Efficient Processing of Deep Neural Networks: A Tutori

Proceedings of the IEEE 105, 2295-2329 DOI: 10.1109/jproc.2017.2761740

Citation Report

#	Article	IF	CITATIONS
1	3D nanosystems enable embedded abundant-data computing. , 2017, , .		6
2	Neural networks: Efficient implementations and applications. , 2017, , .		10
3	Segmentation technique for medical image processing: A survey. , 2017, , .		17
4	A Modified Teaching and Learning Based Optimization Algorithm and Application in Deep Neural Networks Optimization for Electro-Discharge Machining. Lecture Notes in Electrical Engineering, 2018, , 605-615.	0.4	0
5	Learning Object Grasping for Soft Robot Hands. IEEE Robotics and Automation Letters, 2018, 3, 2370-2377.	5.1	115
6	Scaling for edge inference of deep neural networks. Nature Electronics, 2018, 1, 216-222.	26.0	299
7	A Survey to Predict the Trend of Al-able Server Evolution in the Cloud. IEEE Access, 2018, 6, 10591-10602.	4.2	17
8	Optimized vision-directed deployment of UAVs for rapid traffic monitoring. , 2018, , .		20
9	Does AI have a hardware problem?. Nature Electronics, 2018, 1, 205-205.	26.0	13
10	Low-Power, Adaptive Neuromorphic Systems: Recent Progress and Future Directions. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2018, 8, 6-27.	3.6	78
11	FP-BNN: Binarized neural network on FPGA. Neurocomputing, 2018, 275, 1072-1086.	5.9	201
12	A survey on deep learning for big data. Information Fusion, 2018, 42, 146-157.	19.1	827
13	Flexible Modularized Artificial Neural Network Implementation on FPGA. , 2018, , .		0
14	Data Bandwidth Reduction in Deep Neural Network SoCs using History Buffer and Huffman Coding. , 2018, , .		3
15	A Parallel Feature Expansion Classification Model with Feature-based Attention Mechanism. , 2018, , .		0
16	Performance Analysis of Single-Precision Floating-Point MAC for Deep Learning. , 2018, , .		3
17	Image Classification for Vehicle Type Dataset Using State-of-the-art Convolutional Neural Network Architecture. , 2018, , .		2
18	The Facial Stress Recognition Based on Multi-histogram Features and Convolutional Neural Network.		16

λτιών Ρερώ

#	Article	IF	Citations
19	Design of 16-bit fixed-point CNN coprocessor based on FPGA. , 2018, , .		4
20	Memory-Efficient Deep Learning on a SpiNNaker 2 Prototype. Frontiers in Neuroscience, 2018, 12, 840.	2.8	38
21	An Efficient FPGA-based Overlay Inference Architecture for Fully Connected DNNs. , 2018, , .		12
22	DeepPet: A Pet Animal Tracking System in Internet of Things using Deep Neural Networks. , 2018, , .		8
23	Energy-Driven Precision Scaling for Fixed-Point ConvNets. , 2018, , .		4
24	On the Resilience of RTL NN Accelerators: Fault Characterization and Mitigation. , 2018, , .		58
25	Estimation of applicability of modern neural network methods for preventing cyberthreats to self-organizing network infrastructures of digital economy platforms,. SHS Web of Conferences, 2018, 44, 00044.	0.2	6
26	Optimizing of Convolutional Neural Network Accelerator. , 2018, , .		1
27	Deep Learning Approach for Classifying Papanicolau Cervical Smears. , 2018, , .		1
28	Hardware-Software Co-Design for an Analog-Digital Accelerator for Machine Learning. , 2018, , .		20
29	Accelerating CNN Algorithm with Fine-Grained Dataflow Architectures. , 2018, , .		4
30	A Quick Survey on Large Scale Distributed Deep Learning Systems. , 2018, , .		15
31	Accelerate Convolutional Neural Network with a Customized VLIW DSP. , 2018, , .		0
32	Performance Implications of Big Data in Scalable Deep Learning: On the Importance of Bandwidth and Caching. , 2018, , .		2
33	Race Recognition Using Deep Convolutional Neural Networks. Symmetry, 2018, 10, 564.	2.2	37
34	MARIO: A Cognitive Radio Primary User Arrivals Data Generator. , 2018, , .		3
35	FINN-L: Library Extensions and Design Trade-Off Analysis for Variable Precision LSTM Networks on FPGAs. , 2018, , .		45
36	Hardware aspects of Long Short Term Memory. , 2018, , .		2

#	Article	IF	CITATIONS
37	A Novel Voltage-Accumulation Vector-Matrix Multiplication Architecture Using Resistor-shunted Floating Gate Flash Memory Device for Low-power and High-density Neural Network Applications. , 2018, , .		17
38	Spectral Vector Design for Gunfire Sound Classification System with a Smartphone using ANN. , 2018, ,		4
39	Exploring Parallelism in the Deep Learning Arena. , 2018, , .		0
40	PolySA. , 2018, , .		69
41	Explicit Loss-Error-Aware Quantization for Low-Bit Deep Neural Networks. , 2018, , .		41
42	Pay More Attention with Fewer Parameters: A Novel 1-D Convolutional Neural Network for Heart Sounds Classification. , 0, , .		8
43	Analysis of Efficient CNN Design Techniques for Semantic Segmentation. , 2018, , .		23
44	Curvature-based Comparison of Two Neural Networks. , 2018, , .		5
45	Low-Rank Optimization for Data Shuffling in Wireless Distributed Computing. , 2018, , .		7
46	Accelerating Deep Neural Networks Using FPGA. , 2018, , .		7
47	Distributed Osmotic Computing Approach to Implementation of Explainable Predictive Deep Learning at Industrial IoT Network Edges with Real-Time Adaptive Wavelet Graphs. , 2018, , .		10
48	Special Session: Embedded Software for Robotics: Challenges and Future Directions. , 2018, , .		9
49	Sustainable Deep Learning at Grid Edge for Real-Time High Impedance Fault Detection. IEEE Transactions on Sustainable Computing, 2022, 7, 346-357.	3.1	30
50	Entropy-Aware I/O Pipelining for Large-Scale Deep Learning on HPC Systems. , 2018, , .		45
51	Impacts of Mathematical Optimizations on Reinforcement Learning Policy Performance. , 2018, , .		0
52	Reducing the Computation Load of Convolutional Neural Networks through Gate Classification. , 2018, , .		8
53	POLYBINN: A Scalable and Efficient Combinatorial Inference Engine for Neural Networks on FPGA. , 2018, , .		4
54	Performance Analysis of Different Convolution Algorithms in GPU Environment. , 2018, , .		1

#	Article	IF	Citations
55	Unsupervised Synaptic Pruning Strategies for Restricted Boltzmann Machines. , 2018, , .		0
56	Multi-mode Study of Deep Learning Applications in Acoustic Signal Processing. , 2018, , .		2
57	Selective Data Transfer from DRAMs for CNNs. , 2018, , .		4
58	A Versatile ReRAM-based Accelerator for Convolutional Neural Networks. , 2018, , .		6
59	Comprehensive Evaluation of Supply Voltage Underscaling in FPGA on-Chip Memories. , 2018, , .		32
60	NN-Noxim: High-Level Cycle-Accurate NoC-based Neural Networks Simulator. , 2018, , .		17
61	END-to-END Photopleth YsmographY (PPG) Based Biometric Authentication by Using Convolutional Neural Networks. , 2018, , .		25
62	Approximate Computing and Its Application to Hardware Security. , 2018, , 43-67.		7
63	DFTerNet: Towards 2-bit Dynamic Fusion Networks for Accurate Human Activity Recognition. IEEE Access, 2018, 6, 56750-56764.	4.2	33
64	Efficient Deep Learning in Network Compression and Acceleration. , 2018, , .		4
65	Leveraging Chaos for Wave-Based Analog Computation: Demonstration with Indoor Wireless Communication Signals. Physical Review X, 2018, 8, .	8.9	32
66	Machine learning IP protection. , 2018, , .		6
67	Perspective: Uniform switching of artificial synapses for large-scale neuromorphic arrays. APL Materials, 2018, 6, .	5.1	26
68	Hyperdimensional Computing Exploiting Carbon Nanotube FETs, Resistive RAM, and Their Monolithic 3D Integration. IEEE Journal of Solid-State Circuits, 2018, 53, 3183-3196.	5.4	49
69	Layer-Centric Memory Reuse and Data Migration for Extreme-Scale Deep Learning on Many-Core Architectures. Transactions on Architecture and Code Optimization, 2018, 15, 1-26.	2.0	18
70	Metrology for the next generation of semiconductor devices. Nature Electronics, 2018, 1, 532-547.	26.0	249
71	CNN-Based LOS/NLOS Identification in 3-D Massive MIMO Systems. IEEE Communications Letters, 2018, 22, 2491-2494.	4.1	20
72	CELIA. , 2018, , .		11

	Citation	Report	
#	Article	IF	Citations
73	Impact of Approximate Multipliers on VGG Deep Learning Network. IEEE Access, 2018, 6, 60438-60444.	4.2	45
74	Exploitation of road signalling for localization refinement of autonomous vehicles. , 2018, , .		1
75	Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience, 2018, 12, 774.	2.8	409
76	Optimum Network/Framework Selection from High-Level Specifications in Embedded Deep Learning Vision Applications. Lecture Notes in Computer Science, 2018, , 369-379.	1.3	0
77	Introduction of Artificial Neural Networks in EMC. , 2018, , .		6
78	Confronting machine-learning with neuroscience for neuromorphic architectures design. , 2018, , .		28
79	Optimum Selection of DNN Model and Framework for Edge Inference. IEEE Access, 2018, 6, 51680-51692.	4.2	16
80	NestDNN. , 2018, , .		154
81	A phase-change memory model for neuromorphic computing. Journal of Applied Physics, 2018, 124, .	2.5	96
82	Efficient Minimum-Energy Scheduling with Machine-Learning Based Predictions for Multiuser MISO Systems. , 2018, , .		9
83	Balance gate controlled deep neural network. Neurocomputing, 2018, 320, 183-194.	5.9	20
84	Deep compressive autoencoder for action potential compression in large-scale neural recording. Journal of Neural Engineering, 2018, 15, 066019.	3.5	34
85	Exploring the Programmability for Deep Learning Processors: from Architecture to Tensorization. , 2018, , .		0
86	American Sign Language Posture Understanding with Deep Neural Networks. , 2018, , .		22
87	Hardware Compilation of Deep Neural Networks: An Overview. , 2018, , .		11
88	BRIEF: Backward Reduction of CNNs with Information Flow Analysis. , 2018, , .		0
89	A System-Level Transprecision FPGA Accelerator for BLSTM Using On-chip Memory Reshaping. , 2018, , .		4
90	Fine-grained leukocyte classification with deep residual learning for microscopic images. Computer Methods and Programs in Biomedicine, 2018, 162, 243-252.	4.7	106

#	Article	IF	CITATIONS
91	Application of bit-serial arithmetic units for FPGA implementation of convolutional neural networks. , 2018, , .		2
92	A Configurable Cloud-Scale DNN Processor for Real-Time AI. , 2018, , .		332
93	A new image classification model based on brain parallel interaction mechanism. Neurocomputing, 2018, 315, 190-197.	5.9	12
94	Trading-Off Accuracy and Energy of Deep Inference on Embedded Systems: A Co-Design Approach. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 37, 2881-2893.	2.7	23
95	Hyperdrive: A Systolically Scalable Binary-Weight CNN Inference Engine for mW IoT End-Nodes. , 2018, , .		15
96	Accelerating Drugs Discovery with Deep Reinforcement Learning. , 2018, , .		4
97	On How to Efficiently Implement Deep Learning Algorithms on PYNQ Platform. , 2018, , .		19
98	Streaming Tiles: Flexible Implementation of Convolution Neural Networks Inference on Manycore Architectures. , 2018, , .		0
99	Recent progress in analog memory-based accelerators for deep learning. Journal Physics D: Applied Physics, 2018, 51, 283001.	2.8	173
100	Logarithmic number system for deep learning. , 2018, , .		12
101	Generalized Water-filling for Source-aware Energy-efficient SRAMs. IEEE Transactions on Communications, 2018, , 1-1.	7.8	12
102	Development of gunfire sound classification system with a smartphone using ANN. , 2018, , .		5
103	An Analog Neural Network Computing Engine Using CMOS-Compatible Charge-Trap-Transistor (CTT). IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2019, 38, 1811-1819.	2.7	28
104	Analysis of Circuit Aging on Accuracy Degradation of Deep Neural Network Accelerator. , 2019, , .		2
105	Natural image segmentation with non-extensive mixture models. Journal of Visual Communication and Image Representation, 2019, 63, 102598.	2.8	4
106	Using Frame Similarity for Low Energy Software-Only IoT Video Recognition. Lecture Notes in Computer Science, 2019, , 157-168.	1.3	0
107	NeuroPilot: A Cross-Platform Framework for Edge-Al. , 2019, , .		5
108	Al hardware acceleration with analog memory: Microarchitectures for low energy at high speed. IBM Journal of Research and Development, 2019, 63, 8:1-8:14.	3.1	39

#	Article	IF	CITATIONS
109	Low Power Speaker Identification using Look Up-free Gaussian Mixture Model in CMOS. , 2019, , .		6
110	Efficient Implementation of Convolutional Neural Networks with End to End Integer-Only Dataflow. , 2019, , .		6
111	Dual-Precision Acceleration of Convolutional Neural Network Computation with Mixed Input and Output Data Reuse. , 2019, , .		1
112	Design of a Current-Mode Linear-Sum-Based Bitcounting Circuit with an MTJ-Based Compensator for Binarized Neural Networks. , 2019, , .		2
113	Complex System Fault Diagnostic Method Based on Convolutional Neural Network. , 2019, , .		1
114	Sub-Word Parallel Precision-Scalable MAC Engines for Efficient Embedded DNN Inference. , 2019, , .		24
115	Theoretical Scalability Analysis of Distributed Deep Convolutional Neural Networks. , 2019, , .		10
116	FastDepth: Fast Monocular Depth Estimation on Embedded Systems. , 2019, , .		178
117	Textual keyword extraction and summarization: State-of-the-art. Information Processing and Management, 2019, 56, 102088.	8.6	74
118	Lifelong Learning Starting from Zero. Lecture Notes in Computer Science, 2019, , 188-197.	1.3	3
119	Benchmark of Ferroelectric Transistor-Based Hybrid Precision Synapse for Neural Network Accelerator. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, 2019, 5, 142-150.	1.5	20
120	A Novel Broad Learning System Based Leakage Detection and Universal Localization Method for Pipeline Networks. IEEE Access, 2019, 7, 42343-42353.	4.2	18
121	Jointly Sparse Convolutional Neural Networks in Dual Spatial-winograd Domains. , 2019, , .		3
122	Deep Neural Network For Structured Data - A Case Study Of Mortality Rate Prediction Caused By Air Quality. Journal of Physics: Conference Series, 2019, 1192, 012010.	0.4	5
123	Deep Learning With Edge Computing: A Review. Proceedings of the IEEE, 2019, 107, 1655-1674.	21.3	740
124	Bayesian State Estimation for Unobservable Distribution Systems via Deep Learning. IEEE Transactions on Power Systems, 2019, 34, 4910-4920.	6.5	103
125	NTX: An Energy-efficient Streaming Accelerator for Floating-point Generalized Reduction Workloads in 22 nm FD-SOI. , 2019, , .		5
126_	A Deep Learning Approach for Maximum Activity Links in D2D Communications. Sensors, 2019, 19, 2941.	3.8	8

#	ARTICLE	IF	CITATIONS
127	Advanced Packaging Drivers/Opportunities to Support Emerging Artificial Intelligence Applications. , 2019, , .		1
128	Neuro-Detect: A Machine Learning-Based Fast and Accurate Seizure Detection System in the IoMT. IEEE Transactions on Consumer Electronics, 2019, 65, 359-368.	3.6	56
129	Automated Circuit Approximation Method Driven by Data Distribution. , 2019, , .		11
130	MnnFast. , 2019, , .		34
131	Low-Complexity Dynamic Channel Scaling of Noise-Resilient CNN for Intelligent Edge Devices. , 2019, , .		6
132	Ferroelectric FET Based In-Memory Computing for Few-Shot Learning. , 2019, , .		27
133	Reinforcement learning for neural architecture search: A review. Image and Vision Computing, 2019, 89, 57-66.	4.5	89
134	Quantum optical neural networks. Npj Quantum Information, 2019, 5, .	6.7	111
135	Effects of Aging, Cognitive Dysfunction, Brain Atrophy on Hemoglobin Concentrations and Optical Pathlength at Rest in the Prefrontal Cortex: A Time-Resolved Spectroscopy Study. Applied Sciences (Switzerland), 2019, 9, 2209.	2.5	2
136	An effective approach for emotion detection in multimedia text data using sequence based convolutional neural network. Multimedia Tools and Applications, 2019, 78, 29607-29639.	3.9	48
137	Fusion of transformed shallow features for facial expression recognition. IET Image Processing, 2019, 13, 1479-1489.	2.5	13
138	A Study on Development of the Camera-Based Blind Spot Detection System Using the Deep Learning Methodology. Applied Sciences (Switzerland), 2019, 9, 2941.	2.5	9
139	DNN-Assisted Cooperative Localization in Vehicular Networks. Energies, 2019, 12, 2758.	3.1	10
140	Deep Learning-Constructed Joint Transmission-Recognition for Internet of Things. IEEE Access, 2019, 7, 76547-76561.	4.2	52
141	PIR-DSP: An FPGA DSP Block Architecture for Multi-precision Deep Neural Networks. , 2019, , .		28
142	Hybrid forecasting model for non-stationary daily runoff series: A case study in the Han River Basin, China. Journal of Hydrology, 2019, 577, 123915.	5.4	86
143	Layer-wise Deep Neural Network Pruning via Iteratively Reweighted Optimization. , 2019, , .		11
144	Minimizing the usage of hardware counters for collective communication using triggered operations. , 2019, , .		2

#	Article	IF	CITATIONS
145	Mitigating the Impacts of Covert Cyber Attacks in Smart Grids Via Reconstruction of Measurement Data Utilizing Deep Denoising Autoencoders. Energies, 2019, 12, 3091.	3.1	19
146	A 4K-Capable FPGA Implementation of Single Image Haze Removal Using Hazy Particle Maps. Applied Sciences (Switzerland), 2019, 9, 3443.	2.5	12
147	EDEN., 2019,,.		66
149	LDFR: Learning deep feature representation for software defect prediction. Journal of Systems and Software, 2019, 158, 110402.	4.5	40
150	Enabling Energy-Efficient Unsupervised Monocular Depth Estimation on ARMv7-Based Platforms. , 2019, , .		16
151	Asynchronous Spiking Neurons, the Natural Key to Exploit Temporal Sparsity. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2019, 9, 668-678.	3.6	15
152	Memory Trojan Attack on Neural Network Accelerators. , 2019, , .		24
153	Deep Neural Network for Ore Production and Crusher Utilization Prediction of Truck Haulage System in Underground Mine. Applied Sciences (Switzerland), 2019, 9, 4180.	2.5	25
155	Learning to Upsample Smoke Images via a Deep Convolutional Network. IEEE Access, 2019, 7, 138932-138940.	4.2	2
156	A Fourier Domain Training Framework for Convolutional Neural Networks Based on the Fourier Domain Pyramid Pooling Method and Fourier Domain Exponential Linear Unit. IEEE Access, 2019, 7, 116612-116631.	4.2	9
157	Optimality Assessment of Memory-Bounded ConvNets Deployed on Resource-Constrained RISC Cores. IEEE Access, 2019, 7, 152599-152611.	4.2	10
158	Bridging Biological and Artificial Neural Networks with Emerging Neuromorphic Devices: Fundamentals, Progress, and Challenges. Advanced Materials, 2019, 31, e1902761.	21.0	418
159	Boomerang: On-Demand Cooperative Deep Neural Network Inference for Edge Intelligence on the Industrial Internet of Things. IEEE Network, 2019, 33, 96-103.	6.9	93
160	An Ultra-Low Power Binarized Convolutional Neural Network-Based Speech Recognition Processor With On-Chip Self-Learning. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66, 4648-4661.	5.4	34
161	Optimized Fused Floating-Point Many-Term Dot-Product Hardware for Machine Learning Accelerators. , 2019, , .		4
162	High Energy Efficiency FPGA-Based Accelerator for Convolutional Neural Networks Using Weight Combination. , 2019, , .		10
163	An FPGA-Based Hardware Accelerator for CNNs Using On-Chip Memories Only: Design and Benchmarking with Intel Movidius Neural Compute Stick. International Journal of Reconfigurable Computing, 2019, 2019, 1-13.	0.2	38
164	A High-level Implementation Framework for Non-Recurrent Artificial Neural Networks on FPGA. , 2019, , .		1

	CITATION R	EPORT	
#	Article	IF	CITATIONS
165	An Application-Specific VLIW Processor with Vector Instruction Set for CNN Acceleration. , 2019, , .		6
166	Co-Design of DNN Model Optimization for Binary ReRAM Array In-Memory Processing. , 2019, , .		4
167	Evaluation of maxout activations in deep learning across several big data domains. Journal of Big Data, 2019, 6, .	11.0	21
168	Memory System Designed for Multiply-Accumulate (MAC) Engine Based on Stochastic Computing. , 2019, , .		6
169	Recognition of peripheral blood cell images using convolutional neural networks. Computer Methods and Programs in Biomedicine, 2019, 180, 105020.	4.7	104
170	Accelerator Design for Vector Quantized Convolutional Neural Network. , 2019, , .		2
171	Improved Hybrid Memory Cube for Weight-Sharing Deep Convolutional Neural Networks. , 2019, , .		2
172	Survey of Precision-Scalable Multiply-Accumulate Units for Neural-Network Processing. , 2019, , .		22
173	In-Memory Computing: Advances and Prospects. IEEE Solid-State Circuits Magazine, 2019, 11, 43-55.	0.4	188
174	Motion discrimination by ambient cellular signals: machine learning and computing tools. , 2019, , .		1
175	Smilodon: An Efficient Accelerator for Low Bit-Width CNNs with Task Partitioning. , 2019, , .		4
176	Byzantine-Tolerant Inference in Distributed Deep Intelligent System: Challenges and Opportunities. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2019, 9, 509-519.	3.6	7
177	A Structurally Regularized Convolutional Neural Network for Image Classification Using Wavelet-Based Subband Decomposition. , 2019, , .		1
178	Characterizing Volume Density of Subwavelength Particles at 220–325 GHz Using Deep Neural Network and Nonfeatured Scattering Matrix. IEEE Antennas and Wireless Propagation Letters, 2019, 18, 2240-2243.	4.0	0
179	An Interpretable Neural Network for Configuring Programmable Wireless Environments. , 2019, , .		41
180	Indoor Object C1assification for Autonomous Navigation Assistance Based on Deep CNN Model. , 2019, , \cdot		11
181	The Impact of GPU DVFS on the Energy and Performance of Deep Learning. , 2019, , .		34
182	Demystifying Parallel and Distributed Deep Learning. ACM Computing Surveys, 2020, 52, 1-43.	23.0	292

	Cı	CITATION REPORT	
#	Article	IF	CITATIONS
183	Dynamic Beam Width Tuning for Energy-Efficient Recurrent Neural Networks. , 2019, , .		4
184	A Survey of Convolutional Neural Networks on Edge with Reconfigurable Computing. Algorithms, 2019, 12, 154.	2.1	75
185	A role for optics in Al hardware. Nature, 2019, 569, 199-200.	27.8	11
186	Big Data Analytics for Large-scale Wireless Networks. ACM Computing Surveys, 2020, 52, 1-36.	23.0	87
187	An Efficient Bit-Flip Resilience Optimization Method for Deep Neural Networks. , 2019, , .		30
188	An Improved Pooling Scheme for Convolutional Neural Networks. , 2019, , .		3
189	Back-Propagation Learning in Deep Spike-By-Spike Networks. Frontiers in Computational Neuroscienc 2019, 13, 55.	:e, 2.1	10
190	Artificial intelligence facilitates drug design in the big data era. Chemometrics and Intelligent Laboratory Systems, 2019, 194, 103850.	3.5	32
191	Automated Classification of Alzheimer's Disease using Deep Neural Network (DNN) by Random Fo Feature Elimination. , 2019, , .	prest	12
192	DRIS-3., 2019, , .		17
193	Retraining-free methods for fast on-the-fly pruning of convolutional neural networks. Neurocomputing, 2019, 370, 56-69.	5.9	12
194	An Approximate Multiply-Accumulate Unit with Low Power and Reduced Area. , 2019, , .		12
195	Analysis of model parallelism for distributed neural networks. , 2019, , .		8
196	An Efficient Streaming Accelerator for Low Bit-Width Convolutional Neural Networks. Electronics (Switzerland), 2019, 8, 371.	3.1	4
197	Machine Learning and Deep Learning frameworks and libraries for large-scale data mining: a survey. Artificial Intelligence Review, 2019, 52, 77-124.	15.7	453
198	Training deep neural networks for binary communication with the Whetstone method. Nature Machine Intelligence, 2019, 1, 86-94.	16.0	67
199	A Combination Method for Android Malware Detection Based on Control Flow Graphs and Machine Learning Algorithms. IEEE Access, 2019, 7, 21235-21245.	4.2	131
200	VLSI Implementation of Restricted Coulomb Energy Neural Network with Improved Learning Scheme. Electronics (Switzerland), 2019, 8, 563.	3.1	4

#	Article	IF	CITATIONS
201	Binary Resistive-Switching-Device-Based Electronic Synapse with Spike-Rate-Dependent Plasticity for Online Learning. ACS Applied Electronic Materials, 2019, 1, 845-853.	4.3	17
202	Novel Selectorâ€Induced Currentâ€Limiting Effect through Asymmetry Control for Highâ€Đensity Oneâ€Selector–Oneâ€Resistor Crossbar Arrays. Advanced Electronic Materials, 2019, 5, 1800806.	5.1	10
203	Reliability Challenges with Materials for Analog Computing. , 2019, , .		14
204	Edge Intelligence: Paving the Last Mile of Artificial Intelligence With Edge Computing. Proceedings of the IEEE, 2019, 107, 1738-1762.	21.3	1,144
205	CANN., 2019,,.		26
206	Design considerations for the processing system of a CNN-based automated surveillance system. Expert Systems With Applications, 2019, 136, 105-114.	7.6	12
207	Energy-Accuracy Scalable Deep Convolutional Neural Networks: A Pareto Analysis. IFIP Advances in Information and Communication Technology, 2019, , 107-127.	0.7	1
208	An Area-Efficient Iterative Single-Precision Floating-Point Multiplier Architecture for FPGA. , 2019, , .		8
209	A Low-Power Approximate Multiply-Add Unit. , 2019, , .		2
210	A Primer on Deep Learning Architectures and Applications in Speech Processing. Circuits, Systems, and Signal Processing, 2019, 38, 3406-3432.	2.0	16
211	SeFAct., 2019,,.		5
212	Building Robust Machine Learning Systems. , 2019, , .		20
213	ABM-SpConv. , 2019, , .		21
214	TypeCNN: CNN Development Framework With Flexible Data Types. , 2019, , .		3
215	A Domain-Specific Processor Microarchitecture for Energy-Efficient, Dynamic IoT Communication. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27, 2074-2087.	3.1	3
216	Hyperdrive: A Multi-Chip Systolically Scalable Binary-Weight CNN Inference Engine. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2019, 9, 309-322.	3.6	15
217	Status detection from spatial-temporal data in pipeline network using data transformation convolutional neural network. Neurocomputing, 2019, 358, 401-413.	5.9	14
218	An Efficient FPGA Accelerator Design for Optimized CNNs Using OpenCL. Lecture Notes in Computer Science, 2019, , 236-249.	1.3	6

#	Article	IF	CITATIONS
219	InsideNet: A tool for characterizing convolutional neural networks. Future Generation Computer Systems, 2019, 100, 298-315.	7.5	3
220	Efficient Posit Multiply-Accumulate Unit Generator for Deep Learning Applications. , 2019, , .		26
221	Data Shuffling in Wireless Distributed Computing via Low-Rank Optimization. IEEE Transactions on Signal Processing, 2019, 67, 3087-3099.	5.3	26
222	Optimization and deployment of CNNs at the edge. , 2019, , .		10
223	Large-Scale Optical Neural Networks Based on Photoelectric Multiplication. Physical Review X, 2019, 9,	8.9	179
224	An End-to-End Deep Neural Network for Autonomous Driving Designed for Embedded Automotive Platforms. Sensors, 2019, 19, 2064.	3.8	87
225	PestNet: An End-to-End Deep Learning Approach for Large-Scale Multi-Class Pest Detection and Classification. IEEE Access, 2019, 7, 45301-45312.	4.2	142
226	Powerline Communication for Enhanced Connectivity in Neuromorphic Systems. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27, 1897-1906.	3.1	2
227	Deep and Embedded Learning Approach for Traffic Flow Prediction in Urban Informatics. IEEE Transactions on Intelligent Transportation Systems, 2019, 20, 3927-3939.	8.0	100
228	Design of an energy-efficient XNOR gate based on MTJ-based nonvolatile logic-in-memory architecture for binary neural network hardware. Japanese Journal of Applied Physics, 2019, 58, SBBB01.	1.5	15
229	Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2019, 9, 292-308.	3.6	609
230	Real-Time Event Classification in Power System With Renewables Using Kernel Density Estimation and Deep Neural Network. IEEE Transactions on Smart Grid, 2019, 10, 6849-6859.	9.0	40
231	A Survey of Techniques for Mobile Service Encrypted Traffic Classification Using Deep Learning. IEEE Access, 2019, 7, 54024-54033.	4.2	92
232	Cycle-Accurate NoC-based Convolutional Neural Network Simulator. , 2019, , .		9
233	Prediction of Nucleation Lag Time from Elemental Composition and Temperature for Iron and Steelmaking Slags Using Deep Neural Networks. ISIJ International, 2019, 59, 687-696.	1.4	9
234	Automatic Radar-based Gesture Detection and Classification via a Region-based Deep Convolutional Neural Network. , 2019, , .		24
235	Towards Energy Efficient non-von Neumann Architectures for Deep Learning. , 2019, , .		19
236	Small Memory Footprint Neural Network Accelerators. , 2019, , .		6

# 237	ARTICLE Reconfigurable Convolutional Kernels for Neural Networks on FPGAs. , 2019, , .	IF	CITATIONS
238	Deep Learning-Based Multiple Object Visual Tracking on Embedded System for IoT and Mobile Edge Computing Applications. IEEE Internet of Things Journal, 2019, 6, 5423-5431.	8.7	70
239	Math Doesn't Have to be Hard. , 2019, , .		9
240	An N-way group association architecture and sparse data group association load balancing algorithm for sparse CNN accelerators. , 2019, , .		10
241	Learning-Assisted Optimization for Energy-Efficient Scheduling in Deadline-Aware NOMA Systems. IEEE Transactions on Green Communications and Networking, 2019, 3, 615-627.	5.5	26
242	Automated identification and grading system of diabetic retinopathy using deep neural networks. Knowledge-Based Systems, 2019, 175, 12-25.	7.1	185
243	Accelerating Deep Neural Networks by Combining Block-Circulant Matrices and Low-Precision Weights. Electronics (Switzerland), 2019, 8, 78.	3.1	5
244	Higher SNR PET image prediction using a deep learning model and MRI image. Physics in Medicine and Biology, 2019, 64, 115004.	3.0	51
245	A State-of-the-Art Survey on Deep Learning Theory and Architectures. Electronics (Switzerland), 2019, 8, 292.	3.1	954
246	Deep Learning in Mobile and Wireless Networking: A Survey. IEEE Communications Surveys and Tutorials, 2019, 21, 2224-2287.	39.4	1,010
247	1.2 Intelligence on Silicon: From Deep-Neural-Network Accelerators to Brain Mimicking Al-SoCs. , 2019, ,		20
248	All-Solid-State Synaptic Transistors with High-Temperature Stability Using Proton Pump Gating of Strongly Correlated Materials. ACS Applied Materials & Interfaces, 2019, 11, 15733-15740.	8.0	36
249	A Mixed Signal Architecture for Convolutional Neural Networks. ACM Journal on Emerging Technologies in Computing Systems, 2019, 15, 1-26.	2.3	16
250	Exploring Cycle-to-Cycle and Device-to-Device Variation Tolerance in MLC Storage-Based Neural Network Training. IEEE Transactions on Electron Devices, 2019, 66, 2172-2178.	3.0	28
251	A High-Efficiency FPGA-Based Accelerator for Binarized Neural Network. Journal of Circuits, Systems and Computers, 2019, 28, 1940004.	1.5	10
252	MAX ² : An ReRAM-Based Neural Network Accelerator That Maximizes Data Reuse and Area Utilization. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2019, 9, 398-410.	3.6	18
253	Deep neural network–based soft computing the resonant frequency of E–shaped patch antennas. AEU - International Journal of Electronics and Communications, 2019, 102, 54-61.	2.9	25
254	Normalization in Training U-Net for 2-D Biomedical Semantic Segmentation. IEEE Robotics and Automation Letters, 2019, 4, 1792-1799.	5.1	54

#	Article	IF	CITATIONS
255	Efficient Multiple-Precision Floating-Point Fused Multiply-Add with Mixed-Precision Support. IEEE Transactions on Computers, 2019, 68, 1035-1048.	3.4	38
256	Very Low Bitrate Semantic Compression of Airplane Cockpit Screen Content. IEEE Transactions on Multimedia, 2019, 21, 2157-2170.	7.2	6
257	Deep Convolutional Neural Network Classifier of Pulse Repetition Interval Modulations. , 2019, , .		1
258	Sea/Land Clutter Recognition for Over-The-Horizon Radar via Deep CNN. , 2019, , .		6
259	Convolutional Neural Network with Dilated Anchors for Object Detection in Very High Resolution Satellite Images. , 2019, , .		5
260	BCONV - ELM: Binary Weights Convolutional Neural Network Simulator based on Keras/Tensorflow, for Low Complexity Implementations. , 2019, , .		9
261	Study on Wind Simulations Using Deep Learning Techniques during Typhoons: A Case Study of Northern Taiwan. Atmosphere, 2019, 10, 684.	2.3	8
262	Emerging resistive random-access memory for 'fog' computing and IoT: materials and structural options taxonomy. International Journal of Nanotechnology, 2019, 16, 421.	0.2	0
263	Towards Computationally-Efficient Cognitive Sensor Systems for Autonomous Vehicles. , 2019, , .		0
264	Prediction of Field-to-wire Coupling Problems Based on Deep Neural Network. , 2019, , .		0
265	Correcting Sign Calculation Errors in Configurable Approximations. , 2019, , .		3
266	MetaPruning: Meta Learning for Automatic Neural Network Channel Pruning. , 2019, , .		287
267	Towards Generating Consumer Labels for Machine Learning Models. , 2019, , .		8
268	Bottled Water Identification & Fraud Detection Using Spectroscopy & Convolutional Neural Network. , 2019, , .		0
269	TCD-NPE: A Re-configurable and Efficient Neural Processing Engine, Powered by Novel Temporal-Carry-deferring MACs. , 2019, , .		6
270	Vulnerability Analysis on Noise-Injection Based Hardware Attack on Deep Neural Networks. , 2019, , .		3
271	Hardware Implementation of Convolutional Neural Network for Face Feature Extraction. , 2019, , .		2
272	A Configurable and Versatile Architecture for Low Power, Energy Efficient Hardware Acceleration of Convolutional Neural Networks. , 2019, , .		0

#	Article	IF	CITATIONS
273	Archivist: A Machine Learning Assisted Data Placement Mechanism for Hybrid Storage Systems. , 2019, , .		4
274	Hybrid Analog-Digital Learning with Differential RRAM Synapses. , 2019, , .		7
275	Dataflow-Based Joint Quantization for Deep Neural Networks. , 2019, , .		1
276	Fourier Genetic Series: An Evolutionary Time Series Modeling Technique. , 2019, , .		0
277	A CNN-based approach to classify cricket bowlers based on their bowling actions. , 2019, , .		13
278	Three-Dimensional Convolutional Neural Network Pruning with Regularization-Based Method. , 2019, , \cdot		5
279	Sanity-Check: Boosting the Reliability of Safety-Critical Deep Neural Network Applications. , 2019, , .		43
280	Accelerating HotSpots in Deep Neural Networks on a CAPI-Based FPGA. , 2019, , .		2
281	Optimal Input-Dependent Edge-Cloud Partitioning for RNN Inference. , 2019, , .		2
282	A machine learning based quality control system for power cable manufacturing. , 2019, , .		5
283	Real-Time Automatic Modulation Classification. , 2019, , .		9
284	Time-Domain Coding for Resource-Efficient Deep Neural Networks. , 2019, , .		0
285	MAGNet: A Modular Accelerator Generator for Neural Networks. , 2019, , .		71
286	A Versatile Acceleration Framework for Machine Learning Algorithms. , 2019, , .		0
287	Impact of On-Chip Interconnection in a Large-Scale Memristor Crossbar Array for Neural Network Accelerator and Neuromorphic Chip. , 2019, , .		6
288	Enhancement of U-Net Performance in MRI Brain Tumour Segmentation using HardELiSH Activation Function. , 2019, , .		3
289	A Fast Reference-Free Genome Compression Using Deep Neural Networks. , 2019, , .		5
290	A Fast Video Image Detection using TensorFlow Mobile Networks for Racing Cars. , 2019, , .		5

#	Article	IF	CITATIONS
291	Benchmarking Contemporary Deep Learning Hardware and Frameworks: A Survey of Qualitative Metrics. , 2019, , .		23
292	Pruning Blocks for CNN Compression and Acceleration via Online Ensemble Distillation. IEEE Access, 2019, 7, 175703-175716.	4.2	19
293	Design Considerations for Efficient Deep Neural Networks on Processing-in-Memory Accelerators. , 2019, , .		36
294	Speeding up Deep Learning with Transient Servers. , 2019, , .		11
295	An Energy-Efficient Mixed-Signal Parallel Multiply-Accumulate (MAC) Engine Based on Stochastic Computing. , 2019, , .		1
296	Efficient Evolutionary Architecture Search for CNN Optimization on GTSRB. , 2019, , .		9
297	A Point-Wise LiDAR and Image Multimodal Fusion Network (PMNet) for Aerial Point Cloud 3D Semantic Segmentation. Remote Sensing, 2019, 11, 2961.	4.0	15
298	Detecting Adversarial Examples for Deep Neural Networks via Layer Directed Discriminative Noise Injection. , 2019, , .		5
299	Audio classification systems using deep neural networks and an event-driven auditory sensor. , 2019, , .		3
300	P3SGD: Patient Privacy Preserving SGD for Regularizing Deep CNNs in Pathological Image Classification. , 2019, , .		23
301	Analysis and Classification of Motor Dysfunctions in Arm Swing in Parkinson's Disease. Electronics (Switzerland), 2019, 8, 1471.	3.1	7
302	Process Variation Mitigation on Convolutional Neural Network Accelerator Architecture. , 2019, , .		3
303	Learning Control Policies of Driverless Vehicles from UAV Video Streams in Complex Urban Environments. Remote Sensing, 2019, 11, 2723.	4.0	3
304	MBS: Macroblock Scaling for CNN Model Reduction. , 2019, , .		2
305	Towards Large-Scale Photonic Neural-Network Accelerators. , 2019, , .		10
306	Potential for improving the local realization of coordinated universal time with a convolutional neural network. Review of Scientific Instruments, 2019, 90, 125111.	1.3	5
307	A Study on Deep Learning Architecture and Their Applications. , 2019, , .		1
308	A Hardware Inference Accelerator for Temporal Convolutional Networks. , 2019, , .		1

