Luminescent solar concentrators for building-integrate

Nature Reviews Materials

2,

DOI: 10.1038/natrevmats.2017.72

Citation Report

#	Article	IF	CITATIONS
1	A storey of buildings and materials. Nature Reviews Materials, 2017, 2, .	23.3	0
2	High-Performance CuInS ₂ Quantum Dot Laminated Glass Luminescent Solar Concentrators for Windows. ACS Energy Letters, 2018, 3, 520-525.	8.8	184
3	<i>Tris</i> â€Ethynylphenylâ€amine Fluorophores: Synthesis, Characterisation and Test of Performances in Luminescent Solar Concentrators. ChemistrySelect, 2018, 3, 1749-1754.	0.7	20
4	From Large-Scale Synthesis to Lighting Device Applications of Ternary I–Ill–VI Semiconductor Nanocrystals: Inspiring Greener Material Emitters. Journal of Physical Chemistry Letters, 2018, 9, 435-445.	2.1	136
5	Smart and Modern Thermoplastic Polymer Materials. Polymers, 2018, 10, 1211.	2.0	6
6	The Renaissance of Luminescent Solar Concentrators: The Role of Inorganic Nanomaterials. Advanced Energy Materials, 2018, 8, 1801903.	10.2	109
7	Fabrication of high-performance luminescent solar concentrators using N-doped carbon dots/PMMA mixed matrix slab. Organic Electronics, 2018, 63, 237-243.	1.4	68
8	Simple and Robust Panchromatic Light Harvesting Antenna Composites via FRET Engineering in Solid State Host Matrices. Journal of Physical Chemistry C, 2018, 122, 22330-22338.	1.5	16
9	Greener Luminescent Solar Concentrators with High Loading Contents Based on in Situ Cross-Linked Carbon Nanodots for Enhancing Solar Energy Harvesting and Resisting Concentration-Induced Quenching. ACS Applied Materials & Interfaces, 2018, 10, 34184-34192.	4.0	58
10	A 3D Haloplumbate Framework Constructed From Unprecedented Lindqvistâ€like Highly Coordinated [Pb ₆ Br ₂₅] ^{13â^'} Nanoclusters with Temperatureâ€Dependent Emission. Chemistry - an Asian Journal, 2018, 13, 3185-3189.	1.7	26
11	Directional emission of plastic luminescent films using photonic crystals fabricated by soft-X-ray interference lithography and reactive ion etching. Scientific Reports, 2018, 8, 9254.	1.6	11
12	Nanoparticles for Luminescent Solar Concentrators - A review. Optical Materials, 2018, 84, 636-645.	1.7	112
13	A photovoltaic window with sun-tracking shading elements towards maximum power generation and non-glare daylighting. Applied Energy, 2018, 228, 1454-1472.	5.1	34
14	Upconversion-Assisted Dual-Band Luminescent Solar Concentrator Coupled for High Power Conversion Efficiency Photovoltaic Systems. ACS Photonics, 2018, 5, 3621-3627.	3.2	45
15	Engineering Ligand–Metal Charge Transfer States in Cross-Linked Gold Nanoclusters for Greener Luminescent Solar Concentrators with Solid-State Quantum Yields Exceeding 50% and Low Reabsorption Losses. Journal of Physical Chemistry C, 2018, 122, 20019-20026.	1.5	31
16	Luminescent Solar Concentrators Based on Aggregation Induced Emission. Israel Journal of Chemistry, 2018, 58, 837-844.	1.0	43
17	Harnessing the properties of colloidal quantum dots in luminescent solar concentrators. Chemical Society Reviews, 2018, 47, 5866-5890.	18.7	169
18	Nearâ€Infraredâ€Emitting Fiveâ€Monolayer Thick Copperâ€Doped CdSe Nanoplatelets. Advanced Optical Materials, 2019, 7, 1900831.	3.6	25

ATION RED

#	Article	IF	CITATIONS
19	High-Performance Large-Area Luminescence Solar Concentrator Incorporating a Donor–Emitter Fluorophore System. ACS Energy Letters, 2019, 4, 1839-1844.	8.8	42
20	Hybrid Silicon Nanocrystals for Color-Neutral and Transparent Luminescent Solar Concentrators. ACS Photonics, 2019, 6, 2303-2311.	3.2	63
21	Broadband plasmonic coupling and enhanced power conversion efficiency in luminescent solar concentrator. Solar Energy Materials and Solar Cells, 2019, 203, 110150.	3.0	13
22	Luminescent Solar Concentrators Based on Energy Transfer from an Aggregation-Induced Emitter Conjugated Polymer. ACS Applied Polymer Materials, 2019, 1, 3039-3047.	2.0	42
23	Extending the Spectral Range of Double-Heterojunction Nanorods by Cation Exchange-Induced Alloying. Chemistry of Materials, 2019, 31, 9307-9316.	3.2	16
24	A Spectrally Tunable Dielectric Subwavelength Grating based Broadband Planar Light Concentrator. Scientific Reports, 2019, 9, 11723.	1.6	6
25	Recent advances in green fabrication of luminescent solar concentrators using nontoxic quantum dots as fluorophores. Journal of Materials Chemistry C, 2019, 7, 12373-12387.	2.7	61
26	Two-Dimensional Absorbers for Solar Windows: A Simulation. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2019, 74, 683-688.	0.7	7
27	Ultrafast narrowband exciton routing within layered perovskite nanoplatelets enables low-loss luminescent solar concentrators. Nature Energy, 2019, 4, 197-205.	19.8	132
28	Luminescent solar concentrators: boosted optical efficiency by polymer dielectric mirrors. Materials Chemistry Frontiers, 2019, 3, 429-436.	3.2	52
29	Zeroâ€Dimensional Perovskite Nanocrystals for Efficient Luminescent Solar Concentrators. Advanced Functional Materials, 2019, 29, 1902262.	7.8	156
30	Refractive index dependent optical property of carbon dots integrated luminescent solar concentrators. Journal of Luminescence, 2019, 211, 150-156.	1.5	36
31	Flexible, Front-Facing Luminescent Solar Concentrators Fabricated from Lumogen F Red 305 and Polydimethylsiloxane. International Journal of Photoenergy, 2019, 2019, 1-9.	1.4	14
32	Visual Appearance of Nanocrystal-Based Luminescent Solar Concentrators. Materials, 2019, 12, 885.	1.3	13
33	Enhanced efficiency for building integrated concentrator photovoltaic modules based on rare earth doped optics. Solar Energy Materials and Solar Cells, 2019, 199, 83-90.	3.0	18
34	Quantum-cutting Yb ³⁺ -doped perovskite nanocrystals for monolithic bilayer luminescent solar concentrators. Journal of Materials Chemistry A, 2019, 7, 9279-9288.	5.2	67
35	Host Matrix Materials for Luminescent Solar Concentrators: Recent Achievements and Forthcoming Challenges. Frontiers in Materials, 2019, 6, .	1.2	55
36	An overview of various configurations of Luminescent Solar Concentrators for photovoltaic applications. Optical Materials, 2019, 91, 212-227.	1.7	102

