Experimental and theoretical study on selenate uptake frameworks: Effect of defects and ligands

Chemical Engineering Journal 330, 1012-1021 DOI: 10.1016/j.cej.2017.08.038

Citation Report

CITATION	

#	Article	IF	CITATIONS
1	Adsorption Behaviors of Organic Micropollutants on Zirconium Metal–Organic Framework UiO-66: Analysis of Surface Interactions. ACS Applied Materials & Interfaces, 2017, 9, 41043-41054.	8.0	327
2	Metal–organic frameworks for radionuclide sequestration from aqueous solution: a brief overview and outlook. Dalton Transactions, 2017, 46, 16381-16386.	3.3	104
3	Ultrafast and Efficient Extraction of Uranium from Seawater Using an Amidoxime Appended Metal–Organic Framework. ACS Applied Materials & Interfaces, 2017, 9, 32446-32451.	8.0	260
4	BTEX removal from aqueous solution with hydrophobic Zr metal organic frameworks. Journal of Environmental Management, 2018, 214, 17-22.	7.8	51
5	Metal–organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chemical Society Reviews, 2018, 47, 2322-2356.	38.1	1,438
6	Hydrothermal preparation of hierarchical ZIF-L nanostructures for enhanced CO2 capture. Journal of Colloid and Interface Science, 2018, 519, 38-43.	9.4	55
7	Experimental and theoretical investigations on Se(<scp>iv</scp>) and Se(<scp>vi</scp>) adsorption to UiO-66-based metal–organic frameworks. Environmental Science: Nano, 2018, 5, 1441-1453.	4.3	79
8	A Mechanistic Approach for the Synthesis of Carboxylate-Rich Carbonaceous Biomass-Doped Lanthanum-Oxalate Nanocomplex for Arsenate Adsorption. ACS Sustainable Chemistry and Engineering, 2018, 6, 6052-6063.	6.7	39
9	Synthesis of highly porous inorganic adsorbents derived from metal-organic frameworks and their application in efficient elimination of mercury(II). Journal of Colloid and Interface Science, 2018, 517, 61-71.	9.4	51
10	Metal–organic framework technologies for water remediation: towards a sustainable ecosystem. Journal of Materials Chemistry A, 2018, 6, 4912-4947.	10.3	369
11	Adsorption mechanisms of metal ions on the potassium dihydrogen phosphate (1 0 0) surface: A density functional theory-based investigation. Journal of Colloid and Interface Science, 2018, 522, 256-263.	9.4	13
12	Synthesis of quinazolinones and benzazoles utilizing recyclable sulfated metal-organic framework-808 catalyst in glycerol as green solvent. Journal of Industrial and Engineering Chemistry, 2018, 64, 107-115.	5.8	19
13	Cosorption Characteristics of SeO42– and Sr2+ Radioactive Surrogates Using 2D/2D Graphene Oxide-Layered Double Hydroxide Nanocomposites. ACS Sustainable Chemistry and Engineering, 2018, 6, 13854-13866.	6.7	26
14	Facile Synthesis of Boron Organic Polymers for Efficient Removal and Separation of Methylene Blue, Rhodamine B, and Rhodamine 6G. ACS Sustainable Chemistry and Engineering, 2018, 6, 16777-16787.	6.7	73
15	Decoration of ZIF-8 on polypyrrole nanotubes for highly efficient and selective capture of U(VI). Journal of Cleaner Production, 2018, 204, 896-905.	9.3	90
16	Macroscopic and microscopic investigation of uranium elimination by Ca–Mg–Al-layered double hydroxide supported nanoscale zero valent iron. Inorganic Chemistry Frontiers, 2018, 5, 2657-2665.	6.0	66
17	Efficient extraction of inorganic selenium from water by a Zr metal–organic framework: investigation of volumetric uptake capacity and binding motifs. CrystEngComm, 2018, 20, 6140-6145.	2.6	33
18	Combined experimental and theoretical investigation on selective removal of mercury ions by metal organic frameworks modified with thiol groups. Chemical Engineering Journal, 2018, 354, 790-801.	12.7	118