#	ARTICLE	IF	CITATIONS
309	Identifying User Communities Using Deep Learning and Its Application to Opportunistic Networking. , 2019, , .		2
310	Survey of Literature on Machine Intelligence and Deep learning for Smart Grid Applications. , 2019, , .		2
311	Efficient Winograd or Cook-Toom Convolution Kernel Implementation on Widely Used Mobile CPUs. , 2019, , .		19
312	Simulation Acceleration of Image Filtering on CMOS Vision Chips Using Many-Core Processors. , 2019, ,		0
313	TensorFlow to Cloud FPGAs: Tradeoffs for Accelerating Deep Neural Networks. , 2019, , .		11
314	Memory-Reduced Network Stacking for Edge-Level CNN Architecture With Structured Weight Pruning. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2019, 9, 735-746.	3.6	17
315	Distributed Power Control for Large Energy Harvesting Networks: A Multi-Agent Deep Reinforcement Learning Approach. IEEE Transactions on Cognitive Communications and Networking, 2019, 5, 1140-1154.	7.9	38
316	Structured Pruning for Efficient ConvNets via Incremental Regularization. , 2019, , .		17
317	Model Predictive Control Based on Deep Reinforcement Learning Method with Discrete-Valued Input. , 2019, , .		9
318	Machine Learning-Based Patient Load Prediction and IoT Integrated Intelligent Patient Transfer Systems. Future Internet, 2019, 11, 236.	3.8	13
319	Information Coding and Hardware Architecture of Spiking Neural Networks. , 2019, , .		5
320	Poor Data Throughput Root Cause Analysis in Mobile Networks using Deep Neural Network. , 2019, , .		3
321	Optimal Autonomous Driving Through Deep Imitation Learning and Neuroevolution. , 2019, , .		19
322	Accelerating Deep Neural Networks for Real-time Data Selection for High-resolution Imaging Particle Detectors. , 2019, , .		4
323	MASR: A Modular Accelerator for Sparse RNNs. , 2019, , .		30
324	Network Intrusion Detection Using Neural Networks on FPGA SoCs. , 2019, , .		15
325	Arbitrary-Precision Convolutional Neural Networks on Low-Power IoT Processors. , 2019, , .		0
326	State Estimation in Smart Distribution Systems with Deep Generative Adversary Networks. , 2019, , .		4

		EPORT	
#	Article	IF	Citations
327	Photonic Neural Networks: A Survey. IEEE Access, 2019, 7, 175827-175841.	4.2	81
328	Survey and Benchmarking of Machine Learning Accelerators. , 2019, , .		115
329	Benchmarking Delay and Energy of Neural Inference Circuits. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, 2019, 5, 75-84.	1.5	13
330	Inference on the Edge: Performance Analysis of an Image Classification Task Using Off-The-Shelf CPUs and Open-Source ConvNets. , 2019, , .		6
331	On the Performance of Pretrained CNN Aimed at Palm Vein Recognition Application. , 2019, , .		4
332	NetML: An NFV Platform with Efficient Support for Machine Learning Applications. , 2019, , .		9
333	Nonsilicon, Non-von Neumann Computing—Part I [Scanning the Issue]. Proceedings of the IEEE, 2019, 107, 11-18.	21.3	14
334	CONV-SRAM: An Energy-Efficient SRAM With In-Memory Dot-Product Computation for Low-Power Convolutional Neural Networks. IEEE Journal of Solid-State Circuits, 2019, 54, 217-230.	5.4	221
335	Urban form and composition of street canyons: A human-centric big data and deep learning approach. Landscape and Urban Planning, 2019, 183, 122-132.	7.5	129
336	An Energy-Efficient Reconfigurable Processor for Binary-and Ternary-Weight Neural Networks With Flexible Data Bit Width. IEEE Journal of Solid-State Circuits, 2019, 54, 1120-1136.	5.4	46
337	FPGA-Based Accelerators of Deep Learning Networks for Learning and Classification: A Review. IEEE Access, 2019, 7, 7823-7859.	4.2	303
338	Spatial Correlation and Value Prediction in Convolutional Neural Networks. IEEE Computer Architecture Letters, 2019, 18, 10-13.	1.5	36
339	Time–frequency masking based supervised speech enhancement framework using fuzzy deep belief network. Applied Soft Computing Journal, 2019, 74, 583-602.	7.2	25
340	A role for analogue memory in Al hardware. Nature Machine Intelligence, 2019, 1, 10-11.	16.0	18
341	A Scalable Near-Memory Architecture for Training Deep Neural Networks on Large In-Memory Datasets. IEEE Transactions on Computers, 2019, 68, 484-497.	3.4	45
342	The Next Generation of Deep Learning Hardware: Analog Computing. Proceedings of the IEEE, 2019, 107, 108-122.	21.3	122
343	Hardware–Software Approximations for Deep Neural Networks. , 2019, , 269-288.		1
345	Machine and deep learning for sport-specific movement recognition: a systematic review of model development and performance. Journal of Sports Sciences, 2019, 37, 568-600.	2.0	170

	Сітатіо	n Report	
#	Article	IF	CITATIONS
346	An efficient Swarm-Intelligence approach for task scheduling in cloud-based internet of things applications. Journal of Ambient Intelligence and Humanized Computing, 2019, 10, 3469-3479.	4.9	129
347	A survey of deep learning-based network anomaly detection. Cluster Computing, 2019, 22, 949-961.	5.0	397
348	Affective design using machine learning: a survey and its prospect of conjoining big data. International Journal of Computer Integrated Manufacturing, 2020, 33, 645-669.	4.6	37
349	An enhanced diabetic retinopathy detection and classification approach using deep convolutional neural network. Neural Computing and Applications, 2020, 32, 707-721.	5.6	181
350	Exploiting time-frequency patterns with LSTM-RNNs for low-bitrate audio restoration. Neural Computing and Applications, 2020, 32, 1095-1107.	5.6	29
351	Improved Logistic Regression Approach in Feature Selection for EHR. Advances in Intelligent Systems and Computing, 2020, , 325-334.	0.6	3
352	A comparative analysis of pooling strategies for convolutional neural network based Hindi ASR. Journal of Ambient Intelligence and Humanized Computing, 2020, 11, 675-691.	4.9	15
353	POLYBiNN: Binary Inference Engine for Neural Networks using Decision Trees. Journal of Signal Processing Systems, 2020, 92, 95-107.	2.1	3
354	Heart sounds classification using a novel 1-D convolutional neural network with extremely low parameter consumption. Neurocomputing, 2020, 392, 153-159.	5.9	95
355	Design Space Exploration of Hardware Spiking Neurons for Embedded Artificial Intelligence. Neural Networks, 2020, 121, 366-386.	5.9	30
356	Comparison of algorithms and classifiers for stride detection using wearables. Neural Computing and Applications, 2020, 32, 17857-17868.	5.6	6
357	Octopus: Context-Aware CNN Inference for IoT Applications. IEEE Embedded Systems Letters, 2020, 12, 1-4.	1.9	3
358	Deep learning for inversion of significant wave height based on actual sea surface backscattering coefficient model. Multimedia Tools and Applications, 2020, 79, 34173-34193.	3.9	4
359	Bi-Real Net: Binarizing Deep Network Towards Real-Network Performance. International Journal of Computer Vision, 2020, 128, 202-219.	15.6	48
360	An Energy-Efficient Deep Convolutional Neural Network Inference Processor With Enhanced Output Stationary Dataflow in 65-nm CMOS. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020, 28, 87-100.	3.1	40
361	New Flexible Multiple-Precision Multiply-Accumulate Unit for Deep Neural Network Training and Inference. IEEE Transactions on Computers, 2020, 69, 26-38.	3.4	26
362	iCELIA: A Full-Stack Framework for STT-MRAM-Based Deep Learning Acceleration. IEEE Transactions on Parallel and Distributed Systems, 2020, 31, 408-422.	5.6	15
363	Asymptotic Soft Filter Pruning for Deep Convolutional Neural Networks. IEEE Transactions on Cybernetics, 2020, 50, 3594-3604.	9.5	111

#	Article	IF	CITATIONS
364	Emerging neuromorphic devices. Nanotechnology, 2020, 31, 092001.	2.6	177
365	Implementation of DNNs on IoT devices. Neural Computing and Applications, 2020, 32, 1327-1356.	5.6	14
366	Image representation of pose-transition feature for 3D skeleton-based action recognition. Information Sciences, 2020, 513, 112-126.	6.9	62
367	Prediction of pipe failures in water supply networks using logistic regression and support vector classification. Reliability Engineering and System Safety, 2020, 196, 106754.	8.9	98
368	Neural Compatibility Modeling With Probabilistic Knowledge Distillation. IEEE Transactions on Image Processing, 2020, 29, 871-882.	9.8	36
369	Efficient convolution pooling on the GPU. Journal of Parallel and Distributed Computing, 2020, 138, 222-229.	4.1	11
370	A streaming architecture for Convolutional Neural Networks based on layer operations chaining. Journal of Real-Time Image Processing, 2020, 17, 1715-1733.	3.5	9
371	Embedded Intelligence in the Internet-of-Things. IEEE Design and Test, 2020, 37, 7-27.	1.2	11
372	Incremental Learning in Deep Convolutional Neural Networks Using Partial Network Sharing. IEEE Access, 2020, 8, 4615-4628.	4.2	61
373	Memristive and CMOS Devices for Neuromorphic Computing. Materials, 2020, 13, 166.	2.9	83
374	CNN-Grinder: From Algorithmic to High-Level Synthesis descriptions of CNNs for Low-end-low-cost FPGA SoCs. Microprocessors and Microsystems, 2020, 73, 102990.	2.8	33
375	Magnetic Domain Wall Based Synaptic and Activation Function Generator for Neuromorphic Accelerators. Nano Letters, 2020, 20, 1033-1040.	9.1	72
376	Convolutional neural network: a review of models, methodologies and applications to object detection. Progress in Artificial Intelligence, 2020, 9, 85-112.	2.4	506
377	In-Hardware Training Chip Based on CMOS Invertible Logic for Machine Learning. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 1541-1550.	5.4	19
378	Compressing Deep Neural Networks With Sparse Matrix Factorization. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31, 3828-3838.	11.3	12
379	A high accurate automated firstâ€break picking method for seismic records from highâ€density acquisition in areas with a complex surface. Geophysical Prospecting, 2020, 68, 1228-1252.	1.9	4
380	Enabling Timing Error Resilience for Low-Power Systolic-Array Based Deep Learning Accelerators. IEEE Design and Test, 2020, 37, 93-102.	1.2	10
381	An FPGA Implementation of Deep Spiking Neural Networks for Low-Power and Fast Classification. Neural Computation, 2020, 32, 182-204.	2.2	46

ARTICLE IF CITATIONS # Applications of Artificial Intelligence Methodologies to Behavioral and Social Sciences. Journal of 382 1.3 7 Child and Family Studies, 2020, 29, 2954-2966. Ara: A 1-GHz+ Scalable and Energy-Efficient RISC-V Vector Processor With Multiprecision Floating-Point Support in 22-nm FD-SOI. IEEE Transactions on Very Large Scale Integration (VLSI) 3.1 48 Systems, 2020, 28, 530-543. Prediction of hot ductility of steels from elemental composition and thermal history by deep neural 384 2.114 networks. Ironmaking and Steelmaking, 2020, 47, 1176-1187. Photometry of high-redshift blended galaxies using deep learning. Monthly Notices of the Royal 385 4.4 Astronomical Society, 2020, 491, 2481-2495. Res-DNN: A Residue Number System-Based DNN Accelerator Unit. IEEE Transactions on Circuits and 386 5.4 37 Systems I: Regular Papers, 2020, 67, 658-671. Training Large-scale Artificial Neural Networks on Simulated Resistive Crossbar Arrays. IEEE Design and Test, 2020, 37, 19-29. 1.2 A novel classification-selection approach for the self updating of template-based face recognition 388 8.1 22 systems. Pattern Recognition, 2020, 100, 107121. PV-MAC: Multiply-and-accumulate unit structure exploiting precision variability in on-device 389 2.1 convolutional neural networks. The Integration VLSI Journal, 2020, 71, 76-85. SalvageDNN: salvaging deep neural network accelerators with permanent faults through 390 saliency-driven fault-aware mapping. Philosophical Transactions Series A, Mathematical, Physical, and 3.4 18 Engineering Sciences, 2020, 378, 20190164. Toward Edge-Based Deep Learning in Industrial Internet of Things. IEEE Internet of Things Journal, 8.7 124 2020, 7, 4329-4341. Fired Neuron Rate Based Decision Tree for Detection of Adversarial Examples in DNNs., 2020, , . 392 3 Accelerating Depthwise Convolution and Pooling Operations on z-First Storage CNN Architectures. , 2020,,. Predicting Temperature of Permanent Magnet Synchronous Motor Based on Deep Neural Network. 394 3.1 26 Energies, 2020, 13, 4782. Data analysis in visual power line inspection: An in-depth review of deep learning for component 39 detection and fault diagnosis. Annual Reviews in Control, 2020, 50, 253-277. What is the resource footprint of a computer science department? Place, people, and Pedagogy. Data & 396 1.8 0 Policy, 2020, 2, . GPNPU: Enabling Efficient Hardware-Based Direct Convolution with Multi-Precision Support in GPU Tensor Cores. , 2020, , . Advancement from neural networks to deep learning in software effort estimation: Perspective of 398 15.348 two decades. Computer Science Review, 2020, 38, 100288. COVID-CAPS: A capsule network-based framework for identification of COVID-19 cases from X-ray 399 4.2 images. Pattern Recognition Letters, 2020, 138, 638-643.

#	Article	IF	CITATIONS
400	Hyperspectral imaging technology for quality and safety evaluation of horticultural products: A review and celebration of the past 20-year progress. Postharvest Biology and Technology, 2020, 170, 111318.	6.0	123
401	Localization and recognition of leukocytes in peripheral blood: A deep learning approach. Computers in Biology and Medicine, 2020, 126, 104034.	7.0	35
402	Automated optimization for memoryâ€efficient highâ€performance deep neural network accelerators. ETRI Journal, 2020, 42, 505-517.	2.0	8
403	Emerging Memristive Artificial Synapses and Neurons for Energyâ€Efficient Neuromorphic Computing. Advanced Materials, 2020, 32, e2004659.	21.0	175
404	PulseDL: A reconfigurable deep learning array processor dedicated to pulse characterization for high energy physics detectors. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 978, 164420.	1.6	5
405	SubFlow: A Dynamic Induced-Subgraph Strategy Toward Real-Time DNN Inference and Training. , 2020, , .		23
406	Improving Persian Digit Recognition by Combining Deep Neural Networks and SVM and Using PCA. , 2020, , .		4
407	Analysis of a Pipelined Architecture for Sparse DNNs on Embedded Systems. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020, 28, 1993-2003.	3.1	10
408	Optimising Resource Management for Embedded Machine Learning. , 2020, , .		7
409	Modulation Classification using Joint Time and Frequency-domain Data. , 2020, , .		3
410	PhoneBit: Efficient GPU-Accelerated Binary Neural Network Inference Engine for Mobile Phones. , 2020, , .		8
411	Minimizing the usage of hardware counters for collective communication using triggered operations. Parallel Computing, 2020, 98, 102636.	2.1	0
412	aCortex: An Energy-Efficient Multipurpose Mixed-Signal Inference Accelerator. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, 2020, 6, 98-106.	1.5	5
413	Improving Energy-Efficiency of CNNs via Prediction of Reducible Convolutions for Energy-Constrained IoT Devices. , 2020, , .		0
414	Complexity-Scalable Neural-Network-Based MIMO Detection With Learnable Weight Scaling. IEEE Transactions on Communications, 2020, 68, 6101-6113.	7.8	23
415	Learning-based tongue detection for automatic tongue color diagnosis system. Artificial Life and Robotics, 2020, 25, 363-369.	1.2	4
416	Reducing Impact of CNFET Process Imperfections on Shape of Activation Function by Using Connection Pruning and Approximate Neuron Circuit. , 2020, , .		0
417	Modeling of Pruning Techniques for Simplifying Deep Neural Networks. , 2020, , .		11

#	Article	IF	CITATIONS
418	An Updated Survey of Efficient Hardware Architectures for Accelerating Deep Convolutional Neural Networks. Future Internet, 2020, 12, 113.	3.8	111
419	A Novel Framework Using Deep Auto-Encoders Based Linear Model for Data Classification. Sensors, 2020, 20, 6378.	3.8	15
420	A Novel Method for Sea-Land Clutter Separation Using Regularized Randomized and Kernel Ridge Neural Networks. Sensors, 2020, 20, 6491.	3.8	3
421	Machine learning for human learners: opportunities, issues, tensions and threats. Educational Technology Research and Development, 2021, 69, 2109-2130.	2.8	38
422	Integer Convolutional Neural Networks with Boolean Activations: The BoolHash Algorithm. , 2020, , .		1
423	Memristors—From Inâ€Memory Computing, Deep Learning Acceleration, and Spiking Neural Networks to the Future of Neuromorphic and Bioâ€Inspired Computing. Advanced Intelligent Systems, 2020, 2, 2000085.	6.1	143
424	Low-bit Quantization Needs Good Distribution. , 2020, , .		4
425	Data-Free Network Quantization With Adversarial Knowledge Distillation. , 2020, , .		48
426	Dithered backprop: A sparse and quantized backpropagation algorithm for more efficient deep neural network training. , 2020, , .		3
427	Nonsilicon, Non-von Neumann Computing—Part II. Proceedings of the IEEE, 2020, 108, 1211-1218.	21.3	2
427 428	Nonsilicon, Non-von Neumann Computingâ€"Part II. Proceedings of the IEEE, 2020, 108, 1211-1218. Neuromorphic Engineering for Hardware Computational Acceleration and Biomimetic Perception Motion Integration. Advanced Intelligent Systems, 2020, 2, 2000124.	21.3 6.1	2
427 428 429	Nonsilicon, Non-von Neumann Computingâ€"Part II. Proceedings of the IEEE, 2020, 108, 1211-1218. Neuromorphic Engineering for Hardware Computational Acceleration and Biomimetic Perception Motion Integration. Advanced Intelligent Systems, 2020, 2, 2000124. Energy-Efficient Machine Learning on the Edges. , 2020, .	21.3 6.1	2 17 9
427 428 429 430	Nonsilicon, Non-von Neumann Computingâ€"Part II. Proceedings of the IEEE, 2020, 108, 1211-1218. Neuromorphic Engineering for Hardware Computational Acceleration and Biomimetic Perception Motion Integration. Advanced Intelligent Systems, 2020, 2, 2000124. Energy-Efficient Machine Learning on the Edges. , 2020, CASH-RAM: Enabling In-Memory Computations for Edge Inference Using Charge Accumulation and Sharing in Standard 8T-SRAM Arrays. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2020, 10, 295-305.	21.3 6.1 3.6	2 17 9 16
 427 428 429 430 431 	Nonsilicon, Non-von Neumann Computingâ€"Part II. Proceedings of the IEEE, 2020, 108, 1211-1218. Neuromorphic Engineering for Hardware Computational Acceleration and Biomimetic Perception Motion Integration. Advanced Intelligent Systems, 2020, 2, 2000124. Energy-Efficient Machine Learning on the Edges. , 2020, , . CASH-RAM: Enabling In-Memory Computations for Edge Inference Using Charge Accumulation and Sharing in Standard 8T-SRAM Arrays. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2020, 10, 295-305. A Communication-Aware DNN Accelerator on ImageNet Using In-Memory Entry-Counting Based Algorithm-Circuit-Architecture Co-Design in 65-nm CMOS. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2020, 10, 283-294.	21.3 6.1 3.6 3.6	2 17 9 16 9
 427 428 429 430 431 432 	Nonsilicon, Non-von Neumann Computingâ€"Part II. Proceedings of the IEEE, 2020, 108, 1211-1218. Neuromorphic Engineering for Hardware Computational Acceleration and Biomimetic Perception Motion Integration. Advanced Intelligent Systems, 2020, 2, 2000124. Energy-Efficient Machine Learning on the Edges. , 2020, , . CASH-RAM: Enabling In-Memory Computations for Edge Inference Using Charge Accumulation and Sharing in Standard 8T-SRAM Arrays. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2020, 10, 295-305. A Communication-Aware DNN Accelerator on ImageNet Using In-Memory Entry-Counting Based Algorithm-Circuit-Architecture Co-Design in 65-nm CMOS. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2020, 10, 283-294. Always-On 674Î1/4 W@4GOP/s Error Resilient Binary Neural Networks With Aggressive SRAM Voltage Scaling on a 22-nm IoT End-Node. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 3905-3918.	21.3 6.1 3.6 3.6 5.4	2 17 9 16 9 23
 427 428 429 430 431 432 432 433 	Nonsilicon, Non-von Neumann Computingâ€"Part II. Proceedings of the IEEE, 2020, 108, 1211-1218.Neuromorphic Engineering for Hardware Computational Acceleration and Biomimetic Perception Motion Integration. Advanced Intelligent Systems, 2020, 2, 2000124.Energy-Efficient Machine Learning on the Edges. , 2020, , .CASH-RAM: Enabling In-Memory Computations for Edge Inference Using Charge Accumulation and Sharing in Standard 81-SRAM Arrays. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2020, 10, 295-305.A Communication-Aware DNN Accelerator on ImageNet Using In-Memory Entry-Counting Based Algorithm-Circuit-Architecture Co-Design in 65-nm CMOS. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2020, 10, 283-294.Always-On 674Îl/4 W@4GOP/s Error Resilient Binary Neural Networks With Aggressive SRAM Voltage Scaling on a 22-nm IoT End-Node. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 3905-3918.Convolutional Neural Network Based on Bandwise-Independent Convolution and Hard Thresholding for Hyperspectral Band Selection. IEEE Transactions on Cybernetics, 2021, 51, 4414-4428.	21.3 6.1 3.6 3.6 5.4 9.5	2 17 9 16 9 23 23
 427 428 429 430 431 432 433 434 	Nonsilicon, Non-von Neumann Computingâ Part II. Proceedings of the IEEE, 2020, 108, 1211-1218. Neuromorphic Engineering for Hardware Computational Acceleration and Biomimetic Perception Motion Integration. Advanced Intelligent Systems, 2020, 2, 2000124. Energy-Efficient Machine Learning on the Edges. , 2020, , . CASH-RAM: Enabling In-Memory Computations for Edge Inference Using Charge Accumulation and Sharing in Standard 8T-SRAM Arrays. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2020, 10, 295-305. A Communication-Aware DNN Accelerator on ImageNet Using In-Memory Entry-Counting Based Algorithm-Circuit-Architecture Co-Design in 65-nm CMOS. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2020, 10, 283-294. Always-On 674Î1/4 W@4GOP/s Error Resilient Binary Neural Networks With Aggressive SRAM Voltage Scaling on a 22-nm IoT End-Node. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 3905-3918. Convolutional Neural Network Based on Bandwise-Independent Convolution and Hard Thresholding for Hyperspectral Band Selection. IEEE Transactions on Cybernetics, 2021, 51, 4414-4428. Neural Networks for Epileptic Seizure Prediction: Algorithms and Hardware Implementation. , 2020,	21.3 6.1 3.6 3.6 5.4 9.5	2 17 9 16 9 23 23 48 2

#	Article	IF	CITATIONS
436	Enhancing Model Parallelism in Neural Architecture Search for Multidevice System. IEEE Micro, 2020, 40, 46-55.	1.8	3
437	Method of Oriented Contour Detection on Image Using Lorentz Function. , 2020, , .		3
438	Generative image inpainting for link prediction. Applied Intelligence, 2020, 50, 4482-4494.	5.3	2
439	Learning Sparse Low-Precision Neural Networks With Learnable Regularization. IEEE Access, 2020, 8, 96963-96974.	4.2	15
440	Energy Efficiency of Machine Learning in Embedded Systems Using Neuromorphic Hardware. Electronics (Switzerland), 2020, 9, 1069.	3.1	14
441	A PSD Maps Estimation Algorithm for Underlay Cognitive Radio Networks Based on the Convolutional Neural Network. Mathematical Problems in Engineering, 2020, 2020, 1-10.	1.1	2
442	Deep learning architectures in emerging cloud computing architectures: Recent development, challenges and next research trend. Applied Soft Computing Journal, 2020, 96, 106582.	7.2	50
443	Improving Inference Latency and Energy of Network-on-Chip based Convolutional Neural Networks through Weights Compression. , 2020, , .		4
444	Real-time Automatic Modulation Classification using RFSoC. , 2020, , .		16
445	An Efficient Multicore CPU Implementation for Convolution-Pooling Computation in CNNs. , 2020, , .		3
446	BioCNN: A Hardware Inference Engine for EEG-Based Emotion Detection. IEEE Access, 2020, 8, 140896-140914.	4.2	28
447	DRQ: Dynamic Region-based Quantization for Deep Neural Network Acceleration. , 2020, , .		49
448	A Deep learning approach for the Estimation of Middleton Class-A Impulsive Noise Parameters. , 2020, , .		9
449	Lupulus: A Flexible Hardware Accelerator for Neural Networks. , 2020, , .		0
450	Analysis of Event-Based PI Controller and Some Proposed Improvements. , 2020, , .		0
451	AdaDeep: A Usage-Driven, Automated Deep Model Compression Framework for Enabling Ubiquitous Intelligent Mobiles. IEEE Transactions on Mobile Computing, 2021, 20, 3282-3297.	5.8	9
452	Extracting the fundamental diagram from aerial footage. , 2020, , .		11
453	A Review of Face Recognition Technology. IEEE Access, 2020, 8, 139110-139120.	4.2	136

#	Article	IF	CITATIONS
454	Compression or Corruption? A Study on the Effects of Transient Faults on BNN Inference Accelerators. , 2020, , .		6
455	Propagating Asymptotic-Estimated Gradients for Low Bitwidth Quantized Neural Networks. IEEE Journal on Selected Topics in Signal Processing, 2020, 14, 848-859.	10.8	2
456	Dependable Deep Learning: Towards Cost-Efficient Resilience of Deep Neural Network Accelerators against Soft Errors and Permanent Faults. , 2020, , .		7
457	A bird's-eye view of deep learning in bioimage analysis. Computational and Structural Biotechnology Journal, 2020, 18, 2312-2325.	4.1	94
458	Techniques and applications for soccer video analysis: A survey. Multimedia Tools and Applications, 2020, 79, 29685-29721.	3.9	19
459	Dynamic Convolutions: Exploiting Spatial Sparsity for Faster Inference. , 2020, , .		81
460	A Partially Binarized Hybrid Neural Network System for Low-Power and Resource Constrained Human Activity Recognition. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 3893-3904.	5.4	16
461	MEM-OPT: A Scheduling and Data Re-Use System to Optimize On-Chip Memory Usage for CNNs On-Board FPGAs. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2020, 10, 335-347.	3.6	16
462	RISC-V ² : A Scalable RISC-V Vector Processor. , 2020, , .		18
463	Refresh Power Reduction of DRAMs in DNN Systems Using Hybrid Voting and ECC Method. , 2020, , .		0
464	Prevention of cyber attacks in smart manufacturing applying modern neural network methods. IOP Conference Series: Materials Science and Engineering, 2020, 940, 012011.	0.6	9
465	Passive Through-Wall Counting of People Walking Using WiFi Beamforming Reports. IEEE Systems Journal, 2021, 15, 5476-5482.	4.6	2
466	Event-Based Vision: Understanding Network Traffic Characteristics. , 2020, , .		1
467	Imperceptible Misclassification Attack on Deep Learning Accelerator by Glitch Injection. , 2020, , .		22
468	Input-Dependent Edge-Cloud Mapping of Recurrent Neural Networks Inference. , 2020, , .		6
469	Low Power Tiny Binary Neural Network with improved accuracy in Human Recognition Systems. , 2020,		11
470	A Fast 2-D Convolution Technique for Deep Neural Networks. , 2020, , .		4
471	A Gradient-Interleaved Scheduler for Energy-Efficient Backpropagation for Training Neural Networks. , 2020, , .		4

ARTICLE IF CITATIONS # Edge Intelligence in the Making: Optimization, Deep Learning, and Applications. Synthesis Lectures on 472 0.7 9 Learning Networks and Algorithms, 2020, 1, 1-233. A Survey of Deep Learning for Data Caching in Edge Network. Informatics, 2020, 7, 43. 474 Neural coding: adapting spike generation for embedded hardware classification., 2020,,. 4 Soft errors in DNN accelerators: A comprehensive review. Microelectronics Reliability, 2020, 115, 113969. Peer Consonance in Blockchain based Healthcare Application using AI-based Consensus Mechanism., 476 7 2020, , . Advantages and Limitations of Fully on-Chip CNN FPGA-Based Hardware Accelerator., 2020, , . Reliable and Rapid Traffic Congestion Detection Approach Based on Deep Residual Learning and Motion 478 4.2 9 Trajectories. IEEE Access, 2020, 8, 182180-182192. Training Hardware for Binarized Convolutional Neural Network Based on CMOS Invertible Logic. IEEE 479 4.2 Access, 2020, 8, 188004-188014. CNN Acceleration With Hardware-Efficient Dataflow for Super-Resolution. IEEE Access, 2020, 8, 480 4.2 14 187754-187765. Secure CNN Accelerator., 2020,,. LogicNets: Co-Designed Neural Networks and Circuits for Extreme-Throughput Applications., 2020,,. 482 48 An Inference Hardware Accelerator for EEG-Based Emotion Detection., 2020, , . Optimization of Analog Accelerators for Deep Neural Networks Inference., 2020,,. 484 1 Libraries of Approximate Circuits: Automated Design and Application in CNN Accelerators. IEEE Journal 3.6 on Emerging and Selected Topics in Circuits and Systems, 2020, 10, 406-418. A Conceptual Framework for Stochastic Neuromorphic Computing. IEEE Design and Test, 2020, , 1-1. 486 1.2 3 PETNet: Polycount and Energy Trade-off Deep Networks for Producing 3D Objects from Images., 2020,, DRMap: A Generic DRAM Data Mapping Policy for Energy-Efficient Processing of Convolutional Neural 488 10 Networks. , 2020, , . SCYLLA: QoE-aware Continuous Mobile Vision with FPGA-based Dynamic Deep Neural Network 489 Reconfiguration., 2020,,.

		CITATION R	EPORT	
#	ARTICLE		IF	CITATIONS
490	All Elastic Neural Network Toward Multi-Grained Re-configurable Accelerator., 2020,,.			0
491	An Incremental Learning Framework to Enhance Teaching by Demonstration Based on N Sensor Fusion. Frontiers in Neurorobotics, 2020, 14, 55.	lultimodal	2.8	6
492	Optimal User Selection for High-Performance and Stabilized Energy-Efficient Federated I Platforms. Electronics (Switzerland), 2020, 9, 1359.	_earning	3.1	13
493	Rapid vessel segmentation and reconstruction of head and neck angiograms using 3D c neural network. Nature Communications, 2020, 11, 4829.	onvolutional	12.8	57
494	Deep Learning Based Pothole Detection and Reporting System. , 2020, , .			3
495	Hardware design and the competency awareness of a neural network. Nature Electronic 514-523.	s, 2020, 3,	26.0	14
496	An Overview of Efficient Interconnection Networks for Deep Neural Network Accelerato Journal on Emerging and Selected Topics in Circuits and Systems, 2020, 10, 268-282.	rs. IEEE	3.6	46
497	Inâ€Memory Binary Vector–Matrix Multiplication Based on Complementary Resistive S Intelligent Systems, 2020, 2, 2000134.	Switches. Advanced	6.1	9
498	Efficient Deconvolution Architecture for Heterogeneous Systems-on-Chip. Journal of Ima 85.	aging, 2020, 6,	3.0	5
499	Recent Advancements in Emerging Neuromorphic Device Technologies. Advanced Intelli 2020, 2, 2000111.	gent Systems,	6.1	13
500	COSMIC: Content-based Onboard Summarization to Monitor Infrequent Change. , 2020), , .		4
501	An Experimental Study of Reduced-Voltage Operation in Modern FPGAs for Neural Netw Acceleration. , 2020, , .	ork		28
502	Modeling and Demonstration of Hardware-based Deep Neural Network (DNN) Inference Memristor Crossbar Array considering Signal Integrity. , 2020, , .	using		2
503	CRIME: Input-Dependent Collaborative Inference for Recurrent Neural Networks. IEEE Tra Computers, 2020, , 1-1.	ansactions on	3.4	10
504	Halide Perovskite Quantum Dots Photosensitizedâ€Amorphous Oxide Transistors for M Synapses. Advanced Materials Technologies, 2020, 5, 2000514.	ultimodal	5.8	38
505	The Hardware and Algorithm Co-Design for Energy-Efficient DNN Processor on Edge/Mol IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 3458-3470.	bile Devices.	5.4	25
506	Artificial Neural Network Model for Design Optimization of 2-stage Op-amp. , 2020, , .			2
507	Web page classification based on heterogeneous features and a combination of multiple Frontiers of Information Technology and Electronic Engineering, 2020, 21, 995-1004.	e classifiers.	2.6	6

0.			D	
		ON		ODT.
\sim	171		NLF	

#	ARTICLE	IF	CITATIONS
508	A Systematic Study of Tiny YOLO3 Inference: Toward Compact Brainware Processor With Less Memory and Logic Gate. IEEE Access, 2020, 8, 142931-142955.	4.2	15
509	Deep Learning for LiDAR Point Clouds in Autonomous Driving: A Review. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32, 3412-3432.	11.3	219
510	Mixed-Signal Vector-by-Matrix Multiplier Circuits Based on 3D-NAND Memories for Neurocomputing. , 2020, , .		12
511	MPQ-YOLACT: Mixed-Precision Quantization for Lightweight YOLACT. , 2020, , .		3
512	CPU-Accelerator Co-Scheduling for CNN Acceleration at the Edge. IEEE Access, 2020, 8, 211422-211433.	4.2	14
513	Hardware and Software Optimizations for Accelerating Deep Neural Networks: Survey of Current Trends, Challenges, and the Road Ahead. IEEE Access, 2020, 8, 225134-225180.	4.2	91
514	An Energy-Efficient Implementation of Group Pruned CNNs on FPGA. IEEE Access, 2020, 8, 217033-217044.	4.2	9
515	Classification of unknown Internet traffic applications using Multiple Neural Network algorithm. , 2020, , .		2
516	Brain-Inspired Computing: Models and Architectures. IEEE Open Journal of Circuits and Systems, 2020, 1, 185-204.	1.9	21
517	Hardware Implementation of Deep Network Accelerators Towards Healthcare and Biomedical Applications. IEEE Transactions on Biomedical Circuits and Systems, 2020, 14, 1138-1159.	4.0	93
518	A Study on Co-occurrence of various Lung Diseases and COVID-19 by observing Chest X-Ray Similarity using Deep Convolutional Neural Networks. , 2020, , .		2
519	Adaptive Deep Co-Occurrence Feature Learning Based on Classifier-Fusion for Remote Sensing Scene Classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 155-164.	4.9	7
520	Implementation of convolution neural network on GPDSP. , 2020, , .		0
521	Wavelength Demodulation of Overlapping Spectra in FBG Sensor Networ Based on Deep Neural Network*. , 2020, , .		0
522	A Fast Design Space Exploration Framework for the Deep Learning Accelerators: Work-in-Progress. , 2020, , .		0
523	Semiotic Aggregation in Deep Learning. Entropy, 2020, 22, 1365.	2.2	5
524	A Deep Manifold Representation for Information Discovery. , 2020, , .		0
525	A Systolic Accelerator for Neuromorphic Visual Recognition. Electronics (Switzerland), 2020, 9, 1690.	3.1	1

#	Article	IF	CITATIONS
526	Challenges and Opportunities in Near-Threshold DNN Accelerators around Timing Errors. Journal of Low Power Electronics and Applications, 2020, 10, 33.	2.0	5
527	Inference of Deep Neural Networks with Analog Memory Devices. , 2020, , .		3
528	Everything Leaves Footprints: Hardware Accelerated Intermittent Deep Inference. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 3479-3491.	2.7	23
529	Twenty years of safety pharmacology model validation and the wider implications of this to drug discovery. Journal of Pharmacological and Toxicological Methods, 2020, 105, 106912.	0.7	2
530	A High Throughput MobileNetV2 FPGA Implementation Based on a Flexible Architecture for Depthwise Separable Convolution. , 2020, , .		18
531	Neural Synaptic Plasticity-Like Computing: An Ultra-Low Cost Approach for Artificial Neural Networks Implementation. , 2020, , .		Ο
532	Convolutional Neural Network Pruning Using Filter Attenuation. , 2020, , .		4
533	Software-Level Accuracy Using Stochastic Computing With Charge-Trap-Flash Based Weight Matrix. , 2020, , .		3
534	MC ² RAM: Markov Chain Monte Carlo Sampling in SRAM for Fast Bayesian Inference. , 2020, , .		16
535	Boosting Bit-Error Resilience of DNN Accelerators Through Median Feature Selection. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 3250-3262.	2.7	21
535 536	Boosting Bit-Error Resilience of DNN Accelerators Through Median Feature Selection. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 3250-3262. Intelligent Classification of Wear Particles Based on Deep Convolutional Neural Network. Journal of Physics: Conference Series, 2020, 1519, 012012.	2.7 0.4	21
535 536 537	Boosting Bit-Error Resilience of DNN Accelerators Through Median Feature Selection. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 3250-3262. Intelligent Classification of Wear Particles Based on Deep Convolutional Neural Network. Journal of Physics: Conference Series, 2020, 1519, 012012. A Fifo Based Accelerator for Convolutional Neural Networks. , 2020, , .	2.7 0.4	21 2 4
535 536 537 538	Boosting Bit-Error Resilience of DNN Accelerators Through Median Feature Selection. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 3250-3262. Intelligent Classification of Wear Particles Based on Deep Convolutional Neural Network. Journal of Physics: Conference Series, 2020, 1519, 012012. A Fifo Based Accelerator for Convolutional Neural Networks. , 2020, , . Oâ+DNN: A Hybrid DSP-LUT-Based Processing Unit With Operation Packing and Out-of-Order Execution for Efficient Realization of Convolutional Neural Networks on FPGA Devices. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 3056-3069.	2.7 0.4 5.4	21 2 4 2
535 536 537 538	Boosting Bit-Error Resilience of DNN Accelerators Through Median Feature Selection. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 3250-3262. Intelligent Classification of Wear Particles Based on Deep Convolutional Neural Network. Journal of Physics: Conference Series, 2020, 1519, 012012. A Fifo Based Accelerator for Convolutional Neural Networks. , 2020, , . Oãé-DNN: A Hybrid DSP-LUT-Based Processing Unit With Operation Packing and Out-of-Order Execution for Efficient Realization of Convolutional Neural Networks on FPGA Devices. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 3056-3069. Evolving conductive polymer neural networks on wetware. Japanese Journal of Applied Physics, 2020, 59, 060601.	2.7 0.4 5.4 1.5	21 2 4 2 2
 535 536 537 538 539 540 	Boosting Bit-Error Resilience of DNN Accelerators Through Median Feature Selection. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 3250-3262. Intelligent Classification of Wear Particles Based on Deep Convolutional Neural Network. Journal of Physics: Conference Series, 2020, 1519, 012012. A Fifo Based Accelerator for Convolutional Neural Networks. , 2020, , . Oâ-DNN: A Hybrid DSP-LUT-Based Processing Unit With Operation Packing and Out-of-Order Execution for Efficient Realization of Convolutional Neural Networks on FPGA Devices. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 3056-3069. Evolving conductive polymer neural networks on wetware. Japanese Journal of Applied Physics, 2020, 59, 060601. Early detection of ankylosing spondylitis using texture features and statistical machine learning, and deep learning, with some patient age analysis. Computerized Medical Imaging and Graphics, 2020, 82, 101718.	2.7 0.4 5.4 1.5 5.8	21 2 4 2 14 25
 535 536 537 538 539 540 541 	Boosting Bit-Error Resilience of DNN Accelerators Through Median Feature Selection. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 3250-3262. Intelligent Classification of Wear Particles Based on Deep Convolutional Neural Network. Journal of Physics: Conference Series, 2020, 1519, 012012. A Fifo Based Accelerator for Convolutional Neural Networks. , 2020, , . Oâ+DNN: A Hybrid DSP-LUT-Based Processing Unit With Operation Packing and Out-of-Order Execution for Efficient Realization of Convolutional Neural Networks on FPGA Devices. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 3056-3069. Evolving conductive polymer neural networks on wetware. Japanese Journal of Applied Physics, 2020, 59, 066061. Early detection of ankylosing spondylitis using texture features and statistical machine learning, and deep learning, with some patient age analysis. Computerized Medical Imaging and Graphics, 2020, 82, 101718. SSCD: Sparsity-Promoting Stochastic Gradient Descent Algorithm for Unbiased Dnn Pruning. , 2020, 2020, 5410-5414.	2.7 0.4 5.4 1.5 5.8	21 2 4 2 14 25 2
 535 536 537 538 539 540 541 542 	Boosting Bit-Error Resilience of DNN Accelerators Through Median Feature Selection. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 3250-3262. Intelligent Classification of Wear Particles Based on Deep Convolutional Neural Network. Journal of Physics: Conference Series, 2020, 1519, 012012. A Fifo Based Accelerator for Convolutional Neural Networks., 2020, , . O&Dit DSP-LUT-Based Processing Unit With Operation Packing and Out-of-Order Execution for Efficient Realization of Convolutional Neural Networks on FPGA Devices. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 3056-3069. Evolving conductive polymer neural networks on wetware. Japanese Journal of Applied Physics, 2020, 59, 060601. Early detection of ankylosing spondylitis using texture features and statistical machine learning, and deep learning, with some patient age analysis. Computerized Medical Imaging and Graphics, 2020, 82, 101718. SSCD: Sparsity-Promoting Stochastic Gradient Descent Algorithm for Unbiased Dnn Pruning. , 2020, 2020, 5410-5414. Review of prominent strategies for mapping CNNs onto embedded systems. IEEE Latin America Transactions, 2020, 18, 971-982.	2.7 0.4 5.4 1.5 5.8 1.6	21 2 4 2 14 25 2 2