#	Article	IF	Citations
37	Polymeric materials for photon management in photovoltaics. Solar Energy Materials and Solar Cells, 2019, 196, 43-56.	3.0	18
38	Triggering a large scale luminescent solar concentrators market: The smart window project. Journal of Cleaner Production, 2019, 219, 35-45.	4.6	19
39	Transparent functional nanocomposite films based on octahedral metal clusters: synthesis by electrophoretic deposition process and characterization. Royal Society Open Science, 2019, 6, 181647.	1.1	13
40	Self-Trapped Excitons in All-Inorganic Halide Perovskites: Fundamentals, Status, and Potential Applications. Journal of Physical Chemistry Letters, 2019, 10, 1999-2007.	2.1	573
41	Perovskites cut energy losses. Nature Energy, 2019, 4, 176-177.	19.8	1
42	Ecoâ€Friendly, High‣oading Luminescent Solar Concentrators with Concurrently Enhanced Optical Density and Quantum Yields While Without Sacrificing Edgeâ€Emission Efficiency. Solar Rrl, 2019, 3, 1800347.	3.1	19
43	Ecoâ€Friendly Colloidal Quantum Dotâ€Based Luminescent Solar Concentrators. Advanced Science, 2019, 6, 1801967.	5.6	93
44	Nanostructured photovoltaics. Nano Futures, 2019, 3, 012002.	1.0	9
45	Ultralight Luminescent Solar Concentrators for Space Solar Power Systems. , 2019, , .		3
46	CdSe/CdS–poly(cyclohexylethylene) thin film luminescent solar concentrators. APL Materials, 2019, 7, ·	2.2	14
47	High-performance laminated luminescent solar concentrators based on colloidal carbon quantum dots. Nanoscale Advances, 2019, 1, 4888-4894.	2.2	38
48	Bulk luminescent solar concentrators based on organic-inorganic CH3NH3PbBr3 perovskite fluorophores. Solar Energy Materials and Solar Cells, 2019, 192, 44-51.	3.0	32
49	Renaissance of Organic Triboluminescent Materials. Angewandte Chemie - International Edition, 2019, 58, 7922-7932.	7.2	65
50	Renaissance of Organic Triboluminescent Materials. Angewandte Chemie, 2019, 131, 8004-8014.	1.6	10
51	Sustainable Liquid Luminescent Solar Concentrators. Advanced Sustainable Systems, 2019, 3, 1800134.	2.7	30
52	Coumarin-doped PC/CdSSe/ZnS nanocomposite films: A reduced self-absorption effect for luminescent solar concentrators. Journal of Luminescence, 2019, 206, 426-431.	1.5	9
53	Quantum-Cutting Luminescent Solar Concentrators Using Ytterbium-Doped Perovskite Nanocrystals. Nano Letters, 2019, 19, 338-341.	4.5	153
54	Luminescent Solar Concentrators Based on Renewable Polyester Matrices. Chemistry - an Asian Journal, 2019, 14, 877-883.	1.7	31

