 50801.	1.3	16
292	Biointerfaced sensors for biodiagnostics. View, 2021, 2, 20200172.	2.7	24
293	Electrically programmable adhesive hydrogels for climbing robots. Science Robotics, 2021, 6, .	9.9	83
294	A highly elastic, Room-temperature repairable and recyclable conductive hydrogel for stretchable electronics. Journal of Colloid and Interface Science, 2021, 588, 295-304.	5.0	36
296	Flexible Polydopamine Bioelectronics. Advanced Functional Materials, 2021, 31, 2103391.	7.8	102
297	Hydrogelâ€based composites: Unlimited platforms for biosensors and diagnostics. View, 2021, 2, 20200165.	2.7	31
298	Hydrogen-bonded network enables semi-interpenetrating ionic conductive hydrogels with high stretchability and excellent fatigue resistance for capacitive/resistive bimodal sensors. Chemical Engineering Journal, 2021, 411, 128506.	6.6	88
299	Block Copolymerâ€Based Supramolecular Ionogels for Accurate Onâ€Skin Motion Monitoring. Advanced Functional Materials, 2021, 31, 2102386.	7.8	60
300	Development of a Flow-free Gradient Generator Using a Self-Adhesive Thiol-acrylate Microfluidic Resin/Hydrogel (TAMR/H) Hybrid System. ACS Applied Materials & Interfaces, 2021, 13, 26735-26747.	4.0	12
301	Metal cation-ligand interaction modulated mono-network ionic conductive hydrogel for wearable strain sensor. Journal of Materials Science, 2021, 56, 14531-14541.	1.7	11
302	Transparent, Conductive Hydrogels with High Mechanical Strength and Toughness. Polymers, 2021, 13, 2004.	2.0	13
303	A facile strategy to construct flexible and conductive silk fibroin aerogel for pressure sensors using bifunctional PEG. European Polymer Journal, 2021, 153, 110513.	2.6	13
304	Wearable lignin-based hydrogel electronics: A mini-review. International Journal of Biological Macromolecules, 2021, 181, 45-50.	3.6	58
305	Bio-Inspired Hydrogels via 3D Bioprinting. , 0, , .		3
306	Fabrication of Conductive, Adhesive, and Stretchable Agarose-Based Hydrogels for a Wearable Biosensor. ACS Applied Bio Materials, 2021, 4, 6148-6156.	2.3	11
307	Multifunctional Liquidâ€Free Ionic Conductive Elastomer Fabricated by Liquid Metal Induced Polymerization. Advanced Functional Materials, 2021, 31, 2101957.	7.8	86

#	Article	IF	CITATIONS
308	Synergy coordination of cellulose-based dialdehyde and carboxyl with Fe3+ recoverable conductive self-healing hydrogel for sensor. Materials Science and Engineering C, 2021, 125, 112094.	3.8	19
309	Microâ€Nano Processing of Active Layers in Flexible Tactile Sensors via Template Methods: A Review. Small, 2021, 17, e2100804.	5.2	82
310	Selfâ€Healing Functional Electronic Devices. Small, 2021, 17, e2101383.	5.2	55
311	Mussel Inspired Modification of Rubber Crumbs for Improved Interfacial Adhesion in Rubber Cement Mortar. Applied Composite Materials, 2021, 28, 1767-1780.	1.3	3
312	Anti-freezing, moisturizing, resilient and conductive organohydrogel for sensitive pressure sensors. Journal of Colloid and Interface Science, 2021, 594, 584-592.	5.0	54
314	Underwater flexible mechanoreceptors constructed by anti-swelling self-healable hydrogel. Science China Materials, 2021, 64, 3069-3078.	3.5	26
315	Highly Stretchable Nanocomposite Hydrogels with Outstanding Antifatigue Fracture Based on Robust Noncovalent Interactions for Wound Healing. Chemistry of Materials, 2021, 33, 6453-6463.	3.2	53
316	Polypyrrole/sulfonated multi-walled carbon nanotubes conductive hydrogel for electrochemical sensing of living cells. Chemical Engineering Journal, 2021, 418, 129483.	6.6	43
317	Polydopamine blended with polyacrylic acid for silicon anode binder with high electrochemical performance. Powder Technology, 2021, 388, 393-400.	2.1	15
318	Recent progress on fabrication of carbon nanotube-based flexible conductive networks for resistive-type strain sensors. Sensors and Actuators A: Physical, 2021, 327, 112755.	2.0	69
319	An oriented Fe3+-regulated lignin-based hydrogel with desired softness, conductivity, stretchability, and asymmetric adhesiveness towards anti-interference pressure sensors. International Journal of Biological Macromolecules, 2021, 184, 282-288.	3.6	31
320	Self-Healing, Self-Adhesive Silk Fibroin Conductive Hydrogel as a Flexible Strain Sensor. ACS Applied Materials & Interfaces, 2021, 13, 40013-40031.	4.0	146
321	Wearable sensors and devices for real-time cardiovascular disease monitoring. Cell Reports Physical Science, 2021, 2, 100541.	2.8	51
322	Stretchable and self-healable hydrogel artificial skin. National Science Review, 2022, 9, .	4.6	40
323	Ultraâ€Stretchable Selfâ€Healing Composite Hydrogels as Touch Panel. Advanced Materials Interfaces, 2021, 8, 2100742.	1.9	10
324	Antibacterial Dual Network Hydrogels for Sensing and Human Health Monitoring. Advanced Healthcare Materials, 2021, 10, e2101089.	3.9	69
325	On mechanical properties of nanocomposite hydrogels: Searching for superior properties. Nano Materials Science, 2022, 4, 83-96.	3.9	25
326	Ultrastretchable, Highly Transparent, Self-Adhesive, and 3D-Printable Ionic Hydrogels for Multimode Tactical Sensing. Chemistry of Materials, 2021, 33, 6731-6742.	3.2	48