#	Article	IF	CITATIONS
544	An Optimization Technique for General Neural Network Hardware Architecture. , 2020, , .		1
545	Mind your privacy: Privacy leakage through BCI applications using machine learning methods. Knowledge-Based Systems, 2020, 198, 105932.	7.1	20
546	Using Libraries of Approximate Circuits in Design of Hardware Accelerators of Deep Neural Networks. , 2020, , .		12
547	TentacleNet: A Pseudo-Ensemble Template for Accurate Binary Convolutional Neural Networks. , 2020, , .		2
548	A Programmable Heterogeneous Microprocessor Based on Bit-Scalable In-Memory Computing. IEEE Journal of Solid-State Circuits, 2020, 55, 2609-2621.	5.4	89
549	NeuPart: Using Analytical Models to Drive Energy-Efficient Partitioning of CNN Computations on Cloud-Connected Mobile Clients. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020, 28, 1844-1857.	3.1	10
550	Machine learning methods for digital holography and diffractive optics. Procedia Computer Science, 2020, 169, 440-444.	2.0	12
551	Review of Automatic Detection and Classification Techniques for Cetacean Vocalization. IEEE Access, 2020, 8, 105181-105206.	4.2	36
552	On building a CNN-based multi-view smart camera for real-time object detection. Microprocessors and Microsystems, 2020, 77, 103177.	2.8	10
553	State-of-Charge Estimation of Li-Ion Battery in Electric Vehicles: A Deep Neural Network Approach. IEEE Transactions on Industry Applications, 2020, 56, 5565-5574.	4.9	148
554	Machine Learning based prediction of noncentrosymmetric crystal materials. Computational Materials Science, 2020, 183, 109792.	3.0	18
555	PANTHER: A Programmable Architecture for Neural Network Training Harnessing Energy-Efficient ReRAM. IEEE Transactions on Computers, 2020, 69, 1128-1142.	3.4	54
556	A NoC-based simulator for design and evaluation of deep neural networks. Microprocessors and Microsystems, 2020, 77, 103145.	2.8	8
557	Accelerating Deep Neural Networks with Analog Memory Devices. , 2020, , .		5
558	Identification of Partially Resolved Objects in Space Imagery with Convolutional Neural Networks. Journal of the Astronautical Sciences, 2020, 67, 1092-1115.	1.5	1
559	Indoor Positioning System Using Artificial Neural Network With Swarm Intelligence. IEEE Access, 2020, 8, 84248-84257.	4.2	13
560	FPGA based convolution and memory architecture for Convolutional Neural Network. , 2020, , .		1
561	Electrical Impedance Tomography-Based Abdominal Subcutaneous Fat Estimation Method Using Deep Learning. Computational and Mathematical Methods in Medicine, 2020, 2020, 1-14.	1.3	8

#	Article	IF	Citations
562	Enabling High-Performance DNN Inference Accelerators Using Non-Volatile Analog Memory (Invited). , 2020, , .		5
563	Analyzing the impact of soft errors in VGG networks implemented on GPUs. Microelectronics Reliability, 2020, 110, 113648.	1.7	14
564	Software Vulnerability Detection Using Deep Neural Networks: A Survey. Proceedings of the IEEE, 2020, 108, 1825-1848.	21.3	214
565	Moving Deep Learning to the Edge. Algorithms, 2020, 13, 125.	2.1	48
566	Automated design of error-resilient and hardware-efficient deep neural networks. Neural Computing and Applications, 2020, 32, 18327-18345.	5.6	21
567	A Reconfigurable Convolutional Neural Network-Accelerated Coprocessor Based on RISC-V Instruction Set. Electronics (Switzerland), 2020, 9, 1005.	3.1	25
568	ABCNet: A new efficient 3D denseâ€structure network for segmentation and analysis of body tissue composition on bodyâ€torsoâ€wide CT images. Medical Physics, 2020, 47, 2986-2999.	3.0	10
569	Pilot-Assisted Channel Estimation and Signal Detection in Uplink Multi-User MIMO Systems With Deep Learning. IEEE Access, 2020, 8, 44936-44946.	4.2	27
570	Energy-Efficient Stochastic Computing with Superparamagnetic Tunnel Junctions. Physical Review Applied, 2020, 13, .	3.8	39
571	Energy-Efficient Architecture for CNNs Inference on Heterogeneous FPGA. Journal of Low Power Electronics and Applications, 2020, 10, 1.	2.0	16
572	A fully automated hybrid human sperm detection and classification system based on mobile-net and the performance comparison with conventional methods. Medical and Biological Engineering and Computing, 2020, 58, 1047-1068.	2.8	36
573	A Survey on Deep Learning for Multimodal Data Fusion. Neural Computation, 2020, 32, 829-864.	2.2	252
574	Model Compression and Hardware Acceleration for Neural Networks: A Comprehensive Survey. Proceedings of the IEEE, 2020, 108, 485-532.	21.3	441
575	Pedestrian Detection in Severe Weather Conditions. IEEE Access, 2020, 8, 62775-62784.	4.2	58
576	Memory devices and applications for in-memory computing. Nature Nanotechnology, 2020, 15, 529-544.	31.5	968
577	Universal Deep Neural Network Compression. IEEE Journal on Selected Topics in Signal Processing, 2020, 14, 715-726.	10.8	46
578	Cluster Pruning: An Efficient Filter Pruning Method for Edge AI Vision Applications. IEEE Journal on Selected Topics in Signal Processing, 2020, 14, 802-816.	10.8	36
579	ESP4ML: Platform-Based Design of Systems-on-Chip for Embedded Machine Learning. , 2020, ,		25

# 580	ARTICLE Analog acceleration of deep learning using phase-change memory. , 2020, , 329-362.	IF	CITATIONS 0
581	On the Automatic Exploration of Weight Sharing for Deep Neural Network Compression. , 2020, , .		7
582	Deep Learning for Cardiovascular Risk Stratification. Current Treatment Options in Cardiovascular Medicine, 2020, 22, 1.	0.9	12
583	Fast Inference of Binarized Convolutional Neural Networks Exploiting Max Pooling with Modified Block Structure. IEICE Transactions on Information and Systems, 2020, E103.D, 706-710.	0.7	2
584	Dynamic prioritization of surveillance video data in real-time automated detection systems. Expert Systems With Applications, 2020, 161, 113672.	7.6	2
585	Quantifying drug-induced structural toxicity in hepatocytes and cardiomyocytes derived from hiPSCs using a deep learning method. Journal of Pharmacological and Toxicological Methods, 2020, 105, 106895.	0.7	22
586	Communication-Efficient Edge AI: Algorithms and Systems. IEEE Communications Surveys and Tutorials, 2020, 22, 2167-2191.	39.4	200
587	Deep learning CNN–LSTM framework for Arabic sentiment analysis using textual information shared in social networks. Social Network Analysis and Mining, 2020, 10, 1.	2.8	81
588	Analog architectures for neural network acceleration based on non-volatile memory. Applied Physics Reviews, 2020, 7, .	11.3	100
589	FT-ClipAct: Resilience Analysis of Deep Neural Networks and Improving their Fault Tolerance using Clipped Activation. , 2020, , .		43
590	Deep Photometric Stereo Networks for Determining Surface Normal and Reflectances. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44, 114-128.	13.9	10
591	Hardware-Compliant Compressive Image Sensor Architecture Based on Random Modulations and Permutations for Embedded Inference. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 1218-1231.	5.4	7
592	Automatic reduction of wireless capsule endoscopy reviewing time based on factorization analysis. Biomedical Signal Processing and Control, 2020, 59, 101897.	5.7	16
593	Source number estimation based on a novel multi-view meta-hierarchical classification framework. Measurement Science and Technology, 2020, 31, 065017.	2.6	2
594	Structured Pruning for Efficient Convolutional Neural Networks via Incremental Regularization. IEEE Journal on Selected Topics in Signal Processing, 2020, 14, 775-788.	10.8	17
595	Preserving differential privacy in deep neural networks with relevance-based adaptive noise imposition. Neural Networks, 2020, 125, 131-141.	5.9	35
596	Reducing Energy of Approximate Feature Extraction in Heterogeneous Architectures for Sensor Inference via Energy-Aware Genetic Programming. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 1576-1587.	5.4	4
597	Autonomous Navigation via Deep Reinforcement Learning for Resource Constraint Edge Nodes Using Transfer Learning. IEEE Access, 2020, 8, 26549-26560.	4.2	50

#	Article	IF	CITATIONS
598	Enabling Efficient Fast Convolution Algorithms on GPUs via MegaKernels. IEEE Transactions on Computers, 2020, , 1-1.	3.4	6
599	SLIM: Simultaneous Logic-in-Memory Computing Exploiting Bilayer Analog OxRAM Devices. Scientific Reports, 2020, 10, 2567.	3.3	1,186
600	Inversion of PM2.5 atmospheric refractivity profile based on AlexNet model from the perspective of electromagnetic wave propagation. Environmental Science and Pollution Research, 2020, 27, 37333-37346.	5.3	3
601	Silicon Photonics Codesign for Deep Learning. Proceedings of the IEEE, 2020, 108, 1261-1282.	21.3	52
602	A 1.15-TOPS 6.57-TOPS/W Neural Network Processor for Multi-Scale Object Detection With Reduced Convolutional Operations. IEEE Journal on Selected Topics in Signal Processing, 2020, 14, 634-645.	10.8	7
603	GAAS: An Efficient Group Associated Architecture and Scheduler Module for Sparse CNN Accelerators. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 5170-5182.	2.7	2
604	DSP-Efficient Hardware Acceleration of Convolutional Neural Network Inference on FPGAs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 4867-4880.	2.7	18
605	Bayesian neural networks for flight trajectory prediction and safety assessment. Decision Support Systems, 2020, 131, 113246.	5.9	87
606	Deep Learningâ€Based Singleâ€Cell Optical Image Studies. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2020, 97, 226-240.	1.5	33
607	Memory Optimization for Energy-Efficient Differentially Private Deep Learning. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020, 28, 307-316.	3.1	6
608	XNOR-SRAM: In-Memory Computing SRAM Macro for Binary/Ternary Deep Neural Networks. IEEE Journal of Solid-State Circuits, 2020, , 1-11.	5.4	189
609	A Convolutional Neural Network for Prediction of Laser Power Using Melt-Pool Images in Laser Powder Bed Fusion. IEEE Access, 2020, 8, 23255-23263.	4.2	21
610	Robust Machine Learning Systems: Challenges,Current Trends, Perspectives, and the Road Ahead. IEEE Design and Test, 2020, 37, 30-57.	1.2	77
611	SpArNet: Sparse Asynchronous Neural Network execution for energy efficient inference. , 2020, , .		13
612	Accelerating Deep Neural Networks with Analog Memory Devices. , 2020, , .		5
613	Parallel architecture of powerâ€ofâ€ŧwo multipliers for FPGAs. IET Circuits, Devices and Systems, 2020, 14, 381-389.	1.4	7
614	In-sensor time-domain classifiers using pseudo sigmoid activation functions. The Integration VLSI Journal, 2020, 73, 43-49.	2.1	1
615	Recurrent Neural Networks: An Embedded Computing Perspective. IEEE Access, 2020, 8, 57967-57996.	4.2	54

	Сіта	tion Report	
#	Article	IF	CITATIONS
616	Small-Footprint Keyword Spotting on Raw Audio Data with Sinc-Convolutions. , 2020, , .		32
617	Edge Intelligence: The Confluence of Edge Computing and Artificial Intelligence. IEEE Internet of Things Journal, 2020, 7, 7457-7469.	8.7	480
618	NS-CIM: A Current-Mode Computation-in-Memory Architecture Enabling Near-Sensor Processing for Intelligent IoT Vision Nodes. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 2909-2922.	5.4	25
619	A Parallel Multibit Programing Scheme With High Precision for RRAM-Based Neuromorphic Systems. IEEE Transactions on Electron Devices, 2020, 67, 2213-2217.	3.0	34
620	A Deep Learning Method for Short-Term Residential Load Forecasting in Smart Grid. IEEE Access, 2020, 8, 55785-55797.	4.2	93
621	Energy-Efficient Processing and Robust Wireless Cooperative Transmission for Edge Inference. IEEE Internet of Things Journal, 2020, 7, 9456-9470.	8.7	27
622	PreVlous: A Methodology for Prediction of Visual Inference Performance on IoT Devices. IEEE Internet of Things Journal, 2020, 7, 9227-9240.	8.7	15
623	Impact of MTJ-based nonvolatile circuit techniques for energy-efficient binary neural network hardware. Japanese Journal of Applied Physics, 2020, 59, 050602.	1.5	6
624	Deep learning controller design of embedded control system for maglev train via deep belief network algorithm. Design Automation for Embedded Systems, 2020, 24, 161-181.	1.0	10
625	Semantic Segmentation of Underwater Images Based on Improved Deeplab. Journal of Marine Science and Engineering, 2020, 8, 188.	2.6	45
626	A survey of the recent architectures of deep convolutional neural networks. Artificial Intelligence Review, 2020, 53, 5455-5516.	15.7	1,454
627	NEWLSTM: An Optimized Long Short-Term Memory Language Model for Sequence Prediction. IEEE Access, 2020, 8, 65395-65401.	4.2	14
628	Implementation of deep neural networks on FPGA-CPU platform using Xilinx SDSOC. Analog Integrated Circuits and Signal Processing, 2021, 106, 399-408.	1.4	15
629	A systematic literature review on hardware implementation of artificial intelligence algorithms. Journal of Supercomputing, 2021, 77, 1897-1938.	3.6	72
630	A Learning Framework for <i>n</i> -Bit Quantized Neural Networks Toward FPGAs. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32, 1067-1081.	11.3	16
631	A tutorial on deep learning-based data analytics in manufacturing through a welding case study. Journal of Manufacturing Processes, 2021, 63, 2-13.	5.9	44
632	Real-Time Adaptive Differential Feature-Based Protection Scheme for Isolated Microgrids Using Edge Computing. IEEE Systems Journal, 2021, 15, 1318-1328.	4.6	16
633	Practical Attacks on Deep Neural Networks by Memory Trojaning. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021, 40, 1230-1243.	2.7	16
#	Article	IF	CITATIONS
-----	---	------	-----------
634	Device-Circuit-Architecture Co-Exploration for Computing-in-Memory Neural Accelerators. IEEE Transactions on Computers, 2021, 70, 595-605.	3.4	37
635	Learned Resolution Scaling Powered Gaming-as-a-Service at Scale. IEEE Transactions on Multimedia, 2021, 23, 584-596.	7.2	12
636	Robust and structural sparsity auto-encoder with L21-norm minimization. Neurocomputing, 2021, 425, 71-81.	5.9	16
637	Merged Logic and Memory Fabrics for Accelerating Machine Learning Workloads. IEEE Design and Test, 2021, 38, 39-68.	1.2	10
638	Deep learning and control algorithms of direct perception for autonomous driving. Applied Intelligence, 2021, 51, 237-247.	5.3	30
639	Designing Neural Networks for Real-Time Systems. IEEE Embedded Systems Letters, 2021, 13, 94-97.	1.9	0
640	Automated Categorization of Brain Tumor from MRI Using CNN features and SVM. Journal of Ambient Intelligence and Humanized Computing, 2021, 12, 8357-8369.	4.9	95
641	Upper body activity classification using an inertial measurement unit in court and field-based sports: A systematic review. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 2021, 235, 83-95.	0.7	13
642	Review and analysis of supervised machine learning algorithms for hazardous events in drilling operations. Chemical Engineering Research and Design, 2021, 147, 367-384.	5.6	70
643	Accelerating CNN Inference on ASICs: A Survey. Journal of Systems Architecture, 2021, 113, 101887.	4.3	44
644	A survey on video-based Human Action Recognition: recent updates, datasets, challenges, and applications. Artificial Intelligence Review, 2021, 54, 2259-2322.	15.7	174
645	Augmenting organizational decision-making with deep learning algorithms: Principles, promises, and challenges. Journal of Business Research, 2021, 123, 588-603.	10.2	82
646	The Mode-Fisher pooling for time complexity optimization in deep convolutional neural networks. Neural Computing and Applications, 2021, 33, 6443-6465.	5.6	0
647	A Review on Machine Learning and Deep Learning Perspectives of IDS for IoT: Recent Updates, Security Issues, and Challenges. Archives of Computational Methods in Engineering, 2021, 28, 3211-3243.	10.2	130
648	Modeling and predicting vehicle accident occurrence in Chattanooga, Tennessee. Accident Analysis and Prevention, 2021, 149, 105860.	5.7	15
649	Online prediction of mechanical properties of hot rolled steel plate using machine learning. Materials and Design, 2021, 197, 109201.	7.0	78
650	Competing memristors for brain-inspired computing. IScience, 2021, 24, 101889.	4.1	51
651	Ternary Compression for Communication-Efficient Federated Learning. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 1162-1176.	11.3	64

#	Article	IF	CITATIONS
652	MOSDA: On-Chip Memory Optimized Sparse Deep Neural Network Accelerator With Efficient Index Matching. IEEE Open Journal of Circuits and Systems, 2021, 2, 144-155.	1.9	1
653	An Experimental Analysis of Deep Learning Architectures for Supervised Speech Enhancement. Electronics (Switzerland), 2021, 10, 17.	3.1	22
654	Flash Memory Array for Efficient Implementation of Deep Neural Networks. Advanced Intelligent Systems, 2021, 3, 2000161.	6.1	14
655	When RSSI encounters deep learning: An area localization scheme for pervasive sensing systems. Journal of Network and Computer Applications, 2021, 173, 102852.	9.1	18
656	An Energy-Efficient Deep Convolutional Neural Network Accelerator Featuring Conditional Computing and Low External Memory Access. IEEE Journal of Solid-State Circuits, 2021, 56, 803-813.	5.4	11
657	OMNI: A Framework for Integrating Hardware and Software Optimizations for Sparse CNNs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021, 40, 1648-1661.	2.7	24
658	SeFAct2: Selective Feature Activation for Energy-Efficient CNNs Using Optimized Thresholds. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021, 40, 1423-1436.	2.7	1
659	Improving the learning of self-driving vehicles based on real driving behavior using deep neural network techniques. Journal of Supercomputing, 2021, 77, 3752-3794.	3.6	14
660	An Attention-Based Deep Learning Framework for Trip Destination Prediction of Sharing Bike. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 4601-4610.	8.0	38
661	EnGN: A High-Throughput and Energy-Efficient Accelerator for Large Graph Neural Networks. IEEE Transactions on Computers, 2021, 70, 1511-1525.	3.4	64
662	Mixed-Signal Computing for Deep Neural Network Inference. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2021, 29, 3-13.	3.1	46
663	Nonâ€invasive setup for grape maturation classification using deep learning. Journal of the Science of Food and Agriculture, 2021, 101, 2042-2051.	3.5	24
664	Scalar Quantization as Sparse Least Square Optimization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43, 1678-1690.	13.9	2
665	JointDNN: An Efficient Training and Inference Engine for Intelligent Mobile Cloud Computing Services. IEEE Transactions on Mobile Computing, 2021, 20, 565-576.	5.8	145
666	FantastIC4: A Hardware-Software Co-Design Approach for Efficiently Running 4Bit-Compact Multilayer Perceptrons. IEEE Open Journal of Circuits and Systems, 2021, 2, 407-419.	1.9	7
667	Yield performance estimation of corn hybrids using machine learning algorithms. Artificial Intelligence in Agriculture, 2021, 5, 82-89.	6.0	11
668	Accelerating Federated Learning for IoT in Big Data Analytics With Pruning, Quantization and Selective Updating. IEEE Access, 2021, 9, 38457-38466.	4.2	36
669	Analysis & Design of Convolution Operator for High Speed and High Accuracy Convolutional Neural Network-Based Inference Engines. IEEE Transactions on Computers, 2022, 71, 390-396.	3.4	3

#	Article	IF	CITATIONS
670	Evolutionary Neural Architecture Search Supporting Approximate Multipliers. Lecture Notes in Computer Science, 2021, , 82-97.	1.3	6
671	Verifiable and privacy preserving federated learning without fully trusted centers. Journal of Ambient Intelligence and Humanized Computing, 2022, 13, 1431-1441.	4.9	13
672	Efficiency Versus Accuracy: A Review of Design Techniques for DNN Hardware Accelerators. IEEE Access, 2021, 9, 9785-9799.	4.2	18
673	DNNOff: Offloading DNN-Based Intelligent IoT Applications in Mobile Edge Computing. IEEE Transactions on Industrial Informatics, 2022, 18, 2820-2829.	11.3	70
674	Designing Efficient DNNs via Hardware-Aware Neural Architecture Search and Beyond. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41, 1799-1812.	2.7	5
675	An Optimized Approach to Vehicle-Type Classification Using a Convolutional Neural Network. Computers, Materials and Continua, 2021, 69, 3321-3335.	1.9	4
676	Design and Implementation of Deep Learning Based Contactless Authentication System Using Hand Gestures. Electronics (Switzerland), 2021, 10, 182.	3.1	32
677	An Energy-Efficient Deep Belief Network Processor Based on Heterogeneous Multi-Core Architecture With Transposable Memory and On-Chip Learning. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2021, 11, 725-738.	3.6	0
678	EmNet: a deep integrated convolutional neural network for facial emotion recognition in the wild. Applied Intelligence, 2021, 51, 5543-5570.	5.3	24
679	R2F: A Remote Retraining Framework for AloT Processors With Computing Errors. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2021, 29, 1955-1966.	3.1	5
680	Convolutional Autoencoder-Based Transfer Learning for Multi-Task Image Inferences. IEEE Transactions on Emerging Topics in Computing, 2021, , 1-1.	4.6	7
681	Analysis of Edge-Optimized Deep Learning Classifiers for Radar-Based Gesture Recognition. IEEE Access, 2021, 9, 74406-74421.	4.2	15
682	Toward Intelligent Cooperation of UAV Swarms: When Machine Learning Meets Digital Twin. IEEE Network, 2021, 35, 386-392.	6.9	50
683	BFRIFP: Brain Functional Reorganization Inspired Filter Pruning. Lecture Notes in Computer Science, 2021, , 16-28.	1.3	0
685	The Al Gambit — Leveraging Artificial Intelligence to Combat Climate Change: Opportunities, Challenges, and Recommendations. SSRN Electronic Journal, 0, , .	0.4	14
686	Zero-Centered Fixed-Point Quantization With Iterative Retraining for Deep Convolutional Neural Network-Based Object Detectors. IEEE Access, 2021, 9, 20828-20839.	4.2	34
688	A Lightweight Framework for Human Activity Recognition on Wearable Devices. IEEE Sensors Journal, 2021, 21, 24471-24481.	4.7	27
689	SELD-TCN: Sound Event Localization & amp; Detection via Temporal Convolutional Networks. , 2021, , .		27

# 690	ARTICLE Performance improvement methods. , 2021, , 105-149.	IF	CITATIONS
691	A Mura Detection Model Based on Unsupervised Adversarial Learning. IEEE Access, 2021, 9, 49920-49928.	4.2	10
692	MXQN:Mixed quantization for reducing bit-width of weights and activations in deep convolutional neural networks. Applied Intelligence, 2021, 51, 4561-4574.	5.3	13
693	ODMDEF: On-Device Multi-DNN Execution Framework Utilizing Adaptive Layer-Allocation on General Purpose Cores and Accelerators. IEEE Access, 2021, 9, 85403-85417.	4.2	6
694	Test and Yield Loss Reduction of AI and Deep Learning Accelerators. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41, 104-115.	2.7	11
695	Computer Vision and Machine Learning. Adaptation, Learning, and Optimization, 2021, , 11-48.	0.6	0
696	Long- and Short-Term Conductance Control of Artificial Polymer Wire Synapses. Polymers, 2021, 13, 312.	4.5	7
697	Power-Efficient Deep Convolutional Neural Network Design Through Zero-Gating PEs and Partial-Sum Reuse Centric Dataflow. IEEE Access, 2021, 9, 17411-17420.	4.2	5
698	To Filter Prune, or to Layer Prune, That Is the Question. Lecture Notes in Computer Science, 2021, , 737-753.	1.3	8
699	A 64K-Neuron 64M-1b-Synapse 2.64pJ/SOP Neuromorphic Chip With All Memory on Chip for Spike-Based Models in 65nm CMOS. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 2655-2659.	3.0	22
700	Handwriting-based gender and handedness classification using convolutional neural networks. Multimedia Tools and Applications, 2021, 80, 35341-35364.	3.9	12
701	Energy-Quality Scalable Monocular Depth Estimation on Low-Power CPUs. IEEE Internet of Things Journal, 2022, 9, 25-36.	8.7	2
702	Deep Partitioned Training From Near-Storage Computing to DNN Accelerators. IEEE Computer Architecture Letters, 2021, 20, 70-73.	1.5	3
703	Stealthy and Robust Glitch Injection Attack on Deep Learning Accelerator for Target With Variational Viewpoint. IEEE Transactions on Information Forensics and Security, 2021, 16, 1928-1942.	6.9	5
704	Real-Time SSDLite Object Detection on FPGA. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2021, 29, 1192-1205.	3.1	20
705	Is the Lottery Fair? Evaluating Winning Tickets Across Demographics. , 2021, , .		1
706	Le sfide globali dell'era odierna da assumere come coordinate generali. Studi E Saggi, 0, , 55-87.	0.0	0
707	Evaluation Metrics for the Cost of Data Movement in Deep Neural Network Acceleration. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2021, E104.A, 1488-1498.	0.3	0

#	Article	IF	CITATIONS
708	Compute-in-Memory Chips for Deep Learning: Recent Trends and Prospects. IEEE Circuits and Systems Magazine, 2021, 21, 31-56.	2.3	115
709	A 10.13µJ/Classification 2-Channel Deep Neural Network Based SoC for Negative Emotion Outburst Detection of Autistic Children. IEEE Transactions on Biomedical Circuits and Systems, 2021, 15, 1039-1052.	4.0	18
710	Deep Reinforcement Learning for Semisupervised Hyperspectral Band Selection. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-19.	6.3	32
711	An Attention-Enhanced Edge-Cloud Collaborative Framework for Multi-Task Application. , 2021, , .		1
712	Use of Frequency Domain for Complexity Reduction of Convolutional Neural Networks. Lecture Notes in Computer Science, 2021, , 64-74.	1.3	1
713	A Review: Image Classification and Object Detection with Deep Learning. Algorithms for Intelligent Systems, 2021, , 69-91.	0.6	0
714	Deep learning with GPUs. Advances in Computers, 2021, , 167-215.	1.6	7
715	Deep Recurrent Neural Networks Approach to Sedimentary Facies Classification Using Well Logs. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	3.1	17
716	Placement for Wafer-Scale Deep Learning Accelerator. , 2021, , .		1
718	BinArray: A Scalable Hardware Accelerator for Binary Approximated CNNs. , 2021, , .		0
719	Local Search is a Remarkably Strong Baseline for Neural Architecture Search. Lecture Notes in Computer Science, 2021, , 465-479.	1.3	13
720	Scalable CNN Synthesis for Resource-Constrained Embedded Platforms. IEEE Internet of Things Journal, 2022, 9, 2267-2276.	8.7	4
721	Training Multi-Bit Quantized and Binarized Networks with a Learnable Symmetric Quantizer. IEEE Access, 2021, 9, 47194-47203.	4.2	9
799			
	Edge Artificial Intelligence Chips for the Cyberphysical Systems Era. Computer, 2021, 54, 84-88.	1.1	10
723	Edge Artificial Intelligence Chips for the Cyberphysical Systems Era. Computer, 2021, 54, 84-88. A Preliminary Analysis on Software Frameworks for the Development of Spiking Neural Networks. Lecture Notes in Computer Science, 2021, , 564-575.	1.1 1.3	10 2
723	Edge Artificial Intelligence Chips for the Cyberphysical Systems Era. Computer, 2021, 54, 84-88. A Preliminary Analysis on Software Frameworks for the Development of Spiking Neural Networks. Lecture Notes in Computer Science, 2021, , 564-575. Holistic Filter Pruning for Efficient Deep Neural Networks. , 2021, , .	1.1	10 2 11
723 724 725	Edge Artificial Intelligence Chips for the Cyberphysical Systems Era. Computer, 2021, 54, 84-88. A Preliminary Analysis on Software Frameworks for the Development of Spiking Neural Networks. Lecture Notes in Computer Science, 2021, , 564-575. Holistic Filter Pruning for Efficient Deep Neural Networks. , 2021, , . CUITIE: Beyond PetaOp/s/W Ternary DNN Inference Acceleration With Better-Than-Binary Energy Efficiency. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41, 1020-1033.	1.1 1.3 2.7	10 2 11 9

#	Article	IF	CITATIONS
727	Training of Mixed-Signal Optical Convolutional Neural Networks With Reduced Quantization Levels. IEEE Access, 2021, 9, 56645-56652.	4.2	0
729	Making Convolutions Resilient Via Algorithm-Based Error Detection Techniques. IEEE Transactions on Dependable and Secure Computing, 2022, 19, 2546-2558.	5.4	19
730	Improved Modeling of Microwave Structures Using Performance-Driven Fully-Connected Regression Surrogate. IEEE Access, 2021, 9, 71470-71481.	4.2	24
731	Evaluation Method of Deep Learning-Based Embedded Systems for Traffic Sign Detection. IEEE Access, 2021, 9, 101217-101238.	4.2	24
732	Assessing the Configuration Space of the Open Source NVDLA Deep Learning Accelerator on a Mainstream MPSoC Platform. IFIP Advances in Information and Communication Technology, 2021, , 87-112.	0.7	0
733	Tyre Inspection through Multi-State Convolutional Neural Networks. Intelligent Automation and Soft Computing, 2021, 27, 1-13.	2.1	3
734	A Survey of Android Malware Detection with Deep Neural Models. ACM Computing Surveys, 2021, 53, 1-36.	23.0	156
735	Dual integrated convolutional neural network for real-time facial expression recognition in the wild. Visual Computer, 2022, 38, 1083-1096.	3.5	24
736	A cross-layer approach towards developing efficient embedded Deep Learning systems. Microprocessors and Microsystems, 2022, 88, 103609.	2.8	6
737	Detecting Soccer Balls with Reduced Neural Networks. Journal of Intelligent and Robotic Systems: Theory and Applications, 2021, 101, 1.	3.4	5
738	A Reconfigurable Multiple-Precision Floating-Point Dot Product Unit for High-Performance Computing. , 2021, , .		4
739	Applying machine learning approach in recycling. Journal of Material Cycles and Waste Management, 2021, 23, 855-871.	3.0	47
740	Enhancing of dataset using DeepDream, fuzzy color image enhancement and hypercolumn techniques to detection of the Alzheimer's disease stages by deep learning model. Neural Computing and Applications, 2021, 33, 9877-9889.	5.6	24
741	Towards Explainable Image Classifier: An Analogy to Multiple Choice Question Using Patch-level Similarity Measure. , 2021, , .		0
742	4.3 An Eight-Core 1.44GHz RISC-V Vector Machine in 16nm FinFET. , 2021, , .		6
743	Deep Neural Network-Based Semantic Segmentation of Microvascular Decompression Images. Sensors, 2021, 21, 1167.	3.8	17
744	An Efficient FIFO Based Accelerator for Convolutional Neural Networks. Journal of Signal Processing Systems, 2021, 93, 1117-1129.	2.1	5
745	Coastal zone significant wave height prediction by supervised machine learning classification algorithms. Ocean Engineering, 2021, 221, 108592.	4.3	28

#	Article	IF	Citations
746	DNN-Life: An Energy-Efficient Aging Mitigation Framework for Improving the Lifetime of On-Chip Weight Memories in Deep Neural Network Hardware Architectures. , 2021, , .		9
747	Deep Learning-Based Content Caching in the Fog Access Points. Electronics (Switzerland), 2021, 10, 512.	3.1	11
748	Design Considerations for Edge Neural Network Accelerators: An Industry Perspective. , 2021, , .		9
749	Demystifying Compression Techniques in CNNs: CPU, GPU and FPGA cross-platform analysis. , 2021, , .		4
750	End-to-End Implementation of Various Hybrid Neural Networks on a Cross-Paradigm Neuromorphic Chip. Frontiers in Neuroscience, 2021, 15, 615279.	2.8	7
751	PyDTNN: A user-friendly and extensible framework for distributed deep learning. Journal of Supercomputing, 2021, 77, 9971-9987.	3.6	15
752	Freely scalable and reconfigurable optical hardware for deep learning. Scientific Reports, 2021, 11, 3144.	3.3	32
753	Neural Synaptic Plasticity-Inspired Computing: A High Computing Efficient Deep Convolutional Neural Network Accelerator. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68, 728-740.	5.4	13
754	An Error Compensation Technique for Low-Voltage DNN Accelerators. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2021, 29, 397-408.	3.1	7
755	OR-ML: Enhancing Reliability for Machine Learning Accelerator with Opportunistic Redundancy. , 2021, , .		1
756	NetCut: Real-Time DNN Inference Using Layer Removal. , 2021, , .		2
757	Remote Power Side-Channel Attacks on BNN Accelerators in FPGAs. , 2021, , .		22
758	IMCA: An Efficient In-Memory Convolution Accelerator. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2021, 29, 447-460.	3.1	7
759	Low precision matrix multiplication for efficient deep learning in NVIDIA Carmel processors. Journal of Supercomputing, 2021, 77, 11257-11269.	3.6	1
760	Attention-Based Deep Entropy Active Learning Using Lexical Algorithm for Mental Health Treatment. Frontiers in Psychology, 2021, 12, 642347.	2.1	35
761	Characterization and Programming Algorithm of Phase Change Memory Cells for Analog In-Memory Computing. Materials, 2021, 14, 1624.	2.9	11
762	Random sketch learning for deep neural networks in edge computing. Nature Computational Science, 2021, 1, 221-228.	8.0	19
763	You Only Look Once, But Compute Twice: Service Function Chaining for Low-Latency Object Detection in Softwarized Networks. Applied Sciences (Switzerland), 2021, 11, 2177.	2.5	5

#	Article	IF	CITATIONS
764	Channel-noise tracking for sub-shot-noise-limited receivers with neural networks. Physical Review Research, 2021, 3, .	3.6	1
765	Carry-Propagation-Adder-Factored Gemmini Systolic Array for Machine Learning Acceleration. Electronics (Switzerland), 2021, 10, 652.	3.1	4
766	A Comparative Study of Deep Transfer Learning Techniques for Cultural (Aeta) Dance Classification utilizing Skeleton-Based Choreographic Motion Capture Data. , 2021, , .		4
767	LAMBDA: An Open Framework for Deep Neural Network Accelerators Simulation. , 2021, , .		7
768	Segmentation of leukocyte by semantic segmentation model: A deep learning approach. Biomedical Signal Processing and Control, 2021, 65, 102385.	5.7	26
769	Performance Modeling for Distributed Training of Convolutional Neural Networks. , 2021, , .		3
770	Towards an Efficient CNN Inference Architecture Enabling In-Sensor Processing. Sensors, 2021, 21, 1955.	3.8	9
771	Lowâ€complexity neuron for fixedâ€point artificial neural networks with ReLU activation function in energyâ€constrained wireless applications. IET Communications, 2021, 15, 917-923.	2.2	3
772	On-Device Deep Learning Inference for System-on-Chip (SoC) Architectures. Electronics (Switzerland), 2021, 10, 689.	3.1	2
773	Neural network combining X-ray and ultrasound in breast examination. Neural Computing and Applications, 0, , 1.	5.6	4
775	Approximation of CIEDE2000 color closeness function using Neuro-Fuzzy networks. Applied Intelligence, 0, , 1.	5.3	0
776	HardCompress: A Novel Hardware-based Low-power Compression Scheme for DNN Accelerators. , 2021, , .		3
777	In situ Parallel Training of Analog Neural Network Using Electrochemical Random-Access Memory. Frontiers in Neuroscience, 2021, 15, 636127.	2.8	24
778	CoEdge: Cooperative DNN Inference With Adaptive Workload Partitioning Over Heterogeneous Edge Devices. IEEE/ACM Transactions on Networking, 2021, 29, 595-608.	3.8	85
779	Multi-Tissue Derived Windowing Technology Based on Statistical Features and Its Colorization Application. , 2021, , .		0
780	Community Value Prediction in Social E-commerce. , 2021, , .		4
781	AdequateDL: Approximating Deep Learning Accelerators. , 2021, , .		1
782	Dynamic Mapping Mechanism to Compute DNN Models on a Resource-limited NoC Platform. , 2021, , .		1

#	Article	IF	CITATIONS
783	Robust Computationally-Efficient Wireless Emitter Classification Using Autoencoders and Convolutional Neural Networks. Sensors, 2021, 21, 2414.	3.8	6
784	MetaStore: A Task-adaptative Meta-learning Model for Optimal Store Placement with Multi-city Knowledge Transfer. ACM Transactions on Intelligent Systems and Technology, 2021, 12, 1-23.	4.5	8
785	Face Morphing, a Modern Threat to Border Security: Recent Advances and Open Challenges. Applied Sciences (Switzerland), 2021, 11, 3207.	2.5	5
786	ROMANet: Fine-Grained Reuse-Driven Off-Chip Memory Access Management and Data Organization for Deep Neural Network Accelerators. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2021, 29, 702-715.	3.1	19
787	Runtime Long-Term Reliability Management Using Stochastic Computing in Deep Neural Networks. , 2021, , .		3
788	Neural Network Training With Stochastic Hardware Models and Software Abstractions. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68, 1532-1542.	5.4	7
790	ONNC Compiler Used in Fault-Mitigating Mechanisms Analysis on NVDLA-Based and ReRAM-Based Edge AI Chip Design. , 2021, , .		1
791	Artificial-Intelligence-Driven Customized Manufacturing Factory: Key Technologies, Applications, and Challenges. Proceedings of the IEEE, 2021, 109, 377-398.	21.3	85
792	Toward Robotic Cognition by Means of Decision Tree of Deep Neural Networks Applied in a Humanoid Robot. Journal of Control, Automation and Electrical Systems, 2021, 32, 884-894.	2.0	3
793	Edge deep learning for neural implants: a case study of seizure detection and prediction. Journal of Neural Engineering, 2021, 18, 046034.	3.5	28
794	Deep Learning for MMSE Estimation of a Gaussian Source in the Presence of Bursty Impulsive Noise. IEEE Communications Letters, 2021, 25, 1211-1215.	4.1	5
795	An FPGA-Based Hardware Accelerator for CNNs Inference on Board Satellites: Benchmarking with Myriad 2-Based Solution for the CloudScout Case Study. Remote Sensing, 2021, 13, 1518.	4.0	32
796	Analysis and evaluation of two short-term load forecasting techniques. International Journal of Emerging Electric Power Systems, 2022, 23, 183-196.	0.8	8
797	Hardware Deployment of HBONext using NXP Bluebox 2.0. , 2021, , .		0
798	Resource-constrained FPGA/DNN co-design. Neural Computing and Applications, 2021, 33, 14741-14751.	5.6	3
799	A 64.1mW Accurate Real-Time Visual Object Tracking Processor With Spatial Early Stopping on Siamese Network. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 1675-1679.	3.0	6
800	EdgeDuet: Tiling Small Object Detection for Edge Assisted Autonomous Mobile Vision. , 2021, , .		21
801	Quantum Statistical Transport Phenomena in Memristive Computing Architectures. Physical Review Applied, 2021, 15, .	3.8	2