#	Article	IF	CITATIONS
55	Silicon Quantum Dot–Poly(methyl methacrylate) Nanocomposites with Reduced Light Scattering for Luminescent Solar Concentrators. ACS Photonics, 2019, 6, 170-180.	3.2	58
56	Glass ceramics for frequency conversion. , 2020, , 391-414.		5
57	Spectral converters for photovoltaics – What's ahead. Materials Today, 2020, 33, 105-121.	8.3	83
58	CFD analysis of a luminescent solar concentrator-based photomicroreactor (LSC-PM) with feedforward control applied to the synthesis of chemicals under fluctuating light intensity. Chemical Engineering Research and Design, 2020, 153, 626-634.	2.7	16
59	Three-dimensional macroporous photonic crystal enhanced photon collection for quantum dot-based luminescent solar concentrator. Nano Energy, 2020, 67, 104217.	8.2	29
60	Two-Dimensional CdSe-Based Nanoplatelets: Their Heterostructures, Doping, Photophysical Properties, and Applications. Proceedings of the IEEE, 2020, 108, 655-675.	16.4	39
61	Poly(methyl methacrylate) Films with High Concentrations of Silicon Quantum Dots for Visibly Transparent Luminescent Solar Concentrators. ACS Applied Materials & Interfaces, 2020, 12, 4572-4578.	4.0	36
62	Visible-Transparent Luminescent Solar Concentrators Based on Carbon Nanodots in the Siloxane Matrix with Ultrahigh Quantum Yields and Optical Transparency at High-Loading Contents. Journal of Physical Chemistry Letters, 2020, 11, 567-573.	2.1	28
63	Evidence for the Bandâ€Edge Exciton of CuInS ₂ Nanocrystals Enables Record Efficient Largeâ€Area Luminescent Solar Concentrators. Advanced Functional Materials, 2020, 30, 1906629.	7.8	65
64	Thermoresponsive Host Polymer Matrix for Self-Healing Luminescent Solar Concentrators. ACS Applied Energy Materials, 2020, 3, 1152-1160.	2.5	32
65	Chemically Sustainable Large Stokes Shift Derivatives for High-Performance Large-Area Transparent Luminescent Solar Concentrators. Joule, 2020, 4, 1988-2003.	11.7	32
66	Improving the photostability of printed organic photovoltaics through luminescent solar concentrators. Optical Materials, 2020, 108, 110194.	1.7	8
67	Luminescent Solar Concentrators from Waterborne Polymer Coatings. Coatings, 2020, 10, 655.	1.2	8
68	Utilizing host–guest interaction enables the simultaneous enhancement of the quantum yield and Stokes shift in organosilane-functionalized, nitrogen-containing carbon dots for laminated luminescent solar concentrators. Nanoscale, 2020, 12, 23537-23545.	2.8	20
69	Should Anisotropic Emission or Reabsorption of Nanoparticle Luminophores Be Optimized for Increasing Luminescent Solar Concentrator Efficiency?. Solar Rrl, 2020, 4, 2000279.	3.1	10
70	Potential of building integrated and attached/applied photovoltaic (BIPV/BAPV) for adaptive less energy-hungry building's skin: A comprehensive review. Journal of Cleaner Production, 2020, 276, 123343.	4.6	172
71	Colorful opaque photovoltaic modules with down-converting InP/ZnSexS1-x quantum dot layers. Nano Energy, 2020, 77, 105169.	8.2	20
72	Mn ²⁺ /Yb ³⁺ Codoped CsPbCl ₃ Perovskite Nanocrystals with Tripleâ€Wavelength Emission for Luminescent Solar Concentrators. Advanced Science, 2020, 7, 2001317.	5.6	105

#	Article	IF	CITATIONS
73	High-Performance, Large-Area, and Ecofriendly Luminescent Solar Concentrators Using Copper-Doped InP Quantum Dots. IScience, 2020, 23, 101272.	1.9	32
74	Luminescent Solar Collectors: Quo Vadis?. Advanced Energy Materials, 2020, 10, 2001907.	10.2	96
75	The Development of Transparent Photovoltaics. Cell Reports Physical Science, 2020, 1, 100143.	2.8	67
76	Ultra-High Stokes Shift in Polycyclic Chromeno[2,3- <i>b</i>]Indoles. Polycyclic Aromatic Compounds, 2022, 42, 1710-1727.	1.4	3
77	Stimuli-Responsive Luminescent Solar Concentrators Based on Photoreversible Polymeric Systems. ACS Applied Polymer Materials, 2020, 2, 3828-3839.	2.0	12
78	Side chain independent photovoltaic performance of thienopyrroledione conjugated donor–acceptor polymers. Journal of Materials Chemistry C, 2020, 8, 16452-16462.	2.7	2
79	High-Performance Luminescent Solar Concentrators Based on Poly(Cyclohexylmethacrylate) (PCHMA) Films. Polymers, 2020, 12, 2898.	2.0	14
80	Dual-Band Luminescent Solar Converter-Coupled Dye-Sensitized Solar Cells for High-Performance Semitransparent Photovoltaic Device. ACS Applied Energy Materials, 2020, 3, 5277-5284.	2.5	12
81	Compositional Tuning of Carrier Dynamics in Cs ₂ Na _{1–<i>x</i>} Ag _{<i>x</i>} BiCl ₆ Double-Perovskite Nanocrystals. ACS Energy Letters, 2020, 5, 1840-1847.	8.8	63
82	Earth abundant colloidal carbon quantum dots for luminescent solar concentrators. Materials Advances, 2020, 1, 119-138.	2.6	37
83	Enhancement of power conversion efficiency of an angular luminescent solar concentrator employing a silica reinforced PMMA:CASN:Eu2+ composite. Materials Today: Proceedings, 2020, 33, 2503-2511.	0.9	0
84	Nano-domains assisted energy transfer in amphiphilic polymer conetworks for wearable luminescent solar concentrators. Nano Energy, 2020, 76, 105039.	8.2	29
85	Photon upconversion-assisted dual-band luminescence solar concentrators coupled with perovskite solar cells for highly efficient semi-transparent photovoltaic systems. Nanoscale, 2020, 12, 12426-12431.	2.8	18
86	Highly efficient phosphor-glass composites by pressureless sintering. Nature Communications, 2020, 11, 2805.	5.8	129
87	Triplex Glass Laminates with Silicon Quantum Dots for Luminescent Solar Concentrators. Solar Rrl, 2020, 4, 2000195.	3.1	31
88	Ultra-high-efficiency luminescent solar concentrator using superimposed colloidal quantum dots. Optical and Quantum Electronics, 2020, 52, 1.	1.5	8
89	Quantum confinement-tunable solar cell based on ultrathin amorphous germanium. Nano Energy, 2020, 76, 105048.	8.2	20
90	Photonic Crystal Waveguides for >90% Light Trapping Efficiency in Luminescent Solar Concentrators. ACS Photonics, 2020, 7, 2122-2131.	3.2	26