#	Article	IF	CITATIONS
327	Highly Stretchable, Tough, and Conductive Ag@Cu Nanocomposite Hydrogels for Flexible Wearable Sensors and Bionic Electronic Skins. Macromolecular Materials and Engineering, 2021, 306, 2100341.	1.7	28
328	Self-healing, stretchable, and highly adhesive hydrogels for epidermal patch electrodes. Acta Biomaterialia, 2022, 139, 296-306.	4.1	63
329	A hierarchically designed nanocomposite hydrogel with multisensory capabilities towards wearable devices for human-body motion and glucose concentration detection. Composites Science and Technology, 2021, 213, 108894.	3.8	35
330	Switchable PNIPAm/PPyNT Hydrogel for Smart Supercapacitors: External Control of Capacitance for Pulsed Energy Generation or Prolongation of Discharge Time. ACS Applied Materials & Interfaces, 2021, 13, 48030-48039.	4.0	13
331	Preparation of lignosulfonate ionic hydrogels for supercapacitors, sensors and dye adsorbent applications. International Journal of Biological Macromolecules, 2021, 187, 189-199.	3.6	27
332	Double Network Clycerol Gel: A Robust, Highly Sensitive, and Adaptive Temperature Sensor. Macromolecular Materials and Engineering, 2021, 306, 2100465.	1.7	3
333	Ultrastretchable Polyaniline-Based Conductive Organogel with High Strain Sensitivity. , 2021, 3, 1477-1483.		16
334	Flexible wearable sensors based on lignin doped organohydrogels with multi-functionalities. Chemical Engineering Journal, 2022, 430, 132653.	6.6	27
335	Antiliquid-Interfering, Antibacteria, and Adhesive Wearable Strain Sensor Based on Superhydrophobic and Conductive Composite Hydrogel. ACS Applied Materials & Interfaces, 2021, 13, 46022-46032.	4.0	50
336	Chitosan-driven skin-attachable hydrogel sensors toward human motion and physiological signal monitoring. Carbohydrate Polymers, 2021, 268, 118240.	5.1	57
337	A Zwitterionic-Aromatic Motif-Based ionic skin for highly biocompatible and Glucose-Responsive sensor. Journal of Colloid and Interface Science, 2021, 600, 561-571.	5.0	21
338	A new mussel-inspired highly self-adhesive & conductive poly (vinyl alcohol)-based hydrogel for wearable sensors. Applied Surface Science, 2021, 562, 150162.	3.1	30
339	Construction of a 3D thermal transport hybrid via the creation of axial thermal conductive pathways between graphene layers. Materials Letters, 2022, 307, 130949.	1.3	5
340	Tough, antibacterial and self-healing ionic liquid/multiwalled carbon nanotube hydrogels as elements to produce flexible strain sensors for monitoring human motion. European Polymer Journal, 2021, 160, 110779.	2.6	13
341	Adhesive, self-healing, conductive Janus gel with oil-water responsiveness. Colloids and Surfaces B: Biointerfaces, 2021, 207, 112028.	2.5	4
342	Stretchable, rapid self-healing guar gum-poly(acrylic acid) hydrogels as wearable strain sensors for human motion detection based on Janus graphene oxide. International Journal of Biological Macromolecules, 2021, 191, 627-636.	3.6	18
343	Mussel-inspired self-healing PDMS/AgNPs conductive elastomer with tunable mechanical properties and efficient antibacterial performances for wearable sensor. Composites Part B: Engineering, 2021, 224, 109213.	5.9	36
344	Flexible Li+/agar/pHEAA double-network conductive hydrogels with self-adhesive and self-repairing properties as strain sensors for human motion monitoring. Reactive and Functional Polymers, 2021, 168, 105054.	2.0	12

#	Article	IF	CITATIONS
345	An electron donor-acceptor organic photoactive composite with Schottky heterojunction induced photoelectrochemical immunoassay. Biosensors and Bioelectronics, 2021, 191, 113475.	5.3	13
346	Accurate recognition of object contour based on flexible piezoelectric and piezoresistive dual mode strain sensors. Sensors and Actuators A: Physical, 2021, 332, 113121.	2.0	23
347	Rapid self-healing and self-adhesive chitosan-based hydrogels by host-guest interaction and dynamic covalent bond as flexible sensor. Carbohydrate Polymers, 2021, 273, 118533.	5.1	124
348	Tissue-adhesive, stretchable, and self-healable hydrogels based on carboxymethyl cellulose-dopamine/PEDOT:PSS via mussel-inspired chemistry for bioelectronic applications. Chemical Engineering Journal, 2021, 426, 130847.	6.6	51
349	Enhanced sensing and electrical performance of hierarchical porous ionic polymer-metal nanocomposite via minimizing cracks in electrode. Journal of Colloid and Interface Science, 2022, 606, 837-847.	5.0	3
350	A ionic liquid enhanced conductive hydrogel for strain sensing applications. Journal of Colloid and Interface Science, 2022, 606, 192-203.	5.0	64
351	Self-adhesive, biodegradable silk-based dry electrodes for epidermal electrophysiological monitoring. Chemical Engineering Journal, 2022, 427, 131999.	6.6	26
352	Mussel-inspired self-adhesive hydrogels by conducting free radical polymerization in both aqueous phase and micelle phase and their applications in flexible sensors. Journal of Colloid and Interface Science, 2022, 607, 431-439.	5.0	38
353	One stone for three birds: One-step engineering highly elastic and conductive hydrogel electronics with multilayer MXene as initiator, crosslinker and conductive filler simultaneously. Chemical Engineering Journal, 2022, 428, 132515.	6.6	44