CITATION REPORT

#	Article	IF	CITATIONS
19	Water-stable metal-organic frameworks for aqueous removal of heavy metals and radionuclides: A review. Chemosphere, 2018, 209, 783-800.	8.2	366
20	Radionuclide sequestration by metal-organic frameworks. , 2019, , 355-382.		1
21	Dual Functionalized CuMOF-Based Composite for High-Performance Supercapacitors. Inorganic Chemistry, 2019, 58, 9844-9854.	4.0	39
22	Tailoring the Properties of UiO-66 through Defect Engineering: A Review. Industrial & Engineering Chemistry Research, 2019, 58, 17646-17659.	3.7	152
23	A novel composite of layered double hydroxide/geopolymer for co-immobilization of Cs+ and SeO42â^' from aqueous solution. Science of the Total Environment, 2019, 695, 133799.	8.0	32
24	Synthesis of novel nanomaterials and their application in efficient removal of radionuclides. Science China Chemistry, 2019, 62, 933-967.	8.2	256
25	Impact of low-molecular weight organic acids on selenite immobilization by goethite: Understanding a competitive-synergistic coupling effect and speciation transformation. Science of the Total Environment, 2019, 684, 694-704.	8.0	21
26	Metal-organic frameworks for aquatic arsenic removal. Water Research, 2019, 158, 370-382.	11.3	154
27	Removal of toxic/radioactive metal ions by metal-organic framework-based materials. Interface Science and Technology, 2019, , 217-279.	3.3	15
28	Noble metal-free integrated UiO-66-PANI-Co ₃ O ₄ catalyst for visible-light-induced H ₂ production. Chemical Communications, 2019, 55, 14494-14497.	4.1	21
29	Performance of metal–organic frameworks for the adsorptive removal of potentially toxic elements in a water system: a critical review. RSC Advances, 2019, 9, 34359-34376.	3.6	101
30	Construction of crystal defect sites in N-coordinated UiO-66 via mechanochemical in-situ N-doping strategy for highly selective adsorption of cationic dyes. Chemical Engineering Journal, 2019, 356, 329-340.	12.7	109
31	Defect-Induced Method for Preparing Hierarchical Porous Zr–MOF Materials for Ultrafast and Large-Scale Extraction of Uranium from Modified Artificial Seawater. Industrial & Engineering Chemistry Research, 2019, 58, 1159-1166.	3.7	52
32	Adsorption of diclofenac from aqueous solution using UiO-66-type metal-organic frameworks. Chemical Engineering Journal, 2019, 359, 354-362.	12.7	209
33	Recent advances on porous organic frameworks for the adsorptive removal of hazardous materials. Journal of Environmental Sciences, 2019, 80, 169-185.	6.1	137
34	Glycine derivative-functionalized metal-organic framework (MOF) materials for Co(II) removal from aqueous solution. Applied Surface Science, 2019, 466, 903-910.	6.1	54
35	Zeolitic imidazolate frameworks and their derived materials for sequestration of radionuclides in the environment: A review. Critical Reviews in Environmental Science and Technology, 2020, 50, 1874-1934.	12.8	33
36	Insights into the adsorption mechanism of Al30 polyoxocations-modified graphene oxide nanosheets for efficient removal of phosphate, chromate and selenate oxyanions: A comparative study. Journal of Molecular Liquids, 2020, 299, 112111.	4.9	22