#	Article	IF	CITATIONS
91	Rational design of colloidal core/shell quantum dots for optoelectronic applications. Journal of Electronic Science and Technology, 2020, 18, 100018.	2.0	22
92	Concentration and temperature dependent luminescence properties of the Srl2-Tml2 system. Journal of Luminescence, 2020, 225, 117327.	1.5	5
93	Regional measurements to analyze large-area luminescent solar concentrators. Renewable Energy, 2020, 160, 127-135.	4.3	10
94	Switchable Two-Dimensional Waveguiding Abilities of Luminescent Hybrid Nanocomposites for Active Solar Concentrators. ACS Applied Materials & Interfaces, 2020, 12, 14400-14407.	4.0	26
95	Highly Luminescent Copper Iodide Cluster Based Inks with Photoluminescence Quantum Efficiency Exceeding 98%. Journal of the American Chemical Society, 2020, 142, 3686-3690.	6.6	79
96	A carbon dot-based tandem luminescent solar concentrator. Nanoscale, 2020, 12, 6664-6672.	2.8	75
97	Luminescent solar concentrators based on thermally activated delayed fluorescence dyes. Journal of Materials Chemistry A, 2020, 8, 3708-3716.	5.2	27
98	Highly Efficient Luminescent Solar Concentrators Based on Benzoheterodiazole Dyes with Large Stokes Shifts. Chemistry - A European Journal, 2020, 26, 11013-11023.	1.7	16
99	The Hidden Potential of Luminescent Solar Concentrators. Advanced Energy Materials, 2021, 11, 2002883.	10.2	102
100	Solar power windows: Connecting scientific advances to market signals. Energy, 2021, 219, 119567.	4.5	19
101	Laboratory protocols for measuring and reporting the performance of luminescent solar concentrators. Energy and Environmental Science, 2021, 14, 293-301.	15.6	99
102	Transparent and Colored Solar Photovoltaics for Building Integration. Solar Rrl, 2021, 5, 2000614.	3.1	27
103	Highly emissive fluorescent silica-based core/shell nanoparticles for efficient and stable luminescent solar concentrators. Nano Energy, 2021, 80, 105551.	8.2	27
104	Elliptic paraboloid-based solar spectrum splitters for self-powered photobioreactors. Renewable Energy, 2021, 163, 1773-1785.	4.3	2
105	A programmable compound prism powered by triboelectric nanogenerator for highly efficient solar beam steering. Nano Energy, 2021, 80, 105524.	8.2	13
106	Gram-scale synthesis of carbon quantum dots with a large Stokes shift for the fabrication of eco-friendly and high-efficiency luminescent solar concentrators. Energy and Environmental Science, 2021, 14, 396-406.	15.6	174
107	Photonics for Photovoltaics: Advances and Opportunities. ACS Photonics, 2021, 8, 61-70.	3.2	52
108	Large-Area Transparent 'Quantum Dot Glass' for Building Integrated Photovoltaics. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
109	Red and yellow emissive carbon dots integrated tandem luminescent solar concentrators with significantly improved efficiency. Nanoscale, 2021, 13, 9561-9569.	2.8	51
110	Reliability of 3D Cs ₂ M ⁺ M ³⁺ X ₆ type absorbers for perovskite solar cells: assessing the figures of merit. Journal of Materials Chemistry A, 2021, 9, 17701-17719.	5.2	12
111	Photon management to reduce energy loss in perovskite solar cells. Chemical Society Reviews, 2021, 50, 7250-7329.	18.7	83
112	Poly(vinylidenefluoride) polymers and copolymers as versatile hosts for luminescent solar concentrators: compositional tuning for enhanced performance. RSC Advances, 2021, 11, 29786-29796.	1.7	1
113	Large Stokes shifted quaternary copper cadmium sulfide selenide quantum dot waveguides. Journal of Materials Chemistry C, 0, , .	2.7	6
114	Eu-doped ZnO quantum dots with solid-state fluorescence and dual emission for high-performance luminescent solar concentrators. Materials Chemistry Frontiers, 2021, 5, 4746-4755.	3.2	21
115	Stable quantum dots/polymer matrix and their versatile 3D printing frameworks. Journal of Materials Chemistry C, 2021, 9, 7194-7199.	2.7	8
116	Highâ€performance hybrid luminescentâ€scattering solar concentrators based on a luminescent conjugated polymer. Polymer International, 2021, 70, 475-482.	1.6	10
117	Plasmonic luminescent solar concentrator. Solar Energy, 2021, 216, 61-74.	2.9	12
118	Waveguiding of Photoluminescence in a Layer of Semiconductor Nanoparticles. Nanomaterials, 2021, 11, 683.	1.9	5
119	Highly versatile near-infrared emitters based on an atomically defined HgS interlayer embedded into a CdSe/CdS quantum dot. Nature Nanotechnology, 2021, 16, 673-679.	15.6	37
120	Benzo[1,2-d:4,5-d′]bisthiazole fluorophores for luminescent solar concentrators: synthesis, optical properties and effect of the polymer matrix on the device performances. Dyes and Pigments, 2021, 188, 109207.	2.0	17
121	Sb-Doped Metal Halide Nanocrystals: A 0D versus 3D Comparison. ACS Energy Letters, 2021, 6, 2283-2292.	8.8	83
122	Review on Colloidal Quantum Dots Luminescent Solar Concentrators. ChemistrySelect, 2021, 6, 4948-4967.	0.7	21
123	Solar Pumping of Fiber Lasers with Solid‣tate Luminescent Concentrators: Design Optimization by Ray Tracing. Advanced Optical Materials, 2021, 9, 2100479.	3.6	10
124	Experimental and numerical analysis of Tm ²⁺ excited-states dynamics and luminescence in CaX ₂ (X = Cl, Br, I). Journal of Physics Condensed Matter, 2021, 33, 255701.	0.7	6
125	Design, development and characterisation of a Building Integrated Concentrating Photovoltaic (BICPV) smart window system. Solar Energy, 2021, 220, 722-734.	2.9	34
126	Minimizing Reabsorption in Multilayered Luminescent Solar Concentrators with Quantum Dots. , 2021, , .		0