354	A hydra tentacle-inspired hydrogel with underwater ultra-stretchability for adhering adipose surfaces. Chemical Engineering Journal, 2022, 428, 131049.	6.6	24
355	CNT-Br/PEDOT:PSS/PAAS three-network composite conductive hydrogel for human motion monitoring. New Journal of Chemistry, 2021, 45, 208-216.	1.4	6
356	Polymerizable deep eutectic solvent-based mechanically strong and ultra-stretchable conductive elastomers for detecting human motions. Journal of Materials Chemistry A, 2021, 9, 4890-4897.	5.2	70
357	A fast self-healing multifunctional polyvinyl alcohol nano-organic composite hydrogel as a building block for highly sensitive strain/pressure sensors. Journal of Materials Chemistry A, 2021, 9, 22082-22094.	5.2	83
358	One-step 3D printed intelligent silk fibroin artificial skin with built-in electronics and microfluidics. Analyst, The, 2021, 146, 5934-5941.	1.7	10
359	Recent Advances in Selfâ€Healable Intelligent Materials Enabled by Supramolecular Crosslinking Design. Advanced Intelligent Systems, 2021, 3, 2000183.	3.3	14
360	Nature-inspired semi-IPN hydrogels with tunable mechanical properties and multi-responsiveness. New Journal of Chemistry, 2021, 45, 861-871.	1.4	5
361	Tunable, conductive, self-healing, adhesive and injectable hydrogels for bioelectronics and tissue regeneration applications. Journal of Materials Chemistry B, 2021, 9, 6260-6270.	2.9	29
362	A transparent glycerol-hydrogel with stimuli-responsive actuation induced unexpectedly at subzero temperatures. Journal of Materials Chemistry A, 2021, 9, 7935-7945.	5.2	52

#	Article	IF	CITATIONS
363	Capacitive Pressure Sensors Containing Reliefs on Solution-Processable Hydrogel Electrodes. ACS Applied Materials & Interfaces, 2021, 13, 1441-1451.	4.0	47
364	Dopamine-Triggered Hydrogels with High Transparency, Self-Adhesion, and Thermoresponse as Skinlike Sensors. ACS Nano, 2021, 15, 1785-1794.	7.3	190
365	Advances in biomedical applications of self-healing hydrogels. Materials Chemistry Frontiers, 2021, 5, 4368-4400.	3.2	51
366	Biocompatible and self-healing ionic gel skin as shape-adaptable and skin-adhering sensor of human motions. Chemical Engineering Journal, 2020, 398, 125540.	6.6	46
367	Wireless battery-free body sensor networks using near-field-enabled clothing. Nature Communications, 2020, 11, 444.	5.8	165
368	Environment adaptive hydrogels for extreme conditions: a review. Biosurface and Biotribology, 2019, 5, 104-109.	0.6	6
369	Supramolecular ionic polymer/carbon nanotube composite hydrogels with enhanced electromechanical performance. Nanotechnology Reviews, 2020, 9, 478-488.	2.6	20
370	Design of ultra-stretchable, highly adhesive and self-healable hydrogels <i>via</i> tannic acid-enabled dynamic interactions. Materials Horizons, 2021, 8, 3409-3416.	6.4	76
371	Self-adhesive hydrogels for tissue engineering. Journal of Materials Chemistry B, 2021, 9, 8739-8767.	2.9	46
372	Development of Conductive Hydrogels for Fabricating Flexible Strain Sensors. Small, 2022, 18, e2101518.	5.2	188
373	A review on the features, performance and potential applications of hydrogel-based wearable strain/pressure sensors. Advances in Colloid and Interface Science, 2021, 298, 102553.	7.0	82
374	Rational Design of Polycationic Hydrogel with Excellent Combination Functions for Flexible Wearable Electronic Devices. Macromolecular Materials and Engineering, 2022, 307, 2100593.	1.7	4
375	Mussel-inspired chemistry: A promising strategy for natural polysaccharides in biomedical applications. Progress in Polymer Science, 2021, 123, 101472.	11.8	77
376	From Glutinousâ€Riceâ€Inspired Adhesive Organohydrogels to Flexible Electronic Devices Toward Wearable Sensing, Power Supply, and Energy Storage. Advanced Functional Materials, 2022, 32, .	7.8	101
377	Self-assembled topological transition via intra- and inter-chain coupled binding in physical hydrogel towards mechanical toughening. Polymer, 2021, 235, 124268.	1.8	6
378	Biobased and Recyclable Polyurethane for Room-Temperature Damping and Three-Dimensional Printing. ACS Omega, 2021, 6, 30003-30011.	1.6	12
379	Tough, adhesive, self-healing, fully physical crosslinked κ-CG-K+/pHEAA double-network ionic conductive hydrogels for wearable sensors. Polymer, 2021, 236, 124321.	1.8	30
380	Highly Stretchable and Transparent Optical Adhesive Films Using Hierarchically Structured Rigid-Flexible Dual-Stiffness Nanoparticles. ACS Applied Materials & Interfaces, 2021, 13, 1493-1502.	4.0	5

#	Article	IF	CITATIONS
381	Sensing mechanisms and applications of flexible pressure sensors. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 178102.	0.2	13
382	Recent progress on stretchable conductors. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 177401.	0.2	5
383	Electricity generation in simulated benthic microbial fuel cell with conductive polyaniline-polypyrole composite hydrogel anode. Renewable Energy, 2022, 183, 242-250.	4.3	15