#	Article	IF	CITATIONS
802	ChewBaccaNN: A Flexible 223 TOPS/W BNN Accelerator. , 2021, , .		10
803	Accelerating deep neural networks for efficient scene understanding in automotive cyber-physical systems. , 2021, , .		8
804	An interpretable self-adaptive deep neural network for estimating daily spatially-continuous PM2.5 concentrations across China. Science of the Total Environment, 2021, 768, 144724.	8.0	30
805	DeepNetQoE: Self-Adaptive QoE Optimization Framework of Deep Networks. IEEE Network, 2021, 35, 161-167.	6.9	6
806	An Approximate and Iterative Posit Multiplier Architecture for FPGAs. , 2021, , .		10
807	Identifying Useful Features in Multispectral Images with Deep Learning for Optimizing Wheat Yield Prediction. , 2021, , .		2
808	Circuit Techniques for Efficient Acceleration of Deep Neural Network Inference with Analog-AI (Invited). , 2021, , .		1
809	An Energy-Efficient Convolution Unit for Depthwise Separable Convolutional Neural Networks. , 2021, , .		4
810	Accelerating Convolutional Neural Network Inference Based on a Reconfigurable Sliced Systolic Array. , 2021, , .		4
811	Cloud-backed mobile cognition. Computing (Vienna/New York), 2022, 104, 461-479.	4.8	2
812	Rapid Design Space Exploration of Near-Optimal Memory-Reduced DCNN Architecture Using Multiple Model Compression Techniques. , 2021, , .		0
813	An Area-Efficient Word-Line Pitch-Aligned 8T SRAM Compatible Digital-to-Analog Converter. , 2021, , .		0
814	Mapping and virtual neuron assignment algorithms for MAERI accelerator. Journal of Supercomputing, 0, , 1.	3.6	0
815	An FPGA Accelerator for Spiking Neural Network Simulation and Training. , 2021, , .		4
816	NullaNet Tiny: Ultra-low-latency DNN Inference Through Fixed-function Combinational Logic. , 2021, , .		6
817	High-Accurate Stochastic Computing for Artificial Neural Network by Using Extended Stochastic Logic. , 2021, , .		3
818	Ultra-compact binary neural networks for human activity recognition on RISC-V processors. , 2021, , .		14
819	All Hardware-Based Two-Layer Perceptron Implemented in Memristor Crossbar Arrays. , 2021, , .		0

#	Article	IF	CITATIONS
820	Emerging Computing Devices: Challenges and Opportunities for Test and Reliability. , 2021, , .		5
821	An Application Specific Vector Processor for CNN-Based Massive MIMO Positioning. , 2021, , .		2
822	Bitwise Neural Network Acceleration Using Silicon Photonics. , 2021, , .		3
823	Computation Offloading Scheduling for Deep Neural Network Inference in Mobile Computing. , 2021, , .		9
824	Memory-Efficient Speech Recognition on Smart Devices. , 2021, , .		5
825	BBNet: A Novel Convolutional Neural Network Structure in Edge-Cloud Collaborative Inference. Sensors, 2021, 21, 4494.	3.8	11
826	DeepShift: Towards Multiplication-Less Neural Networks. , 2021, , .		28
827	Applications of artificial intelligence to drug design and discovery in the big data era: a comprehensive review. Molecular Diversity, 2021, 25, 1643-1664.	3.9	16
828	MARS: Mixed Virtual and Real Wearable Sensors for Human Activity Recognition With Multidomain Deep Learning Model. IEEE Internet of Things Journal, 2021, 8, 9383-9396.	8.7	19
829	Efficient activation functions for embedded inference engines. Neurocomputing, 2021, 442, 73-88.	5.9	8
830	Understanding the Impact of Neural Variations and Random Connections on Inference. Frontiers in Computational Neuroscience, 2021, 15, 612937.	2.1	1
831	Memory Efficient Invertible Neural Networks for Class-Incremental Learning. , 2021, , .		0
832	Two Sides of the Same Coin: Boons and Banes of Machine Learning in Hardware Security. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2021, 11, 228-251.	3.6	4
833	A Logarithmic Floating-Point Multiplier for the Efficient Training of Neural Networks. , 2021, , .		9
834	Hardware-Algorithm Co-Design Enabling Efficient Event-based Object Detection. , 2021, , .		1
835	An FSCV Deep Neural Network: Development, Pruning, and Acceleration on an FPGA. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 2248-2259.	6.3	8
836	A New Lightweight <i>In Situ</i> Adversarial Sample Detector for Edge Deep Neural Network. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2021, 11, 252-266.	3.6	4
837	On-chip Pixel Reconstruction using Simple CNN for Sparsely Read CMOS Image Sensor. , 2021, , .		2

#	Article	IF	CITATIONS
838	Improving system latency of AI accelerator with on-chip pipelined activation preprocessing and multi-mode batch inference. , 2021, , .		2
839	TempDiff: Temporal Difference-Based Feature Map-Level Sparsity Induction in CNNs with <4% Memory Overhead. , 2021, , .		2
840	Power Side-Channel Attacks on BNN Accelerators in Remote FPGAs. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2021, 11, 357-370.	3.6	21
841	Albireo: Energy-Efficient Acceleration of Convolutional Neural Networks via Silicon Photonics. , 2021, , .		13
842	A Suitability Analysis of Software Based Testing Strategies for the On-line Testing of Artificial Neural Networks Applications in Embedded Devices. , 2021, , .		5
843	A Flexible Research-Oriented Framework for Distributed Training of Deep Neural Networks. , 2021, , .		6
844	MOZART: Masking Outputs with Zeros for Architectural Robustness and Testing of DNN Accelerators. , 2021, , .		4
845	Multiple-Precision Floating-Point Dot Product Unit for Efficient Convolution Computation. , 2021, , .		0
846	Efficient FPGA Implementation of Approximate Singular Value Decomposition based on Shallow Neural Networks. , 2021, , .		2
847	An FPGA-Based Convolutional Neural Network Coprocessor. Wireless Communications and Mobile Computing, 2021, 2021, 1-12.	1.2	2
848	Designing Efficient NoC-Based Neural Network Architectures for Identification of Epileptic Seizure. SN Computer Science, 2021, 2, 1.	3.6	2
849	Hardware Dataflow for Convolutional Neural Network Accelerator. , 2021, , .		0
850	Environment-Aware and Training-Free Beam Alignment for mmWave Massive MIMO via Channel Knowledge Map. , 2021, , .		21
851	High-throughput Near-Memory Processing on CNNs with 3D HBM-like Memory. ACM Transactions on Design Automation of Electronic Systems, 2021, 26, 1-20.	2.6	4
852	PIT: Processing-In-Transmission With Fine-Grained Data Manipulation Networks. IEEE Transactions on Computers, 2021, 70, 877-891.	3.4	1
853	Efficient Pipelined Execution of CNNs Based on In-Memory Computing and Graph Homomorphism Verification. IEEE Transactions on Computers, 2021, 70, 922-935.	3.4	9
854	Energy-Efficient AI over a Virtualized Cloud Fog Network. , 2021, , .		4
855	Communication-Efficient Federated Learning for Connected Vehicles with Constrained Resources. , 2021, , .		3

#	Article	IF	CITATIONS
856	A Federated Learning Approach to Frequent Itemset Mining in Cyber-Physical Systems. Journal of Network and Systems Management, 2021, 29, 1.	4.9	17
857	Exploiting Weight Statistics for Compressed Neural Network Implementation on Hardware. , 2021, , .		1
858	Pruning by explaining: A novel criterion for deep neural network pruning. Pattern Recognition, 2021, 115, 107899.	8.1	104
859	A Deep Neural Network-Based Multi-Frequency Path Loss Prediction Model from 0.8 GHz to 70 GHz. Sensors, 2021, 21, 5100.	3.8	20
860	Comparing Loihi with a SpiNNaker 2 prototype on low-latency keyword spotting and adaptive robotic control. Neuromorphic Computing and Engineering, 2021, 1, 014002.	5.9	26
861	Guessing Outputs of Dynamically Pruned CNNs Using Memory Access Patterns. IEEE Computer Architecture Letters, 2021, 20, 98-101.	1.5	0
862	The Impact of Artificial Intelligence on Branding. Journal of Global Information Management, 2021, 29, 221-246.	2.8	38
863	Synchronous Weight Quantization-Compression for Low-Bit Quantized Neural Network. , 2021, , .		3
864	Memory-aware Efficient Deep Learning Mechanism for IoT Devices. , 2021, , .		2
865	A Survey of On-Device Machine Learning. ACM Transactions on Internet of Things, 2021, 2, 1-49.	4.6	51
866	Signal Integrity Modeling and Analysis of Large-Scale Memristor Crossbar Array in a High-Speed Neuromorphic System for Deep Neural Network. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11, 1122-1136.	2.5	6
867	The viability of analog-based accelerators for neuromorphic computing: a survey. Neuromorphic Computing and Engineering, 2021, 1, 012001.	5.9	16
868	Artificial Neural Networks to Forecast Failures in Water Supply Pipes. Sustainability, 2021, 13, 8226.	3.2	5
869	Deep-Attention Model to Analyze Reliable Customers via Federated Learning. , 2021, , .		1
870	Neural Group Testing to Accelerate Deep Learning. , 2021, , .		7
871	E2BNet: MAC-free yet accurate 2-level binarized neural network accelerator for embedded systems. Journal of Real-Time Image Processing, 2021, 18, 1285-1299.	3.5	5
872	Blockchain Processing Technique Based on Multiple Hash Chains for Minimizing Integrity Errors of IoT Data in Cloud Environments. Sensors, 2021, 21, 4679.	3.8	6
873	A One-Dimensional Probabilistic Convolutional Neural Network for Prediction of Breast Cancer Survivability. Computer Journal, 0, , .	2.4	3

# 874	ARTICLE FPRA: A Fine-grained Parallel RRAM Architecture. , 2021, , .	IF	CITATIONS 3
875	Photonic Integrated Reconfigurable Linear Processors as Neural Network Accelerators. Applied Sciences (Switzerland), 2021, 11, 6232.	2.5	20
876	Toward Software-Equivalent Accuracy on Transformer-Based Deep Neural Networks With Analog Memory Devices. Frontiers in Computational Neuroscience, 2021, 15, 675741.	2.1	14
877	Dynamic sampling of images from various categories for classification based incremental deep learning in fog computing. PeerJ Computer Science, 2021, 7, e633.	4.5	0
878	CarSNN: An Efficient Spiking Neural Network for Event-Based Autonomous Cars on the Loihi Neuromorphic Research Processor. , 2021, , .		24
879	Energy-saving CNN with Clustering Channel Pruning. , 2021, , .		0
880	Deep Reinforcement Learning-Based Dynamic MultiChannel Access for Heterogeneous Wireless Networks with DenseNet. , 2021, , .		1
881	A comprehensive comparison of recent developed meta-heuristic algorithms for streamflow time series forecasting problem. Applied Soft Computing Journal, 2021, 105, 107282.	7.2	56
882	Convolver Design and Convolve-Accumulate Unit Design for Low-Power Edge Computing. Sensors, 2021, 21, 5081.	3.8	1
884	Physical Side-Channel Attacks on Embedded Neural Networks: A Survey. Applied Sciences (Switzerland), 2021, 11, 6790.	2.5	13
885	Efficacy of Pruning in Ultra-Low Precision DNNs. , 2021, , .		0
886	CNN weight sharing based on a fast accuracy estimation metric. Microelectronics Reliability, 2021, 122, 114148.	1.7	4
887	Dyna-PTM: OD-enhanced GCN for Metro Passenger Flow Prediction. , 2021, , .		1
888	ATRIA: A Bit-Parallel Stochastic Arithmetic Based Accelerator for In-DRAM CNN Processing. , 2021, , .		2
889	Array-Aware Neural Architecture Search. , 2021, , .		2
890	An Energy-Efficient Accelerator for Rain Removal Based on Convolutional Neural Network. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 2957-2961.	3.0	2
891	An efficient GPU-accelerated inference engine for binary neural network on mobile phones. Journal of Systems Architecture, 2021, 117, 102156.	4.3	5
892	TCP-NeuRoc: Neural Adaptive TCP Congestion Control With Online Changepoint Detection. IEEE Journal on Selected Areas in Communications, 2021, 39, 2461-2475.	14.0	9

#	Article	IF	CITATIONS
893	Implicit social recommendation algorithm based on multilayer fuzzy perception similarity. International Journal of Machine Learning and Cybernetics, 0, , 1.	3.6	3
894	On-Board Decision Making in Space with Deep Neural Networks and RISC-V Vector Processors. Journal of Aerospace Information Systems, 2021, 18, 553-570.	1.4	6
895	An Arbitrary Kernel-size Applicable NoC-based DNN Processor Design with Hybrid Data Reuse. , 2021, , .		2
896	An Energy-Efficient Inference Method in Convolutional Neural Networks Based on Dynamic Adjustment of the Pruning Level. ACM Transactions on Design Automation of Electronic Systems, 2021, 26, 1-20.	2.6	1
897	Surrogate Model based Co-Optimization of Deep Neural Network Hardware Accelerators. , 2021, , .		1
898	Evolutionary Multi-Objective Model Compression for Deep Neural Networks. IEEE Computational Intelligence Magazine, 2021, 16, 10-21.	3.2	11
899	Accelerating distributed deep neural network training with pipelined MPI allreduce. Cluster Computing, 2021, 24, 3797-3813.	5.0	8
900	Outage Estimation in Electric Power Distribution Systems Using a Neural Network Ensemble. Energies, 2021, 14, 4797.	3.1	4
901	Crystal-Site-Based Artificial Neural Networks for Material Classification. Crystals, 2021, 11, 1039.	2.2	3
902	Compacting Deep Neural Networks for Internet of Things: Methods and Applications. IEEE Internet of Things Journal, 2021, 8, 11935-11959.	8.7	27
903	Leveraging Transfer Learning for Binary Classification of Images with CNN. Advances in Intelligent Systems and Computing, 2022, , 681-696.	0.6	0
904	Deep Reinforcement Learning Based Resource Management for DNN Inference in Industrial IoT. IEEE Transactions on Vehicular Technology, 2021, 70, 7605-7618.	6.3	69
905	A deep neural-network classifier for photograph-based estimation of hearing protection attenuation and fit. Journal of the Acoustical Society of America, 2021, 150, 1067-1075.	1.1	3
906	Using machine learning to model the training scalability of convolutional neural networks on clusters of GPUs. Computing (Vienna/New York), 2023, 105, 915-934.	4.8	1
907	FLoPAD-GRU: A Flexible, Low Power, Accelerated DSP for Gated Recurrent Unit Neural Network. , 2021, ,		1
908	A Multi-Precision Bit-Serial Hardware Accelerator IP for Deep Learning Enabled Internet-of-Things. , 2021, , .		1
909	Leaky Nets: Recovering Embedded Neural Network Models and Inputs Through Simple Power and Timing Side-Channels—Attacks and Defenses. IEEE Internet of Things Journal, 2021, 8, 12079-12092.	8.7	22
910	A Charge-Domain Scalable-Weight In-Memory Computing Macro With Dual-SRAM Architecture for Precision-Scalable DNN Accelerators. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68, 3305-3316	5.4	30

#	Article	IF	CITATIONS
911	A Unipolar-based Stochastic LIF Neuron Design for Low-cost Spiking Neural Network. , 2021, , .		0
912	Artificial Intelligence Based Framework to Quantify the Cardiomyocyte Structural Integrity in Heart Slices. Cardiovascular Engineering and Technology, 2022, 13, 170-180.	1.6	3
913	Artificial intelligence explainability: the technical and ethical dimensions. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200363.	3.4	32
914	Prediction of Motor Function in Stroke Patients Using Machine Learning Algorithm: Development of Practical Models. Journal of Stroke and Cerebrovascular Diseases, 2021, 30, 105856.	1.6	15
915	On Machine-Learning Morphological Image Operators. Mathematics, 2021, 9, 1854.	2.2	4
916	High Linearity Vector Matrix Multiplier using Bootstrapping and Pre-Emphasis Charging of Non-linear Charge-Trap Synaptic Devices. , 2021, , .		2
917	Pruning-Aware Merging for Efficient Multitask Inference. , 2021, , .		1
918	Zero Aware Configurable Data Encoding by Skipping Transfer for Error Resilient Applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68, 3337-3350.	5.4	3
919	Weight Perturbation as a Method for Improving Performance of Deep Neural Networks. , 2021, , .		2
920	Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano, 2021, 15, 14776-14785.	14.6	35
921	Dopant network processing units: towards efficient neural network emulators with high-capacity nanoelectronic nodes. Neuromorphic Computing and Engineering, 2021, 1, 024002.	5.9	9
922	New universal sustainability metrics to assess edge intelligence. Sustainable Computing: Informatics and Systems, 2021, 31, 100580.	2.2	9
923	Dendritic neuron model trained by information feedback-enhanced differential evolution algorithm for classification. Knowledge-Based Systems, 2021, 233, 107536.	7.1	27
924	Dual-stage attention-based LSTM for simulating performance of brackish water treatment plant. Desalination, 2021, 512, 115107.	8.2	25
925	Optimizing adaptive multiple attenuation in the curvelet domain via preconditioning. , 2021, , .		0
926	Prediction of Methylene Blue Removal by Nano TiO2 Using Deep Neural Network. Polymers, 2021, 13, 3104.	4.5	14
927	EdgeKE: An On-Demand Deep Learning IoT System for Cognitive Big Data on Industrial Edge Devices. IEEE Transactions on Industrial Informatics, 2021, 17, 6144-6152.	11.3	18
928	Trends in human activity recognition with focus on machine learning and power requirements. Machine Learning With Applications, 2021, 5, 100072.	4.4	30

#	Article	IF	CITATIONS
929	Analysis and mitigation of parasitic resistance effects for analog in-memory neural network acceleration. Semiconductor Science and Technology, 2021, 36, 114004.	2.0	4
930	A Low-Cost, Low-Power and Real-Time Image Detector for Grape Leaf Esca Disease Based on a Compressed CNN. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2021, 11, 468-481.	3.6	16
931	Visual explanations from spiking neural networks using inter-spike intervals. Scientific Reports, 2021, 11, 19037.	3.3	15
932	Enabling Training of Neural Networks on Noisy Hardware. Frontiers in Artificial Intelligence, 2021, 4, 699148.	3.4	14
934	Democratic learning: hardware/software co-design for lightweight blockchain-secured on-device machine learning. Journal of Systems Architecture, 2021, 118, 102205.	4.3	9
935	Bayesian convolutional neural network estimation for pediatric pneumonia detection and diagnosis. Computer Methods and Programs in Biomedicine, 2021, 208, 106259.	4.7	21
936	Training of Quantized Deep Neural Networks using a Magnetic Tunnel Junction-Based Synapse. Semiconductor Science and Technology, 0, , .	2.0	2
937	An Anatomization of FPGA-Based Neural Networks. Lecture Notes in Networks and Systems, 2022, , 495-505.	0.7	0
938	Pruning and quantization for deep neural network acceleration: A survey. Neurocomputing, 2021, 461, 370-403.	5.9	265
939	Advances in Neuromorphic Spin-Based Spiking Neural Networks: A review. IEEE Nanotechnology Magazine, 2021, 15, 33-44.	1.3	1
940	Prediction of biogas production in anaerobic co-digestion of organic wastes using deep learning models. Water Research, 2021, 205, 117697.	11.3	33
941	Hardware Acceleration of Sparse and Irregular Tensor Computations of ML Models: A Survey and Insights. Proceedings of the IEEE, 2021, 109, 1706-1752.	21.3	35
942	Intermittent-Aware Neural Architecture Search. Transactions on Embedded Computing Systems, 2021, 20, 1-27.	2.9	18
943	FPGA-based implementation of classification techniques: A survey. The Integration VLSI Journal, 2021, 81, 280-299.	2.1	13
944	Lane-DeepLab: Lane semantic segmentation in automatic driving scenarios for high-definition maps. Neurocomputing, 2021, 465, 15-25.	5.9	36
945	Classification of diabetic retinopathy using unlabeled data and knowledge distillation. Artificial Intelligence in Medicine, 2021, 121, 102176.	6.5	8
946	Conditional information gain networks as sparse mixture of experts. Pattern Recognition, 2021, 120, 108151.	8.1	3
947	Automated detection of COVID-19 cough. Biomedical Signal Processing and Control, 2022, 71, 103175.	5.7	56

ARTICLE IF CITATIONS # Dynamic sensor activation and decision-level fusion in wireless acoustic sensor networks for 948 19.1 1 classification of domestic activities. Information Fusion, 2022, 77, 196-210. Reliable customer analysis using federated learning and exploring deep-attention edge intelligence. 949 Future Generation Computer Systems, 2022, 127, 70-79. A Novel Method for CNN Training Using Existing Color Datasets for Classifying Hand Postures in 950 2 3.6 Bayer Images. SN Computer Science, 2021, 2, 1. Detail Study of Different Algorithms forÂEarly Detection of Cancer. Studies in Computational 0.9 Intelligence, 2021, , 207-232. A Supervised Learning Algorithm for Multilayer Spiking Neural Networks Based on Temporal Coding Toward Energy-Efficient VLSI Processor Design. IEEE Transactions on Neural Networks and Learning 952 11.3 16 Systems, 2023, 34, 394-408. An Energy-Efficient Fine-Grained Deep Neural Network Partitioning Scheme for Wireless Collaborative Fog Computing. IEEE Access, 2021, 9, 79611-79627. 4.2 Reconfigurable Binary Neural Network Accelerator with Adaptive Parallelism Scheme. Electronics 954 3.1 10 (Switzerland), 2021, 10, 230. A Divide-and-Conquer Genetic Programming Algorithm With Ensembles for Image Classification. IEEE 10.0 Transactions on Evolutionary Computation, 2021, 25, 1148-1162. Designing Efficient and High-Performance AI Accelerators With Customized STT-MRAM. IEEE 956 3.1 10 Transactions on Very Large Scale Integration (VLSI) Systems, 2021, 29, 1730-1742. Comprehensive Introduction to Neural Networks. Advances in Computational Intelligence and 0.4 Robotics Book Series, 2021, , 24-48. Transform Quantization for CNN Compression. IEEE Transactions on Pattern Analysis and Machine 958 13.9 23 Intelligence, 2021, PP, 1-1. Photonics for artificial intelligence and neuromorphic computing. Nature Photonics, 2021, 15, 102-114. 31.4 764 Towards Exploiting Convolutional Features for Remote Sensing Images Scene Classification. 960 0.5 0 Communications in Computer and Information Science, 2021, , 266-277. Contraction of Dynamically Masked Deep Neural Networks for Efficient Video Processing. IEEE 8.3 Transactions on Ćircuits and Systems for Video Technology, 2022, 32, 621-633. A Transaction Classification Model of Federated Learning. Lecture Notes in Computer Science, 2021, , 963 2 1.3 509-518. Dual-Tree Genetic Programming for Few-Shot Image Classification. IEEE Transactions on Evolutionary Computation, 2022, 26, 555-569. 964 Uncertainty Modeling of Emerging Device based Computing-in-Memory Neural Accelerators with 965 13 Application to Neural Architecture Search., 2021,,. Row-Streaming Dataflow Using a Chaining Buffer and Systolic Array+ Structure. IEEE Computer 1.5 Architecture Letters, 2021, 20, 34-37.

#	Article	IF	CITATIONS
967	DeepOpt. , 2021, , .		10
968	Design of Restricted Coulomb Energy Neural Network Processor for Multi-modal Sensor Fusion. Lecture Notes in Electrical Engineering, 2021, , 441-446.	0.4	0
969	Towards the Use of Artificial Intelligence Techniques in Biomedical Data from an Integrated Portable Medical Assistant to Infer Asymptomatic Cases of COVID-19. Advances in Intelligent Systems and Computing, 2021, , 24-34.	0.6	4
970	Energy-efficient deep learning inference on edge devices. Advances in Computers, 2021, 122, 247-301.	1.6	17
971	Genetic Programming-Based Discriminative Feature Learning for Low-Quality Image Classification. IEEE Transactions on Cybernetics, 2022, 52, 8272-8285.	9.5	8
972	Deep Learning Assisted Fixed Wireless Access Network Coverage Planning. IEEE Access, 2021, 9, 124530-124540.	4.2	1
973	A Full Featured Configurable Accelerator for Object Detection With YOLO. IEEE Access, 2021, 9, 75864-75877.	4.2	37
974	1-Dimensional Convolution Neural Network Classification Technique for Gene Expression Data. , 2021, , 3-26.		5
975	A High-Throughput Energy–Area-Efficient Computing-in-Memory SRAM Using Unified Charge-Processing Network. IEEE Solid-State Circuits Letters, 2021, 4, 146-149.	2.0	3
976	Test Architecture for Systolic Array of Edge-Based Al Accelerator. IEEE Access, 2021, 9, 96700-96710.	4.2	6
977	A Codesigned Photonic Electronic MAC Neuron with ADC-Embedded Nonlinearity. , 2021, , .		6
978	A Novel Intrusion Detection Model for Detecting Known and Innovative Cyberattacks Using Convolutional Neural Network. IEEE Open Journal of the Computer Society, 2021, 2, 14-25.	7.8	57
979	The Smart Intersection: A Solution to Early-Stage Vehicle-to-Everything Deployment. IEEE Intelligent Transportation Systems Magazine, 2022, 14, 88-102.	3.8	7
980	An optical neural chip for implementing complex-valued neural network. Nature Communications, 2021, 12, 457.	12.8	251
981	NetAdapt: Platform-Aware Neural Network Adaptation for Mobile Applications. Lecture Notes in Computer Science, 2018, , 289-304.	1.3	228
982	PZnet: Efficient 3D ConvNet Inference on Manycore CPUs. Advances in Intelligent Systems and Computing, 2020, , 369-383.	0.6	5
983	Increasing Safety of Neural Networks in Medical Devices. Lecture Notes in Computer Science, 2019, , 127-136.	1.3	2
984	Dynamically Sacrificing Accuracy for Reduced Computation: Cascaded Inference Based on Softmax Confidence. Lecture Notes in Computer Science, 2019, , 306-320.	1.3	10

#	Article	IF	CITATIONS
985	Scaling Analysis of Specialized Tensor Processing Architectures for Deep Learning Models. Studies in Computational Intelligence, 2020, , 65-99.	0.9	23
986	Fog Computing and Deep CNN Based Efficient Approach to Early Forest Fire Detection with Unmanned Aerial Vehicles. Lecture Notes in Networks and Systems, 2020, , 646-652.	0.7	15
987	Optimizing Convolutional Neural Networks for Embedded Systems by Means of Neuroevolution. Lecture Notes in Computer Science, 2019, , 109-121.	1.3	2
988	Age Estimation and Gender Prediction Using Convolutional Neural Network. Proceedings in Adaptation, Learning and Optimization, 2020, , 163-175.	1.6	6
989	Processing Systems for Deep Learning Inference on Edge Devices. Internet of Things, 2020, , 213-240.	1.7	8
990	Al-Enabled Security Monitoring in Smart Cyber Physical Grids. , 2020, , 145-167.		7
991	A Survey of AI Accelerators for Edge Environment. Advances in Intelligent Systems and Computing, 2020, , 35-44.	0.6	24
992	Fruit Classification for Retail Stores Using Deep Learning. Lecture Notes in Computer Science, 2020, , 3-13.	1.3	39
993	Clothing Classification Using Deep CNN Architecture Based on Transfer Learning. Advances in Intelligent Systems and Computing, 2021, , 240-248.	0.6	10
994	Knowledge Transfer via Dense Cross-Layer Mutual-Distillation. Lecture Notes in Computer Science, 2020, , 294-311.	1.3	26
995	ReActNet: Towards Precise Binary Neural Network with Generalized Activation Functions. Lecture Notes in Computer Science, 2020, , 143-159.	1.3	126
996	Thanks for Nothing: Predicting Zero-Valued Activations with Lightweight Convolutional Neural Networks. Lecture Notes in Computer Science, 2020, , 234-250.	1.3	9
998	Large-Scale Face Image Retrieval System at Attribute Level Based on Facial Attribute Ontology and Deep Neuron Network. Lecture Notes in Computer Science, 2018, , 539-549.	1.3	8
999	Low-Cost Error Detection in Deep Neural Network Accelerators with Linear Algorithmic Checksums. Journal of Electronic Testing: Theory and Applications (JETTA), 2020, 36, 703-718.	1.2	10
1000	Application and theory gaps during the rise of Artificial Intelligence in Education. Computers and Education Artificial Intelligence, 2020, 1, 100002.	10.8	154
1001	Hybrid machine learning assisted modelling framework for particle processes. Computers and Chemical Engineering, 2020, 140, 106916.	3.8	33
1002	Motion Adaptation Based on Learning the Manifold of Task and Dynamic Movement Primitive Parameters. Robotica, 2021, 39, 1299-1315.	1.9	5
1003	CMOS-integrated memristive non-volatile computing-in-memory for AI edge processors. Nature Electronics, 2019, 2, 420-428.	26.0	161

#	Article	IF	CITATIONS
1004	Research of Neural Network Structural Optimization Based on Information Entropy. Chinese Journal of Electronics, 2020, 29, 632-638.	1.5	4
1005	Torque–flux linkage recurrent neural network adaptive inversion control of torque for switched reluctance motor. IET Electric Power Applications, 2020, 14, 1612-1623.	1.8	9
1009	Joint Channel Estimation and Data Rate Maximization for Intelligent Reflecting Surface Assisted Terahertz MIMO Communication Systems. IEEE Access, 2020, 8, 99565-99581.	4.2	82
1010	Sensitivity Analysis and Compression Opportunities in DNNs Using Weight Sharing. , 2020, , .		9
1011	Deep Reinforcement Learning Based Resource Management for DNN Inference in IIoT. , 2020, , .		4
1012	Survey of Machine Learning Accelerators. , 2020, , .		74
1013	Convolution Inference via Synchronization of a Coupled CMOS Oscillator Array. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, 2020, 6, 170-176.	1.5	11
1014	FIdelity: Efficient Resilience Analysis Framework for Deep Learning Accelerators. , 2020, , .		31
1015	Organization of machine learning based product development as per ISO 26262 and ISO/PAS 21448. , 2020, , .		7
1016	High Performance and Portable Convolution Operators for Multicore Processors. , 2020, , .		14
1017	Deep Learning Inference at the Edge for Mobile and Aerial Robotics. , 2020, , .		5
1018	A Monolithic 3-D Integration of RRAM Array and Oxide Semiconductor FET for In-Memory Computing in 3-D Neural Network. IEEE Transactions on Electron Devices, 2020, 67, 5322-5328.	3.0	22
1019	Deep Neural Network Architecture: Application for Facial Expression Recognition. IEEE Latin America Transactions, 2020, 18, 1311-1319.	1.6	21
1020	Cross-Layer Hardware/Software Assessment of the Open-Source NVDLA Configurable Deep Learning Accelerator. , 2020, , .		1
1021	Fault Intensity Map Analysis with Neural Network Key Distinguisher. , 2019, , .		2
1022	QuTiBench. ACM Journal on Emerging Technologies in Computing Systems, 2019, 15, 1-38.	2.3	13
1023	Embedded Deep Inference in Practice. , 2019, , .		5
1024	Design and Optimization of Energy-Accuracy Tradeoff Networks for Mobile Platforms via Pretrained Deep Models. Transactions on Embedded Computing Systems, 2020, 19, 1-24.	2.9	20

# 1025	ARTICLE Improving Performance and Energy Consumption in Embedded Systems via Binary Acceleration: A Survey. ACM Computing Surveys, 2021, 53, 1-36.	IF 23.0	Citations 9
1026	Shredder. , 2020, , .		29
1027	The Final Frontier. , 2020, , .		44
1028	Are Accelerometers for Activity Recognition a Dead-end?. , 2020, , .		17
1029	Deep Learning Processors for On-Device Intelligence. , 2020, , .		1
1030	Rethinking Pruning for Accelerating Deep Inference At the Edge. , 2020, , .		10
1031	Countering Acoustic Adversarial Attacks in Microphone-equipped Smart Home Devices. , 2020, 4, 1-24.		13
1032	Deep Learning on Mobile and Embedded Devices. ACM Computing Surveys, 2021, 53, 1-37.	23.0	43
1033	NASCaps. , 2020, , .		20
1034	A survey on data analysis on large-Scale wireless networks: online stream processing, trends, and challenges. Journal of Internet Services and Applications, 2020, 11, .	2.1	17
1035	Deep learning-based question answering system for intelligent humanoid robot. Journal of Big Data, 2020, 7, .	11.0	14
1036	Machine learning techniques applied for the detection of nanoparticles on surfaces using coherent Fourier scatterometry. Optics Express, 2020, 28, 19163.	3.4	10
1037	Accelerating generalized linear models with MLWeaving. Proceedings of the VLDB Endowment, 2019, 12, 807-821.	3.8	19
1038	Opportunities for integrated photonic neural networks. Nanophotonics, 2020, 9, 4221-4232.	6.0	40
1039	Machine Learning Techniques used for the Histopathological Image Analysis of Oral Cancer-A Review. Open Bioinformatics Journal, 2020, 13, 106-118.	1.0	10
1040	Sequence-To-Sequence Neural Networks Inference on Embedded Processors Using Dynamic Beam Search. Electronics (Switzerland), 2020, 9, 337.	3.1	3
1041	Development of CNN-based visual recognition air conditioner for smart buildings. Journal of Information Technology in Construction, 2020, 25, 361-373.	2.1	16
1042	Deep Learning on Edge. Advances in Computational Intelligence and Robotics Book Series, 2020, , 23-42.	0.4	7

#	Article	IF	CITATIONS
1043	INTRUSION DETECTION IN COMPUTER NETWORKS USING LATENT SPACE REPRESENTATION AND MACHINE LEARNING. International Journal of Computing, 0, , 442-448.	1.5	9
1044	The Role of Artificial Intelligence and Machine Learning Techniques: Race for COVID-19 Vaccine. Archives of Clinical Infectious Diseases, 2020, 15, .	0.2	34
1045	Deep learning approach to detect seizure using reconstructed phase space images. Journal of Biomedical Research, 2020, 34, 240.	1.6	48
1046	Near-Precise Parameter Approximation for Multiple Multiplications on A Single DSP Block. IEEE Transactions on Computers, 2021, , 1-1.	3.4	2
1047	A TinyML Platform for On-Device Continual Learning With Quantized Latent Replays. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2021, 11, 789-802.	3.6	30
1048	Dynamic Runtime Feature Map Pruning. Lecture Notes in Computer Science, 2021, , 411-422.	1.3	0
1049	Low-Cost Online Convolution Checksum Checker. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2022, 30, 201-212.	3.1	6
1050	Reducing the Deployment-Time Inference Control Costs of Deep Reinforcement Learning Agents via an Asymmetric Architecture. , 2021, , .		0
1051	Accelerating Continual Learning on Edge FPGA. , 2021, , .		4
1052	OODIn: An Optimised On-Device Inference Framework for Heterogeneous Mobile Devices. , 2021, , .		11
1053	POMMEL: Exploring Off-Chip Memory Energy & Power Consumption in Convolutional Neural Network Accelerators. , 2021, , .		0
1054	Precision Batching: Bitserial Decomposition for Efficient Neural Network Inference on GPUs. , 2021, , .		Ο
1055	Deploying and scaling distributed parallel deep neural networks on the Tianhe-3 prototype system. Scientific Reports, 2021, 11, 20244.	3.3	2
1056	An Adaptive Learning Rate Schedule for SIGNSGD Optimizer in Neural Networks. Neural Processing Letters, 2022, 54, 803-816.	3.2	4
1057	Machine learning enables national assessment of wind plant controls with implications for land use. Wind Energy, 2022, 25, 618-638.	4.2	10
1058	Coupled Oscillator Networks forÂvonÂNeumann and Non-von Neumann Computing. Learning and Analytics in Intelligent Systems, 2022, , 179-207.	0.6	1
1059	Towards Edge Computing Using Early-Exit Convolutional Neural Networks. Information (Switzerland), 2021, 12, 431.	2.9	9
1061	An adiabatic method to train binarized artificial neural networks. Scientific Reports, 2021, 11, 19797.	3.3	2

ARTICLE IF CITATIONS Equinox: Training (for Free) on a Custom Inference Accelerator., 2021,,. 5 1062 Artificial Neural Networks for Educational Data Mining in Higher Education: A Systematic Literature 1064 3.2 34 Review. Applied Artificial Intelligence, 2021, 35, 983-1021. An End-to-End Anti-Jamming Target Detection Method Based on CNN. IEEE Sensors Journal, 2021, 21, 1065 4.7 18 21817-21828. Performance Analysis of Deep Neural Networks Using Computer Vision. EAI Endorsed Transactions on 1066 1.9 Industrial Networks and Intelligent Systems, 2021, 8, 171318. Hardware Acceleration for Embedded Keyword Spotting: Tutorial and Survey. Transactions on 1067 2.9 4 Embedded Computing Systems, 2021, 20, 1-25. Efficient Federated Learning for Cloud-Based AloT Applications. IEEE Transactions on Computer-Aided 1068 2.7 Design of Integrated Circuits and Systems, 2021, 40, 2211-2223. A machine learning assisted data placement mechanism for hybrid storage systems. Journal of Systems 1069 4.3 6 Architecture, 2021, 120, 102295. Optimizing Deeper Spiking Neural Networks for Dynamic Vision Sensing. Neural Networks, 2021, 144, 5.9 39 686-698. Accelerating CNNs Using Optimized Scheduling Strategy. Lecture Notes in Computer Science, 2018, , 1071 1.3 2 196-208. State Representation Learning for Multi-agent Deep Deterministic Policy Gradient. Advances in Intelligent Systems and Computing, 2019, , 667-675. Human Body Posture Recognition Using Wearable Devices. Lecture Notes in Computer Science, 2019, , 1074 1.3 1 326-337. Scalable Time-Multiplexed Optical Neural Networks based on Homodyne Detection., 2019, , . Deep Neural Network Compression via Knowledge Distillation for Embedded Vision Applications., 2019, 1076 0 , 139-148. Automatic Memory-Efficient Scheduling of CNNs. Lecture Notes in Computer Science, 2019, , 387-400. 1.3 Designing a Neural Network from Scratch for Big Data Powered by Multi-node GPUs. Smart 1078 2 0.6 Innovation, Systems and Technologies, 2019, , 1-19. Hybrid neural network framework for detection of cyber attacks at smart infrastructures. , 2019, , . 1079 Group Pruning Using a Bounded- \$\$ell _p\$\$ â,," p Norm for Group Gating and Regularization. Lecture 1080 1.31 Notes in Computer Science, 2019, , 139-155. PRTSM: Hardware Data Arrangement Mechanisms for Convolutional Layer Computation on the 1.3 Systolic Array. Lecture Notes in Computer Science, 2019, , 69-81.