#	Article	IF	CITATIONS
127	Largeâ€Area Semiâ€Transparent Luminescent Solar Concentrators Based on Large Stokes Shift Aggregationâ€Induced Fluorinated Emitters Obtained Through a Sustainable Synthetic Approach. Advanced Optical Materials, 2021, 9, 2100182.	3.6	37
128	Luminescent solar concentrator utilizing energy transfer paired aggregationâ€induced emissive fluorophores. International Journal of Energy Research, 2021, 45, 17971-17981.	2.2	12
129	Two-dimensional Transition Metal Dichalcogenide Heterobilayer Emitters for Luminescent Solar Concentrator Photovoltaics. , 2021, , .		0
130	Monte Carlo simulation of a LSC based on stacked layers of fiber arrays with core-coating different absorbing properties. Optics Express, 2021, 29, 19566.	1.7	2
131	Increasing greenhouse production by spectral-shifting and unidirectional light-extracting photonics. Nature Food, 2021, 2, 434-441.	6.2	40
132	State-of-the-Art Review on the Energy Performance of Semi-Transparent Building Integrated Photovoltaic across a Range of Different Climatic and Environmental Conditions. Energies, 2021, 14, 3412.	1.6	8
133	Transparent and Low-Loss Luminescent Solar Concentrators Based on Self-Trapped Exciton Emission in Lead-Free Double Perovskite Nanocrystals. ACS Applied Energy Materials, 2021, 4, 6445-6453.	2.5	27
134	Efficient Luminescent Solar Concentrators Based on Environmentally Friendly Cdâ€Free Ternary AIS/ZnS Quantum Dots. Advanced Optical Materials, 2021, 9, 2100587.	3.6	24
135	Stable metal-halide perovskites for luminescent solar concentrators of real-device integration. Nano Energy, 2021, 85, 105960.	8.2	34
136	Quantum dot assisted luminescent hexarhenium cluster dye for a transparent luminescent solar concentrator. Scientific Reports, 2021, 11, 13833.	1.6	5
137	Photon Upconversion for Photovoltaics and Photocatalysis: AÂCriticalÂReview. Chemical Reviews, 2021, 121, 9165-9195.	23.0	190
138	Optical characterization and photo-electrical measurement of luminescent solar concentrators based on perovskite quantum dots integrated into the thiol-ene polymer. Applied Physics Letters, 2021, 119, .	1.5	8
139	Highly Transparent, Dual-Color Emission, Heterophase Cs ₃ Cu ₂ I ₅ /CsCu ₂ I ₃ Nanolayer for Transparent Luminescent Solar Concentrators. ACS Applied Materials & Interfaces, 2021, 13, 40798-40805.	4.0	13
140	Semiconductor quantum dots: Technological progress and future challenges. Science, 2021, 373, .	6.0	600
141	Elliptic Array Luminescent Solar Concentrators for Combined Power Generation and Microalgae Growth. Energies, 2021, 14, 5229.	1.6	3
142	Unlocking Higher Power Efficiencies in Luminescent Solar Concentrators through Anisotropic Luminophore Emission. ACS Applied Materials & Interfaces, 2021, 13, 40742-40753.	4.0	8
143	Tunable photo-induced electronic property of octahedral metal clusters. Materials Letters: X, 2021, 11, 100079.	0.3	1
144	Colourless luminescent solar concentrators based on Iridium(III)-Phosphors. Dyes and Pigments, 2021, 193, 109532.	2.0	9

ARTICLE IF CITATIONS Synthesis and Spectroscopic Characterization of Thienopyrazine-Based Fluorophores for Application 145 1.7 7 in Luminescent Solar Concentrators (LSCs). Molecules, 2021, 26, 5428. Optimizing photovoltaic conversion of solar energy. AIP Advances, 2021, 11, . 146 Broadband asymmetric light transmission interfaces for luminescent solar concentrators. Nanoscale 147 2.2 8 Advances, 2021, 3, 3627-3633. Energy harvesting textiles: using wearable luminescent solar concentrators to improve the efficiency 148 of fiber solar cells. Journal of Materials Chemistry A, 2021, 9, 25974-25981. Sustainable by design, large Stokes shift benzothiadiazole derivatives for efficient luminescent solar 149 2.7 13 concentrators. Journal of Materials Chemistry C, 2021, 9, 14815-14826. On-device lead sequestration for perovskite solar cells. Nature, 2020, 578, 555-558. 13.7 284 Dual-sensitized upconversion-assisted, triple-band absorbing luminescent solar concentrators. 151 2.8 10 Nanoscale, 2020, 12, 17265-17271. Extending the concept of edge collection function to polygonal and curved planar luminescent 0.8 waveguides. Journal of Photonics for Energy, 2020, 10, . Concentric re-emission pattern from a planar waveguide with a thin uniform luminescent layer. 153 0.9 4 Applied Optics, 2020, 59, 1703. 154 Spectral response of large-area luminescent solar concentrators. Applied Optics, 2020, 59, 8964. Analytical description of a luminescent solar concentrator. Optica, 2019, 6, 1046. 155 4.8 20 Luminescent Solar Concentrator., 2021, , . 156 Luminescent solar concentrators with outstanding optical properties by employment of Dâ€"Aâ€"D 157 2.7 16 quinoxaline fluorophores. Journal of Materials Chemistry C, 2021, 9, 15608-15621. First demonstration of the use of open-shell derivatives as organic luminophores for transparent luminescent solar concentrators. Materials Advances, 2021, 2, 7369-7378. 2.6 Wykorzystanie luminescencyjnych koncentratorÃ³w sÅ,onecznych w rozwiÄ...zaniach architektonicznych. 159 0.1 0 Builder, 2021, 292, 50-54. Reducing the reabsorption effect in an optical concentrator by using a luminescent layer with multiple phosphors., 2018, , . Photoconverter with luminescent concentrator. Matrix material. Semiconductor Physics, Quantum 161 0.3 1 Electronics and Optoelectronics, 2019, 22, 80-87. Circular Stimulated Emission Luminescent Solar Concentrators (SELSCs)., 2020, , .