384	Biomimetic integration of tough polymer elastomer with conductive hydrogel for highly stretchable, flexible electronic. Nano Energy, 2022, 92, 106735.	8.2	43
385	Graphene-enabled wearable sensors for healthcare monitoring. Biosensors and Bioelectronics, 2022, 197, 113777.	5.3	82
386	Self-Healing Mechanism and Conductivity of the Hydrogel Flexible Sensors: A Review. Gels, 2021, 7, 216.	2.1	22
387	Multiâ€Network Poly(<i>β</i> yclodextrin)/PVA/Gelatin/Carbon Nanotubes Composite Hydrogels Constructed by Multiple Dynamic Crosslinking as Flexible Electronic Devices. Macromolecular Materials and Engineering, 2022, 307, 2100724.	1.7	46
388	A variable stiffness adhesive enabled by joule heating effect. Chemical Engineering Journal, 2022, 433, 133840.	6.6	12
389	Polyphenol-Metal Ion Redox-Induced Gelation System for Constructing Plant Protein Adhesives with Excellent Fluidity and Cold-Pressing Adhesion. ACS Applied Materials & Interfaces, 2021, 13, 59527-59537.	4.0	30
390	Gallol-based constant underwater coating adhesives for severe aqueous conditions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 634, 127948.	2.3	7
391	Advanced Hydrogels for Cartilage Tissue Engineering: Recent Progress and Future Directions. Polymers, 2021, 13, 4199.	2.0	38
392	Surface Oxygen Functionalization of Carbon Cloth toward Enhanced Electrochemical Dopamine Sensing. ACS Sustainable Chemistry and Engineering, 2021, 9, 16063-16072.	3.2	26
393	Recent Advances on Designs and Applications of Hydrogel Adhesives. Advanced Materials Interfaces, 2022, 9, 2101038.	1.9	27
394	Recent progress in surgical adhesives for biomedical applications. Smart Materials in Medicine, 2022, 3, 41-65.	3.7	32
395	A wirelessly multi stimuli-responsive ultra-sensitive and self-healable wearable strain sensor based on silver quantum dots of 3D organo-hydrogel nanocomposites. Journal of Materials Chemistry C, 2021, 9, 17291-17306.	2.7	8
396	Self-Healing Materials for Electronics Applications. International Journal of Molecular Sciences, 2022, 23, 622.	1.8	22
397	Tannic acid modified hemicellulose nanoparticle reinforced ionic hydrogels with multi-functions for human motion strain sensor applications. Industrial Crops and Products, 2022, 176, 114412.	2.5	20
398	Strong and crack-resistant hydrogel derived from pomelo peel for highly sensitive wearable sensors. Chemical Engineering Journal, 2022, 431, 134094.	6.6	24

#	Article	IF	CITATIONS
399	A modulus-engineered multi-layer polymer film with mechanical robustness for the application to highly deformable substrate platform in stretchable electronics. Chemical Engineering Journal, 2022, 431, 134074.	6.6	8
400	Design of asymmetric-adhesion lignin reinforced hydrogels with anti-interference for strain sensing and moist air induced electricity generator. International Journal of Biological Macromolecules, 2022, 201, 104-110.	3.6	21
401	Thermoresponsive, magnetic, adhesive and conductive nanocomposite hydrogels for wireless and non-contact flexible sensors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636, 128113.	2.3	12
402	Dynamic/static mechanical stimulation double responses and self-powered "green―electronic skin based on electrode potential difference. Chemical Engineering Journal, 2022, 433, 134412.	6.6	6
403	Environment Adaptable Nanocomposite Organohydrogels for Multifunctional Epidermal Sensors. Advanced Materials Interfaces, 2022, 9, .	1.9	6
404	Revisiting the adhesion mechanism of mussel-inspired chemistry. Chemical Science, 2022, 13, 1698-1705.	3.7	53
405	Recent progress in conductive selfâ€healing hydrogels for flexible sensors. Journal of Polymer Science, 2022, 60, 2607-2634.	2.0	41
406	Healable Strain Sensor Based on Tough and Eco-Friendly Biomimetic Supramolecular Waterborne Polyurethane. ACS Applied Materials & Interfaces, 2022, 14, 6016-6027.	4.0	38
407	Untangling the mechanics of entanglements in slide-ring gels towards both super-deformability and toughness. Soft Matter, 2022, 18, 1302-1309.	1.2	9
408	Neural stem cell-laden 3D bioprinting of polyphenol-doped electroconductive hydrogel scaffolds for enhanced neuronal differentiation. Materials Science and Engineering C, 2022, 133, 112639.	3.8	24
409	Porous boron nitride nanofibers as effective nanofillers for poly(vinyl alcohol) composite hydrogels with excellent self-healing performances. Soft Matter, 2022, 18, 859-866.	1.2	8
410	Preparation and dielectric properties of multilayer Ag@FeNi-MOF/PVDF composites. Journal of Materials Science: Materials in Electronics, 2022, 33, 5311-5324.	1.1	3
411	Self-Healing, Self-Adhesive and Stable Organohydrogel-Based Stretchable Oxygen Sensor with High Performance at Room Temperature. Nano-Micro Letters, 2022, 14, 52.	14.4	53
412	Stretchable, self-healing and adhesive sodium alginate-based composite hydrogels as wearable strain sensors for expansion–contraction motion monitoring. Soft Matter, 2022, 18, 1644-1652.	1.2	22
413	Engineering Multifunctional Hydrogelâ€Integrated 3D Printed Bioactive Prosthetic Interfaces for Osteoporotic Osseointegration. Advanced Healthcare Materials, 2022, 11, e2102535.	3.9	22