#	Article	IF	CITATIONS
1082	Large-Scale Optical Neural-Network Accelerators based on Coherent Detection. , 2019, , .		0
1083	Trading Accuracy for Power with a Configurable Approximate Adder. IEICE Transactions on Electronics, 2019, E102.C, 260-268.	0.6	6
1084	Domain specific architectures, hardware acceleration for machine/deep learning. , 2019, , .		2
1085	Aerial infrared target recognition based on lightweight convolutional neural network. , 2019, , .		2
1086	IA-NET: Acceleration and Compression of Speech Enhancement Using Integer-Adder Deep Neural Network. , 0, , .		8
1087	Hardware/Software-Codesign for Hand Gestures Recognition using a Convolutional Neural Network. , 2019, , .		0
1088	Butterfly, Larvae and Pupae Defects Detection Using Convolutional Neural Network and Apriori Algorithm. Advances in Intelligent Systems and Computing, 2020, , 132-161.	0.6	1
1089	Deep learning chips. , 2019, , .		1
1090	Effect of Blurring on Identification of Aerial Images Using Convolution Neural Networks. Lecture Notes in Electrical Engineering, 2020, , 469-484.	0.4	1
1091	FPGA-Based Sparsity-Aware CNN Accelerator for Noise-Resilient Edge-Level Image Recognition. , 2019, , .		6
1092	Progressive Stochastic Binarization of Deep Networks. , 2019, , .		0
1093	Efficient cuDNN-Compatible Convolution-Pooling on the GPU. Lecture Notes in Computer Science, 2020, , 46-58.	1.3	4
1094	Vector-Vector-Matrix Architecture: A Novel Hardware-Aware Framework for Low-Latency Inference in NLP Applications. , 2020, , .		0
1095	A Generalized Quadratic Loss for SVM and Deep Neural Networks. Lecture Notes in Computer Science, 2020, , 13-24.	1.3	0
1097	Design space exploration for layer-parallel execution of convolutional neural networks on CGRAs. , 2020, , .		5
1098	Cross-layer approaches for improving the dependability of deep learning systems. , 2020, , .		1
1099	Binocular SLAM Based on Learning-based Feature Extraction. , 2020, , .		2
1100	Stochastic Model Pruning via Weight Dropping Away and Back. , 2020, , .		2

#	Article	IF	Citations
1102	Multi-Thread Approach to Object Detection Using YOLOv3. , 2020, , .		2
1104	Inference Benchmarking on HPC Systems. , 2020, , .		4
1105	Dynamic Precision Multiplier For Deep Neural Network Accelerators. , 2020, , .		1
1106	Prediction of individual thermal comfort based on ensemble transfer learning method using wearable and environmental sensors. Building and Environment, 2022, 207, 108492.	6.9	27
1107	Configurable Hardware Core for IoT Object Detection. Future Internet, 2021, 13, 280.	3.8	3
1108	Boost Precision Agriculture with Unmanned Aerial Vehicle Remote Sensing and Edge Intelligence: A Survey. Remote Sensing, 2021, 13, 4387.	4.0	58
1109	Improving robustness of kinetic models for steam reforming based on artificial neural networks and ab initio calculations. Chemical Engineering Journal, 2022, 433, 133201.	12.7	9
1110	Prospects and applications of photonic neural networks. Advances in Physics: X, 2022, 7, .	4.1	54
1111	Deep learning in target prediction and drug repositioning: Recent advances and challenges. Drug Discovery Today, 2022, 27, 1796-1814.	6.4	26
1112	Water Quality Prediction Method Based on Multi-Source Transfer Learning for Water Environmental IoT System. Sensors, 2021, 21, 7271.	3.8	8
1113	FeFETs for Neuromorphic Systems. Topics in Applied Physics, 2020, , 399-411.	0.8	2
1114	On Removing Algorithmic Priority Inversion from Mission-critical Machine Inference Pipelines. , 2020, ,		27
1115	Energy Usage of Deep Learning in Smart Cities. , 2020, , .		3
1116	The Brain Memory Architecture HW/SW Co-Design Platform with Adaptive CNN Algorithm. , 2020, , .		0
1117	High Performance Convolutional Neural Network Accelerator Based on Design Space Exploration. , 2020, , .		0
1118	A Comparison of Single-Buffer and Double-Buffer Design in a Systolic Array Generator. Journal of Physics: Conference Series, 2020, 1693, 012197.	0.4	0
1119	On-Device Deep Personalization for Robust Activity Data Collection. Sensors, 2021, 21, 41.	3.8	9
1120	An Xception Based Convolutional Neural Network for Scene Image Classification with Transfer		14

		CITATION RE	PORT	
#	Article	70 500	IF	CITATIONS
1121	Robust Computing for Machine Learning-Based Systems. Embedded Systems, 2021, , 4	79-503.	0.6	3
1122	CONVJSSP: Convolutional Learning for Job-Shop Scheduling Problems. , 2020, , .			2
1123	From Quantitative Analysis to Synthesis of Efficient Binary Neural Networks. , 2020, , .			11
1124	Performance Analysis of Network Pruning for Deep Learning based Age-Gender Estimati	ion. , 2020, , .		5
1125	A Case for 3D Integrated System Design for Neuromorphic Computing and AI Application International Journal of Semantic Computing, 2020, 14, 457-475.	ons.	0.5	2
1126	A Novel Preprocessing Methodology for DNN-Based Intrusion Detection. , 2020, , .			1
1127	Probing the Underlying Implementation Mechanisms of SW26010. , 2020, , .			0
1128	ConvNets Architecture for Complex Mixed Analogue-Digital Simulations. , 2020, , .			0
1129	On the impact of smart sensor approximations on the accuracy of machine learning tas 2020, 6, e05750.	ks. Heliyon,	3.2	3
1130	EdgeLD: Locally Distributed Deep Learning Inference on Edge Device Clusters. , 2020, ,			9
1131	Deep Learning-Based Screening Test for Cognitive Impairment Using Basic Blood Test D Examination. Frontiers in Neurology, 2020, 11, 588140.	Data for Health	2.4	10
1132	Towards Enhancing Fault Tolerance in Neural Networks. , 2020, , .			1
1133	The application design of hearing aid parameters auto adaptive system for hearing impabased on android terminal. , 2020, , .	aired children		2
1134	Machine learning for disease surveillance or outbreak monitoring: A review. , 2020, , .			1
1135	An Efficient Pipeline for Pruning Convolutional Neural Networks. , 2020, , .			5
1136	DistPrivacy: Privacy-Aware Distributed Deep Neural Networks in IoT surveillance system	s. , 2020, , .		9
1137	A New Clustering-Based Technique for the Acceleration of Deep Convolutional Network	es. , 2020, , .		3
1138	Relationship between Recognition Accuracy and Numerical Precision in Convolutional N Network Models. IEICE Transactions on Information and Systems, 2020, E103.D, 2528-	leural 2529.	0.7	4

#	Article	IF	CITATIONS
1139	An Overview of Energy-Efficient Hardware Accelerators for On-Device Deep-Neural-Network Training. IEEE Open Journal of the Solid-State Circuits Society, 2021, 1, 115-128.	2.7	11
1140	A Silicon Nitride Reconfigurable Linear Optical Processor. , 2021, , .		1
1141	Silicon Photonic Filter-based Dot Product Engine for Convolutional Neural Networks. , 2021, , .		0
1142	A Lego-Based Neural Network Design Methodology With Flexible NoC. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2021, 11, 711-724.	3.6	1
1143	Reconstructed phase space portraits for detecting brain diseases using deep learning. Biomedical Signal Processing and Control, 2022, 71, 103278.	5.7	6
1144	Predicting multiple types of traffic accident severity with explanations: A multi-task deep learning framework. Safety Science, 2022, 146, 105522.	4.9	34
1145	A Survey on Deep Learning for Human Activity Recognition. ACM Computing Surveys, 2022, 54, 1-34.	23.0	73
1146	Computing Graph Neural Networks: A Survey from Algorithms to Accelerators. ACM Computing Surveys, 2022, 54, 1-38.	23.0	87
1147	The Memory Challenge in Ultra-Low Power Deep Learning. The Frontiers Collection, 2020, , 323-349.	0.2	3
1148	An Energy-Efficient Edge Computing Paradigm for Convolution-Based Image Upsampling. IEEE Access, 2021, 9, 147967-147984.	4.2	3
1149	Hybrid Neural Network Model for Protection of Dynamic Cyber Infrastructure. Nonlinear Phenomena in Complex Systems, 2019, 22, 375-382.	0.3	9
1150	Classification on Educational Performance Evaluation Dataset using Feature Extraction Approach. , 2020, , .		2
1151	Digital Neural Network Accelerators. The Frontiers Collection, 2020, , 181-202.	0.2	3
1152	Dynamic Complexity Tuning for Hardware-Aware Probabilistic Circuits. Communications in Computer and Information Science, 2020, , 283-295.	0.5	1
1153	Digital Optical Neural Networks for Large-Scale Machine Learning. , 2020, , .		0
1154	Resistive Crossbar-Aware Neural Network Design and Optimization. IEEE Access, 2020, 8, 229066-229085.	4.2	6
1155	Analyzing Forward Robustness of Feedforward Deep Neural Networks with LeakyReLU Activation Function Through Symbolic Propagation. Communications in Computer and Information Science, 2020, , 460-474.	0.5	4
1156	A Sentiment Analysis Software Framework for the Support of Business Information Architecture in the Tourist Sector. Lecture Notes in Computer Science, 2020, , 199-219.	1.3	0

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
1157	A Photonic Accelerator for Feature Map Generation in Convolutional Neural Networks.	, 2020, , .		2
1158	Short-Term Forecasting of the Occurrence Time of Strong Wind Speed during a Typho LSTM for Sea-Crossing Bridge Operation. IABSE Symposium Report, 2020, , .	on based on	0.0	Ο
1159	Evaluating Edge Processing Requirements in Next Generation IoT Network Architecture in Information and Communication Technology, 2020, , 252-269.	es. IFIP Advances	0.7	2
1160	Intelligent Real-Time Multimodal Fall Detection in Fog Infrastructure Using Ensemble Lo Studies in Systems, Decision and Control, 2020, , 53-79.	earning.	1.0	5
1161	Layup. Transactions on Architecture and Code Optimization, 2019, 16, 1-23.		2.0	7
1162	IR-QNN Framework: An IR Drop-Aware Offline Training of Quantized Crossbar Arrays. IE 8, 228392-228408.	EE Access, 2020,	4.2	21
1163	Relationship Between Cognitive Dysfunction and Systemic Metabolic Disorders in Elde Might be a Systematic Disease. Advances in Experimental Medicine and Biology, 2020,	rly: Dementia 1232, 91-97.	1.6	4
1164	Deep Learning Network. Advances in Computer and Electrical Engineering Book Series	, 2020, , 1-30.	0.3	4
1165	Partition Pruning: Parallelization-Aware Pruning for Dense Neural Networks. , 2020, , .			2
1166	AdderSR: Towards Energy Efficient Image Super-Resolution. , 2021, , .			42
1167	Large graph convolutional network training with GPU-oriented data communication ar Proceedings of the VLDB Endowment, 2021, 14, 2087-2100.	chitecture.	3.8	23
1168	Multi-Thread Frame Tiling Model in Concurrent Real-Time Object Detection for Resource Optimization in YOLOv3. , 2020, , .	es		3
1169	BoolHash: A New Convolutional Algorithm for Boolean Activations. , 2021, , .			0
1170	Bringing Al to edge: From deep learning's perspective. Neurocomputing, 2022, 48	5, 297-320.	5.9	44
1171	Sign Language Translator Using Machine Learning. SN Computer Science, 2022, 3, 1.		3.6	3
1172	Reconfigurable Architecture and Dataflow for Memory Traffic Minimization of CNNs Co Micromachines, 2021, 12, 1365.	omputation.	2.9	1
1173	Highly-accurate binary tiny neural network for low-power human activity recognition. Microprocessors and Microsystems, 2021, 87, 104371.		2.8	4
1174	The Road for 2D Semiconductors in the Silicon Age. Advanced Materials, 2022, 34, e2	106886.	21.0	57

#	Article	IF	Citations
1175	In-memory computing with emerging nonvolatile memory devices. Science China Information Sciences, 2021, 64, 1.	4.3	31
1177	Scaling Deep-Learning Inference with Chiplet-based Architecture and Photonic Interconnects. , 2021, , .		10
1178	ASBP: Automatic Structured Bit-Pruning for RRAM-based NN Accelerator. , 2021, , .		5
1179	An Energy-Efficient Low-Latency 3D-CNN Accelerator Leveraging Temporal Locality, Full Zero-Skipping, and Hierarchical Load Balance. , 2021, , .		5
1180	MyML: User-Driven Machine Learning. , 2021, , .		1
1182	COCOA: Content-Oriented Configurable Architecture Based on Highly-Adaptive Data Transmission Networks. , 2020, , .		3
1183	On-chip Memory Optimized CNN Accelerator with Efficient Partial-sum Accumulation. , 2020, , .		3
1184	Towards Systems Education for Artificial Intelligence: A Course Practice in Intelligent Computing Architectures. , 2020, , .		1
1185	SERN: Modeling and Analyzing the Soft Error Reliability of Convolutional Neural Networks. , 2020, , .		7
1186	Deep learning: To better understand how human activities affect the value of ecosystem services—A case study of Nanjing. PLoS ONE, 2020, 15, e0238789.	2.5	3
1187	Bit-serial systolic accelerator design for convolution operations in convolutional neural networks. IEICE Electronics Express, 2020, 17, 20200308-20200308.	0.8	3
1188	Improving activity data collection with on-device personalization using fine-tuning. , 2020, , .		1
1189	Toward Fast Platform-Aware Neural Architecture Search for FPGA-Accelerated Edge AI Applications. , 2020, , .		2
1190	NeuroMAX. , 2020, , .		5
1191	SETGAN. , 2020, , .		2
1192	Just say zero. , 2020, , .		15
1193	SynergicLearning. , 2020, , .		7
1194	SPNets: Human-like Navigation Behaviors with Uncertain Goals. , 2020, , .		3

ARTICLE IF CITATIONS An Automatic Scheme for Optimizing the Size of Deep Networks., 2020,,. 1195 0 Analyzing the Reliability of Convolutional Neural Networks on GPUs: GoogLeNet as a Case Study. , 2020,,. Cross-layer knowledge distillation with KL divergence and offline ensemble for compressing deep 1197 3.3 1 neural network. APSIPA Transactions on Signal and Information Processing, 2021, 10, . Scheduling Massive Camera Streams to Optimize Large-Scale Live Video Analytics. IEEE/ACM Transactions on Networking, 2022, 30, 867-880. Digital twin-driven clamping force control for thin-walled parts. Advanced Engineering Informatics, 1199 8.0 20 2022, 51, 101468. 1200 FeLU: A Fractional Exponential Linear Unit., 2021, , . Diagnosis Method of Tomato Leaf Disease Based on an Improved Deep Convolution Neural Network for 1201 1 Real-life Agriculture Environment., 2021, , . Learnable Quantization Loss Function Based on Expectation., 2021,,. 1202 1203 AI Accelerator Survey and Trends., 2021, , . 46 Efficient Computation of Depthwise Separable Convolution in MoblieNet Deep Neural Network 1204 Models., 2021, , . Efficient Functional In-Field Self-Test for Deep Learning Accelerators., 2021,,. 1205 11 Towards Efficient Point Cloud Graph Neural Networks Through Architectural Simplification., 2021, , . 1206 Efficient Fault-Criticality Analysis for AI Accelerators using a Neural Twin., 2021, , . 1207 7 Tiled Squeeze-and-Excite: Channel Attention With Local Spatial Context., 2021,,. 1208 EdgeRL: A Light-Weight C/C++ Framework for On-Device Reinforcement Learning., 2021, , . 1209 0 CCASM: A Computation- and Communication-Aware Scheduling and Mapping Algorithm for NoC-Based DNN Accelerators., 2021,,. Block-Based Compression and Corresponding Hardware Circuits for Sparse Activations. Sensors, 2021, 1211 3.8 2 21, 7468. A Forward Error Compensation Approach for Fault Resilient Deep Neural Network Accelerator Design., 2021, , .

#	Article	IF	Citations
1213	Sparse convolutional neural network acceleration with lossless input feature map compression for resourceâ€constrained systems. IET Computers and Digital Techniques, 2022, 16, 29-43.	1.2	6
1214	Resource efficient activation functions for neural network accelerators. Neurocomputing, 2022, 482, 163-185.	5.9	4
1215	Recent implications towards sustainable and energy efficient AI and big data implementations in cloud-fog systems: A newsworthy inquiry. Journal of King Saud University - Computer and Information Sciences, 2021, , .	3.9	1
1216	Deep learning—a first meta-survey of selected reviews across scientific disciplines, their commonalities, challenges and research impact. PeerJ Computer Science, 2021, 7, e773.	4.5	18
1217	A New Clustering-Based Technique for the Acceleration of Deep Convolutional Networks. Advances in Intelligent Systems and Computing, 2022, , 123-150.	0.6	2
1218	Detection and defense of cyberattacks on the machine learning control of robotic systems. Journal of Defense Modeling and Simulation, 0, , 154851292110438.	1.7	0
1219	Estimating the spatial distribution of soil total arsenic in the suspected contaminated area using UAV-Borne hyperspectral imagery and deep learning. Ecological Indicators, 2021, 133, 108384.	6.3	13
1220	Short-Long Correlation Based Graph Neural Networks forÂResidential Load Forecasting. Lecture Notes in Computer Science, 2021, , 428-438.	1.3	3
1221	Elastic-DF: Scaling Performance of DNN Inference in FPGA Clouds through Automatic Partitioning. ACM Transactions on Reconfigurable Technology and Systems, 2022, 15, 1-34.	2.5	9
1222	Deep learning method for karate motion identification using inertial sensor data. Transactions of the JSME (in Japanese), 2021, 87, 21-00214-21-00214.	0.2	0
1223	Machine Learning for Security in Vehicular Networks: A Comprehensive Survey. IEEE Communications Surveys and Tutorials, 2022, 24, 346-379.	39.4	28
1224	SPRINT: A High-Performance, Energy-Efficient, and Scalable Chiplet-Based Accelerator With Photonic Interconnects for CNN Inference. IEEE Transactions on Parallel and Distributed Systems, 2022, 33, 2332-2345.	5.6	10
1225	Filter Pruning via Learned Representation Median in the Frequency Domain. IEEE Transactions on Cybernetics, 2023, 53, 3165-3175.	9.5	6
1226	C3PU: Cross-Coupling Capacitor Processing Unit Using Analog-Mixed Signal for AI Inference. IEEE Access, 2021, 9, 167353-167363.	4.2	3
1227	Neural Architecture Search and Hardware Accelerator Co-Search: A Survey. IEEE Access, 2021, 9, 151337-151362.	4.2	19
1228	Automatic Design of Convolutional Neural Network Architectures Under Resource Constraints. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 3832-3846.	11.3	6
1229	A Customized NoC Architecture to Enable Highly Localized Computing-on-the-Move DNN Dataflow. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 1692-1696.	3.0	1
1230	A Configurable Floating-Point Multiple-Precision Processing Element for HPC and AI Converged Computing. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2022, 30, 213-226.	3.1	10

#	Article	IF	CITATIONS
1231	Reliability-Driven Memristive Crossbar Design in Neuromorphic Computing Systems. IEEE Transactions on Automation Science and Engineering, 2023, 20, 74-87.	5.2	1
1232	Similarity-Aware CNN for Efficient Video Recognition at the Edge. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41, 4901-4914.	2.7	0
1233	Predicting the Travel Distance of Patients to Access Healthcare Using Deep Neural Networks. IEEE Journal of Translational Engineering in Health and Medicine, 2022, 10, 1-11.	3.7	2
1234	Sparse-PE: A Performance-Efficient Processing Engine Core for Sparse Convolutional Neural Networks. IEEE Access, 2021, 9, 151458-151475.	4.2	6
1235	A Practical Design-Space Analysis of Compute-in-Memory With SRAM. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69, 1466-1479.	5.4	6
1236	A ranked solution for social media fact checking using epidemic spread modeling. Information Sciences, 2022, 589, 550-563.	6.9	4
1237	An Accurate, Error-Tolerant, and Energy-Efficient Neural Network Inference Engine Based on SONOS Analog Memory. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69, 1480-1493.	5.4	11
1238	Scalable and Programmable Neural Network Inference Accelerator Based on In-Memory Computing. IEEE Journal of Solid-State Circuits, 2022, 57, 198-211.	5.4	18
1239	An optical neural network using less than 1 photon per multiplication. Nature Communications, 2022, 13, 123.	12.8	77
1240	Development of lean, efficient, and fast physics-framed deep-learning-based proxy models for subsurface carbon storage. International Journal of Greenhouse Gas Control, 2022, 114, 103562.	4.6	12
1241	A framework for designing power-efficient inference accelerators in tree-based learning applications. Engineering Applications of Artificial Intelligence, 2022, 109, 104638.	8.1	5
1242	A bibliometric analysis of off-line handwritten document analysis literature (1990–2020). Pattern Recognition, 2022, 125, 108513.	8.1	4
1243	3. Deep Neural Network Processors: Overview. Kyokai Joho Imeji Zasshi/Journal of the Institute of Image Information and Television Engineers, 2019, 73, 52-57.	0.1	0
1244	Design of Fast Image Recognition Accelerator Based on Convolutional Neural Network. , 2020, , .		0
1245	Hybrid Stochastic Computing Circuits in Continuous Statistics Domain. , 2020, , .		0
1246	Design Space Exploration of Accelerators and End-to-End DNN Evaluation with TFLITE-SOC. , 2020, , .		12
1247	Performance Comparison of Pre-trained Residual Networks for Classification of the Whole Mammograms with Smaller Dataset. , 2020, , .		7
1248	Mild Action Blending Policy on Deep Reinforcement Learning with Discretized Actions for Process Control. , 2020, , .		0

#	Article	IF	Citations
1249	Discrete Integrated Circuit Electronics (DICE). , 2020, , .		2
1250	A Two-stage Training Mechanism for the CNN with Trainable Activation Function. , 2020, , .		2
1251	Hardware Accelerator Design with Supervised Machine Learning for Solar Particle Event Prediction. , 2020, , .		7
1252	Network Orchestration in Mobile Networks via a Synergy of Model-driven and Al-based Techniques. , 2020, , .		1
1253	An Improved Image Classification Method for Specific Reality Environments. , 2020, , .		0
1254	Near-Sensor Inference Architecture with Region Aware Processing. , 2020, , .		1
1255	Duplo: Lifting Redundant Memory Accesses of Deep Neural Networks for GPU Tensor Cores. , 2020, , .		10
1256	Locality-Centric Data and Threadblock Management for Massive GPUs. , 2020, , .		7
1257	A Chip-Level Verification Method for Programmable Vision Chip Based on Deep Learning Algorithms. , 2020, , .		2
1258	Non-Blocking Simultaneous Multithreading: Embracing the Resiliency of Deep Neural Networks. , 2020, , .		5
1259	FullReuse: A Novel ReRAM-based CNN Accelerator Reusing Data in Multiple Levels. , 2020, , .		2
1260	A Tile-based Fused-layer CNN Accelerator for FPGAs. , 2020, , .		1
1261	A Neural Network Engine for Resource Constrained Embedded Systems. , 2020, , .		1
1262	FlexDNN: Input-Adaptive On-Device Deep Learning for Efficient Mobile Vision. , 2020, , .		21
1263	Linear-PoseNet: A Real-Time Camera Pose Estimation System Using Linear Regression and Principal Component Analysis. , 2020, , .		1
1264	Evaluating the Merits of Ranking in Structured Network Pruning. , 2020, , .		1
1265	An Energy-Efficient Deep Neural Network Accelerator Design. , 2020, , .		1
1266	Integration of Smart Vision Sensor into Manipulator Control System using OPC-UA. , 2020, , .		0

#	Article	IF	CITATIONS
	Accelerating Atrous Convolution with Fetch-and-lump Architecture for Activation Positioning 2020		
1267	,.		2
1268	Deep Policy Gradient for Reactive Power Control in Distribution Systems. , 2020, , .		2
1269	High-Performance Object Detection for Optical Remote Sensing Images with Lightweight Convolutional Neural Networks. , 2020, , .		5
1270	Confidential Machine Learning Computation in Untrusted Environments: A Systems Security	4.2	4
	Perspective. IEEE Access, 2021, 9, 168656-168677.		
1271	Fail-Safe Neural Network Inference Accelerator. , 2021, , .		0
1272	RTL to GDSII of Harvard Structure RISC Processor. , 2021, , .		2
1973	Emotion Recognition from 3D Motion Capture Data using Deep CNNs 2021		4
1275			•
1274	A Comparative Analysis of Credit Card Fraud Detection Using Machine Learning and Deep Learning Techniques. Lecture Notes in Networks and Systems, 2022, , 267-282.	0.7	Ο
1275	Energy-Efficient CNNs Accelerator Implementation on FPGA with Optimized Storage and Dataflow. ,		0
	2021,,.		
1276	Accuracy vs. Efficiency: Achieving both Through Hardware-Aware Quantization and Reconfigurable Architecture with Mixed Precision. , 2021, , .		0
1277	Classification of Retinal Pathology via OCT Images using Convolutional Neural Network. , 2021, , .		1
1278	SECDA: Efficient Hardware/Software Co-Design of FPGA-based DNN Accelerators for Edge Inference. , 2021, , .		7
1970	Energy Efficient MAC Units for Eused Posit Arithmetic 2021		11
1279	Lifergy-Liffchent MAC units for Fused Posit Antimetic. , 2021, , .		11
1280	Research progress and trend analysis of speech recognition technology using CiteSpace and computer neural network. , 2021, , .		1
1281	GrapeSense: A Grape Aging Classifier Using Residual Transfer Learning On Drone Images. , 2021		0
1282	On Antagonism Between Side-Channel Security and Soft-Error Reliability in BNN Inference Engines. , 2021, , .		Ο
1000	Description Neural Supertia Directicity Press of Stanbastic Description Neural Nature & Computing 2001		0
1283	Recomigurable Neural Synaptic Plasticity-based Stochastic Deep Neural Network Computing. , 2021, , .		U
1284	Towards Reliable In-Memory Computing:From Emerging Devices to Post-von-Neumann Architectures. , 2021, , .		3

#	Article	IF	CITATIONS
1285	Improving the Performance of Anomaly Detector based on Geometric Transform-based Deep Neural Networks. , 2021, , .		1
1286	The Future of AI-enabled servers in the cloud- A Survey. , 2021, , .		7
1287	Press Casting Quality Detection and Analysis Based on Machine Learning. , 2021, , .		1
1288	STONNE: Enabling Cycle-Level Microarchitectural Simulation for DNN Inference Accelerators. , 2021, , .		11
1289	Multimodal transistors as ReLU activation functions in physical neural network classifiers. Scientific Reports, 2022, 12, 670.	3.3	8
1290	More Is Less: Model Augmentation for Intermittent Deep Inference. Transactions on Embedded Computing Systems, 2022, 21, 1-26.	2.9	4
1291	Design possibilities and challenges of DNN models: a review on the perspective of end devices. Artificial Intelligence Review, 2022, 55, 5109-5167.	15.7	11
1292	A 1Mb Mixed-Precision Quantized Encoder for Image Classification and Patch-Based Compression. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32, 5581-5594.	8.3	1
1293	A 16-Channel Fully Configurable Neural SoC With 1.52 \$mu\$W/Ch Signal Acquisition, 2.79 \$mu\$W/Ch Real-Time Spike Classifier, and 1.79 TOPS/W Deep Neural Network Accelerator in 22 nm FDSOI. IEEE Transactions on Biomedical Circuits and Systems, 2022, 16, 94-107.	4.0	15
1294	Systematic realization of a fully connected deep and convolutional neural network architecture on a field programmable gate array. Computers and Electrical Engineering, 2022, 97, 107628.	4.8	7
1295	The Data Flow and Architectural Optimizations for a Highly Efficient CNN Accelerator Based on the Depthwise Separable Convolution. Circuits, Systems, and Signal Processing, 2022, 41, 3547-3569.	2.0	3
1296	Advance prediction method for rock mass stability of tunnel boring based on deep neural network of time series. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 236, 5618-5633.	2.1	2
1297	An Eight-Core 1.44-GHz RISC-V Vector Processor in 16-nm FinFET. IEEE Journal of Solid-State Circuits, 2022, 57, 140-152.	5.4	5
1298	Edge Artificial Intelligence for 6G: Vision, Enabling Technologies, and Applications. IEEE Journal on Selected Areas in Communications, 2022, 40, 5-36.	14.0	206
1299	Efficient Approximate Multiplier Based on a New 1-Gate Approximate Compressor. Circuits, Systems, and Signal Processing, 2022, 41, 2699-2718.	2.0	6
1300	Enhanced Recognition of Amputated Wrist and Hand Movements by Deep Learning Method Using Multimodal Fusion of Electromyography and Electroencephalography. Sensors, 2022, 22, 680.	3.8	12
1301	Optimization and Evaluation of Multidetector Deep Neural Network for High-Accuracy Wi-Fi Fingerprint Positioning. IEEE Internet of Things Journal, 2022, 9, 15204-15214.	8.7	2
1303	An Empirical Study of the Impact of Hyperparameter Tuning and Model Optimization on the Performance Properties of Deep Neural Networks. ACM Transactions on Software Engineering and Methodology, 2022, 31, 1-40.	6.0	27
#	Article	IF	CITATIONS
------	---	------	-----------
1304	FWDNet: A Novel Recognition Network for Ferrography Wear Debris Image Analysis. Wireless Communications and Mobile Computing, 2022, 2022, 1-11.	1.2	1
1305	PACA: A Pattern Pruning Algorithm and Channel-Fused High PE Utilization Accelerator for CNNs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41, 5043-5056.	2.7	4
1306	Identification of white blood cells for the diagnosis of acute myeloid leukemia. International Journal of Imaging Systems and Technology, 2022, 32, 1307-1317.	4.1	3
1307	DynO: Dynamic Onloading of Deep Neural Networks from Cloud to Device. Transactions on Embedded Computing Systems, 2022, 21, 1-24.	2.9	9
1309	An Integrated First Principal and Deep Learning Approach for Modeling Nitrous Oxide Emissions from Wastewater Treatment Plants. Environmental Science & Technology, 2022, 56, 2816-2826.	10.0	23
1310	Application of long short-term memory recurrent neural networks for localisation of leak source using 3D computational fluid dynamics. Chemical Engineering Research and Design, 2022, 159, 757-767.	5.6	12
1311	Ax-BxP: Approximate Blocked Computation for Precision-reconfigurable Deep Neural Network Acceleration. ACM Transactions on Design Automation of Electronic Systems, 2022, 27, 1-20.	2.6	2
1312	Dioxin emission prediction based on improved deep forest regression for municipal solid waste incineration process. Chemosphere, 2022, 294, 133716.	8.2	51
1313	Hardware Acceleration of a Generalized Fast 2-D Convolution Method for Deep Neural Networks. IEEE Access, 2022, 10, 16843-16858.	4.2	7
1314	ETA: An Efficient Training Accelerator for DNNs Based on Hardware-Algorithm Co-Optimization. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 7660-7674.	11.3	8
1315	Solar Particle Event and Single Event Upset Prediction from SRAM-based Monitor and Supervised Machine Learning. IEEE Transactions on Emerging Topics in Computing, 2022, , 1-1.	4.6	9
1316	Cryptocurrency trading: a comprehensive survey. Financial Innovation, 2022, 8, .	6.4	143
1317	Deep transfer learning correlation study of electronic and spin properties in buckled III-V monolayers. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 140, 115130.	2.7	1
1318	Fuzzy Contrast Set Based Deep Attention Network for Lexical Analysis and Mental Health Treatment. ACM Transactions on Asian and Low-Resource Language Information Processing, 2022, 21, 1-16.	2.0	14
1319	Scaling up silicon photonic-based accelerators: Challenges and opportunities. APL Photonics, 2022, 7, .	5.7	40
1320	Automated training of location-specific edge models for traffic counting. Computers and Electrical Engineering, 2022, 99, 107763.	4.8	3
1321	A Survey Comparing Specialized Hardware And Evolution In TPUs For Neural Networks. , 2020, , .		9
1322	A Survey on the Optimization of Neural Network Accelerators for Micro-Al On-Device Inference. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2021, 11, 532-547.	3.6	20

#	Article	IF	CITATIONS
1323	A Machine Learning Method for Detection of Surface Defects on Ceramic Tiles Using Convolutional Neural Networks. Electronics (Switzerland), 2022, 11, 55.	3.1	17
1324	Design Space Exploration ofÂTime, Energy, andÂError Rate Trade-offs forÂCNNs Using Accuracy-Programmable Instruction Set Processors. Communications in Computer and Information Science, 2021, , 375-389.	0.5	2
1325	Variable-Precision Approximate Floating-Point Multiplier for Efficient Deep Learning Computation. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 2503-2507.	3.0	4
1326	Research on Vector Structure of Neural Network Algorithm Based on RISC-V. , 2022, , .		0
1327	A Heuristic Exploration of Retraining-free Weight-Sharing for CNN Compression. , 2022, , .		6
1328	Multistream 3-D Convolution Neural Network With Parameter Sharing for Human State Estimation. IEEE Transactions on Cognitive and Developmental Systems, 2023, 15, 261-271.	3.8	4
1330	Mix-precision model encoding and quantization. , 2022, , 59-74.		0
1331	A Lightweight Convolutional Neural Network for End to End Autonomous Driving. SSRN Electronic Journal, 0, , .	0.4	1
1332	A Low-Complexity Deep Learning Framework For Acoustic Scene Classification. , 2022, , 26-32.		2
1333	Can We Trust Undervolting in FPGA-Based Deep Learning Designs at Harsh Conditions?. IEEE Micro, 2022, 42, 57-65.	1.8	0
1334	SegBlocks: Block-Based Dynamic Resolution Networks for Real-Time Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45, 2400-2411.	13.9	5
1336	MOZART+: Masking Outputs With Zeros for Improved Architectural Robustness and Testing of DNN Accelerators. IEEE Transactions on Device and Materials Reliability, 2022, 22, 120-128.	2.0	5
1337	Temporally-focused analytics of self-regulated learning: A systematic review of literature. Computers and Education Artificial Intelligence, 2022, 3, 100060.	10.8	26
1338	FxP-QNet: A Post-Training Quantizer for the Design of Mixed Low-Precision DNNs With Dynamic Fixed-Point Representation. IEEE Access, 2022, 10, 30202-30231.	4.2	5
1339	A²P-MANN: Adaptive Attention Inference Hops Pruned Memory-Augmented Neural Networks. IEEE Transactions on Neural Networks and Learning Systems, 2022, PP, 1-13.	11.3	0
1340	Artificial intelligence in edge devices. Advances in Computers, 2022, , 437-484.	1.6	5
1341	Pearl: Towards Optimization of DNN-accelerators Via Closed-Form Analytical Representation. , 2022, , .		0
1342	Functional Criticality Analysis of Structural Faults in Al Accelerators. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41, 5657-5670	2.7	5

ARTICLE IF CITATIONS # CASSANN-v2: A high-performance CNN accelerator architecture with on-chip memory self-adaptive 1343 0.8 7 tuning. IEICE Electronics Express, 2022, 19, 20220124-20220124. Energy Efficient Boosting of GEMM Accelerators for DNN via Reuse. ACM Transactions on Design 1344 2.6 Automation of Electronic Systems, 2022, 27, 1-26. A Novel Deep Learning Model to Predict Ultimate Strength of Ship Plates under Compression. Applied 1345 2.50 Sciences (Switzerland), 2022, 12, 2522. HDNN: a cross-platform MLIR dialect for deep neural networks. Journal of Supercomputing, 0, , 1. 1346 Ten quick tips for deep learning in biology. PLoS Computational Biology, 2022, 18, e1009803. 1347 3.2 14 A Survey of Deep Learning on Mobile Devices: Applications, Optimizations, Challenges, and Research Opportunities. Proceedings of the IEEE, 2022, 110, 334-354. 1348 21.3 History Dependence in a Chemical Reaction Network Enables Dynamic Switching. Small, 2022, 18, 1349 10.0 1 e2107523. Hardware Approximate Techniques for Deep Neural Network Accelerators: A Survey. ACM Computing 1350 23.0 Surveys, 2023, 55, 1-36. Hardware-friendly User-specific Machine Learning for Edge Devices. Transactions on Embedded 1351 2.9 2 Computing Systéms, 2022, 21, 1-29. A Construction Kit for Efficient Low Power Neural Network Accelerator Designs. Transactions on Embedded Computing Systems, 2022, 21, 1-36. Pruning a restricted Boltzmann machine for quantum state reconstruction. Physical Review B, 2022, 1353 2 3.2 105,. MobileNets Can Be Lossily Compressed: Neural Network Compression for Embedded Accelerators. 1354 3.1 Electronics (Switzerland), 2022, 11, 858. Accelerating In-Vehicle Network Intrusion Detection System Using Binarized Neural Network. SAE 1355 2.0 3 International Journal of Advances and Current Practices in Mobility, 0, 4, 2037-2050. Deep Hierarchical Attention Active Learning for Mental Disorder Unlabeled Data in AloMT. ACM 3.6 Transactions on Sensor Networks, 2023, 19, 1-18. A Conspectus of Deep Learning Techniques for Single-Image Super-Resolution. Pattern Recognition and 1357 1.0 3 Image Analysis, 2022, 32, 11-32. Anomaly detection using edge computing in video surveillance system: review. International Journal of Multimedia Information Retrieval, 2022, 11, 85-110. Hardware Demonstration of SRDP Neuromorphic Computing with Online Unsupervised Learning Based 1359 2.9 9 on Memristor Synapses. Micromachines, 2022, 13, 433. Online Learning for Orchestration of Inference in Multi-user End-edge-cloud Networks. Transactions on Embedded Computing Systems, 2022, 21, 1-25.