#	Article	IF	CITATIONS
163	Design and Optimization of Graphene Quantum Dot-based Luminescent Solar Concentrator Using Monte-Carlo Simulation. Energy and Built Environment, 2021, , .	2.9	3
164	Visible to infrared down conversion of Er3+ doped tellurite glass for luminescent solar converters. Journal of Alloys and Compounds, 2022, 894, 162506.	2.8	29
165	Optical design and validation of a solar concentrating photovoltaic-thermal (CPV-T) module for building louvers. Energy, 2022, 239, 122256.	4.5	16
166	Photovoltaic spectral conversion materials: The role of sol–gel processing. , 2020, , 145-182.		0
167	Core/Shell Quantum-Dot-Based Luminescent Solar Concentrators. Lecture Notes in Nanoscale Science and Technology, 2020, , 287-314.	0.4	0
170	Eco-Friendly and Efficient Luminescent Solar Concentrators Based on a Copper(I)-Halide Composite. ACS Applied Materials & Interfaces, 2021, 13, 56348-56357.	4.0	10
171	Smart and Solar Greenhouse Covers: Recent Developments and Future Perspectives. Frontiers in Energy Research, 2021, 9, .	1.2	8
172	Asymmetrical interface design for unidirectional light extraction from spectrum conversion films. Optics Express, 2022, 30, 4642.	1.7	3
173	Multifunctionality of lanthanide-based luminescent hybrid materials. Coordination Chemistry Reviews, 2022, 455, 214365.	9.5	28
174	Lanthanide Emission for Solar Spectral Converters: An Energy Transfer Viewpoint. Springer Series on Fluorescence, 2021, , 1-33.	0.8	1
175	Colloidal Quantum Dot Solar Cells: Progressive Deposition Techniques and Future Prospects on Largeâ€Area Fabrication. Advanced Materials, 2022, 34, e2107888.	11.1	39
176	Past, present and future of indium phosphide quantum dots. Nano Research, 2022, 15, 4468-4489.	5.8	50
177	Infrared Efficiency and Ultraviolet Management of Red-Pigmented Polymethylmethacrylate Photoselective Greenhouse Films. Polymers, 2022, 14, 531.	2.0	2
179	CsPbBr3 nanocrystal-embedded glasses for luminescent solar concentrators. Solar Energy Materials and Solar Cells, 2022, 238, 111619.	3.0	19
180	Framework for Expediting Discovery of Optimal Solutions with Blackbox Algorithms in Non-Topology Photonic Inverse Design. ACS Photonics, 2022, 9, 432-442.	3.2	5
181	Photoluminescent coordination polymer bulk glasses and laser-induced crystallization. Chemical Science, 2022, 13, 3281-3287.	3.7	15
182	Nanocolloid simulators of luminescent solar concentrator photovoltaic windows. Nanotechnology Reviews, 2022, 11, 1167-1180.	2.6	1
183	Measured power conversion efficiencies of bifacial luminescent solar concentrator photovoltaic devices of the mosaic series. Progress in Photovoltaics: Research and Applications, 2022, 30, 726-739.	4.4	13