414	Flexible sensitive hydrogel sensor with self-powered capability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 639, 128381.	2.3	10
415	Tentacled snakes-inspired flexible pressure sensor for pain sensation monitoring. Smart Materials and Structures, 2022, 31, 045004.	1.8	3
416	Resilient and Self-Healing Hyaluronic Acid/Chitosan Hydrogel With Ion Conductivity, Low Water Loss, and Freeze-Tolerance for Flexible and Wearable Strain Sensor. Frontiers in Bioengineering and Biotechnology 2022, 10, 837750	2.0	8

#	ARTICLE	IF	CITATIONS
417	Preparation of wearable strain sensor based on PVA/MWCNTs hydrogel composite. Materials Today Communications, 2022, 31, 103278.	0.9	5
418	Silk Fibroin-Based Hydrogel for Multifunctional Wearable Sensors. Journal of Renewable Materials, 2022, 10, 1-18.	1.1	0
419	Selfâ€Healing, Waterâ€Retaining, Antifreeze, Conductive PVA/PAAâ€PAMâ€IS/GC Composite Hydrogels for Strain and Temperature Sensors. Macromolecular Materials and Engineering, 2022, 307, .	1.7	12
420	Motion Detecting, Temperature Alarming, and Wireless Wearable Bioelectronics Based on Intrinsically Antibacterial Conductive Hydrogels. ACS Applied Materials & Interfaces, 2022, 14, 14596-14606.	4.0	24
421	Emerging Fabrication Strategies of Hydrogels and Its Applications. Gels, 2022, 8, 205.	2.1	19
422	Effect of water content on physical adhesion of polyacrylamide hydrogels. Polymer, 2022, 246, 124730.	1.8	27
423	Strategies for body-conformable electronics. Matter, 2022, 5, 1104-1136.	5.0	90
424	Stretchable, compressible, and conductive hydrogel for sensitive wearable soft sensors. Journal of Colloid and Interface Science, 2022, 618, 111-120.	5.0	59
425	High-strain sensitive zwitterionic hydrogels with swelling-resistant and controllable rehydration for sustainable wearable sensor. Journal of Colloid and Interface Science, 2022, 620, 14-23.	5.0	16
426	A general tape-coating strategy to construct multifunctional superhydrophobic surfaces with self-adhesion, self-healing, and conductivity on various substrates. Chemical Engineering Journal, 2022, 441, 135935.	6.6	6
427	Thermally driven selfâ€healing <scp>PEDOT</scp> conductive films relying on reversible and multiple <scp>Diels–Alder</scp> interaction. Journal of Polymer Science, 2022, 60, 794-802.	2.0	2
428	"Toolbox―for the Processing of Functional Polymer Composites. Nano-Micro Letters, 2022, 14, 35.	14.4	30
429	Reversing Hydrogel Adhesion Property via Firmly Anchoring Thin Adhesive Coatings. Advanced Functional Materials, 2022, 32, .	7.8	36
430	Hydrophobic association and ionic coordination dual crossedâ€ŀinked conductive hydrogels with selfâ€adhesive and selfâ€healing virtues for conformal strain sensors. Journal of Polymer Science, 2022, 60, 812-824.	2.0	7
431	Fast Light-Driven Motion of Polydopamine Nanomembranes. Nano Letters, 2022, 22, 578-585.	4.5	21
433	A Packaged and Reusable Hydrogel Strain Sensor with Conformal Adhesion to Skin for Human Motions Monitoring. Advanced Materials Interfaces, 2022, 9, .	1.9	7
434	Super Tough and Intelligent Multibond Network Physical Hydrogels Facilitated by Ti ₃ C ₂ T _{<i>x</i>} MXene Nanosheets. ACS Nano, 2022, 16, 1567-1577.	7.3	74
435	Skin bioelectronics towards long-term, continuous health monitoring. Chemical Society Reviews, 2022, 51, 3759-3793.	18.7	85

#	Article	IF	CITATIONS
436	Wearable Tissue Adhesive Ternary Hydrogel of <i>N</i> -(2-Hydroxyl) Propyl-3-trimethyl Ammonium Chitosan, Tannic Acid, and Polyacrylamide. Industrial & Engineering Chemistry Research, 2022, 61, 5502-5513.	1.8	10
437	Solvatochromic discrimination of alcoholic solvents by structural colors of polydopamine nanoparticle thin films. Colloids and Interface Science Communications, 2022, 48, 100624.	2.0	6
438	Nanocage Ferritin Reinforced Polyacrylamide Hydrogel for Wearable Flexible Strain Sensors. ACS Applied Materials & Interfaces, 2022, 14, 21278-21286.	4.0	30
440	Recyclable, Healable, and Tough Ionogels Insensitive to Crack Propagation. Advanced Materials, 2022, 34, e2203049.	11.1	82
441	Facile Fabrication of Highly Sensitive Thermoplastic Polyurethane Sensors with Surface- and Interface-Impregnated 3D Conductive Networks. ACS Applied Materials & Interfaces, 2022, 14, 22615-22625.	4.0	21
442	Recent Development of Conductive Hydrogels for Tissue Engineering: Review and Perspective. Macromolecular Bioscience, 2022, 22, e2200051.	2.1	18
443	Deep Learning Enabled Neck Motion Detection Using a Triboelectric Nanogenerator. ACS Nano, 2022, 16, 9359-9367.	7.3	39
444	Hydroxyethyl cellulose-based electrically conductive, mechanically resistant, strain-sensitive self-healing hydrogels. Cellulose, 2022, 29, 5725-5743.	2.4	8
445	Recent advances in lignosulfonate filled hydrogel for flexible wearable electronics: A mini review. International Journal of Biological Macromolecules, 2022, 212, 393-401.	3.6	17
446	Nanomaterial based PVA nanocomposite hydrogels for biomedical sensing: Advances toward designing the ideal flexible/wearable nanoprobes. Advances in Colloid and Interface Science, 2022, 305, 102705.	7.0	51