#	Article	IF	CITATIONS
1361	Semi-supervised generative and discriminative adversarial learning for motor imagery-based brain–computer interface. Scientific Reports, 2022, 12, 4587.	3.3	3
1362	Learningâ€based deep neural network inference task offloading in multiâ€device and multiâ€server collaborative edge computing. Transactions on Emerging Telecommunications Technologies, 2022, 33, .	3.9	7
1363	Effect of neural network structure in accelerating performance and accuracy of a convolutional neural network with GPU/TPU for image analytics. PeerJ Computer Science, 2022, 8, e909.	4.5	23
1364	Reconfigurable and Efficient Implementation of 16ÂBoolean Logics and Fullâ€Adder Functions with Memristor Crossbar for Beyond von Neumann Inâ€Memory Computing. Advanced Science, 2022, 9, e2200036.	11.2	13
1365	Improving Semantic Segmentation of Urban Scenes for Self-Driving Cars with Synthetic Images. Sensors, 2022, 22, 2252.	3.8	13
1366	Social-path embedding-based transformer for graduation development prediction. Applied Intelligence, 2022, 52, 14119-14136.	5.3	3
1367	An automatic learning rate decay strategy for stochastic gradient descent optimization methods in neural networks. International Journal of Intelligent Systems, 2022, 37, 7334-7355.	5.7	6
1368	Face Recognition Based on Deep Learning and FPGA for Ethnicity Identification. Applied Sciences (Switzerland), 2022, 12, 2605.	2.5	15
1369	Hyper-graph-based attention curriculum learning using a lexical algorithm for mental health. Pattern Recognition Letters, 2022, 157, 135-143.		4
1370	Performance portability in a real world application: PHAST applied to Caffe. International Journal of High Performance Computing Applications, 2022, 36, 419-439.	3.7	2
1371	High performance and energy efficient inference for deep learning on multicore ARM processors using general optimization techniques and BLIS. Journal of Systems Architecture, 2022, 125, 102459.	4.3	3
1372	Applying Intel's oneAPI to a machine learning case study. Concurrency Computation Practice and Experience, 2022, 34, .	2.2	5
1373	A review on quantum computing and deep learning algorithms and their applications. Soft Computing, 2023, 27, 13217-13236.	3.6	1
1374	Deep learning-based automatic optical inspection system empowered by online multivariate autocorrelated process control. International Journal of Advanced Manufacturing Technology, 2022, 120, 6143-6162.	3.0	2
1375	RadarSNN: A Resource Efficient Gesture Sensing System Based on mm-Wave Radar. IEEE Transactions on Microwave Theory and Techniques, 2022, 70, 2451-2461.	4.6	14
1376	Low-power deep learning edge computing platform for resource constrained lightweight compact UAVs. Sustainable Computing: Informatics and Systems, 2022, 34, 100725.	2.2	7
1377	Deep learning-based autonomous damage-sensitive feature extraction for impedance-based prestress monitoring. Engineering Structures, 2022, 259, 114172.	5.3	28
1378	Enable Deep Learning on Mobile Devices: Methods, Systems, and Applications. ACM Transactions on Design Automation of Electronic Systems, 2022, 27, 1-50.	2.6	38

#	Article	IF	CITATIONS
1379	Halide perovskite based synaptic devices for neuromorphic systems. Materials Today Physics, 2022, 24, 100667.	6.0	7
1380	Designing efficient convolutional neural network structure: A survey. Neurocomputing, 2022, 489, 139-156.	5.9	5
1381	A Convolutional Neural Network on Chip Design Methodology for CNN Hardware Implementation. , 2021, , .		0
1382	A data-aware dictionary-learning based technique for the acceleration of deep convolutional networks. , 2021, , .		1
1383	Improving Soft Error Reliability of FPGA-based Deep Neural Networks with Reduced Approximate TMR. , 2021, , .		2
1384	Towards Mixed-Precision Quantization of Neural Networks via Constrained Optimization. , 2021, , .		18
1385	Real-time Activation Pattern Monitoring and Uncertainty Characterisation in Image Classification. , 2021, , .		0
1386	Performance Evaluation of Systolic DCNN Accelerators. , 2021, , .		0
1387	Sim-to-Real Autonomous Vehicle Lane Keeping using Vision. , 2021, , .		0
1388	Towards Energy-Efficient and Secure Edge AI: A Cross-Layer Framework ICCAD Special Session Paper. , 2021, , .		20
1389	ScaleDNN: Data Movement Aware DNN Training on Multi-GPU. , 2021, , .		1
1390	Neuromorphic Properties of Forming-Free Non-Filamentary TiN/Ta2O5/Ta Structures with an Asymmetric Current–Voltage Characteristic. Nanobiotechnology Reports, 2021, 16, 804-810.	0.6	2
1391	On Reducing the Number of Multiplications in RNS-based CNN Accelerators. , 2021, , .		2
1392	LayerPipe: Accelerating Deep Neural Network Training by Intra-Layer and Inter-Layer Gradient Pipelining and Multiprocessor Scheduling. , 2021, , .		3
1393	Dynamic Voltage and Frequency Scaling to Improve Energy-Efficiency of Hardware Accelerators. , 2021,		7
1394	Deep Convolutional Neural Networks with Transfer Learning for Waterline Detection in Mussel Farms. , 2021, , .		7
1395	In-stream <i>Escherichia coli</i> modeling using high-temporal-resolution data with deep learning and process-based models. Hydrology and Earth System Sciences, 2021, 25, 6185-6202.	4.9	8
1396	Master-slave based test cost reduction method for DNN accelerators. IEICE Electronics Express, 2021, 18, 20210425-20210425.	0.8	0

#	Article	IF	CITATIONS
1397	Efficient HLS Implementation for Convolutional Neural Networks Accelerator on an SoC. , 2021, , .		1
1398	Learning Based Super Resolution Application for Hyperspectral Images. International Scientific and Vocational Studies Journal, 0, , 210-217.	0.4	0
1399	Performance of an Artificial Intelligence-based Application for the Detection of Plaque-based Stenosis on Monoenergetic Coronary CT Angiography: Validation by Invasive Coronary Angiography. Academic Radiology, 2022, 29, S49-S58.	2.5	7
1400	TempDiff: Feature Map-Level CNN Sparsity Enhancement at Near-Zero Memory Overhead via Temporal Difference. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2021, 11, 620-633.	3.6	2
1401	Early Prediction of DNN Activation Using Hierarchical Computations. Mathematics, 2021, 9, 3130.	2.2	0
1402	Implementation of a DPU-Based Intelligent Thermal Imaging Hardware Accelerator on FPGA. Electronics (Switzerland), 2022, 11, 105.	3.1	6
1403	Unbalanced Encoding in Synchronous Weight Quantization-Compression for Low-Bit Quantized Neural Network. , 2021, , .		1
1404	Classical and Deep Learning based Visual Servoing Systems: a Survey on State of the Art. Journal of Intelligent and Robotic Systems: Theory and Applications, 2022, 104, 1.	3.4	12
1405	An Efficient Machine Learning based Model for Classification of Wearable Clothing. Journal of Artificial Intelligence and Capsule Networks, 2021, 3, 317-329.	2.5	0
1406	Robust and Rapid Fabric Defect Detection Using EGNet. , 2021, , .		2
1407	Tiny Generative Image Compression for Bandwidth-Constrained Sensor Applications. , 2021, , .		1
1408	Power Management for Connected EVs Using a Fuzzy Logic Controller and Artificial Neural Network. Applied Sciences (Switzerland), 2022, 12, 52.	2.5	7
1409	Dynamic Adjustment of Concurrent Neural Networks within Limited Power Thermal Constraints in Autonomous Driving. , 2021, , .		1
1410	Deep learning-based estimation technique for capacitance and ESR of input capacitors in single-phase DC/AC converters. Journal of Power Electronics, 2022, 22, 513-521.	1.5	8
1411	Patch individual filter layers in CNNs to harness the spatial homogeneity of neuroimaging data. Scientific Reports, 2021, 11, 24447.	3.3	3
1412	Recurrent Neural Network-Based Temperature Control System Weight Pruning Based on Nonlinear Reconstruction Error. Processes, 2022, 10, 44.	2.8	2
1413	Radiomics, deep learning and early diagnosis in oncology. Emerging Topics in Life Sciences, 2021, 5, 829-835.	2.6	6
1414	Communication-Computation Efficient Device-Edge Co-Inference via AutoML. , 2021, , .		1

#	Article	IF	CITATIONS
1415	Towards an Energy-Efficient DQN-based User Association in Sub6GHz/mmWave Integrated Networks. , 2021, , .		2
1416	DL4SciVis: A State-of-the-Art Survey on Deep Learning for Scientific Visualization. IEEE Transactions on Visualization and Computer Graphics, 2023, 29, 3714-3733.	4.4	13
1417	Deep Neural Networks-Based Weight Approximation and Computation Reuse for 2-D Image Classification. IEEE Access, 2022, 10, 41551-41563.	4.2	2
1419	Electricity Theft Detection in Smart Grids Based on Deep Neural Network. IEEE Access, 2022, 10, 39638-39655.	4.2	42
1421	ECQ\$\$^{ext {x}}\$\$: Explainability-Driven Quantization forÂLow-Bit andÂSparse DNNs. Lecture Notes in Computer Science, 2022, , 271-296.	1.3	5
1422	Towards Portable Realizations of Winograd-based Convolution with Vector Intrinsics and OpenMP. , 2022, , .		2
1423	Transfer Learning-Based Autosegmentation of Primary Tumor Volumes of Glioblastomas Using Preoperative MRI for Radiotherapy Treatment. Frontiers in Oncology, 2022, 12, 856346.	2.8	5
1424	Comparing deep learning methods to predict the remaining useful life of lithium-ion batteries. Materials Today: Proceedings, 2022, 62, 6298-6304.	1.8	6
1425	Resources and Power Efficient FPGA Accelerators for Real-Time Image Classification. Journal of Imaging, 2022, 8, 114.	3.0	5
1426	A rough set theory and deep learning-based predictive system for gender recognition using audio speech. Soft Computing, 0, , .	3.6	8
1427	DGCyTOF: Deep learning with graphic cluster visualization to predict cell types of single cell mass cytometry data. PLoS Computational Biology, 2022, 18, e1008885.	3.2	9
1430	Precision- and Accuracy-Reconfigurable Processor Architectures—An Overview. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 2661-2666.	3.0	4
1431	Machine Learning-Empowered Beam Management for mmWave-NOMA in Multi-UAVs Networks. IEEE Transactions on Vehicular Technology, 2022, 71, 8487-8502.	6.3	5
1432	Ascend: A Scalable and Energy-Efficient Deep Neural Network Accelerator With Photonic Interconnects. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69, 2730-2741.	5.4	6
1435	Hybrid Accumulator Factored Systolic Array for Machine Learning Acceleration. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2022, 30, 881-892.	3.1	9
1436	Understanding How Orthogonality of Parameters Improves Quantization of Neural Networks. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 10737-10746.	11.3	0
1438	Demonstration of WDM-Enabled Ultralow-Energy Photonic Edge Computing. , 2022, , .		3
1439	Exploiting Wireless Technology for Energy-Efficient Accelerators With Multiple Dataflows and Precision. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69, 2742-2755.	5.4	2

#	Article	IF	CITATIONS
1440	Posit Process Element for Using in Energy-Efficient DNN Accelerators. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2022, 30, 844-848.	3.1	2
1442	Spiking Neural Network-Based Radar Gesture Recognition System Using Raw ADC Data. , 2022, 6, 1-4.		8
1443	A 64 Kb Reconfigurable Full-Precision Digital ReRAM-Based Compute-In-Memory for Artificial Intelligence Applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69, 3284-3296.	5.4	7
1444	A review of Artificial Intelligence approach for credit risk assessment. , 2022, , .		6
1445	Monolithic 3D Integration of Oxide Semiconductor FETs and Memory Devices for Al Acceleration (Invited). , 2022, , .		0
1446	Darknet on OpenCL: A multiplatform tool for object detection and classification. Concurrency Computation Practice and Experience, 0, , .	2.2	2
1447	An 1-bit by 1-bit High Parallelism In-RRAM Macro with Co-Training Mechanism for DCNN Applications. , 2022, , .		1
1448	At-scale assessment of weight clustering for energy-efficient object detection accelerators. , 2022, , .		2
1449	Ensemble forecast of tropical cyclone tracks based on deep neural networks. Frontiers of Earth Science, 2022, 16, 671-677.	2.1	2
1450	A Scalable and Adaptive Convolutional Neural Network Accelerator. , 2022, , .		Ο
1451	Estimation of Human Cerebral Atrophy Based on Systemic Metabolic Status Using Machine Learning. Frontiers in Neurology, 2022, 13, 869915.	2.4	3
1452	All-optical ultrafast ReLU function for energy-efficient nanophotonic deep learning. Nanophotonics, 2023, 12, 847-855.	6.0	21
1453	The Possibility of Combining and Implementing Deep Neural Network Compression Methods. Axioms, 2022, 11, 229.	1.9	9
1454	Toward memristive in-memory computing: principles and applications. Frontiers of Optoelectronics, 2022, 15, .	3.7	17
1455	A robust optimized convolutional neural network model for human activity recognition using sensing devices. Concurrency Computation Practice and Experience, 2022, 34, .	2.2	2
1456	A Survey on Memory Subsystems for Deep Neural Network Accelerators. Future Internet, 2022, 14, 146.	3.8	6
1457	Compression-Aware Projection with Greedy Dimension Reduction for Convolutional Neural Network Activations. , 2022, , .		5
1458	A Sneak Attack on Segmentation of Medical Images Using Deep Neural Network Classifiers. , 2021, , .		0

#	Article	IF	Citations
1459	An Ultra-Low-Voltage Bit-Interleaved Synthesizable 13T SRAM Circuit. IEEE Journal of Solid-State Circuits, 2022, 57, 3477-3489.	5.4	3
1462	A 65 nm Wireless Image SoC Supporting On-Chip DNN Optimization and Real-Time Computation-Communication Trade-Off via Actor-Critical Neuro-Controller. IEEE Journal of Solid-State Circuits, 2022, 57, 2545-2559.	5.4	4
1463	SPACX: Silicon Photonics-based Scalable Chiplet Accelerator for DNN Inference. , 2022, , .		11
1464	Compiler-Driven Simulation of Reconfigurable Hardware Accelerators. , 2022, , .		1
1465	Deep Learning on Edge. , 2022, , 115-135.		0
1466	Real-time edge computing on multi-processes and multi-threading architectures for deep learning applications. Microprocessors and Microsystems, 2022, 92, 104554.	2.8	4
1467	A Codesigned Integrated Photonic Electronic Neuron. IEEE Journal of Quantum Electronics, 2022, 58, 1-10.	1.9	11
1468	EEG Signals inÂMental Fatigue Detection: A Comparing Study ofÂMachine Learning Technics VS Deep Learning. Lecture Notes in Computer Science, 2022, , 625-633.	1.3	1
1469	Review and application of Edge AI solutions for mobile collaborative robotic platforms. Procedia CIRP, 2022, 107, 1083-1088.	1.9	5
1471	Memristive brain-like computing. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 140501.	0.5	1
1472	Parallel Sorting based OS-CFAR Implementation in FPGA. , 2022, , .		1
1473	Artificial Intelligence based Anomaly Detection and Classification for Grid-Interactive Cascaded Multilevel Inverters. , 2022, , .		10
1474	TCX: A Programmable Tensor Processor. , 2022, , .		0
1475	G-GPU: A Fully-Automated Generator of GPU-like ASIC Accelerators. , 2022, , .		0
1476	MEDEA: A Multi-objective Evolutionary Approach to DNN Hardware Mapping. , 2022, , .		3
1477	System-Level Design and Integration of a Prototype AR/VR Hardware Featuring a Custom Low-Power DNN Accelerator Chip in 7nm Technology for Codec Avatars. , 2022, , .		14
1478	Spiking Neural Network Integrated Circuits: A Review of Trends and Future Directions. , 2022, , .		28
1479	An ASIP for Neural Network Inference on Embedded Devices with 99% PE Utilization and 100% Memory Hidden under Low Silicon Cost. Sensors, 2022, 22, 3841.	3.8	0

#	Article	IF	CITATIONS
1480	A Little Energy Goes a Long Way: Build an Energy-Efficient, Accurate Spiking Neural Network From Convolutional Neural Network. Frontiers in Neuroscience, 2022, 16, .	2.8	5
1481	FitNN: A Low-Resource FPGA-Based CNN Accelerator for Drones. IEEE Internet of Things Journal, 2022, 9, 21357-21369.	8.7	10
1483	Edge-Cloud Polarization and Collaboration: A Comprehensive Survey for Al. IEEE Transactions on Knowledge and Data Engineering, 2022, , 1-1.	5.7	12
1484	An Ensemble Machine Learning Based Approach for Health Risk Prediciton. , 2022, , .		1
1485	ECA-CBAM: Classification of Diabetic Retinopathy. , 2022, , .		7
1486	Objects Classification based on UWB Scattered Field and SEM Data using Machine Learning Algorithms. , 2022, , .		4
1487	DTIP-TC2A: An analytical framework for drug-target interactions prediction methods. Computational Biology and Chemistry, 2022, 99, 107707.	2.3	4
1488	Efficient and portable GEMM-based convolution operators for deep neural network training on multicore processors. Journal of Parallel and Distributed Computing, 2022, 167, 240-254.	4.1	7
1489	BestOf: an online implementation selector for the training and inference of deep neural networks. Journal of Supercomputing, 2022, 78, 17543-17558.	3.6	1
1490	Experimental implementation of a neural network optical channel equalizer in restricted hardware using pruning and quantization. Scientific Reports, 2022, 12, .	3.3	10
1491	Stereo-vision-based 3D concrete crack detection using adversarial learning with balanced ensemble discriminator networks. Structural Health Monitoring, 2023, 22, 1353-1375.	7.5	8
1492	Reconfigurable Network-on-Chip based Convolutional Neural Network Accelerator. Journal of Systems Architecture, 2022, 129, 102567.	4.3	4
1493	A BLIS-like matrix multiplication for machine learning in the RISC-V ISA-based GAP8 processor. Journal of Supercomputing, 2022, 78, 18051-18060.	3.6	5
1494	CNNX: A Low Cost, CNN Accelerator for Embedded System in Vision at Edge. Arabian Journal for Science and Engineering, 0, , .	3.0	0
1495	How to successfully classify EEG in motor imagery BCI: a metrological analysis of the state of the art. Journal of Neural Engineering, 2022, 19, 031002.	3.5	31
1496	FPGA Accelerator for Homomorphic Encrypted Sparse Convolutional Neural Network Inference. , 2022, , .		7
1497	A survey on hardware accelerators: Taxonomy, trends, challenges, and perspectives. Journal of Systems Architecture, 2022, 129, 102561.	4.3	27
1498	Anticipating and eliminating redundant computations in accelerated sparse training. , 2022, , .		2

#	Article	IF	Citations
1499	Applications and development of artificial intelligence system from the perspective of system science: A bibliometric review. Systems Research and Behavioral Science, 2022, 39, 361-378.	1.6	5
1500	Cascading structured pruning. , 2022, , .		8
1501	LNNet: Lightweight Nested Network for motion deblurring. Journal of Systems Architecture, 2022, , 102584.	4.3	2
1502	GuardiaNN. , 2022, , .		0
1503	A Survey of Machine Learning for Computer Architecture and Systems. ACM Computing Surveys, 2023, 55, 1-39.	23.0	45
1505	EfficientTDNN: Efficient Architecture Search for Speaker Recognition. IEEE/ACM Transactions on Audio Speech and Language Processing, 2022, 30, 2267-2279.	5.8	5
1506	Random and Adversarial Bit Error Robustness: Energy-Efficient and Secure DNN Accelerators. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45, 3632-3647.	13.9	4
1507	Social Media Multiaspect Detection by Using Unsupervised Deep Active Attention. IEEE Transactions on Computational Social Systems, 2023, 10, 2137-2145.	4.4	2
1508	Reduced-Order Neural Network Synthesis With Robustness Guarantees. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35, 1182-1191.	11.3	1
1509	Special Session: Towards an Agile Design Methodology for Efficient, Reliable, and Secure ML Systems. , 2022, , .		10
1510	Special Session: On the Reliability of Conventional and Quantum Neural Network Hardware. , 2022, , .		3
1511	Kalmia: A Heterogeneous QoS-aware Scheduling Framework for DNN Tasks on Edge Servers. , 2022, , .		7
1512	XNOR-Nets with SETs: Proposal for a binarised convolution processing elements with Single-Electron Transistors. Scientific Reports, 2022, 12, .	3.3	0
1513	O-Net: A Fast and Precise Deep-Learning Architecture for Computational Super-Resolved Phase-Modulated Optical Microscopy. Microscopy and Microanalysis, 2022, 28, 1584-1598.	0.4	4
1514	Maneuver-based deep learning parameter identification of vehicle suspensions subjected to performance degradation. Vehicle System Dynamics, 2023, 61, 1260-1276.	3.7	5
1515	Autonomous live working robot navigation with realâ€ŧime detection and motion planning system on distribution line. High Voltage, 2022, 7, 1204-1216.	4.7	29
1516	Breast cancer detection by using associative classifier with rule refinement method based on relevance feedback. Neural Computing and Applications, 0, , .	5.6	0
1517	A federated calibration scheme for convolutional neural networks: Models, applications and challenges. Computer Communications, 2022, 192, 144-162.	5.1	28

\sim			n		
(17	ΓΔΤΙ	ON	RE	'PO	D.L
\sim	. /		- I C L		1X I.

#	Article	IF	CITATIONS
1518	A Speculative Computation Approach for Energy-Efficient Deep Neural Network. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023, 42, 795-806.	2.7	0
1519	SurgeNAS: A Comprehensive Surgery on Hardware-Aware Differentiable Neural Architecture Search. IEEE Transactions on Computers, 2023, 72, 1081-1094.	3.4	2
1520	Comparing Different Decodings forÂPosit Arithmetic. Lecture Notes in Computer Science, 2022, , 84-99.	1.3	8
1521	GQNA: Generic Quantized DNN Accelerator With Weight-Repetition-Aware Activation Aggregating. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69, 4069-4082.	5.4	3
1522	A Relevance-Based CNN Trimming Method forÂLow-Resources Embedded Vision. Lecture Notes in Computer Science, 2022, , 297-309.	1.3	2
1523	VSDCA: A Voltage Sensing Differential Column Architecture Based on 1T2R RRAM Array for Computing-in-Memory Accelerators. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69, 4028-4041.	5.4	9
1524	CNN synthesis for resource-constrained platforms. , 2022, , .		0
1525	Spiking Neural Networks-Inspired Signal Detection Based on Measured Body Channel Response. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-16.	4.7	3
1526	A High-Speed CNN Hardware Accelerator with Regular Pruning. , 2022, , .		4
1527	Experimental Fault Rate Characterization and Protection in Embedded RRAM. , 2022, , .		0
1528	Modified YOLOv4 Framework with Thermal Images for Pedestrian Detection. , 2022, , .		3
1529	RAPID-RL: A Reconfigurable Architecture with Preemptive-Exits for Efficient Deep-Reinforcement Learning. , 2022, , .		1
1530	Optical Computing: Status and Perspectives. Nanomaterials, 2022, 12, 2171.	4.1	28
1531	Al-Based Particle Position Prediction Near Southwestern Area of Jeju Island. Journal of Korean Society of Coastal and Ocean Engineers, 2022, 34, 72-81.	0.4	0
1532	Evolutionary approximation and neural architecture search. Genetic Programming and Evolvable Machines, 2022, 23, 351-374.	2.2	9
1533	Artificial intelligence focus and firm performance. Journal of the Academy of Marketing Science, 2022, 50, 1176-1197.	11.2	23
1534	Computation and memory optimized spectral domain convolutional neural network for throughput and energy-efficient inference. Applied Intelligence, 0, , .	5.3	0
1535	Scope of machine learning applications for addressing the challenges in nextâ€generation wireless networks. CAAI Transactions on Intelligence Technology, 2022, 7, 395-418.	8.1	23

#	Article	IF	CITATIONS
1536	Versatile Architectures of Artificial Neural Network with Variable Capacity. Circuits, Systems, and Signal Processing, 2022, 41, 6333-6353.	2.0	2
1537	Multi-Omics and Artificial Intelligence-Guided Drug Repositioning: Prospects, Challenges, and Lessons Learned from COVID-19. OMICS A Journal of Integrative Biology, 2022, 26, 361-371.	2.0	13
1538	Utilizing Hidden Observations to Enhance the Performance of the Trained Agent. IEEE Robotics and Automation Letters, 2022, 7, 7858-7864.	5.1	0
1540	Trustworthy AI: A Computational Perspective. ACM Transactions on Intelligent Systems and Technology, 2023, 14, 1-59.	4.5	26
1541	Silicon-based optoelectronics for general-purpose matrix computation: a review. Advanced Photonics, 2022, 4, .	11.8	16
1542	Press Casting Quality Prediction and Analysis Based on Machine Learning. Electronics (Switzerland), 2022, 11, 2204.	3.1	1
1543	Efficient optical reservoir computing for parallel data processing. Optics Letters, 2022, 47, 3784.	3.3	6
1544	A Bit-level Sparsity-aware SAR ADC with Direct Hybrid Encoding for Signed Expressions for AloT Applications. , 2022, , .		0
1545	At-scale evaluation of weight clustering to enable energy-efficient object detection. Journal of Systems Architecture, 2022, 129, 102635.	4.3	0
1546	Multiple health indicators assisting data-driven prediction of the later service life for lithium-ion batteries. Journal of Power Sources, 2022, 542, 231818.	7.8	7
1547	EPQuant: A Graph Neural Network compression approach based on product quantization. Neurocomputing, 2022, 503, 49-61.	5.9	3
1548	Application Benchmarking. , 2021, , .		0
1549	Estimation of Greenhouse Lettuce Growth Indices Based on a Two-Stage CNN Using RGB-D Images. Sensors, 2022, 22, 5499.	3.8	13
1550	On the Reliability of Computing-in-Memory Accelerators for Deep Neural Networks. Springer Series in Reliability Engineering, 2023, , 167-190.	0.5	1
1551	Double-kernel based class-specific broad learning system for multiclass imbalance learning. Knowledge-Based Systems, 2022, 253, 109535.	7.1	5
1552	Approximate Computing for Efficient Neural Network Computation: A Survey. , 2022, , 397-427.		1
1553	A Novel Low-Power Compression Scheme for Systolic Array-Based Deep Learning Accelerators. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023, 42, 1085-1098.	2.7	1
1554	Time-Multiplexed In-Memory Computation Scheme for Mapping Quantized Neural Networks on Hybrid CMOS-OxRAM Building Blocks. IEEE Nanotechnology Magazine, 2022, 21, 406-412.	2.0	1

		Report	
#	Article	IF	CITATIONS
1555	Hardware Accelerators for Real-Time Face Recognition: A Survey. IEEE Access, 2022, 10, 83723-83739.	4.2	8
1556	Knowledge fusion by pruning in spiking neural networks. , 2022, , .		0
1557	Using Deep Learning to Demodulate Transmissions in Molecular Communication. , 2022, , .		5
1558	Federated Learning: The Effect of Device Clustering for Multi-hop Networks. , 2022, , .		1
1559	TinyMLOps: Operational Challenges for Widespread Edge Al Adoption. , 2022, , .		3
1560	Hyper Spectral Fruit Image Classification for Deep Learning Approaches and Neural Network Techniques. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 2022, 30, 357-383.	1.9	3
1561	Hardware for Quantized Mixed-Precision Deep Neural Networks. , 2022, , .		0
1562	An Efficient Analog Convolutional Neural Network Hardware Accelerator Enabled by a Novel Memoryless Architecture for Insect-Sized Robots. , 2022, , .		2
1563	The Effects of Numerical Precision In Scientific Applications. , 2022, , .		0
1564	Improving compute in-memory ECC reliability with successive correction. , 2022, , .		3
1565	A computing-in-memory macro based on three-dimensional resistive random-access memory. Nature Electronics, 2022, 5, 469-477.	26.0	51
1566	Statistical computing framework and demonstration for in-memory computing systems. , 2022, , .		0
1567	Extending the VEF traces framework to model data center network workloads. Journal of Supercomputing, 0, , .	3.6	0
1568	Stacked Reconfigurable Optical Cavities for Smart Sensing Pixels. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28, 1-12.	2.9	0
1569	WDM-Enabled Photonic Edge Computing. , 2022, , .		0
1570	Managing Sustainability Tensions in Artificial Intelligence. , 2022, , .		2
1571	Privacy Preserving Multi-class Fall Classification Based on Cascaded Learning And Noisy Labels Handling. , 2022, , .		1
1572	SWIM. , 2022, , .		4

#	Article	IF	CITATIONS
1573	Joint Architecture Design and Workload Partitioning for DNN Inference on Industrial IoT Clusters. ACM Transactions on Internet Technology, 2023, 23, 1-21.	4.4	1
1574	SRAM Cell Design Challenges in Modern Deep Sub-Micron Technologies: An Overview. Micromachines, 2022, 13, 1332.	2.9	8
1575	Weak self-supervised learning for seizure forecasting: a feasibility study. Royal Society Open Science, 2022, 9, .	2.4	8
1576	A Lightweight Convolutional Neural Network to Predict Steering Angle for Autonomous Driving Using CARLA Simulator. Modelling and Simulation in Engineering, 2022, 2022, 1-11.	0.7	2
1577	Quantization and sparsity-aware processing for energy-efficient NVM-based convolutional neural networks. Frontiers in Electronics, 0, 3, .	3.2	1
1578	EnforceSNN: Enabling resilient and energy-efficient spiking neural network inference considering approximate DRAMs for embedded systems. Frontiers in Neuroscience, 0, 16, .	2.8	5
1579	Godiva: green on-chip interconnection for DNNs. Journal of Supercomputing, 0, , .	3.6	0
1580	Multiâ€objective evolutionary optimization for hardwareâ€aware neural network pruning. Fundamental Research, 2022, , .	3.3	7
1581	An EDA Framework for Design Space Exploration of On-Chip AI in Bioimplantable Applications. , 2022, , .		1
1582	Reinforcement learning applied to production planning and control. International Journal of Production Research, 2023, 61, 5772-5789.	7.5	16
1583	FedDQ: A communication-efficient federated learning approach for Internet of Vehicles. Journal of Systems Architecture, 2022, 131, 102690.	4.3	6
1584	A 5.67 ENOB Vector Matrix Multiplier with Charge Storage FET Cells and Non-Linearity Compensation Techniques. Electronics (Switzerland), 2022, 11, 2911.	3.1	0
1585	Towards explainable AI for hyperspectral image classification in Edge Computing environments. Computers and Electrical Engineering, 2022, 103, 108381.	4.8	10
1586	Multiuser Co-Inference With Batch Processing Capable Edge Server. IEEE Transactions on Wireless Communications, 2023, 22, 286-300.	9.2	3
1587	A Survey of Intelligent Chip Design Research Based on Spiking Neural Networks. IEEE Access, 2022, 10, 89663-89686.	4.2	3
1588	A 28-nm 198.9-TOPS/W Fault-Tolerant Stochastic Computing Neural Network Processor. IEEE Solid-State Circuits Letters, 2022, 5, 198-201.	2.0	4
1589	iMon: Network Function Virtualisation Monitoring Based on a Unique Agent. IEICE Transactions on Communications, 2023, E106.B, 230-240.	0.7	0
1590	A 28 nm 81 Kb 59–95.3 TOPS/W 4T2R ReRAM Computing-in-Memory Accelerator With Voltage-to-Time-to-Digital Based Output. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2022, 12, 846-857.	3.6	2

#	Article	IF	CITATIONS
1591	Learning From Images: Proactive Caching With Parallel Convolutional Neural Networks. IEEE Transactions on Mobile Computing, 2022, , 1-16.	5.8	1
1592	Distributed Inference in Resource-Constrained IoT for Real-Time Video Surveillance. IEEE Systems Journal, 2023, 17, 1512-1523.	4.6	1
1593	End-to-End Synthesis of Dynamically Controlled Machine Learning Accelerators. IEEE Transactions on Computers, 2022, , 1-14.	3.4	1
1594	SRAM-Based Computing-in-Memory Macro With Fully Parallel One-Step Multibit Computation. IEEE Solid-State Circuits Letters, 2022, 5, 234-237.	2.0	7
1595	Edge AI: Leveraging the Full Potential of Deep Learning. Studies in Computational Intelligence, 2022, , 27-46.	0.9	5
1596	Wireless Multi-Interface Connectivity with Deep Learning-Enabled User Devices: an Energy Efficiency Perspective. IEEE Network, 2022, , 1-18.	6.9	0
1597	A Principled Design of Image Representation: Towards Forensic Tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, , 1-18.	13.9	5
1598	Accelerating Neural Network Inference With Processing-in-DRAM: From the Edge to the Cloud. IEEE Micro, 2022, 42, 25-38.	1.8	4
1599	Low-Overhead Early-Stopping Policies forÂEfficient Random Forests Inference onÂMicrocontrollers. IFIP Advances in Information and Communication Technology, 2022, , 25-47.	0.7	0
1600	Exploiting Structures inÂWeight Matrices forÂEfficient Real-Time Drone Control withÂNeural Networks. Lecture Notes in Computer Science, 2022, , 525-536.	1.3	1
1601	Investigating Current-Based andÂGating Approaches forÂAccurate andÂEnergy-Efficient Spiking Recurrent Neural Networks. Lecture Notes in Computer Science, 2022, , 359-370.	1.3	3
1602	Multiobjective End-to-End Design Space Exploration of Parameterized DNN Accelerators. IEEE Internet of Things Journal, 2023, 10, 1800-1812.	8.7	0
1603	SCENIC: An Area and Energy-Efficient CNN-based Hardware Accelerator for Discernable Classification of Brain Pathologies using MRI. , 2022, , .		2
1604	ICU4SAT: A General-Purpose Reconfigurable Instrument Control Unit Based on Open Source Components. , 2022, , .		7
1605	Face Recognition in Multiple Variations Using Deep Learning and Convolutional Neural Networks. , 2022, , .		3
1606	Al driven Wide Dynamic Range CMOS Image Sensor. , 2022, , .		0
1607	Power-Efficient Double-Cyclic Low-Precision Training for Convolutional Neural Networks. , 2022, , .		1
1608	An Energy-Efficient Spiking Neural Network for Finger Velocity Decoding for Implantable Brain-Machine Interface. , 2022, , .		8

#	Article	IF	CITATIONS
1609	Deep Learning aided BP-Flip Decoding of Polar Codes. , 2022, , .		1
1610	Delta Activation Layer exploits temporal sparsity for efficient embedded video processing. , 2022, , .		2
1611	Sparse Versions of Optimized Centroids. , 2022, , .		0
1612	CoNLoCNN: Exploiting Correlation and Non-Uniform Quantization for Energy-Efficient Low-precision Deep Convolutional Neural Networks. , 2022, , .		1
1613	Charge-Trap based VMM design compensated for non-linearity through Reference Read. , 2022, , .		0
1614	An Explainable Mental Health Fuzzy Deep Active Learning Technique. , 2022, , .		Ο
1615	On Combining Robustness and Regularization in Training Multilayer Perceptrons over Small Data. , 2022, , .		1
1616	Logic gates based on nonlinear oscillators. , 2022, , .		0
1618	Deep Video Stream Information Analysis and Retrieval: Challenges and Opportunities. , 2022, , .		3
1619	Where Nanosensors Meet Machine Learning: Prospects and Challenges in Detecting Disease X. ACS Nano, 2022, 16, 13279-13293.	14.6	16
1620	ls Tiny Deep Learning the New Deep Learning?. Lecture Notes on Data Engineering and Communications Technologies, 2023, , 23-39.	0.7	2
1621	Advancements in materials, devices, and integration schemes for a new generation of neuromorphic computers. Materials Today, 2022, 59, 80-106.	14.2	11
1622	Reconfigurable Compute-In-Memory on Field-Programmable Ferroelectric Diodes. Nano Letters, 2022, 22, 7690-7698.	9.1	17
1623	Deep Interest Context Network for Click-Through Rate. Applied Sciences (Switzerland), 2022, 12, 9531.	2.5	1
1624	Feature Fusion Deep Learning Model for Defects Prediction in Crystal Structures. Crystals, 2022, 12, 1324.	2.2	2
1625	A survey on adversarial attacks and defenses for object detection and their applications in autonomous vehicles. Visual Computer, 2023, 39, 5293-5307.	3.5	4
1626	Auto-Differentiated Fixed Point Notation on Low-Powered Hardware Acceleration. Journal of Signal Processing, 2022, 26, 131-140.	0.3	0
1627	laaS-Application Development forÂParalleled Remote Sensing Data Stream Processing. Lecture Notes on Data Engineering and Communications Technologies, 2023, , 705-718.	0.7	0

CITATI	ON	
U I I A I I		

#	Article	IF	CITATIONS
1628	Social distance "nudge:―a context aware mHealth intervention in response to COVID pandemics. Computational and Mathematical Organization Theory, 2023, 29, 391-414.	2.0	1
1629	Transient computing for energy harvesting systems: A survey. Journal of Systems Architecture, 2022, 132, 102743.	4.3	4
1630	Relation Extraction from Videos Based on IoT Intelligent Collaboration Framework. Mathematics, 2022, 10, 3308.	2.2	0
1631	Soft Error Resilient Deep Learning Systems Using Neuron Gradient Statistics. , 2022, , .		3
1632	A novel adaptive cubic quasiâ€Newton optimizer for deep learning based medical image analysis tasks, validated on detection of COVIDâ€19 and segmentation for COVIDâ€19 lung infection, liver tumor, and optic disc/cup. Medical Physics, 2023, 50, 1528-1538.	3.0	1
1633	Assessment of Speckle-Pattern Quality using Deep-Learning-Based CNN. Experimental Mechanics, 2023, 63, 163-176.	2.0	6
1634	Single image super-resolution via a ternary attention network. Applied Intelligence, 0, , .	5.3	0
1635	An Articulated Learning Method Based on Optimization Approach for Gallbladder Segmentation from MRCP Images and an Effective IoT Based Recommendation Framework. Studies in Computational Intelligence, 2022, , 165-179.	0.9	21
1636	Provable Benefits of Overparameterization in Model Compression: From Double Descent to Pruning Neural Networks. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35, 6974-6983.	4.9	8
1637	An exponential function accelerator with radix-16 algorithm for spiking neural networks. IEICE Electronics Express, 2023, 20, 20220393-20220393.	0.8	1
1638	RoHNAS: A Neural Architecture Search Framework With Conjoint Optimization for Adversarial Robustness and Hardware Efficiency of Convolutional and Capsule Networks. IEEE Access, 2022, 10, 109043-109055.	4.2	4
1639	A Non-Idealities Aware Software–Hardware Co-Design Framework for Edge-AI Deep Neural Network Implemented on Memristive Crossbar. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2022, 12, 934-943.	3.6	5
1640	A New Deep Spiking Architecture for Reconstruction of Compressed Data in Cognitive Radio Networks. IEEE Access, 2023, 11, 84565-84573.	4.2	0
1641	Area Efficient Compression for Floating-Point Feature Maps in Convolutional Neural Network Accelerators. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70, 746-750.	3.0	1
1642	LANA: Latency Aware Network Acceleration. Lecture Notes in Computer Science, 2022, , 137-156.	1.3	0
1643	A Multi-FPGA Scalable Framework forÂDeep Reinforcement Learning Through Neuroevolution. Lecture Notes in Computer Science, 2022, , 47-61.	1.3	1
1644	Performance Evaluation of AI Algorithms on Heterogeneous Edge Devices for Manufacturing. , 2022, , .		5
1645	Im2win: Memory Efficient Convolution On SIMD Architectures. , 2022, , .		1

#	Article	IF	CITATIONS
1646	Non-deterministic Quantization for mmWave Beam Prediction. , 2022, , .		0
1647	ThingsDND: IoT Device Failure Detection and Diagnosis for Multi-User Smart Homes. , 2022, , .		1
1648	AI and ML Accelerator Survey and Trends. , 2022, , .		21
1649	Possibilities and Limitations of Memristor Crossbars for Neuromorphic Computing. , 2022, , .		0
1650	Forming-free titanium oxide neuromorphic crossbar array for robotics and AI systems. , 2022, , .		0
1651	TORRES: A Resource-Efficient Inference Processor for Binary Convolutional Neural Networks Based on Locality-Aware Operation Skipping. Electronics (Switzerland), 2022, 11, 3534.	3.1	4
1652	TCX: A RISC Style Tensor Computing Extension and a Programmable Tensor Processor. Transactions on Embedded Computing Systems, 2023, 22, 1-27.	2.9	1
1653	An automatic knowledge graph construction approach to promoting collaborative knowledge building, group performance, social interaction and socially shared regulation in <scp>CSCL</scp> . British Journal of Educational Technology, 2023, 54, 686-711.	6.3	10
1654	Dispense Mode for Inference to Accelerate Branchynet. , 2022, , .		0
1655	Beyond classification: directly training spiking neural networks for semantic segmentation. Neuromorphic Computing and Engineering, 2022, 2, 044015.	5.9	12
1656	Structural Behavior Prediction Model for Asphalt Pavements: A Deep Neural Network Approach. Journal of Testing and Evaluation, 2023, 51, 1021-1051.	0.7	2
1657	A Reconfigurable Deep Neural Network on Chip Design with Flexible Convolutional Operations. , 2022,		0
1658	A Compact Spectral Model forÂConvolutional Neural Network. Lecture Notes in Networks and Systems, 2023, , 100-120.	0.7	0
1659	Delocalized photonic deep learning on the internet's edge. Science, 2022, 378, 270-276.	12.6	46
1660	Templatized Fused Vector Floating-Point Dot Product for High-Level Synthesis. Journal of Low Power Electronics and Applications, 2022, 12, 56.	2.0	1
1661	On Quantization of Image Classification Neural Networks for Compression Without Retraining. , 2022, , .		1
1662	Efficient Hardware Acceleration of Sparsely Active Convolutional Spiking Neural Networks. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41, 3767-3778.	2.7	6
1663	Stateful Neural Networks for Intermittent Systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41, 4229-4240.	2.7	3

#	Article	IF	CITATIONS
1664	Learnable Mixed-precision and Dimension Reduction Co-design for Low-storage Activation. , 2022, , .		3
1665	A Flexible Yet Efficient DNN Pruning Approach for Crossbar-Based Processing-in-Memory Architectures. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41, 3745-3756.	2.7	2
1666	A novel data-driven optimal chiller loading regulator based on backward modeling approach. Applied Energy, 2022, 327, 120102.	10.1	3
1667	Efficient deep steering control method for self-driving cars through feature density metric. Neurocomputing, 2023, 515, 107-120.	5.9	4
1668	PURSUhInT: In Search of Informative Hint Points Based on Layer Clustering for Knowledge Distillation. Expert Systems With Applications, 2023, 213, 119040.	7.6	2
1669	A defense method against backdoor attacks on neural networks. Expert Systems With Applications, 2023, 213, 118990.	7.6	6
1670	Decentralized DNN Task Partitioning and Offloading Control in MEC Systems With Energy Harvesting Devices. IEEE Journal on Selected Topics in Signal Processing, 2023, 17, 173-188.	10.8	4
1671	Energy-Efficient DNN Training Processors on Micro-Al Systems. IEEE Open Journal of the Solid-State Circuits Society, 2022, 2, 259-275.	2.7	4
1672	A 1.05-A/m Minimum Magnetic Field Strength Single-Chip, Fully Integrated Biometric Smart Card SoC Achieving 792.5-ms Transaction Time With Anti-Spoofing Fingerprint Authentication. IEEE Journal of Solid-State Circuits, 2023, 58, 155-166.	5.4	0
1673	Wasserstein Generative Adversarial Network to Address the Imbalanced Data Problem in Real-Time Crash Risk Prediction. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 23002-23013.	8.0	10
1674	A Threshold Implementation-Based Neural Network Accelerator With Power and Electromagnetic Side-Channel Countermeasures. IEEE Journal of Solid-State Circuits, 2023, 58, 141-154.	5.4	3
1675	Low-Cost and Highly Accurate Behavioral Modeling of Antenna Structures by Means of Knowledge-Based Domain-Constrained Deep Learning Surrogates. IEEE Transactions on Antennas and Propagation, 2023, 71, 105-118.	5.1	6
1676	Distributed Artificial Intelligence Empowered by End-Edge-Cloud Computing: A Survey. IEEE Communications Surveys and Tutorials, 2023, 25, 591-624.	39.4	34
1677	SaleNet: A low-power end-to-end CNN accelerator for sustained attention level evaluation using EEG. , 2022, , .		3
1678	Algorithm-Hardware Co-Optimization for Cost-Efficient ML-based ISP Accelerator. , 2022, , .		0
1679	Characterization and Mitigation of IR-Drop in RRAM-based Compute In-Memory. , 2022, , .		Ο
1680	ART-MAC: Approximate Rounding and Truncation based MAC Unit for Fault-Tolerant Applications. , 2022, , .		1
1681	Nanoscale Design of Multi-Layer Perceptrons using Floating-Point Arithmetic Units. , 2022, , .		1