#	Article	IF	CITATIONS
184	Highâ€Efficiency Luminescent Solar Concentrators Based on Antifogging and Frostâ€Resisting Fluorescent Polymers: Adding Multiple Functions for Sustained Performance. Advanced Materials Interfaces, 2022, 9, .	1.9	3
185	Amphiphilic Polymer Coâ€Network: A Versatile Matrix for Tailoring the Photonic Energy Transfer in Wearable Energy Harvesting Devices. Advanced Energy Materials, 2022, 12, .	10.2	10
186	Fluorescence Enhancement by Supramolecular Sequestration of a C ₅₄ -Nanographene Trisimide by Hexabenzocoronene. Journal of the American Chemical Society, 2022, 144, 5718-5722.	6.6	12
187	Chemical Doping of a Silica Matrix with a New Organic Dye from the Group of Heterocyclic Compounds—Chemical, Optical and Surface Characteristics. Crystals, 2022, 12, 478.	1.0	0
188	Insights from scalable fabrication to operational stability and industrial opportunities for perovskite solar cells and modules. Cell Reports Physical Science, 2022, 3, 100827.	2.8	16
189	Y-shaped alkynylimidazoles as effective push-pull fluorescent dyes for luminescent solar concentrators (LSCs). Dyes and Pigments, 2022, 201, 110262.	2.0	8
190	Experimental study on loading-induced power generation decline of component-level flexible solar cells. Thin-Walled Structures, 2022, 175, 109231.	2.7	1
191	Self-Absorption Analysis of Perovskite-Based Luminescent Solar Concentrators. Electronic Materials, 2021, 2, 545-552.	0.9	0
192	A perspective on sustainable luminescent solar concentrators. Journal of Applied Physics, 2022, 131, .	1.1	13
193	Design and performance validation on a solar louver with concentrating-photovoltaic-thermal modules. Renewable Energy, 2022, 191, 71-83.	4.3	10
194	Sensitization of lanthanide complexes through direct spin-forbidden singlet → triplet excitation. Physical Chemistry Chemical Physics, 2022, 24, 13565-13570.	1.3	5
195	General Trends in the Performance of Quantum Dot Luminescent Solar Concentrators (LSCs) Revealed Using the "Effective LSC Quality Factor― ACS Energy Letters, 2022, 7, 1741-1749.	8.8	16
196	Large Area Stimulated Emission Luminescent Solar Concentrators Modelled Using Detailed Balance Consistent Rate Equations. Optics Express, 0, , .	1.7	0
197	Luminescent concentrators enable highly efficient and broadband photodetection. Light: Science and Applications, 2022, 11, 125.	7.7	5
198	Shape engineered Y2O3: Eu3+ nanodots for Stokes shifting high-efficiency PMMA based transparent luminescent solar concentrator. Journal of Luminescence, 2022, 248, 118955.	1.5	4
199	Stokes Shift Engineered Mn:CdZnS/ZnS Nanocrystals as Reabsorptionâ€Free Nanoscintillators in High Loading Polymer Composites. Advanced Optical Materials, 2022, 10, .	3.6	5
200	Re-absorption-free perovskite quantum dots for boosting the efficiency of luminescent solar concentrator. Journal of Luminescence, 2022, 248, 118963.	1.5	9
201	Engineering High-Emissive Silicon-Doped Carbon Nanodots Towards Efficient Large-Area Luminescent Solar Concentrators. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
202	Tunable Photovoltaics: Adapting Solar Cell Technologies to Versatile Applications. Advanced Energy Materials, 2022, 12, .	10.2	27
203	Luminescence of doublet molecular systems. Coordination Chemistry Reviews, 2022, 467, 214616.	9.5	21
204	Fineâ€Tuning Singleâ€Source Whiteâ€Light Emission from Allâ€Inorganic Corrugated 2D Antimonyâ€Halide Perovskite. Advanced Optical Materials, 2022, 10, .	3.6	6
205	Microreactor platform for continuous synthesis of electronic doped quantum dots. Nano Research, 2022, 15, 9647-9653.	5.8	5
206	Uncovering the Use of Fucoxanthin and Phycobiliproteins into Solid Matrices to Increase Their Emission Quantum Yield and Photostability. Applied Sciences (Switzerland), 2022, 12, 5839.	1.3	3
207	Förster Resonance Energy Transfer in Luminescent Solar Concentrators. Advanced Science, 2022, 9, .	5.6	20
208	Alternative Uses of Luminescent Solar Concentrators. Nanoenergy Advances, 2022, 2, 222-240.	3.6	7
209	Large-Area Transparent "Quantum Dot Glass―for Building-Integrated Photovoltaics. ACS Photonics, 2022, 9, 2499-2509.	3.2	19
210	AlEgens in Solar Energy Utilization: Advances and Opportunities. Langmuir, 2022, 38, 8719-8732.	1.6	6
211	Highly efficient indoor/outdoor light harvesting luminescent solar concentrator employing aggregation-induced emissive fluorophore. Dyes and Pigments, 2022, 205, 110563.	2.0	6
212	Engineering high-emissive silicon-doped carbon nanodots towards efficient large-area luminescent solar concentrators. Nano Energy, 2022, 101, 107617.	8.2	66
213	Boosting the efficiency of luminescent solar concentrator devices based on CH3NH3PbBr3 perovskite quantum dots via geometrical parameter engineering and plasmonic coupling. Organic Electronics, 2022, 109, 106629.	1.4	3
214	Recent progress in organic luminescent solar concentrators for agrivoltaics: Opportunities for rare-earth complexes. Solar Energy, 2022, 245, 58-66.	2.9	18
215	Metal-cyanido molecular modulators of the sensing range and performance in lanthanide-based luminescent thermometers. Journal of Materials Chemistry C, 2022, 10, 12054-12069.	2.7	6
216	Theoretical Investigation of Asymmetric Light Interfaces for Increasing Optical Efficiency of Luminescent Solar Concentrators Via Integration of Finite Element Simulation Results with Monte Carlo Ray Tracing. SSRN Electronic Journal, 0, , .	0.4	0
217	Luminescent Solar Concentrators: A Review of Nanoengineering Opportunities for Reducing Surface Losses. IEEE Nanotechnology Magazine, 2022, 21, 360-366.	1.1	3
218	Quantum Dot-based Luminescent Solar Concentrators Fabricated through the Ultrasonic Spray-Coating Method. ACS Applied Materials & amp; Interfaces, 2022, 14, 41013-41021.	4.0	9
219	Low-Loss, High-Transparency Luminescent Solar Concentrators with a Bioinspired Self-Cleaning Surface. Journal of Physical Chemistry Letters, 2022, 13, 9177-9185.	2.1	5

#	Article	IF	CITATIONS
220	Selectively harvesting nonâ€visible photons in hybrid solar lighting systems for power generation in buildings. Energy Technology, 0, , .	1.8	0
221	A comprehensive review on optics and optical materials for planar waveguide-based compact concentrated solar photovoltaics. Results in Engineering, 2022, 16, 100665.	2.2	11
222	A critical analysis of luminescent solar concentrator terminology and efficiency results. Solar Energy, 2022, 246, 119-140.	2.9	13
223	High-performance luminescent solar concentrators based on the core/shell CdSe/ZnS quantum dots composed into thiol-ene polymer. Journal of Luminescence, 2022, 252, 119368.	1.5	3
224	Self-trapped excitons in soft semiconductors. Nanoscale, 2022, 14, 16394-16414.	2.8	14
225	Boosting efficiency of luminescent solar concentrators using ultra-bright carbon dots with large Stokes shift. Nanoscale Horizons, 2022, 8, 83-94.	4.1	51
226	Performance Evaluation of Solid State Luminescent Solar Concentrators Based on InP/ZnS-Rhodamine 101 Hybrid Inorganic–Organic Luminophores. Journal of Physical Chemistry C, 2022, 126, 19803-19815.	1.5	3
227	Universal measure of photon collection efficiency of dye luminescent solar concentrators. Solar Energy Materials and Solar Cells, 2023, 250, 112101.	3.0	1
228	Ultra-precise photothermal measurements reveal near unity photoluminescence quantum yields of molecular emitters in solution. Materials Horizons, 0, , .	6.4	1
229	Polymer-Mediated <i>In Situ</i> Growth of Perovskite Nanocrystals in Electrospinning: Design of Composite Nanofiber-Based Highly Efficient Luminescent Solar Concentrators. ACS Applied Energy Materials, 2022, 5, 15844-15855.	2.5	8
230	Investigation of quantum dot luminescent solar concentrator single, double and triple structures: A ray tracing simulation study (FG-6:L02). Ceramics International, 2022, , .	2.3	0
231	Dual- luminophore efficient luminescent solar concentrator fabricated by low-cost 3D printing. Physica Scripta, 2023, 98, 015833.	1.2	1
232	Recent Advances on Mn ²⁺ â€Doping in Diverse Metal Halide Perovskites. Laser and Photonics Reviews, 2023, 17, .	4.4	11
233	Longâ€Range Optical Wireless Communication System Based on a Largeâ€Area, Qâ€Dots Fluorescent Antenna. Laser and Photonics Reviews, 2023, 17, .	4.4	7
234	Achieving High-Efficiency Large-Area Luminescent Solar Concentrators. Jacs Au, 2023, 3, 25-35.	3.6	22
235	Anti-Oxidation Agents to Prevent Dye Degradation in Organic-Based Host–Guest Systems Suitable for Luminescent Solar Concentrators. Materials, 2023, 16, 656.	1.3	0
236	Integration of Conjugated Copolymersâ€Based Luminescent Solar Concentrators with Excellent Color Rendering and Organic Photovoltaics for Efficiently Converting Light to Electricity. Advanced Optical Materials, 2023, 11, .	3.6	2
237	Advances in Luminescent Glass Research Towards High-End Applications. Advances in Material Research and Technology, 2023, , 169-212.	0.3	0