447	Super-Stretchable and Self-Healing hydrogel with a Three-Dimensional silver nanowires network structure for wearable sensor and electromagnetic interference shielding. Chemical Engineering Journal, 2022, 446, 137136.	6.6	29
448	<scp>Energyâ€Dissipative</scp> and Soften Resistant Hydrogels Based on Chitosan Physical Network: From Construction to Application. Chinese Journal of Chemistry, 2022, 40, 2118-2134.	2.6	11
449	A waterproof and breathable Cotton/rGO/CNT composite for constructing a layer-by-layer structured multifunctional flexible sensor. Nano Research, 2022, 15, 9341-9351.	5.8	26
450	Ultrafast Fabrication of Lignin-Encapsulated Silica Nanoparticles Reinforced Conductive Hydrogels with High Elasticity and Self-Adhesion for Strain Sensors. Chemistry of Materials, 2022, 34, 5258-5272.	3.2	85
451	Bio-inspired, super-stretchable and self-adhesive hybrid hydrogel with SC-PDA/GO-Ca2+/PAM framework for high precision wearable sensors. Chemical Engineering Journal, 2022, 447, 137259.	6.6	35
452	Exploring the Impact of Zwitterions in Discrete Charge Arrangements of Stimuli-Responsive Polyelectrolyte Complexes. ACS Applied Polymer Materials, 2022, 4, 5035-5046.	2.0	2
453	Conducting Polymer Hydrogel Driven By Sodium Chloride as High Performance Flexible Supercapacitor Electrode. Journal of the Electrochemical Society, 2022, 169, 073501.	1.3	1
454	Self-Healing Materials-Based Electronic Skin: Mechanism, Development and Applications. Gels, 2022, 8, 356.	2.1	13

#		IF	CITATIONS
455	Advances in Biodegradable Electronic Skin: Material Progress and Recent Applications in Sensing, Robotics, and Human–Machine Interfaces. Advanced Materials, 2023, 35, .	11.1	82
456	Patterned Magnetofluids via Magnetic Printing and Photopolymerization for Multifunctional Flexible Electronic Sensors. ACS Applied Materials & Interfaces, 2022, 14, 30332-30342.	4.0	1
457	Biomedical engineering of polysaccharide-based tissue adhesives: Recent advances and future direction. Carbohydrate Polymers, 2022, 295, 119787.	5.1	23
458	Preparation of Mussel-Inspired Stable-Bonding Dust Binders for Fugitive Dust Control. ACS Applied Polymer Materials, 2022, 4, 5341-5354.	2.0	3
459	Musselâ€inspired biomaterials: From chemistry to clinic. Bioengineering and Translational Medicine, 2022, 7, .	3.9	26
460	Hydrogels as functional components in artificial cell systems. Nature Reviews Chemistry, 2022, 6, 562-578.	13.8	47
461	Highly Conductive Polydopamine Coatings by Direct Electrochemical Synthesis on Au. ACS Applied Polymer Materials, 2022, 4, 5319-5329.	2.0	9
462	Interface interaction-mediated design of tough and conductive MXene-composited polymer hydrogel with high stretchability and low hysteresis for high-performance multiple sensing. Science China Materials, 2023, 66, 272-283.	3.5	20
463	A cellulose-based self-healing composite eutectogel with reversibility and recyclability for multi-sensing. Composites Science and Technology, 2022, 229, 109696.	3.8	8
464	Catecholâ€Functionalized Carbon Nanotubes as Support for Pd Nanoparticles: a Recyclable System for the Heck Reaction. European Journal of Organic Chemistry, 2022, 2022, .	1.2	5
465	Polyacrylamideâ€Graphene Oxideâ€Polyaniline Based Flexible Electrode for Portable Supercapacitor. Macromolecular Chemistry and Physics, 0, , 2200074.	1.1	1
466	Dual‣cale Porous Composite for Tactile Sensor with High Sensitivity over an Ultrawide Sensing Range. Small, 2022, 18, .	5.2	17
467	Polyelectrolyte hydrogel: A versatile platform for mechanical-electric conversion and self-powered sensing. Nano Energy, 2022, 103, 107718.	8.2	20
468	Cellulose-based functional hydrogels derived from bamboo for product design. Frontiers in Plant Science, 0, 13, .	1.7	5
470	From carbon nanotubes to ultra-sensitive, extremely-stretchable and self-healable hydrogels. European Polymer Journal, 2022, 178, 111485.	2.6	12
471	Preparation and properties of cellulose nanofibers/αâ€zirconium phosphate nanosheets composite polyvinyl alcohol ionâ€conductive organohydrogel and its application in strain sensors. Journal of Applied Polymer Science, 2022, 139, .	1.3	3
472	HNTs@HKUST-1 strengthened PAAm hydrogel for strain sensing and antibacterial application. Microporous and Mesoporous Materials, 2022, 344, 112207.	2.2	7
473	Lignin-silver triggered multifunctional conductive hydrogels for skinlike sensor applications. International Journal of Biological Macromolecules, 2022, 221, 1282-1293.	3.6	16

#	Article	IF	CITATIONS
474	Turn Wastes into Valuables: Supuramolecular-Interaction Enabled Preparation of Super-Strong Water-Based Adhesives from Polymethylmethacrylate Wastes. SSRN Electronic Journal, 0, , .	0.4	0
475	Poly(<i>N</i> , <i>N</i> -dimethyl)acrylamide-based ion-conductive gel with transparency, self-adhesion and rapid self-healing properties for human motion detection. Soft Matter, 2022, 18, 6115-6123.	1.2	7
476	Intrinsically Self-Healable and Wearable All-Organic Thermoelectric Composite with High Electrical Conductivity for Heat Harvesting. ACS Applied Materials & Interfaces, 2022, 14, 43421-43430.	4.0	9