#	Article	IF	CITATIONS
1682	A hybrid clustering algorithm for high-performance edge computing devices [Short]. , 2022, , .		2
1683	Guarding Against Universal Adversarial Perturbations in Data-driven Cloud/Edge Services. , 2022, , .		1
1684	A 65nm 110GOPS 8T-SRAM Computing-in-Memory Macro with Single Cycle Serial Input Mechanism. , 2022, , .		0
1685	Analog Compute in Memory and Breaking Digital Number Representations. , 2022, , .		0
1686	Flexible design methodology for spike encoding implementation on FPGA. , 2022, , .		0
1687	Dataflow Optimizations in a Sub-uW Data-Driven TCN Accelerator for Continuous ECG Monitoring. , 2022, , .		2
1688	Efficient Hardware/Software Implementation for GoogLeNet Using Xilinx SDSoC. , 2022, , .		0
1689	SECDA-TFLite: A toolkit for efficient development of FPGA-based DNN accelerators for edge inference. Journal of Parallel and Distributed Computing, 2023, 173, 140-151.	4.1	2
1690	Power-efficient gesture sensing for edge devices: mimicking fourier transforms with spiking neural networks. Applied Intelligence, 0, , .	5.3	2
1691	Modeling Wildfire Spread with an Irregular Graph Network. Fire, 2022, 5, 185.	2.8	7
1692	Recent Developments in Low-Power Al Accelerators: A Survey. Algorithms, 2022, 15, 419.	2.1	4
1693	Current Application Fields. , 2023, , 167-277.		0
1694	Deep Neural Network Memory Performance and Throughput Modeling and Simulation Framework. Mathematics, 2022, 10, 4144.	2.2	1
1695	A multi-scale reconstruction method for the anomaly detection in stochastic dynamic networks. Neurocomputing, 2023, 518, 482-495.	5.9	2
1696	Pleural Effusion Detection Using Machine Learning and Deep Learning Based on Computer Vision. Lecture Notes on Data Engineering and Communications Technologies, 2023, , 199-210.	0.7	1
1697	Stacking- and voting-based ensemble deep learning models (SEDL and VEDL) and active learning (AL) for mapping land subsidence. Environmental Science and Pollution Research, 2023, 30, 26580-26595.	5.3	12
1698	Memristive/CMOS Devices for Neuromorphic Applications. Springer Handbooks, 2023, , 1167-1199.	0.6	0
1699	Machine learning and atomic layer deposition: Predicting saturation times from reactor growth profiles using artificial neural networks. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40	2.1	1

#	Article	IF	CITATIONS
1700	Compressive strength analysis of fly ash-based geopolymer concrete using machine learning approaches. Results in Materials, 2022, 16, 100347.	1.8	3
1701	QoS-Aware Machine Learning Task Offloading and Power Control in Internet of Drones. IEEE Internet of Things Journal, 2023, 10, 6100-6110.	8.7	3
1702	Generalization Ability of Deep Learning Algorithms Trained Using SEM Data for Objects Classification. Radio Science, 2022, 57, .	1.6	1
1703	Architectures for Machine Learning. , 2022, , 1-59.		0
1704	Optical Neural Networks for Holographic Image Recognition (Invited Paper). Progress in Electromagnetics Research, 2023, 176, 25-33.	4.4	0
1705	Optimizing Winograd Convolution on GPUs via Partial Kernel Fusion. Lecture Notes in Computer Science, 2022, , 17-29.	1.3	0
1706	EdgeDuet: Tiling Small Object Detection for Edge Assisted Autonomous Mobile Vision. IEEE/ACM Transactions on Networking, 2023, 31, 1765-1778.	3.8	3
1707	Multiple-Mode-Supporting Floating-Point FMA Unit for Deep Learning Processors. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2023, 31, 253-266.	3.1	5
1708	Robust Channel Invariant Deep Noncooperative Spectrum Sensing. IEEE Wireless Communications Letters, 2023, 12, 436-440.	5.0	1
1709	Efficient Hardware Architectures for Accelerating Deep Neural Networks: Survey. IEEE Access, 2022, 10, 131788-131828.	4.2	14
1710	Survey on traditional and AI based estimation techniques for hydrodynamic coefficients of autonomous underwater vehicle. Ocean Engineering, 2023, 268, 113300.	4.3	33
1711	A finger vein authentication method based on the lightweight Siamese network with the self-attention mechanism. Infrared Physics and Technology, 2023, 128, 104483.	2.9	3
1712	Lightweight bidirectional long short-term memory based on automated model pruning with application to bearing remaining useful life prediction. Engineering Applications of Artificial Intelligence, 2023, 118, 105662.	8.1	13
1713	Reformulating the direct convolution for high-performance deep learning inference on ARM processors. Journal of Systems Architecture, 2023, 135, 102806.	4.3	7
1714	JMDC: A joint model and data compression system for deep neural networks collaborative computing in edge-cloud networks. Journal of Parallel and Distributed Computing, 2023, 173, 83-93.	4.1	2
1715	A learning-based proactive scheme for improving distribution systems resilience against windstorms. International Journal of Electrical Power and Energy Systems, 2023, 147, 108763.	5.5	7
1716	Low-Complexity Precision-Scalable Multiply-Accumulate Unit Architectures for Deep Neural Network Accelerators. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70, 1610-1614.	3.0	2
1717	A Survey of FPGA-Based Vision Systems for Autonomous Cars. IEEE Access, 2022, 10, 132525-132563.	4.2	3

#	Article	IF	CITATIONS
1718	A Physics-Based Neural Estimation of the Direction of Arrival Over Sea Surfaces. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-14.	6.3	1
1719	Efficient Acceleration of Deep Learning Inference on Resource-Constrained Edge Devices: A Review. Proceedings of the IEEE, 2023, 111, 42-91.	21.3	18
1720	Reconfigurability, Why It Matters in Al Tasks Processing: A Survey of Reconfigurable Al Chips. IEEE Transactions on Circuits and Systems I: Regular Papers, 2023, 70, 1228-1241.	5.4	1
1721	Effects of Exercise-Diet Therapy on Cognitive Function in Healthy Elderly People Evaluated by Deep Learning Based on Basic Blood Test Data. Advances in Experimental Medicine and Biology, 2022, , 139-143.	1.6	1
1722	Real-Time AI-Based Anomaly Detection and Classification in Power Electronics Dominated Grids. IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 2023, 4, 549-559.	3.9	7
1723	YOLOv2-tiny Target Detection System Based on FPGA Platform. , 2022, , .		2
1724	Improving the accuracy of neural networks in analog computing-in-memory systems by analog weight. , 2022, , .		0
1725	Thread-level Parallelism in Fault Simulation of Deep Neural Networks on Multi-Processor Systems. , 2022, , .		1
1726	MOSP: Multi-Objective Sensitivity Pruning of Deep Neural Networks. , 2022, , .		4
1727	Evaluating Read Disturb Effect on RRAM based AI Accelerator with Multilevel States and Input Voltages. , 2022, , .		3
1728	Do Not Forget: Exploiting Stability-Plasticity Dilemma to Expedite Unsupervised SNN Training for Neuromorphic Processors. , 2022, , .		1
1729	Design Space and Memory Technology Co-Exploration for In-Memory Computing Based Machine Learning Accelerators. , 2022, , .		1
1730	Element-wise Partial Product Quantization for Efficient Deep Learning Accelerators. , 2022, , .		0
1731	LIPFD-NPU: Low-overhead Instruction-driven Permanent Fault Detection for Neural Processing Unit. , 2022, , .		1
1732	Computing-In-Memory Neural Network Accelerators for Safety-Critical Systems. , 2022, , .		2
1733	Scale-out Systolic Arrays. Transactions on Architecture and Code Optimization, 2023, 20, 1-25.	2.0	4
1734	Communication Efficient Federated Learning. , 2023, , 93-137.		0
1735	An Energy-Efficient Method for Recurrent Neural Network Inference in Edge Cloud Computing. Symmetry, 2022, 14, 2524.	2.2	1

ARTICLE IF CITATIONS # Machine learning models to predict the maximum severity of COVID-19 based on initial hospitalization 1736 2.7 1 record. Frontiers in Public Health, 0, 10, . Convolution Operators for Deep Learning Inference on the Fujitsu A64FX Processor., 2022, , . E-prop on SpiNNaker 2: Exploring online learning in spiking RNNs on neuromorphic hardware. 1738 2.8 4 Frontiers in Neuroscience, 0, 16, . Design and Analysis of Multipliers for DNN application using approximate 4:2 Compressors. 1.1 International Journal of Next-generation Computing, 0, , . Memory-Side Acceleration and Sparse Compression for Quantized Packed Convolutions., 2022,,. 1740 0 1741 Using photonic reservoirs as preprocessors for deep neural networks. Frontiers in Physics, 0, 10, . 2.1 FiBHA: Fixed Budget Hybrid CNN Accelerator., 2022,,. 1742 1 Deep Learning Acceleration Design Based on Low Rank Approximation., 2022, , . 1743 Artificial Intelligence and Advanced Materials. Advanced Materials, 2023, 35, . 21.0 1744 10 Flexible Convolver for Convolutional Neural Networks Deployment onto Hardware-Oriented 1745 2.5 Applications. Applied Sciences (Switzerland), 2023, 13, 93. Deviceâ€System Endâ€toâ€End Design of Photonic Neuromorphic Processor Using Reinforcement Learning. 1746 8.7 3 Laser and Photonics Reviews, 2023, 17, . 1747 Prophet: Realizing a Predictable Real-time Perception Pipeline for Autonomous Vehicles., 2022, , . Performance evaluation of machine learning and statistical techniques for modelling landslide 1748 3.2 8 susceptibility with limited field data. Earth Science Informatics, 2023, 16, 1025-1039. Graph Attention Network for Text Classification and Detection of Mental Disorder. ACM Transactions 1749 2.5 on the Web, 2023, 17, 1-31. From 2D projections to the 3D rotation matrix: an attempt for finding a machine learning approach 1750 for the efficient evaluation of mechanical joining elements in X-ray computed tomography volume 2.9 0 data. SN Applied Sciences, 2023, 5, . Intelligence in Finance and Economics for Predicting High-Frequency Data. Mathematics, 2023, 11, 454. 2.2 Acceleration Techniques for Automated Design of Approximate Convolutional Neural Networks. IEEE 1752 3.6 1 Journal on Emerging and Selected Topics in Circuits and Systems, 2023, 13, 212-224. Multi-Objective Surrogate-Model-Based Neural Architecture and Physical Design Co-Optimization of Energy Efficient Neural Network Hardware Accelerators. IEEE Transactions on Circuits and Systems I: 5.4 Regular Papers, 2023, 70, 40-53.

		CITATION REPORT		
#	Article		IF	CITATIONS
1754	Selected Aspects ofÂlnteractive Feature Extraction. Lecture Notes in Computer Science, 2022, , 12	1-287.	1.3	3
1755	A Bottom-Up Methodology for the Fast Assessment of CNN Mappings on Energy-Efficient Accelerat Journal of Low Power Electronics and Applications, 2023, 13, 5.	ors.	2.0	0
1756	Technology Prospects for Data-Intensive Computing. Proceedings of the IEEE, 2023, 111, 92-112.		21.3	5
1757	Breath VOC analysis and machine learning approaches for disease screening: a review. Journal of Breath Research, 2023, 17, 024001.		3.0	5
1758	A 1.6-mW Sparse Deep Learning Accelerator for Speech Separation. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2023, 31, 310-319.	2	3.1	0
1759	An immediate analysis of the interaction topic approach to promoting group performance, knowled convergence, cognitive engagement, and coregulation in online collaborative learning. Education and Information Technologies, 2023, 28, 9913-9934.	ge	5.7	3
1760	Towards efficient communications in federated learning: A contemporary survey. Journal of the Franklin Institute, 2023, 360, 8669-8703.		3.4	6
1761	Health Monitoring Technology Based on Artificial Intelligence. , 2023, , 117-212.			0
1762	A Charge Domain SRAM Compute-in-Memory Macro With C-2C Ladder-Based 8-Bit MAC Unit in 22- FinFET Process for Edge Inference. IEEE Journal of Solid-State Circuits, 2023, 58, 1037-1050.	nm	5.4	10
1763	Analysis of Efficient and Fast Prediction Method for the Kinematics Solution of the Steel Bar Grindin Robot. Applied Sciences (Switzerland), 2023, 13, 1212.	g	2.5	1
1764	A Universal Accelerated Coprocessor for Object Detection Based on RISC-V. Electronics (Switzerland), 2023, 12, 475.		3.1	3
1765	PANCODE: Multilevel Partitioning of Neural Networks for Constrained Internet-of-Things Devices. IEEE Access, 2023, 11, 2058-2077.		4.2	0
1766	Neuromorphic Computing: A Path to Artificial Intelligence Through Emulating Human Brains. , 2023 259-296.	, ,		5
1767	Explainable Methods for Image-Based Deep Learning: A Review. Archives of Computational Methods Engineering, 2023, 30, 2651-2666.	s in	10.2	7
1768	<i>iGniter:</i> Interference-Aware GPU Resource Provisioning for Predictable DNN Inference in the Cloud. IEEE Transactions on Parallel and Distributed Systems, 2023, 34, 812-827.		5.6	2
1769	Performance optimization of RCCI engines running on landfill gas, propane and hydrogen through t deep neural network and genetic algorithm. Sustainable Energy Technologies and Assessments, 20. 56, 103045.	he 23,	2.7	2
1770	Deep learning-driven MIMO: Data encoding and processing mechanism. Physical Communication, 2 57, 101976.	023,	2.1	2
1771	Hardware Acceleration of Deep Neural Networks for Autonomous Driving on FPGA-based SoC. , 202	2, ,		4

# 1772	ARTICLE CA-SpaceNet: Counterfactual Analysis for 6D Pose Estimation in Space. , 2022, , .	IF	CITATIONS
1773	Implementation and Optimization of Neural Networks for Tiny Hardware Devices. , 2022, , .		1
1774	A Low Memory Requirement MobileNets Accelerator Based on FPGA for Auxiliary Medical Tasks. Bioengineering, 2023, 10, 28.	3.5	2
1775	Nanoscale Accelerators for Artificial Neural Networks. IEEE Nanotechnology Magazine, 2022, 16, 14-21.	1.3	2
1776	Energy Efficient Hardware Implementation of 2-D Convolution for Convolutional Neural Network. , 2022, , .		0
1777	HBCA: A Toolchain for High-Accuracy Branch-Fused CNN Accelerator on FPGA with Dual-Decimal-Fused Technique. Electronics (Switzerland), 2023, 12, 192.	3.1	0
1778	A Reconfigurable Spatial Architecture for Energy-Efficient Inception Neural Networks. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2023, 13, 7-20.	3.6	1
1779	Improvement of Min-Entropy Evaluation Based on Pruning and Quantized Deep Neural Network. IEEE Transactions on Information Forensics and Security, 2023, 18, 1410-1420.	6.9	6
1780	Joint Secure Offloading and Resource Allocation for Vehicular Edge Computing Network: A Multi-Agent Deep Reinforcement Learning Approach. IEEE Transactions on Intelligent Transportation Systems, 2023, 24, 5555-5569.	8.0	39
1782	Design of Synaptic Driving Circuit for TFT eFlash-Based Processing-In-Memory Hardware Using Hybrid Bonding. Electronics (Switzerland), 2023, 12, 678.	3.1	0
1783	A 2941-TOPS/W Charge-Domain 10T SRAM Compute-in-Memory for Ternary Neural Network. IEEE Transactions on Circuits and Systems I: Regular Papers, 2023, 70, 2085-2097.	5.4	3
1784	Performance–energy trade-offs of deep learning convolution algorithms on ARM processors. Journal of Supercomputing, 2023, 79, 9819-9836.	3.6	1
1785	Testability and Dependability of AI Hardware: Survey, Trends, Challenges, and Perspectives. IEEE Design and Test, 2023, 40, 8-58.	1.2	8
1786	An Extension Network of Dendritic Neurons. Computational Intelligence and Neuroscience, 2023, 2023, 1-13.	1.7	4
1787	A Survey on Optimization Techniques for Edge Artificial Intelligence (AI). Sensors, 2023, 23, 1279.	3.8	14
1788	Efficient Deep Learning: A Survey on Making Deep Learning Models Smaller, Faster, and Better. ACM Computing Surveys, 2023, 55, 1-37.	23.0	55
1789	Customized FPGA Design and Analysis of Soft-Core Processor for DNN. Procedia Computer Science, 2023, 218, 469-478.	2.0	0
1790	A 95.6-TOPS/W Deep Learning Inference Accelerator With Per-Vector Scaled 4-bit Quantization in 5 nm. IEEE Journal of Solid-State Circuits, 2023, 58, 1129-1141.	5.4	7

#	Article	IF	CITATIONS
1791	Intelligent energy storage management trade-off system applied to Deep Learning predictions. Journal of Energy Storage, 2023, 61, 106784.	8.1	3
1792	Group contribution-based property modeling for chemical product design: A perspective in the AI era. Fluid Phase Equilibria, 2023, 568, 113734.	2.5	11
1793	Application-Specific and Reconfigurable AI Accelerator. , 2023, , 183-223.		0
1794	Energy-Efficient Privacy-Preserving Time-Series Forecasting on User Health Data Streams. , 2022, , .		1
1795	Deep Reinforcement Learning for Energy Efficiency Maximization in Cache-Enabled Cell-Free Massive MIMO Networks: Single- and Multi-Agent Approaches. IEEE Transactions on Vehicular Technology, 2023, 72, 10826-10839.	6.3	3
1796	Dedicated Instruction Set for Pattern-Based Data Transfers: An Experimental Validation on Systems Containing In-Memory Computing Units. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023, 42, 3757-3767.	2.7	2
1797	A unifying review of edge intelligent computing technique applications in the field of energy networks. Journal of Industrial and Management Optimization, 2023, 19, 7966-7992.	1.3	2
1798	A Survey on Deep-Learning-Based Real-Time SAR Ship Detection. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16, 3218-3247.	4.9	9
1799	An automated group learning engagement analysis and feedback approach to promoting collaborative knowledge building, group performance, and socially shared regulation in CSCL. International Journal of Computer-Supported Collaborative Learning, 2023, 18, 101-133.	3.0	7
1800	Energy-based analog neural network framework. Frontiers in Computational Neuroscience, 0, 17, .	2.1	Ο
1801	Adaptive pooling-based convolution factorization for deploying CNNs on energy-constrained IoT edge devices. Microprocessors and Microsystems, 2023, 98, 104776.	2.8	0
1802	Development of an energy consumption prediction model for battery electric vehicles in real-world driving: A combined approach of short-trip segment division and deep learning. Journal of Cleaner Production, 2023, 400, 136742.	9.3	7
1803	CHARLES: A C++ fixed-point library for Photonic-Aware Neural Networks. Neural Networks, 2023, 162, 531-540.	5.9	1
1804	Further exploring the driving mechanism of ecological carrying capacity changes at the urban agglomeration level. Ecological Indicators, 2023, 150, 110231.	6.3	3
1805	Prediction of model generalizability for unseen data: Methodology and case study in brain metastases detection in T1-Weighted contrast-enhanced 3D MRI. Computers in Biology and Medicine, 2023, 159, 106901.	7.0	1
1806	Assessing Efficiency Benefits of Edge Intelligence. Lecture Notes in Computer Science, 2022, , 96-108.	1.3	0
1807	Performance Analysis ofÂMatrix Multiplication forÂDeep Learning onÂtheÂEdge. Lecture Notes in Computer Science, 2022, , 65-76.	1.3	1
1808	Machine Learning Algorithms. , 2022, , 938-960.		3

#	Article	IF	Citations
1809	Deep Neural Network and Text Processing: A Literature Review. , 2022, , .		0
1810	Non-invasive milling force monitoring through spindle vibration with LSTM and DNN in CNC machine tools. Measurement: Journal of the International Measurement Confederation, 2023, 210, 112554.	5.0	5
1811	Pineapples' Detection and Segmentation Based on Faster and Mask R-CNN in UAV Imagery. Remote Sensing, 2023, 15, 814.	4.0	1
1813	A lightweight convolutional neural network hardware implementation for wearable heart rate anomaly detection. Computers in Biology and Medicine, 2023, 155, 106623.	7.0	11
1814	Deep learning processors. , 2024, , 207-245.		0
1815	A Novel 8T XNOR-SRAM: Computing-in-Memory Design for Binary/Ternary Deep Neural Networks. Electronics (Switzerland), 2023, 12, 877.	3.1	0
1816	Logic Shrinkage: Learned Connectivity Sparsification for LUT-Based Neural Networks. ACM Transactions on Reconfigurable Technology and Systems, 2023, 16, 1-25.	2.5	0
1817	Efficient and portable Winograd convolutions for multi-core processors. Journal of Supercomputing, 2023, 79, 10589-10610.	3.6	2
1818	Neuromorphic processor-oriented hybrid Q-format multiplication with adaptive quantization for tiny YOLO3. Neural Computing and Applications, 0, , .	5.6	0
1819	Malaria Disease Cell Classification With Highlighting Small Infected Regions. IEEE Access, 2023, 11, 15945-15953.	4.2	0
1820	Power Allocation and User Grouping for NOMA Downlink Systems. Applied Sciences (Switzerland), 2023, 13, 2452.	2.5	4
1821	An Untimed SystemC Model ofÂGoogLeNet. IFIP Advances in Information and Communication Technology, 2023, , 117-129.	0.7	0
1822	DC Capacitor Parameter Estimation Technique for Three-Phase DC/AC Converter Using Deep Learning Methods with Different Frequency Band Inputs. Journal of Electrical Engineering and Technology, 0, ,	2.0	0
1823	Impact Analysis of Communication Overhead in NoC based DNN Hardware Accelerators. , 2022, , .		1
1824	Matching Linear Algebra and Tensor Code to Specialized Hardware Accelerators. , 2023, , .		2
1825	A data-driven adaptive algorithm and decision support design of multisensory information fusion for prognostics and health management applications. Journal of Engineering Design, 2023, 34, 158-179.	2.3	4
1826	Efficient Direct Convolution Using Long SIMD Instructions. , 2023, , .		0
1827	InterGrad: Energy-Efficient Training of Convolutional Neural Networks via Interleaved Gradient Scheduling, IFFF Transactions on Circuits and Systems I: Regular Papers, 2023, 70, 1949-1962	5.4	1

#	Article	IF	Citations
1828	Deep Learning Accelerators' Configuration Space Exploration Effect on Performance and Resource Utilization: A Gemmini Case Study. Sensors, 2023, 23, 2380.	3.8	2
1829	Design and Implementation of MAC by Using Efficient Posit Multiplier. , 2022, , .		0
1831	Study on Intelligent Heterogeneous Computing Technology for Reliable-critical Application. , 2022, , .		0
1832	Joint Optimization of Dimension Reduction and Mixed-Precision Quantization for Activation Compression of Neural Networks. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023, 42, 4025-4037.	2.7	0
1833	HW/SW Co-Design for Reliable TCAM- Based In-Memory Brain-Inspired Hyperdimensional Computing. IEEE Transactions on Computers, 2023, 72, 2404-2417.	3.4	8
1834	DSP-Packing: Squeezing Low-precision Arithmetic into FPGA DSP Blocks. , 2022, , .		3
1835	HammingMesh: A Network Topology for Large-Scale Deep Learning. , 2022, , .		1
1836	Artificial Intelligence and Machine Learning for Job Automation. Journal of Database Management, 2023, 34, 1-12.	1.5	2
1838	High Performance and Hardware Efficient Stochastic Computing Elements for Deep Neural Network. , 2023, , .		0
1839	The Study on the Global Evolution of Energetic Electron Precipitation During Geomagnetic Storm Based on Deep Learning Algorithm. Journal of Geophysical Research: Space Physics, 2023, 128, .	2.4	1
1840	Unconventional computing based on magnetic tunnel junction. Applied Physics A: Materials Science and Processing, 2023, 129, .	2.3	5
1841	Dynamic connection pruning for densely connected convolutional neural networks. Applied Intelligence, 2023, 53, 19505-19521.	5.3	1
1842	Robustness Analysis of Neural Network Designs for ReLU Family and Batch Normalization. , 2022, , .		0
1843	Experiences with nested parallelism in task-parallel applications using malleable BLAS on multicore processors. International Journal of High Performance Computing Applications, 0, , 109434202311576.	3.7	1
1844	Machine learning exploration of the mobility and environmental assessment of toxic elements in mining-associated solid wastes. Journal of Cleaner Production, 2023, 401, 136771.	9.3	14
1845	Emerging memristive neurons for neuromorphic computing and sensing. Science and Technology of Advanced Materials, 2023, 24, .	6.1	9
1846	A High-Parallelism RRAM-Based Compute-In-Memory Macro With Intrinsic Impedance Boosting and In-ADC Computing. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, 2023, 9, 38-46.	1.5	1
1847	Resource-Efficient Convolutional Networks: A Survey on Model-, Arithmetic-, and Implementation-Level Techniques. ACM Computing Surveys, 2023, 55, 1-36.	23.0	2

#	Article	IF	CITATIONS
1848	Artificial Intelligence Accelerators. , 2023, , 1-52.		1
1849	SAMBA: <u>S</u> parsity <u>A</u> ware In- <u>M</u> emory Computing <u>B</u> ased Machine Learning <u>A</u> ccelerator. IEEE Transactions on Computers, 2023, 72, 2615-2627.	3.4	3
1850	CNN Hardware Accelerator Architecture Design for Energy-Efficient Al. , 2023, , 319-357.		0
1851	Energy-efficient on-chip learning for a fully connected neural network using domain wall device. , 2023, , .		1
1852	Al Accelerators for Standalone Computer. , 2023, , 53-93.		0
1853	Analog Neural Network Inference Accuracy in One-Selector One-Resistor Memory Arrays. , 2022, , .		Ο
1854	Multi-Input Adaptive Activation Function for Binary Neural Networks. , 2022, , .		1
1855	Accelerating Sparse Data Orchestration via Dynamic Reflexive Tiling. , 2023, , .		4
1856	An Artificial-Intelligence-Based Renewable Energy Prediction Program for Demand-Side Management in Smart Grids. Sustainability, 2023, 15, 5453.	3.2	13
1857	A Real-Time Object Detection Processor With xnor-Based Variable-Precision Computing Unit. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2023, 31, 749-761.	3.1	1
1858	Deep Neural Network Piration without Accuracy Loss. , 2022, , .		0
1859	Illegal 3D Content Distribution Tracking System based on DNN Forensic Watermarking. , 2023, , .		1
1860	Leveraging Domain Information for the Efficient Automated Design of Deep Learning Accelerators. , 2023, , .		0
1861	Innovations in Blockchain Using Artificial Intelligence. Studies in Big Data, 2023, , 179-210.	1.1	1
1862	Optimizing Resource Allocation in Pipeline Parallelism for Distributed DNN Training. , 2023, , .		0
1863	Reconfigurable Multi-algorithm Neural Network Accelerator Based on Target Detection. , 2022, , .		0
1864	An Efficient Parallel CNN Inference Framework for Multi-zone Processor. , 2022, , .		0
1865	Fixed-point iterative linear inverse solver with extended precision. Scientific Reports, 2023, 13, .	3.3	5

#	Article	IF	CITATIONS
1866	Dopant network processing units as tuneable extreme learning machines. Frontiers in Nanotechnology, 0, 5, .	4.8	0
1867	Enhanced Cyber Attack Detection Process for Internet of Health Things (IoHT) Devices Using Deep Neural Network. Processes, 2023, 11, 1072.	2.8	4
1868	Clustering Algorithms for Enhanced Trustworthiness on High-Performance Edge-Computing Devices. Electronics (Switzerland), 2023, 12, 1689.	3.1	0
1869	Privacy-preserving Deep-learning Models for Fingerprint Data using Differential Privacy. , 2023, , .		0
1870	Auto-Encoders in Deep Learning—A Review with New Perspectives. Mathematics, 2023, 11, 1777.	2.2	22
1871	Design and Analysis of Posit Quire Processing Engine for Neural Network Applications. , 2023, , .		1
1872	Multifidelity Neural Network Formulations for Prediction of Reactive Molecular Potential Energy Surfaces. Journal of Chemical Information and Modeling, 2023, 63, 2281-2295.	5.4	2
1873	Harnessing Deep Learning for Omics in an Era of COVID-19. OMICS A Journal of Integrative Biology, 2023, 27, 141-152.	2.0	2
1874	Straightforward data transfer in a blockwise dataflow for an analog RRAM-based CIM system. Frontiers in Electronics, 0, 4, .	3.2	0
1875	Efficient Re-configurable Multiply and Accumulate Unit for Convolutional Neural Network. , 2022, , .		0
1876	Pixel-CRN: A new machine learning approach for convective storm nowcasting. IEEE Transactions on Geoscience and Remote Sensing, 2023, , 1-1.	6.3	0
1877	Cooperative Task Execution for Object Detection in Edge Computing: An Internet of Things Application. Applied Sciences (Switzerland), 2023, 13, 4982.	2.5	2
1878	Parallel Matrix Multiplication Using Voltage-Controlled Magnetic Anisotropy Domain Wall Logic. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, 2023, 9, 65-73.	1.5	0
1879	The next generation of hybrid microfluidic/integrated circuit chips: recent and upcoming advances in high-speed, high-throughput, and multifunctional lab-on-IC systems. Lab on A Chip, 2023, 23, 2553-2576.	6.0	2
1880	AESOP: Adjustable Exhaustive Search for One-Pixel Attacks in Deep Neural Networks. Applied Sciences (Switzerland), 2023, 13, 5092.	2.5	0
1881	Global Aligned Structured Sparsity Learning for Efficient Image Super-Resolution. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45, 10974-10989.	13.9	2
1884	Software-Defined Imaging: A Survey. Proceedings of the IEEE, 2023, 111, 445-464.	21.3	3
1885	MJOA-MU: End-to-edge collaborative computation for DNN inference based on model uploading. Computer Networks, 2023, 231, 109801.	5.1	0

#	Article	IF	CITATIONS
1886	Designing a Performance-Centric MAC Unit with Pipelined Architecture for DNN Accelerators. Circuits, Systems, and Signal Processing, 0, , .	2.0	1
1887	FPGA Accelerator for Meta-Recognition Anomaly Detection: Case of Burned Area Detection. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16, 5247-5259.	4.9	2
1888	Recent Research for HZO-Based Ferroelectric Memory towards In-Memory Computing Applications. Electronics (Switzerland), 2023, 12, 2297.	3.1	4
1889	Deep Neural Network Augmented Wireless Channel Estimation for Preamble-Based OFDM PHY on Zynq System on Chip. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2023, , 1-13.	3.1	1
1890	A Survey on Sparsity Exploration in Transformer-Based Accelerators. Electronics (Switzerland), 2023, 12, 2299.	3.1	2
1891	The impacts of the comprehensive learning analytics approach on learning performance in online collaborative learning. Education and Information Technologies, 2023, 28, 16863-16886.	5.7	4
1892	Slope stability analysis of heavy-haul freight corridor using novel machine learning approach. Modeling Earth Systems and Environment, 2024, 10, 201-219.	3.4	3
1893	A 4-Bit Mixed-Signal MAC Macro With One-Shot ADC Conversion. IEEE Journal of Solid-State Circuits, 2023, 58, 2648-2658.	5.4	0
1894	Search for Efficient Deep Visual-Inertial Odometry Through Neural Architecture Search. , 2023, , .		0
1895	Analysis of Integration Technologies for High-Speed Analog Neuromorphic Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 2023, 29, 1-9.	2.9	2
1896	EAdderSR: enhanced AdderSR for single image super resolution. Applied Intelligence, 0, , .	5.3	0
1897	An Empirical Approach to Enhance Performance for Scalable CORDIC-Based Deep Neural Networks. ACM Transactions on Reconfigurable Technology and Systems, 2023, 16, 1-32.	2.5	1
1898	Online Scheduling of CPU-NPU Co-inference for Edge Al Tasks. , 2023, , .		1
1899	The roles of artificial intelligence techniques for increasing the prediction performance of important parameters and their optimization in membrane processes: A systematic review. Ecotoxicology and Environmental Safety, 2023, 260, 115066.	6.0	3
1900	Hardware Efficiency Stochastic Computing based on Hybrid Spatial Coding. , 2022, , .		0
1901	Demonstration of A 3D Chip by Logic-DRAM Stacked Using Paired TSV Interconnection through Interface for AI/Edge-Computing Application. , 2023, , .		0
1902	PRIVE: Efficient RRAM Programming with Chip Verification for RRAM-based In-Memory Computing Acceleration. , 2023, , .		0
1903	DORIS: Personalized course recommendation system based on deep learning. PLoS ONE, 2023, 18, e0284687.	2.5	0

#	Article	IF	CITATIONS
1904	Reduce: A Framework for Reducing the Overheads of Fault-Aware Retraining. , 2023, , .		0
1905	RoaD-RuNNer: Collaborative DNN partitioning and offloading on heterogeneous edge systems. , 2023, , .		Ο
1906	Temperature-Aware Sizing of Multi-Chip Module Accelerators for Multi-DNN Workloads. , 2023, , .		1
1907	Resilience-Performance Tradeoff Analysis of a Deep Neural Network Accelerator. , 2023, , .		0
1908	Special Session: Approximation and Fault Resiliency of DNN Accelerators. , 2023, , .		0
1909	Bottom-Up and Top-Down Approaches for the Design of Neuromorphic Processing Systems: Tradeoffs and Synergies Between Natural and Artificial Intelligence. Proceedings of the IEEE, 2023, 111, 623-652.	21.3	7
1910	Saca-AVF: A Quantitative Approach to Analyze the Architectural Vulnerability Factors of CNN Accelerators. IEEE Transactions on Computers, 2023, 72, 3042-3056.	3.4	0
1911	Exploring Explainability and Transparency in Deep Neural Networks: A Comparative Approach. , 2023, , .		0
1912	Improving the Performance of CNN Accelerator Architecture under the Impact of Process Variations. ACM Transactions on Design Automation of Electronic Systems, 2023, 28, 1-21.	2.6	0
1913	FPUS23: An Ultrasound Fetus Phantom Dataset With Deep Neural Network Evaluations for Fetus Orientations, Fetal Planes, and Anatomical Features. IEEE Access, 2023, 11, 58308-58317.	4.2	1
1914	Dynamic Decision Tree Ensembles for Energy-Efficient Inference on IoT Edge Nodes. IEEE Internet of Things Journal, 2024, 11, 742-757.	8.7	1
1915	Joint-Guided Distillation Binary Neural Network via Dynamic Channel-Wise Diversity Enhancement for Object Detection. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34, 448-460.	8.3	0
1916	Artificial Intelligence Application to Flexibility Provision in Energy Management System: A Survey. EAI/Springer Innovations in Communication and Computing, 2023, , 55-78.	1.1	0
1917	An Energy-Efficient Bayesian Neural Network Accelerator With CiM and a Time-Interleaved Hadamard Digital GRNG Using 22-nm FinFET. IEEE Journal of Solid-State Circuits, 2023, , 1-13.	5.4	1
1918	Fully-integrated photonic tensor core for image convolutions. Nanotechnology, 2023, 34, 395201.	2.6	2
1919	Efficient Privacy-Preserving Inference Outsourcing for Convolutional Neural Networks. IEEE Transactions on Information Forensics and Security, 2023, 18, 4815-4829.	6.9	1
1920	Regional landslide susceptibility assessment based on improved semi-supervised clustering and deep learning. Acta Geotechnica, 2024, 19, 509-529.	5.7	2
1921	Variable precision, mixed fixed/floating point MAC unit for DNN accelerators. , 2022, , .		0

	CITATION RE	PORT	
#	Article	IF	Citations
1922	Single-shot optical neural network. Science Advances, 2023, 9, .	10.3	8
1923	Approximate Processing Element Design and Analysis for the Implementation of CNN Accelerators. Journal of Computer Science and Technology, 2023, 38, 309-327.	1.5	0
1924	A Survey of Next-generation Computing Technologies in Space-air-ground Integrated Networks. ACM Computing Surveys, 2024, 56, 1-40.	23.0	3
1925	Impact Angle Control Guidance Considering Seeker's Field-of-View Limit Based on Reinforcement Learning. Journal of Guidance, Control, and Dynamics, 2023, 46, 2168-2182.	2.8	1
1926	VLSI Architecture of Generalized Pooling for Hardware Acceleration of Convolutional Neural Networks. , 2023, , .		0
1927	IndiRA: Design and Implementation of a Pipelined RISC-V Processor. , 2023, , .		0
1928	Explainable Artificial Intelligence for Patient Safety: A Review of Application in Pharmacovigilance. IEEE Access, 2023, 11, 50830-50840.	4.2	0
1929	Improved Projection Learning for Lower Dimensional Feature Maps. , 2023, , .		1
1930	Systematic Literature Review on Cost-Efficient Deep Learning. IEEE Access, 2023, 11, 90158-90180.	4.2	0
1931	Unlocking the potential of edge computing for hyperspectral image classification: An efficient low-energy strategy. Future Generation Computer Systems, 2023, 147, 207-218.	7.5	1
1932	Saca-FI: A microarchitecture-level fault injection framework for reliability analysis of systolic array based CNN accelerator. Future Generation Computer Systems, 2023, 147, 251-264.	7.5	3
1933	Unimolecular dissociation of C6H6–C6H5Cl, C6H6–C6H3Cl3, and C6H6–C6Cl6 complexes using machine learning approach. Journal of Chemical Physics, 2023, 158, .	3.0	1
1934	An online fast multi-track locating algorithm for high-resolution single-event effect test platform. Nuclear Science and Techniques/Hewuli, 2023, 34, .	3.4	2
1935	Sequential Offloading for Distributed DNN Computation in Multiuser MEC Systems. IEEE Internet of Things Journal, 2023, 10, 18315-18329.	8.7	1
1936	Implementation of stochastic computing in activation functions using stochastic arithmetic components. , 2023, , .		1
1937	Reconfigurable spatial-parallel stochastic computing for accelerating sparse convolutional neural networks. Science China Information Sciences, 2023, 66, .	4.3	0
1938	A 510 \$mu\$W 0.738-mm\$^{2}\$ 6.2-pJ/SOP Online Learning Multi-Topology SNN Processor With Unified Computation Engine in 40-nm CMOS. IEEE Transactions on Biomedical Circuits and Systems, 2023, 17, 507-520.	4.0	3
1939	An Area Efficient Superconducting Unary CNN Accelerator. , 2023, , .		0

#	Article	IF	CITATIONS
1940	T-LGBKS: An Interpretable Machine Learning Framework for Electricity Consumption Forecasting. Energies, 2023, 16, 4294.	3.1	1
1941	Machine Learning Aided NR-V2X Quality of Service Predictions. , 2023, , .		1
1942	Extending the NOEL-V Platform with a RISC-V Vector Processor for Space Applications. Journal of Aerospace Computing, Information, and Communication, 2023, 20, 565-574.	0.8	1
1943	Combined Bidirectional Long Short-Term Memory with Mel-Frequency Cepstral Coefficients Using Autoencoder for Speaker Recognition. Applied Sciences (Switzerland), 2023, 13, 7008.	2.5	2
1944	Spatial Mapping of light aircraft with stereo-vision camera for use on Unmanned Aircraft System for defect localisation. , 2023, , .		0
1945	Adder Neural Networks for Speaker Verification. , 2023, , .		0
1947	An Efficient CNN Inference Accelerator Based on Intra- and Inter-Channel Feature Map Compression. IEEE Transactions on Circuits and Systems I: Regular Papers, 2023, 70, 3625-3638.	5.4	1
1948	A digitally controlled switchedâ€ring oscillatorâ€based time domain multiplyâ€andâ€accumulate core for machine learning. International Journal of Circuit Theory and Applications, 0, , .	2.0	0
1949	SCV-GNN: Sparse Compressed Vector-Based Graph Neural Network Aggregation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023, 42, 4803-4816.	2.7	0
1950	Data-Driven Control: Theory and Applications. , 2023, , .		2
1951	GraphPrior: Mutation-based Test Input Prioritization for Graph Neural Networks. ACM Transactions on Software Engineering and Methodology, 2024, 33, 1-40.	6.0	2
1952	RPGD: A Small-Batch Parallel Gradient Descent Optimizer with Explorative Resampling for Nonlinear Model Predictive Control. , 2023, , .		0
1953	Enhanced regularization for on-chip training using analog and temporary memory weights. Neural Networks, 2023, 165, 1050-1057.	5.9	0
1954	SALSA: Simulated Annealing based Loop-Ordering Scheduler for DNN Accelerators. , 2023, , .		0
1956	On Developing Sustainable Deep Learning Applications Using Pre-calculating Energy Usage. Communications in Computer and Information Science, 2023, , 22-46.	0.5	0
1957	DAG Processing Unit Version 2 (DPU-v2): Efficient Execution of Irregular Workloads on a Spatial Datapath. , 2023, , 89-123.		0
1958	Snapshot-Based Multispectral Imaging for Heat Stress Detection in Southern-Type Garlic. Applied Sciences (Switzerland), 2023, 13, 8133.	2.5	0
1959	Efficient Implementation of Pooling Operation for Al Accelerators. , 2022, , .		0