#	Article	IF	CITATIONS
37	Metal–organic frameworks for water purification. , 2020, , 241-283.		5
38	Defect Control in Zr-Based Metal–Organic Framework Nanoparticles for Arsenic Removal from Water. ACS Applied Nano Materials, 2020, 3, 8997-9008.	5.0	96
39	Fast synthesis of bimetallic metal-organic frameworks based on dielectric barrier discharge for analytical atomic spectrometry and ratiometric fluorescent sensing. Microchemical Journal, 2020, 159, 105417.	4.5	13
40	Metal-organic frameworks based adsorbents: A review from removal perspective of various environmental contaminants from wastewater. Chemosphere, 2020, 259, 127369.	8.2	136
41	Zirconium Metal–Organic Framework Materials for Efficient Ion Adsorption and Sieving. Industrial & Engineering Chemistry Research, 2020, 59, 12907-12923.	3.7	60
42	Exploring the Mechanisms of Selectivity for Environmentally Significant Oxo-Anion Removal during Water Treatment: A Review of Common Competing Oxo-Anions and Tools for Quantifying Selective Adsorption. Environmental Science & Technology, 2020, 54, 9769-9790.	10.0	117
43	Engineered biochar modified with iron as a new adsorbent for treatment of water contaminated by selenium. Journal of Saudi Chemical Society, 2020, 24, 824-834.	5.2	40
44	Amine-bridged periodic mesoporous organosilica nanomaterial for efficient removal of selenate. Chemical Engineering Journal, 2020, 396, 125278.	12.7	26
45	Application of Multifunctional Layered Double Hydroxides for Removing Environmental Pollutants: Recent Experimental and Theoretical Progress. Journal of Environmental Chemical Engineering, 2020, 8, 103908.	6.7	35
46	Metal-organic frameworks as a versatile platform for radionuclide management. Coordination Chemistry Reviews, 2021, 427, 213473.	18.8	74
47	Reduction of particulate matter and volatile organic compounds in biorefineries: A state-of-the-art review. Journal of Hazardous Materials, 2021, 403, 123955.	12.4	24
48	Recent advances in metal-organic frameworks for the removal of heavy metal oxoanions from water. Chemical Engineering Journal, 2021, 407, 127221.	12.7	101
49	Review of Advances in Engineering Nanomaterial Adsorbents for Metal Removal and Recovery from Water: Synthesis and Microstructure Impacts. ACS ES&T Engineering, 2021, 1, 623-661.	7.6	61
50	Alkylamino-terephthalate ligands stabilize 8-connected Zr ⁴⁺ MOFs with highly efficient sorption for toxic Se species. Journal of Materials Chemistry A, 2021, 9, 3379-3387.	10.3	16
51	Metal-Organic Frameworks for Heavy Metal Removal From Water. Advances in Chemical and Materials Engineering Book Series, 2021, , 92-111.	0.3	0
52	Investigation on the efficient separation and recovery of Se(IV) and Se(VI) from wastewater using Fe–OOH–bent. Radiochimica Acta, 2021, 109, 377-387.	1.2	3
53	Efficient removal of selenate in water by cationic poly(allyltrimethylammonium) grafted chitosan and biochar composite. Environmental Research, 2021, 194, 110667.	7.5	32
54	Selective Adsorption of Aqueous Diclofenac Sodium, Naproxen Sodium, and Ibuprofen Using a Stable Fe3O4–FeBTC Metal–Organic Framework. Materials, 2021, 14, 2293.	2.9	19