477	Recent progress on smart hydrogels for biomedicine and bioelectronics. Biosurface and Biotribology, 2022, 8, 212-224.	0.6	2
478	Flexible Acceleratedâ€Woundâ€Healing Antibacterial MXeneâ€Based Epidermic Sensor for Intelligent Wearable Humanâ€Machine Interaction. Advanced Functional Materials, 2022, 32, .	7.8	82
480	Wearable, antibacterial, and self-healable modular sensors for monitoring joints movement ultra-sensitively. European Polymer Journal, 2022, 180, 111617.	2.6	3
481	Wrinkled, cracked and bridged carbon networks for highly sensitive and stretchable strain sensors. Composites Part A: Applied Science and Manufacturing, 2022, 163, 107221.	3.8	7
482	Biomass-based hydrogels with high ductility, self-adhesion and conductivity inspired by starch paste for strain sensing. International Journal of Biological Macromolecules, 2022, 222, 1211-1220.	3.6	16
483	Bridging wounds: tissue adhesives' essential mechanisms, synthesis and characterization, bioinspired adhesives and future perspectives. Burns and Trauma, 2022, 10, .	2.3	12
484	Bio-macromolecular design roadmap towards tough bioadhesives. Chemical Society Reviews, 2022, 51, 9127-9173.	18.7	31
485	Wearable, fast-healing, and self-adhesive multifunctional photoactive hydrogel for strain and temperature sensing. Journal of Materials Chemistry A, 2022, 10, 23366-23374.	5.2	21
486	Ultrahigh Mechanical Strength and Robust Room-Temperature Self-Healing Properties of a Polyurethane–Graphene Oxide Network Resulting from Multiple Dynamic Bonds. ACS Nano, 2022, 16, 16724-16735.	7.3	57
487	Wearable Hydrogelâ€Based Epidermal Sensor with Thermal Compatibility and Long Term Stability for Smart Colorimetric Multiâ€Signals Monitoring. Advanced Healthcare Materials, 2023, 12, .	3.9	17
488	Spray Coating of Nanosilicateâ€Based Hydrogel on Concrete. Advanced Materials Interfaces, 2022, 9, .	1.9	2
489	Flexible, adhesive, strainâ€sensitive, and skinâ€matchable hydrogel strain sensors for human motion and handwritten signal monitoring. Polymers for Advanced Technologies, 2023, 34, 430-440.	1.6	1
490	Tough lanthanide luminescent hydrogel for nitroaromatics detection. Journal of Rare Earths, 2024, 42, 293-302.	2.5	4
491	Room-temperature self-healing graphene/rubber-based supramolecular elastomers utilized by dynamic boroxines and hydrogen bonds for human motion detection. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 657, 130411.	2.3	4
492	Mussel-inspired hydrogel with injectable self-healing and antibacterial properties promotes wound healing in burn wound infection. NPG Asia Materials, 2022, 14, .	3.8	13

#	Article	IF	CITATIONS
493	Multifunctional hybrid hydrogel with transparency, conductivity, and self-adhesion for soft sensors using hemicellulose-decorated polypyrrole as a conductive matrix. International Journal of Biological Macromolecules, 2022, 223, 1-10.	3.6	7
494	Highly stretchable and self-adhesive ionically cross-linked double-network conductive hydrogel sensor for electronic skin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656, 130363.	2.3	8
495	Rapid Gelation of Tough and Antiâ€&welling Hydrogels under Mild Conditions for Underwater Communication. Advanced Functional Materials, 2023, 33, .	7.8	60
496	Self-Healing and Shape Memory Effects of Carbon Nanotube–Based Polymer Composites. , 2022, , 1113-1146.		0
497	Investigation of the time-dependent friction behavior of polyacrylamide hydrogels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 659, 130753.	2.3	5
498	A moisture self-regenerative, ultra-low temperature anti-freezing and self-adhesive polyvinyl alcohol/polyacrylamide/CaCl2/MXene ionotronics hydrogel for bionic skin strain sensor. Journal of Colloid and Interface Science, 2023, 634, 782-792.	5.0	16
499	Green double crosslinked starch-alginate hydrogel regulated by sustained calcium ion-gluconolactone release for human motion monitoring. Chemical Engineering Journal, 2023, 455, 140653.	6.6	19
500	Antimicrobial MXene-based conductive alginate hydrogels as flexible electronics. Chemical Engineering Journal, 2023, 455, 140546.	6.6	6
501	Self-Healing Bimodal Sensors Based on Bioderived Polymerizable Deep Eutectic Solvent Ionic Elastomers. Chemistry of Materials, 2022, 34, 10778-10788.	3.2	25
502	Tara Tannin-Cross-Linked, Underwater-Adhesive, Super Self-Healing, and Recyclable Gelatin-Based Conductive Hydrogel as a Strain Sensor. Industrial & Engineering Chemistry Research, 2022, 61, 17915-17929.	1.8	67
503	Humidity-/Sweat-Sensitive Electronic Skin with Antibacterial, Antioxidation, and Ultraviolet-Proof Functions Constructed by a Cross-Linked Network. ACS Applied Materials & Interfaces, 2022, 14, 56074-56086.	4.0	6
504	Polysaccharides-Based Injectable Hydrogels: Preparation, Characteristics, and Biomedical Applications. Colloids and Interfaces, 2022, 6, 78.	0.9	10
505	Plant-derived adhesive hydrogel with high stretchability and conductivity for wearable electronics. Sensors and Actuators B: Chemical, 2023, 379, 133195.	4.0	9
506	A facilely prepared notch-insensitive nanocomposite organohydrogel-based flexible wearable device for long-term outdoor human motion monitoring and recognition. Journal of Materials Chemistry C, 2023, 11, 2316-2327.	2.7	7