#	Article	IF	CITATIONS
1960	Fast Loosely-Timed Deep Neural Network Models with Accurate Memory Contention. Transactions on Embedded Computing Systems, 0, , .	2.9	1
1961	Deep learning with coherent VCSEL neural networks. Nature Photonics, 2023, 17, 723-730.	31.4	12
1962	Reduced precision floating-point optimization for Deep Neural Network On-Device Learning on microcontrollers. Future Generation Computer Systems, 2023, 149, 212-226.	7.5	2
1963	An Optimized Deep Learning Approach for Predicting the Electric Motor Temperature Using IOT Sensors. Electric Power Components and Systems, 0, , 1-12.	1.8	0
1964	DARE: Diver Action Recognition Encoder for Underwater Human–Robot Interaction. IEEE Access, 2023, 11, 76926-76940.	4.2	0
1965	Image response regression via deep neural networks. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2024, 85, 1589-1614.	2.2	0
1966	Distributed Split Computing System in Cooperative Internet of Things (IoT). IEEE Access, 2023, 11, 77669-77678.	4.2	1
1967	Improvement of pattern recognition in spiking neural networks by modifying threshold parameter and using image inversion. Multimedia Tools and Applications, 2024, 83, 19061-19088.	3.9	2
1968	Hardware deployment of deep learning model for classification of breast carcinoma from digital mammogram images. Medical and Biological Engineering and Computing, 2023, 61, 2843-2857.	2.8	0
1969	Structured Matrices and Their Application in Neural Networks: A Survey. New Generation Computing, 0, , .	3.3	0
1970	BISDU: A Bit-Serial Dot-Product Unit for Microcontrollers. Transactions on Embedded Computing Systems, 2023, 22, 1-22.	2.9	0
1971	Classification of Low- and High-Entropy File Fragments Using Randomness Measures and Discrete Fourier Transform Coefficients. Vietnam Journal of Computer Science, 2023, 10, 433-462.	1.2	1
1972	An LSTM-based Anomaly Classification Framework for Power Electronics Dominated Grids. , 2023, , .		1
1973	Artificial neural networks for photonic applications—from algorithms to implementation: tutorial. Advances in Optics and Photonics, 2023, 15, 739.	25.5	6
1974	Compare with the Traditional Heterogeneous Solution: Accelerate Neural Network Algorithm through Heterogeneous Integrated CPU+NPU Chip on Server. , 2023, , .		0
1975	Artificial intelligence for molecular communication. IT - Information Technology, 2023, 65, 155-163.	0.9	2
1976	An evaluation of transfer learning models in EEG-based authentication. Brain Informatics, 2023, 10, .	3.0	2
1977	Hybrid ADDer: A Viable Solution for Efficient Design of MAC in DNNs. Circuits, Systems, and Signal Processing, 0, , .	2.0	0
#	Article	IF	CITATIONS
------	---	-----	-----------
1978	Design of a Bent Wire Monopole Antenna Using Machine Learning. The Journal of Korean Institute of Electromagnetic Engineering and Science, 2022, 33, 432-440.	0.3	0
1979	TransAct: Transformer-based Realtime User Action Model for Recommendation at Pinterest. , 2023, , .		Ο
1980	Promoting knowledge elaboration, socially shared regulation, and group performance in collaborative learning: an automated assessment and feedback approach based on knowledge graphs. International Journal of Educational Technology in Higher Education, 2023, 20, .	7.6	1
1981	Impacts of three approaches on collaborative knowledge building, group performance, behavioural engagement, and socially shared regulation in online collaborative learning. Journal of Computer Assisted Learning, 0, , .	5.1	0
1982	A physics-informed neural network-based approach to reconstruct the tornado vortices from limited observed data. Journal of Wind Engineering and Industrial Aerodynamics, 2023, 241, 105534.	3.9	3
1983	Content-Adaptive Downsampling in Convolutional Neural Networks. , 2023, , .		3
1984	Sensing Aided Reconfigurable Intelligent Surfaces for 3GPP 5G Transparent Operation. IEEE Transactions on Communications, 2023, 71, 6348-6362.	7.8	2
1985	DeepCONN: patch-wise deep convolutional neural networks for the segmentation of multiple sclerosis brain lesions. Multimedia Tools and Applications, 2024, 83, 24401-24433.	3.9	2
1986	Data-driven Communicative Behaviour Generation: A Survey. ACM Transactions on Human-Robot Interaction, 2024, 13, 1-39.	4.1	1
1987	Automatic Bridge Detection of SAR Images Based on Interpretable Deep Learning Algorithm. Journal of Physics: Conference Series, 2023, 2562, 012013.	0.4	0
1988	Sagitta: An Energy-Efficient Sparse 3D-CNN Accelerator for Real-Time 3-D Understanding. IEEE Internet of Things Journal, 2023, 10, 20703-20717.	8.7	0
1989	Early Identification of Potential Disruptive Technologies Using Machine Learning and Text Mining. , 2023, , .		0
1990	LOPdM: A Low-power On-device Predictive Maintenance System Based on Self-powered Sensing and TinyML. IEEE Transactions on Instrumentation and Measurement, 2023, , 1-1.	4.7	0
1991	Hybrid Spiking Fully Convolutional Neural Network for Semantic Segmentation. Electronics (Switzerland), 2023, 12, 3565.	3.1	0
1992	GradQuant: Low-loss Quantization for Remote Sensing Object Detection. IEEE Geoscience and Remote Sensing Letters, 2023, , 1-1.	3.1	0
1993	Analysis of Optimum 3-Dimensional Array and Fast Data Movement for Efficient Memory Computation in Convolutional Neural Network Models. IFIP Advances in Information and Communication Technology, 2023, , 94-108.	0.7	0
1994	Improving the Anomaly Detection Performance of a Geometric Transform-based Convolutional Network. International Journal of Control, Automation and Systems, 2023, 21, 3105-3115.	2.7	0
1995	Automated Expert Knowledge-Based Deep Reinforcement Learning Warm Start via Decision Tree for Hybrid Electric Vehicle Energy Management. SAE International Journal of Electrified Vehicles, 0, 13, .	0.0	0

#	Article	IF	CITATIONS
1996	Hardware-aware training for large-scale and diverse deep learning inference workloads using in-memory computing-based accelerators. Nature Communications, 2023, 14, .	12.8	13
1997	A Precision-Scalable Deep Neural Network Accelerator With Activation Sparsity Exploitation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023, , 1-1.	2.7	0
1998	Attacking Deep Learning Al Hardware with Universal Adversarial Perturbation. Information (Switzerland), 2023, 14, 516.	2.9	0
1999	A Bibliometric Review on Safety Risk Assessment of Construction Based on CiteSpace Software and WoS Database. Sustainability, 2023, 15, 11803.	3.2	2
2000	Advancements in On-Device Deep Neural Networks. Information (Switzerland), 2023, 14, 470.	2.9	1
2001	Analog Photonics Computing for Information Processing, Inference, and Optimization. Advanced Quantum Technologies, 2023, 6, .	3.9	5
2002	FinFET 6T-SRAM All-Digital Compute-in-Memory for Artificial Intelligence Applications: An Overview and Analysis. Micromachines, 2023, 14, 1535.	2.9	1
2003	A Sound Velocity Prediction Model for Seafloor Sediments Based on Deep Neural Networks. Remote Sensing, 2023, 15, 4483.	4.0	2
2004	Organic Resistive Memories for Neuromorphic Electronics. , 2023, , 60-120.		0
2005	Dependable DNN Accelerator for Safety-Critical Systems: A Review on the Aging Perspective. IEEE Access, 2023, 11, 89803-89834.	4.2	0
2006	Memristive dynamics enabled neuromorphic computing systems. Science China Information Sciences, 2023, 66, .	4.3	4
2008	New deep learningâ€based methods for visualizing ecosystem properties using environmental <scp>DNA</scp> metabarcoding data. Molecular Ecology Resources, 2023, 23, 1946-1958.	4.8	0
2009	A Fine-Grained End-to-End Latency Optimization Framework for Wireless Collaborative Inference. IEEE Internet of Things Journal, 2024, 11, 5840-5853.	8.7	1
2010	Improving Automated Machine-Learning Systems through Green Al. Applied Sciences (Switzerland), 2023, 13, 11583.	2.5	0
2011	Human Activity Recognition (HAR) Using Deep Learning: Review, Methodologies, Progress and Future Research Directions. Archives of Computational Methods in Engineering, 2024, 31, 179-219.	10.2	3
2012	A Use Case of Iterative Logarithmic Floating-Point Multipliers: Accelerating Histogram Stretching on Programmable SoC. , 2023, , .		0
2013	PDPU: An Open-Source Posit Dot-Product Unit for Deep Learning Applications. , 2023, , .		0
2014	Enabling Fine-Grained Spatial Multitasking on Systolic-Array NPUs Using Dataflow Mirroring. IEEE Transactions on Computers, 2023, , 1-14.	3.4	0

(ITATION REDODI			<u> </u>	
	(ΊΤΑΤ	ION	KED	ORT

#	Article	IF	CITATIONS
2015	QuanDA: GPU Accelerated Quantitative Deep Neural Network Analysis. ACM Transactions on Design Automation of Electronic Systems, 2023, 28, 1-21.	2.6	0
2016	LMNS-Net: Lightweight Multiscale Novel Semantic-Net deep learning approach used for automatic pancreas image segmentation in CT scan images. Expert Systems With Applications, 2023, 234, 121064.	7.6	7
2017	Efficient Diverse Redundant DNNs for Autonomous Driving. , 2023, , .		0
2018	FAQ: Mitigating the Impact of Faults in the Weight Memory of DNN Accelerators through Fault-Aware Quantization. , 2023, , .		0
2019	Deep Reinforcement Learning Based Multi-Task Automated Channel Pruning for DNNs. , 2023, , .		0
2020	A Low Power and Low Latency FPGA-Based Spiking Neural Network Accelerator. , 2023, , .		2
2021	Very-large-scale integration device for parallel vertical group computing the sum of squared differences. Scientific Journal of the Ternopil National Technical University, 2023, 110, 5-14.	0.3	0
2022	Efficient Layer Compression Without Pruning. IEEE Transactions on Image Processing, 2023, 32, 4689-4700.	9.8	4
2023	Im2win: An Efficient Convolution Paradigm onÂGPU. Lecture Notes in Computer Science, 2023, , 592-607.	1.3	0
2024	TrainBF: High-Performance DNN Training Engine Using BFloat16 onÂAI Accelerators. Lecture Notes in Computer Science, 2023, , 458-473.	1.3	Ο
2025	GEMM-Like Convolution forÂDeep Learning Inference onÂtheÂXilinx Versal. Lecture Notes in Computer Science, 2023, , 593-604.	1.3	0
2026	Out-of-distribution Object Detection through Bayesian Uncertainty Estimation. , 2023, , .		0
2027	Conventional Number Systems for DNN Architectures. Synthesis Lectures on Engineering Science and Technology, 2024, , 17-25.	0.2	0
2028	O-2A: Outlier-Aware Compression for 8-bit Post-Training Quantization Model. IEEE Access, 2023, 11, 95467-95480.	4.2	Ο
2030	FPGA-based Deep Learning Inference Accelerators: Where Are We Standing?. ACM Transactions on Reconfigurable Technology and Systems, 2023, 16, 1-32.	2.5	2
2032	Pose4Gun: A pose-based machine learning approach to detect small firearms from visual media. Multimedia Tools and Applications, 0, , .	3.9	0
2033	Convolutional Neural Networks for Beginners. SSRN Electronic Journal, 0, , .	0.4	0
2034	DaCapo: An On-Device Learning Scheme for Memory-Constrained Embedded Systems. Transactions on Embedded Computing Systems, 2023, 22, 1-23.	2.9	0

	Article	IF	CITATIONS
2035	Online Quantization Adaptation forÂFault-Tolerant Neural Network Inference. Lecture Notes in Computer Science, 2023, , 243-256.	1.3	0
2036	A Comprehensive Survey on Model Quantization for Deep Neural Networks in Image Classification. ACM Transactions on Intelligent Systems and Technology, 2023, 14, 1-50.	4.5	2
2037	A Relay-Assisted Communication Scheme for Collaborative On-Device CNN Execution Considering Hybrid Parallelism. IEEE Access, 2023, 11, 99397-99412.	4.2	0
2038	The Impact of Analog-to-Digital Converter Architecture and Variability on Analog Neural Network Accuracy. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, 2023, 9, 176-184.	1.5	0
2039	Spiking neural networks for frame-based and event-based single object localization. Neurocomputing, 2023, 559, 126805.	5.9	5
2040	Lightning Talk: Efficiency and Programmability of DNN Accelerators and GPUs. , 2023, , .		0
2041	Revisit and Benchmarking of Automated Quantization Towards Fair Comparison. IEEE Transactions on Computers, 2023, , 1-12.	3.4	0
2042	Scoping the Landscape of (Extreme) Edge Machine Learning Processors. , 2024, , 43-57.		0
2043	Energy Efficient DNN Compaction forÂEdge Deployment. Lecture Notes in Computer Science, 2023, , 290-303.	1.3	0
2044	Energy-Efficient Single-Core Hardware Acceleration. , 2024, , 71-91.		0
2044 2046	Energy-Efficient Single-Core Hardware Acceleration. , 2024, , 71-91. Intermittent-Aware Neural Network Pruning. , 2023, , .		0
2044 2046 2047	Energy-Efficient Single-Core Hardware Acceleration. , 2024, , 71-91. Intermittent-Aware Neural Network Pruning. , 2023, , . Joint DNN partitioning and resource allocation for completion rate maximization of delay-aware DNN inference tasks in wireless powered mobile edge computing. Peer-to-Peer Networking and Applications, 2023, 16, 2865-2878.	3.9	0 0 0
2044 2046 2047 2048	Energy-Efficient Single-Core Hardware Acceleration. , 2024, , 71-91. Intermittent-Aware Neural Network Pruning. , 2023, , . Joint DNN partitioning and resource allocation for completion rate maximization of delay-aware DNN inference tasks in wireless powered mobile edge computing. Peer-to-Peer Networking and Applications, 2023, 16, 2865-2878. Transfer-Based DRL for Task Scheduling in Dynamic Environments for Cognitive Radar. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60, 37-50.	3.9 4.7	0 0 0
2044 2046 2047 2048 2049	Energy-Efficient Single-Core Hardware Acceleration. , 2024, , 71-91. Intermittent-Aware Neural Network Pruning. , 2023, , . Joint DNN partitioning and resource allocation for completion rate maximization of delay-aware DNN inference tasks in wireless powered mobile edge computing. Peer-to-Peer Networking and Applications, 2023, 16, 2865-2878. Transfer-Based DRL for Task Scheduling in Dynamic Environments for Cognitive Radar. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60, 37-50. DEA-NIMC: Dynamic Energy-Aware Policy for Near/In-Memory Computing Hybrid Architecture. , 2023, , .	3.9	0 0 0 0
2044 2046 2047 2048 2049 2050	Energy-Efficient Single-Core Hardware Acceleration. , 2024, , 71-91. Intermittent-Aware Neural Network Pruning. , 2023, , . Joint DNN partitioning and resource allocation for completion rate maximization of delay-aware DNN inference tasks in wireless powered mobile edge computing. Peer-to-Peer Networking and Applications, 2023, 16, 2865-2878. Transfer-Based DRL for Task Scheduling in Dynamic Environments for Cognitive Radar. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60, 37-50. DEA-NIMC: Dynamic Energy-Aware Policy for Near/In-Memory Computing Hybrid Architecture. , 2023, , . Cost Effective Dynamic Multi-Microgrid Formulation Method Using Deep Reinforcement Learning. , 2023, , .	3.9 4.7	
2044 2046 2047 2048 2049 2050	Energy-Efficient Single-Core Hardware Acceleration. , 2024, , 71-91. Intermittent-Aware Neural Network Pruning. , 2023, , . Joint DNN partitioning and resource allocation for completion rate maximization of delay-aware DNN inference tasks in wireless powered mobile edge computing. Peer-to-Peer Networking and Applications, 2023, 16, 2865-2878. Transfer-Based DRL for Task Scheduling in Dynamic Environments for Cognitive Radar. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60, 37-50. DEA-NIMC: Dynamic Energy-Aware Policy for Near/In-Memory Computing Hybrid Architecture. , 2023, , . Cost Effective Dynamic Multi-Microgrid Formulation Method Using Deep Reinforcement Learning. , 2023, , . A Neural Network-based Digital Calibration Improvement Method for ADC. , 2023, , .	3.9	0 0 0 0 0 0
2044 2046 2047 2048 2049 2050 2051	Energy-Efficient Single-Core Hardware Acceleration., 2024, 71-91. Intermittent-Aware Neural Network Pruning., 2023, Joint DNN partitioning and resource allocation for completion rate maximization of delay-aware DNN inference tasks in wireless powered mobile edge computing. Peer-to-Peer Networking and Applications, 2023, 16, 2865-2878. Transfer-Based DRL for Task Scheduling in Dynamic Environments for Cognitive Radar. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60, 37-50. DEA-NIMC: Dynamic Energy-Aware Policy for Near/In-Memory Computing Hybrid Architecture., 2023, Cost Effective Dynamic Multi-Microgrid Formulation Method Using Deep Reinforcement Learning., 2023, A Neural Network-based Digital Calibration Improvement Method for ADC., 2023, Optimization of Microarchitecture and Dataflow for Sparse Tensor CNN Acceleration. IEEE Access, 2023, 11, 108818-108832.	 3.9 4.7 4.2 	0 0 0 0 0 0 2

#	Article	IF	Citations
2054	An Off-Chip Memory Access Optimization for Embedded Deep Learning Systems. , 2024, , 175-198.		0
2055	Massively Parallel Neural Processing Array (MPNA): A CNN Accelerator for Embedded Systems. , 2024, , 3-24.		0
2056	Efficient Hardware Acceleration of Emerging Neural Networks for Embedded Machine Learning: An Industry Perspective. , 2024, , 121-172.		1
2057	Multipurpose Deep-Learning Accelerator for Arbitrary Quantization With Reduction of Storage, Logic, and Latency Waste. IEEE Journal of Solid-State Circuits, 2023, , 1-14.	5.4	0
2058	Exploiting Subword Permutations to Maximize CNN Compute Performance and Efficiency. , 2023, , .		0
2059	Nonlinear optical feature generator for machine learning. APL Photonics, 2023, 8, .	5.7	1
2060	A 2Mbit Digital in-Memory Computing Matrix-Vector Multiplier for DNN Inference supporting flexible bit precision and matrix size achieving 612 binary TOPS/W. , 2023, , .		0
2061	Child psychological drawing pattern detection on OBCET dataset, a case study on accuracy based on MYOLO v5 and MResNet 50. Multimedia Tools and Applications, 0, , .	3.9	1
2062	ORNet: Orthogonal Re-Parameterized Networks for Fast Pedestrian and Vehicle Detection. IEEE Transactions on Intelligent Vehicles, 2024, 9, 2662-2674.	12.7	0
2063	A Design Methodology for Energy-Efficient Embedded Spiking Neural Networks. , 2024, , 15-35.		0
2064	Hardware–Software Co-design of Deep Neural Architectures: From FPGAs and ASICs to Computing-in-Memories. , 2024, , 271-301.		0
2065	DB-COVIDNet: A Defense Method against Backdoor Attacks. Mathematics, 2023, 11, 4236.	2.2	0
2066	Ensemble Architectures andÂEfficient Fusion Techniques forÂConvolutional Neural Networks: An Analysis onÂResource Optimization Strategies. Lecture Notes in Computer Science, 2023, , 107-121.	1.3	0
2067	DeAR: Accelerating Distributed Deep Learning with Fine-Grained All-Reduce Pipelining. , 2023, , .		0
2068	Machine Learning Hardware Design for Efficiency, Flexibility, and Scalability [Feature]. IEEE Circuits and Systems Magazine, 2023, 23, 35-53.	2.3	0
2070	Energy efficient task scheduling based on deep reinforcement learning in cloud environment: A specialized review. Future Generation Computer Systems, 2024, 151, 214-231.	7.5	0
2071	A High-Level Methodology to Evaluate and Optimize Digital Architectures Targeting Spike Encoding. IEEE Access, 2023, , 1-1.	4.2	0
2072	Weed Recognition Model Based on Embedded Deep Neural Network. Modeling and Simulation, 2023, 12, 4949-4961.	0.1	Ο

#	Article	IF	CITATIONS
2074	DNN-based Legibility Improvement for Air-writing in Millimeter-wave Band Radar System. IEEE Transactions on Instrumentation and Measurement, 2023, , 1-1.	4.7	0
2075	Multi-Fine-Grained DNNs Partition and Offloading over Fog Computing Networks. , 2023, , .		0
2076	Real-Time Semantic Segmentation: A brief survey and comparative study in remote sensing. IEEE Geoscience and Remote Sensing Magazine, 2023, , 2-33.	9.6	0
2078	Laterally gated ferroelectric field effect transistor (LG-FeFET) using α-In2Se3 for stacked in-memory computing array. Nature Communications, 2023, 14, .	12.8	1
2079	A High-Performance and Energy-Efficient Photonic Architecture for Multi-DNN Acceleration. IEEE Transactions on Parallel and Distributed Systems, 2024, 35, 46-58.	5.6	1
2080	Review of Energy-Efficient Embedded System Acceleration of Convolution Neural Networks for Organic Weeding Robots. Agriculture (Switzerland), 2023, 13, 2103.	3.1	0
2081	State Parameter Based Liquefaction Probability Evaluation. International Journal of Geosynthetics and Ground Engineering, 2023, 9, .	2.0	0
2082	Development of Water-Wheel Tail Measurement System Based on Image Projective Transformation. Water (Switzerland), 2023, 15, 3889.	2.7	0
2083	Machine Learning for Sarcopenia Prediction in the Elderly Using Socioeconomic, Infrastructure, and Quality-of-Life Data. Healthcare (Switzerland), 2023, 11, 2881.	2.0	2
2084	Accelerating AI performance with the incorporation of TVM and MediaTek NeuroPilot. Connection Science, 2023, 35, .	3.0	0
2085	Review of deep learning algorithms in molecular simulations and perspective applications on petroleum engineering. Geoscience Frontiers, 2024, 15, 101735.	8.4	3
2086	Quantitative Prediction of Rock Pore-Throat Radius Based on Deep Neural Network. Energies, 2023, 16, 7277.	3.1	0
2087	A Deep Multi-Task Learning Approach for Bioelectrical Signal Analysis. Mathematics, 2023, 11, 4566.	2.2	0
2088	Depth Image Hashing Algorithm Based on Local Global Feature Fusion. IEEE Access, 2023, 11, 123373-123381.	4.2	0
2089	MITA: Multi-Input Adaptive Activation Function for Accurate Binary Neural Network Hardware. IEICE Transactions on Information and Systems, 2023, E106.D, 2006-2014.	0.7	0
2090	FlexNet: A warm start method for deep reinforcement learning in hybrid electric vehicle energy management applications. Energy, 2024, 288, 129773.	8.8	0
2091	Network-based exploratory data analysis and explainable three-stage deep clustering for financial customer profiling. Engineering Applications of Artificial Intelligence, 2024, 128, 107378.	8.1	0
2092	Artificial intelligence learning platform in a visual programming environment: exploring an artificial intelligence learning model. Educational Technology Research and Development, 0, , .	2.8	0

#	Article	IF	CITATIONS
2093	Multiply-and-Fire: An Event-Driven Sparse Neural Network Accelerator. Transactions on Architecture and Code Optimization, 2023, 20, 1-26.	2.0	0
2094	A progressive deep learning framework for fine-grained primate behavior recognition. Applied Animal Behaviour Science, 2023, 269, 106099.	1.9	1
2095	Hardware-Aware Evolutionary Approaches to Deep Neural Networks. Genetic and Evolutionary Computation, 2024, , 367-396.	1.0	0
2096	Evolutionary Neural Network Architecture Search. Genetic and Evolutionary Computation, 2024, , 247-281.	1.0	0
2097	MetaML: Automating Customizable Cross-Stage Design-Flow for Deep Learning Acceleration. , 2023, , .		1
2098	Hardware-Efficient Logarithmic Floating-Point Multipliers for Error-Tolerant Applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 2024, 71, 209-222.	5.4	0
2099	To Spike or Not to Spike: A Digital Hardware Perspective on Deep Learning Acceleration. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2023, 13, 1015-1025.	3.6	2
2100	U-TOE: Universal TinyML On-Board Evaluation Toolkit for Low-Power IoT. , 2023, , .		0
2101	Green AI Quotient: Assessing Greenness of AI-based software and the way forward. , 2023, , .		0
2102	Stream Processing Architectures for Continuous ECG Monitoring Using Subsampling- Based Classifiers. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2024, 32, 68-78.	3.1	0
2103	Performance Modeling and Estimation of a Configurable Output Stationary Neural Network Accelerator. , 2023, , .		0
2104	Automatic Generation of Micro-kernels for Performance Portability of Matrix Multiplication on RISC-V Vector Processors. , 2023, , .		0
2105	Investigating the effect of approximate multipliers on the resilience of a systolic array DNN accelerator. , 2023, , .		0
2106	Analysis and Improvement of Resilience for Long Short-Term Memory Neural Networks. , 2023, , .		0
2107	A 116 TOPS/W Spatially Unrolled Time-Domain Accelerator Utilizing Laddered-Inverter DTC for Energy-Efficient Edge Computing in 65 nm. IEEE Open Journal of Circuits and Systems, 2023, 4, 308-323.	1.9	0
2108	DLA-SP: A System Platform for Deep-Learning Accelerator Integration. , 2023, , .		0
2109	Niagara: Scheduling DNN Inference Services onÂHeterogeneous Edge Processors. Lecture Notes in Computer Science, 2023, , 67-85.	1.3	0
2110	Scheduling Inputs in Early Exit Neural Networks. IEEE Transactions on Computers, 2024, 73, 451-465.	3.4	0

#	Article	IF	CITATIONS
2111	Path Loss Prediction in Evaporation Ducts Based on Deep Neural Network. IEEE Antennas and Wireless Propagation Letters, 2024, 23, 798-802.	4.0	0
2112	AudioFormer: Channel Audio Encoder Based onÂMulti-granularity Features. Communications in Computer and Information Science, 2024, , 357-373.	0.5	0
2113	LDANet: the laplace-guided detail-constrained asymmetric network for real-time semantic segmentation. Multimedia Tools and Applications, 0, , .	3.9	0
2114	Review of Lightweight Deep Convolutional Neural Networks. Archives of Computational Methods in Engineering, 0, , .	10.2	0
2115	Deep learning for enhancing internet of things: A comprehensive survey. I-manager S Journal on Computer Science, 2023, 11, 38.	0.2	0
2116	PEACE: Private and Energy-Efficient Algorithm for Cardiac Evaluation on the EDGE using Modified Split Learning and Model Quantization. , 2023, , .		0
2117	Machine Learning and Deep Learning Techniques for Alzheimer's Disease Prediction Using CSF and Plasma Biomarkers. , 2023, , .		0
2118	The promise of training deep neural networks on CPUs: A survey. Journal of Physics: Conference Series, 2023, 2649, 012017.	0.4	0
2119	Demo: Enabling DNN Inference in the Network Data Plane. , 2023, , .		0
2120	Empirical evaluation of filter pruning methods for acceleration of convolutional neural network. Multimedia Tools and Applications, 0, , .	3.9	0
2121	Probabilistic Compute-in-Memory Design for Efficient Markov Chain Monte Carlo Sampling. IEEE Transactions on Circuits and Systems I: Regular Papers, 2023, , 1-14.	5.4	0
2122	Path Forward Beyond Simulators: Fast and Accurate GPU Execution Time Prediction for DNN Workloads. , 2023, , .		0
2123	ADA-GP: Accelerating DNN Training By Adaptive Gradient Prediction. , 2023, , .		0
2124	Hydra: Hybrid-model federated learning for human activity recognition on heterogeneous devices. Journal of Systems Architecture, 2024, 147, 103052.	4.3	0
2125	Vision Transformers for Breast Cancer Human Epidermal Growth Factor Receptor 2 Expression Staging without Immunohistochemical Staining. American Journal of Pathology, 2024, 194, 402-414.	3.8	0
2126	Improving a Deep Learning Model to Accurately Diagnose LVNC. Journal of Clinical Medicine, 2023, 12, 7633.	2.4	0
2127	Developing a hybrid deep learning model with explainable artificial intelligence (XAI) for enhanced landslide susceptibility modeling and management. Natural Hazards, 0, , .	3.4	0
2128	ELPDI: A Novel Ensemble Learning Approach for Pulmonary Disease Identification. Algorithms for Intelligent Systems, 2023, , 49-60.	0.6	0

#	Article	IF	Citations
2129	Semi-supervised Domain Adaptation via Joint Contrastive Learning with Sensitivity. , 2023, , .		0
2130	Smartphone-Based Al Detection of Ocular Diseases. , 2023, , .		0
2131	Automatic Early Detection System of Feverish Infectious Diseases in Indoor Public Areas. , 2023, , .		0
2132	Vulnerability assessment of heat waves within a risk framework using artificial intelligence. Science of the Total Environment, 2024, 912, 169355.	8.0	0
2133	Grow, prune or select data: which technique allows the most energy-efficient neural network training?. , 2023, , .		0
2134	Binary Classification with Imbalanced Data. Entropy, 2024, 26, 15.	2.2	0
2135	Conveyor: Towards Asynchronous Dataflow in Systolic Array to Exploit Unstructured Sparsity. , 2023, , .		0
2136	Machine Learning for Healthcare-IoT Security: A Review and Risk Mitigation. IEEE Access, 2023, 11, 145869-145896.	4.2	1
2137	A Systematic Literature Review on Hardware Reliability Assessment Methods for Deep Neural Networks. ACM Computing Surveys, 2024, 56, 1-39.	23.0	0
2138	AlgorithmÂ1039: Automatic Generators for a Family of Matrix Multiplication Routines with Apache TVM. ACM Transactions on Mathematical Software, 2024, 50, 1-34.	2.9	0
2140	A runtime-reconfigurable convolutional engine using tensor multiplication with multiple computing modes in 22-nm CMOS. Microelectronics Journal, 2024, 144, 106075.	2.0	0
2141	Hardware Implementation of nmODE on FPGA. , 2023, , .		0
2142	DNN-based Beamforming for Mainlobe Interference Mitigation. , 2023, , .		0
2143	Adaptive Global Power-of-Two Ternary Quantization Algorithm Based on Unfixed Boundary Thresholds. Sensors, 2024, 24, 181.	3.8	0
2144	A CNN-Based Super-Resolution Processor With Short-Term Caching for Real-Time UHD Upscaling. IEEE Transactions on Circuits and Systems I: Regular Papers, 2024, 71, 1198-1207.	5.4	0
2145	Instability Detection for Operation State Monitoring of the Grid-Tied Inverter. , 2023, , .		0
2146	Spiking-Fer: Spiking Neural Network for Facial Expression Recognition With Event Cameras. , 2023, , .		0
2147	Explainable AI models for predicting drop coalescence in microfluidics device. Chemical Engineering Journal, 2024, 481, 148465.	12.7	1

#	Article	IF	CITATIONS
2148	An Efficient Hybrid Deep Learning Accelerator for Compact and Heterogeneous CNNs. Transactions on Architecture and Code Optimization, 2024, 21, 1-26.	2.0	0
2149	Analysis of Neural Networks Used by Artificial Intelligence in the Energy Transition with Renewable Energies. Applied Sciences (Switzerland), 2024, 14, 389.	2.5	0
2150	A Survey on an Emerging Safety Challenge for Autonomous Vehicles: Safety of the Intended Functionality. Engineering, 2024, 33, 17-34.	6.7	0
2151	Operating Critical Machine Learning Models inÂResource Constrained Regimes. Lecture Notes in Computer Science, 2023, , 325-335.	1.3	Ο
2152	READ: Reliability-Enhanced Accelerator Dataflow Optimization Using Critical Input Pattern Reduction. , 2023, , .		0
2153	Photonic Neural Networks Based on Integrated Silicon Microresonators. , 2024, 3, .		1
2154	End-to-End Delay Minimization based on Joint Optimization of DNN Partitioning and Resource Allocation for Cooperative Edge Inference. , 2023, , .		0
2155	A novel deep learning model to predict the soil nutrient levels (N, P, and K) in cabbage cultivation. Smart Agricultural Technology, 2024, 7, 100395.	5.4	1
2156	Toward Cross-Dataset Finger Vein Recognition With Single-Source Data. IEEE Transactions on Instrumentation and Measurement, 2024, 73, 1-12.	4.7	0
2157	Real-Time FPGA Implementation of CNN-Based Distributed Fiber Optic Vibration Event Recognition Method. , 2023, , .		0
2158	Reduction of overfitting on the highly imbalanced ISIC-2019 skin dataset using deep learning frameworks. Journal of X-Ray Science and Technology, 2024, 32, 53-68.	1.0	0
2160	Hybrid AE and Bi-LSTM-Aided Sparse Multipath Channel Estimation in OFDM Systems. IEEE Access, 2024, 12, 7952-7965.	4.2	0
2161	RT-SCNNs: real-time spiking convolutional neural networks for a novel hand gesture recognition using time-domain mm-wave radar data. International Journal of Microwave and Wireless Technologies, 0, , 1-13.	1.9	0
2162	Lookupx: Next-Generation Quantization and Lookup Techniques for Empowering Performance and Energy Efficiency. , 2023, , .		0
2163	StarSPA: Stride-Aware Sparsity Compression for Efficient CNN Acceleration. IEEE Access, 2024, 12, 10893-10909.	4.2	0
2164	From White to Black-Box Models: A Review of Simulation Tools for Building Energy Management and Their Application in Consulting Practices. Energies, 2024, 17, 376.	3.1	1
2165	Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution. , 2023, , .		0
2166	Ada3D : Exploiting the Spatial Redundancy with Adaptive Inference for Efficient 3D Object Detection. , 2023, , .		0

#	Δρτιςι ε	IF	CITATIONS
" 2167	Temporal-Coded Spiking Neural Networks with Dynamic Firing Threshold: Learning with Event-Driven Backpropagation. , 2023, , .	n	0
2168	Reusing Deep Learning Models: Challenges and Directions in Software Engineering. , 2023, , .		0
2169	Limits to the Energy Efficiency of CMOS Microprocessors. , 2023, , .		0
2170	A Memcomputing Approach to Prime Factorization. , 2023, , .		0
2171	Evaluation Model for Current-Domain SRAM-based Computing-in-Memory Circuits. , 2023, , .		0
2172	A 128-channel real-time VPDNN stimulation system for a visual cortical neuroprosthesis. , 2023, , .		0
2173	Distinguishing examples while building concepts in hippocampal and artificial networks. Nature	12.8	0
2174	Subspace Interpolation and Indexing on Stiefel and Grassmann Manifolds as a Lightweight Inference		0
2175	Engine., 2023, , . Seenage Power Aware SBVI Based EinFET Design for SRAM Construction 2023		0
	Numerical study on effects of voltage amplitude in CO2 pulsed discharges under Martian conditions		0
2176	by deep neural network. Physics of Plasmas, 2024, 31, .	1.9	0
2177	Powering AI at the edge: A robust, memristor-based binarized neural network with near-memory computing and miniaturized solar cell. Nature Communications, 2024, 15, .	12.8	1
2178	Advancing electron microscopy using deep learning. JPhys Materials, 2024, 7, 022001.	4.2	0
2179	VLCP: A High-Performance FPGA-based CNN Accelerator with Vector-level Cluster Pruning. , 2023, , .		0
2180	Test Input Prioritization for 3D Point Clouds. ACM Transactions on Software Engineering and Methodology, 0, , .	6.0	0
2181	Resource constrained neural network training. Scientific Reports, 2024, 14, .	3.3	0
2182	Exploiting deep learning accelerators for neuromorphic workloads. Neuromorphic Computing and Engineering, 2024, 4, 014004.	5.9	0
2183	FORSA: Exploiting Filter Ordering to Reduce Switching Activity for Low Power CNNs. , 2023, , .		0
2184	Combining machine learning algorithms for personality trait prediction. Egyptian Informatics Journal, 2024, 25, 100439.	6.8	1

		CITATION R	EPORT	
#	Article		IF	CITATIONS
2185	A Study on Significant Progress in Face Recognition and Its Related Techniques Toward Achievement for Various Applications. Lecture Notes in Electrical Engineering, 2024, , 2	l Better 255-270.	0.4	0
2186	Compute-In-Memory Technologies for Deep Learning Acceleration. IEEE Nanotechnolog 2024, 18, 44-52.	gy Magazine,	1.3	0
2187	The case for hybrid analog neuromorphic chips based on silicon and 2D materials. , 202	23, , .		0
2188	Efficient Data Loading for Deep Neural Network Training. , 2023, , .			0
2189	Modeling streamflow in non-gauged watersheds with sparse data considering physiogr climate, and anthropogenic factors using explainable soft computing techniques. Jourr Hydrology, 2024, 631, 130846.	aphic, dynamic Ial of	5.4	2
2190	Drug-drug interactions prediction based on deep learning and knowledge graph: A revi 2024, 27, 109148.	ew. IScience,	4.1	0
2191	Expanding the deep-learning model to diagnosis LVNC: limitations and trade-offs. Com in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2024, 12, .	puter Methods	1.9	0
2192	Scalability Limitations of Processing-in-Memory using Real System Evaluations. Proceed ACM on Measurement and Analysis of Computing Systems, 2024, 8, 1-28.	lings of the	1.8	0
2193	A study on Social Empowerment of Al for Revolutionizing Humankind. , 2023, , .			0
2194	Parallel GEMM-based convolution for deep learning on multicore RISC-V processors. Jou Supercomputing, 0, , .	urnal of	3.6	0
2195	YFlows: Systematic Dataflow Exploration and Code Generation for Efficient Neural Net Inference using SIMD Architectures on CPUs. , 2024, , .	work		0
2196	Enhancing Security and Ownership Protection of Neural Networks Using Watermarking Systematic Literature Review Using PRISMA. , 2024, , 1-28.	g Techniques: A		0
2197	Applying DDDAS Principles for Realizing Optimized and Robust Deep Learning Models Lecture Notes in Computer Science, 2024, , 325-339.	at the Edge.	1.3	0
2199	Optimizing GNN Inference Processing onÂVery Long Vector Processor. Lecture Notes in Science, 2024, , 59-77.	n Computer	1.3	0
2200	Soft Contrastive Cross-Modal Retrieval. Applied Sciences (Switzerland), 2024, 14, 194	4.	2.5	0
2201	Unlocking the Power of Machine Learning: Antenna Design Optimization in the Digital	Age. , 2023, , .		0
2202	Tackling the Matrix Multiplication Micro-Kernel Generation with Exo. , 2024, , .			0
2203	Neural network methods for radiation detectors and imaging. Frontiers in Physics, 0, 1	2, .	2.1	0

#	Article	IF	CITATIONS
2204	Imaging of moho topography with conditional generative adversarial network from observed gravity anomalies. Journal of Asian Earth Sciences, 2024, 265, 106093.	2.3	0
2205	Fiber optic computing using distributed feedback. Communications Physics, 2024, 7, .	5.3	0
2206	Efficient Spiking Neural Networks with Biologically Similar Lithium-Ion Memristor Neurons. ACS Applied Materials & Interfaces, 2024, 16, 13989-13996.	8.0	0
2207	LFFNet: lightweight feature-enhanced fusion network for real-time semantic segmentation of road scenes. Pattern Analysis and Applications, 2024, 27, .	4.6	0
2208	A novel hybrid machine learning model for rapid assessment of wave and storm surge responses over an extended coastal region. Coastal Engineering, 2024, 190, 104503.	4.0	0
2209	TinyEmergencyNet: a hardware-friendly ultra-lightweight deep learning model for aerial scene image classification. Journal of Real-Time Image Processing, 2024, 21, .	3.5	0
2210	A cost-sensitive deep neural network-based prediction model for the mortality in acute myocardial infarction patients with hypertension on imbalanced data. Frontiers in Cardiovascular Medicine, 0, 11, .	2.4	0
2211	POAS: a framework for exploiting accelerator level parallelism in heterogeneous environments. Journal of Supercomputing, 0, , .	3.6	0
2212	Development of an Image Preprocessing by Bidth-Search Method for a Pattern Recognition System based on Multi-Agent Neurocognitive Architecture. Vestnik NSU Series Information Technologies, 2024, 21, 46-53.	0.2	0
2213	Spectral-Blaze: A High-Performance FFT-Based CNN Accelerator. Lecture Notes in Computer Science, 2024, , 222-238.	1.3	0
2214	Study on high-altitude ceiling strategy of compression ignition aviation piston engines based on BP-NSGA II algorithm optimization. Energy, 2024, 294, 130966.	8.8	0
2215	Arithmetic for Deep Learning. , 2024, , 707-759.		0
2216	Optimizing CNN Hardware Acceleration with Configurable Vector Units and Feature Layout Strategies. Electronics (Switzerland), 2024, 13, 1050.	3.1	0
2217	FedSC: Compatible Gradient Compression forÂCommunication-Efficient Federated Learning. Lecture Notes in Computer Science, 2024, , 360-379.	1.3	Ο