#	Article	IF	CITATIONS
238	Numerical method for calculation of power conversion efficiency and colorimetrics of rectangular luminescent solar concentrators. Solar Rrl, 0, , .	3.1	1
239	Experiment and simulation to determine the optimum orientation of building-integrated photovoltaic on tropical building façades considering annual daylight performance and energy yield. Energy and Built Environment, 2024, 5, 414-425.	2.9	7
240	Multilayered optofluidics for sustainable buildings. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	4
241	Luminescence solar concentrators: A technology update. Nano Energy, 2023, 109, 108269.	8.2	23
242	Red-emissive carbon quantum dots enable high efficiency luminescent solar concentrators. Journal of Materials Chemistry A, 2023, 11, 8950-8960.	5.2	12
243	Color-tunable multilayered laminated luminescent solar concentrators based on colloidal quantum dots. Nano Energy, 2023, 111, 108438.	8.2	9
244	A review of solar hybrid photovoltaic-thermal (PV-T) collectors and systems. Progress in Energy and Combustion Science, 2023, 97, 101072.	15.8	42
245	Building Integrated Photovoltaic (BIPV) Development Knowledge Map: A Review of Visual Analysis Using CiteSpace. Buildings, 2023, 13, 389.	1.4	2
246	MOCVD growth and characterization of high efficiency (Al)InGaP solar cells for luminescent concentrators. Journal of Crystal Growth, 2023, 607, 127131.	0.7	1
247	Designing Coupling of 2-Dimensional PhotoRecepto-Conversion Scheme (2DPRCS) with Clean Unit System Platform (CUSP). Energies, 2023, 16, 1838.	1.6	2
248	Narrow Near-Infrared Emission from InP QDs Synthesized with Indium(I) Halides and Aminophosphine. Journal of the American Chemical Society, 2023, 145, 5970-5981.	6.6	17
249	Performant flexible luminescent solar concentrators of phenylpolysiloxanes crosslinked with perylene bisimide fluorophores. Polymer Chemistry, 2023, 14, 1602-1612.	1.9	4
250	Exciton Dynamic in Pyramidal InP/ZnSe Quantum Dots for Luminescent Solar Concentrators. ACS Applied Nano Materials, 2023, 6, 4449-4454.	2.4	6
251	Cylindrical Waveguides and Multi-Junction Solar Cell Investigated for Two-Dimensional Photorecepto-Conversion Scheme. Photonics, 2023, 10, 299.	0.9	0
252	Technology and Materials for Passive Manipulation of the Solar Spectrum in Greenhouses. Advanced Sustainable Systems, 2023, 7, .	2.7	2
253	A Direct Arylation Approach for the Preparation of Benzothiadiazole-Based Fluorophores for Application in Luminescent Solar ÂConcentrators. Synlett, 0, , .	1.0	1
254	Heterostructured Nanotetrapod Luminophores for Reabsorption Elimination within Luminescent Solar Concentrators. ACS Applied Materials & Interfaces, 2023, 15, 17914-17921.	4.0	2
255	Intense Near-Infrared Light-Emitting NaYF4:Nd,Yb-Based Nanophosphors for Luminescent Solar Concentrators. Materials, 2023, 16, 3187.	1.3	0

#	Article	IF	CITATIONS
256	Orange/Red Benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]dithiophene 1,1,5,5-Tetraoxide-Based Emitters for Luminescent Solar Concentrators: Effect of Structures on Fluorescence Properties and Device Performances. ACS Applied Energy Materials, 2023, 6, 4862-4880.	2.5	4
257	High-efficiency plasmonic luminescent solar concentrators based on thiol-ene polymer. Journal of Luminescence, 2023, 260, 119889.	1.5	2
262	Luminescent solar concentrators for building integrated photovoltaics: opportunities and challenges. Energy and Environmental Science, 2023, 16, 3214-3239.	15.6	12
269	Design considerations for leaf-inspired luminescent solar concentrators based on two-stage photoconversion. , 2023, , .		Ο
282	Synthesis and hybridization of CuInS ₂ nanocrystals for emerging applications. Chemical Society Reviews, 2023, 52, 8374-8409.	18.7	2
302	Technology to Build Architecture: Application of Adaptive Facade on a New Multifunctional Arena. Lecture Notes in Networks and Systems, 2024, , 55-64.	0.5	0