507	Mussel-inspired adhesive hydrogels for local immunomodulation. Materials Chemistry Frontiers, 2023, 7, 846-872.	3.2	7
508	Chitosan-Based Hydrogels for Bioelectronic Sensing: Recent Advances and Applications in Biomedicine and Food Safety. Biosensors, 2023, 13, 93.	2.3	12
509	Mussel-Inspired Adhesive Hydrogels Based on Laponite-Confined Dopamine Polymerization as a Transdermal Patch. Biomacromolecules, 2023, 24, 724-738.	2.6	5
510	Hydrogel Nanoarchitectonics of a Flexible and Selfâ€Adhesive Electrode for Longâ€Term Wireless Electroencephalogram Recording and Highâ€Accuracy Sustained Attention Evaluation. Advanced Materials, 2023, 35, .	11.1	27

#	Article	IF	CITATIONS
511	Flexible Stretchable, Dry-Resistant MXene Nanocomposite Conductive Hydrogel for Human Motion Monitoring. Polymers, 2023, 15, 250.	2.0	5
512	Rapid gelation of dual physical network hydrogel with ultraâ€stretchable, antifreezing, moisturing for stable and sensitive response. Journal of Applied Polymer Science, 2023, 140, .	1.3	2
513	Synthesis and characterization of mussel-inspired nanocomposites based on dopamine–chitosan–iron oxide for wound healing: In vitro study. International Journal of Pharmaceutics, 2023, 632, 122538.	2.6	4
514	Hydrogel as an advanced energy material for flexible batteries. Polymer-Plastics Technology and Materials, 2023, 62, 359-383.	0.6	0
515	Nanocatalytic Hydrogel with Rapid Photodisinfection and Robust Adhesion for Fortified Cutaneous Regeneration. ACS Applied Materials & Interfaces, 2023, 15, 6354-6370.	4.0	14
516	Mechanically Robust and Transparent Organohydrogelâ€Based Eâ€Skin Nanoengineered from Natural Skin. Advanced Functional Materials, 2023, 33, .	7.8	45
517	Hydrogels with electrically conductive nanomaterials for biomedical applications. Journal of Materials Chemistry B, 2023, 11, 2036-2062.	2.9	17
518	Enhancement of Self-Healing Efficacy of Conductive Nanocomposite Hydrogels by Polysaccharide Modifiers. Polymers, 2023, 15, 516.	2.0	1
519	PSS-dispersed dopamine triggered formation of PAA adhesive hydrogel as flexible wearable sensors. RSC Advances, 2023, 13, 7561-7568.	1.7	3
520	Hydrogelâ€Based Multifunctional Soft Electronics with Distributed Sensing Units: A Review. , 2023, 2, .		3
521	Stretchable, conductive and anti-freezing poly (vinyl alcohol)-based organo-hydrogels for strain sensors. Sensors and Actuators A: Physical, 2023, 353, 114223.	2.0	3
522	Supramolecular interaction enabled preparation of high-strength water-based adhesives from polymethylmethacrylate wastes. IScience, 2023, 26, 106022.	1.9	1
524	Tough, Healable, and Sensitive Strain Sensor Based on Multiphysically Cross-Linked Hydrogel for Ionic Skin. Biomacromolecules, 2023, 24, 1287-1298.	2.6	17
525	Bioinspired Selfâ€healing Soft Electronics. Advanced Functional Materials, 2023, 33, .	7.8	25
526	Bioâ€inspired ionic skins for smart medicine. , 2023, 2, .		3
527	Cellulose Gel Mechanoreceptors – Principles, Applications and Prospects. Advanced Functional Materials, 2023, 33, .	7.8	9
528	Smart Wearable Systems for Health Monitoring. Sensors, 2023, 23, 2479.	2.1	17
529	Highly Oxidationâ€Resistant and Selfâ€Healable MXeneâ€Based Hydrogels for Wearable Strain Sensor. Advanced Functional Materials, 2023, 33, .	7.8	33

#	Article	IF	CITATIONS
530	High-Sensitivity Composite Dual-Network Hydrogel Strain Sensor and Its Application in Intelligent Recognition and Motion Monitoring. ACS Applied Polymer Materials, 2023, 5, 2628-2638.	2.0	6
531	Agar/graphene conductive organogel with self-healable, adhesive, and wearable properties. Journal of Materials Science, 2023, 58, 5287-5297.	1.7	2
532	Advances of Mussel-Inspired Nanocomposite Hydrogels in Biomedical Applications. Biomimetics, 2023, 8, 128.	1.5	5
533	Naturally sourced hydrogels: emerging fundamental materials for next-generation healthcare sensing. Chemical Society Reviews, 2023, 52, 2992-3034.	18.7	41
534	Mussel inspired Cu-tannic autocatalytic strategy for rapid self-polymerization of conductive and adhesive hydrogel sensors with extreme environmental tolerance. Chemical Engineering Journal, 2023, 465, 142831.	6.6	20
558	Hygroscopic MXene/Protein Nanocomposite Fibers Enabling Highly Stretchable, Antifreezing, Repairable, and Degradable Skin-Like Wearable Electronics. , 2023, 5, 2104-2113.		3
559	Conductive hydrogels for bioelectronics: molecular structures, design principles, and operation mechanisms. Journal of Materials Chemistry C, 2023, 11, 10785-10808.	2.7	1
565	Micro electrical mechanical system (MEMS) sensor technologies. , 2023, , 25-44.		0
581	Conductive and antibacterial dual-network hydrogel for soft bioelectronics. Materials Horizons, 2023, 10, 5805-5821.	6.4	2
593	Systematic Literature Review on the Advances of Wearable Technologies. Lecture Notes in Computer Science, 2023, , 78-95.	1.0	0
598	A comprehensive study on the advancements of self-healing materials. , 2023, , .		0
602	Material and structural approaches for human-machine interfaces. , 2024, , 227-290.		0