CITATION REPORT

#	Article	IF	CITATIONS
55	A Computational Study of Isopropyl Alcohol Adsorption and Diffusion in UiO-66 Metal–Organic Framework: The Role of Missing Linker Defect. Journal of Physical Chemistry B, 2021, 125, 3690-3699.	2.6	9
56	A review of graphene-oxide/metal–organic framework composites materials: characteristics, preparation and applications. Journal of Porous Materials, 2021, 28, 1837-1865.	2.6	36
57	Lithium Extraction by Emerging Metal–Organic Frameworkâ€Based Membranes. Advanced Functional Materials, 2021, 31, 2105991.	14.9	79
58	Highly efficient sorption of selenate and selenite onto a cationic layered single hydroxide via anion exchange and inner-sphere complexation. Chemical Engineering Journal, 2021, 420, 129726.	12.7	14
59	Interfacial Properties and Electronic Structure of Ag(001)/BaTiO ₃ (001): A First Principle Study. ECS Journal of Solid State Science and Technology, 2021, 10, 093004.	1.8	0
60	Adsorptive removal of pharmaceutical pollutants by defective metal organic framework UiO-66: Insight into the contribution of defects. Chemosphere, 2021, 281, 130997.	8.2	35
61	Classification and role of modulators on crystal engineering of metal organic frameworks (MOFs). Coordination Chemistry Reviews, 2021, 444, 214064.	18.8	47
62	Metal-organic frameworks as superior porous adsorbents for radionuclide sequestration: Current status and perspectives. Journal of Chromatography A, 2021, 1655, 462491.	3.7	23
63	High-performance removal of radionuclides by porous organic frameworks from the aquatic environment: A review. Journal of Environmental Radioactivity, 2021, 238-239, 106710.	1.7	12
64	Enhanced CO2 adsorption performance on amino-defective UiO-66 with 4-amino benzoic acid as the defective linker. Separation and Purification Technology, 2021, 274, 119079.	7.9	31
65	Recent advances in the application of water-stable metal-organic frameworks: Adsorption and photocatalytic reduction of heavy metal in water. Chemosphere, 2021, 285, 131432.	8.2	111
66	Reticular chemistry approach to explore the catalytic CO2-epoxide cycloaddition reaction over tetrahedral coordination Lewis acidic sites in a Rutile-type Zinc-phosphonocarboxylate framework. Chemical Engineering Journal, 2022, 427, 131759.	12.7	20
67	Defects controlled by acid-modulators and water molecules enabled UiO-67 for exceptional toluene uptakes: An experimental and theoretical study. Chemical Engineering Journal, 2022, 427, 131573.	12.7	91
68	Materials interacting with inorganic selenium from the perspective of electrochemical sensing. Analyst, The, 2021, 146, 6394-6415.	3.5	6
69	Adsorption desalination: Advances in porous adsorbents. Chinese Journal of Chemical Engineering, 2022, 42, 151-169.	3.5	17
70	Novel nanomaterials for environmental remediation of toxic metal ions and radionuclides. , 2022, , 1-47.		2
71	Theoretical calculation of toxic/radioactive metal ion capture by novel nanomaterials. , 2022, , 313-379.		2
72	Research progress of metal organic frameworks and their derivatives for adsorption of anions in water: A review. Environmental Research, 2022, 204, 112381.	7.5	33

#	Article	IF	CITATIONS
73	UiO-66 metal–organic frameworks in water treatment: A critical review. Progress in Materials Science, 2022, 125, 100904.	32.8	161
74	Metal organic frameworks (MOFs) as a cutting-edge tool for the selective detection and rapid removal of heavy metal ions from water: Recent progress. Journal of Environmental Chemical Engineering, 2022, 10, 106991.	6.7	51
75	Effects of regulator ratio and guest molecule diffusion on VOCs adsorption by defective UiO-67: Experimental and theoretical insights. Chemical Engineering Journal, 2022, 433, 134510.	12.7	97
76	Treatment technologies for selenium contaminated water: A critical review. Environmental Pollution, 2022, 299, 118858.	7.5	25
77	Zirconium Based MOFs and Their Potential Use in Water Remediation: Current Achievements and Possibilities. Air, Soil and Water Research, 2022, 15, 117862212210801.	2.5	1
78	Metal organic frameworks as advanced extraction adsorbents for separation and analysis in proteomics and environmental research. Science China Chemistry, 2022, 65, 650-677.	8.2	23
79	Strategies for induced defects in metal–organic frameworks for enhancing adsorption and catalytic performance. Dalton Transactions, 2022, 51, 8133-8159.	3.3	22
80	Efficient Scavenging of High Fluoride-Content Wastewater by Tailored Defect-Rich Cerium Metal Organic Frameworks. SSRN Electronic Journal, 0, , .	0.4	0
81	Novel triazine-based cationic covalent organic polymers for highly efficient and selective removal of selenate from contaminated water. Journal of Hazardous Materials, 2022, 436, 129127.	12.4	6
82	Hierarchical graphite oxide decorated UiO-66 for ultrahigh adsorption of dye with synergistic effect of ultrasonication: Experimental and density functional theory study. Separation and Purification Technology, 2022, 294, 121217.	7.9	17
83	Mercapto-Functionalized Magnetic Metal-Organic Frameworks for Simultaneous Removal of Inorganic Selenium and Antimony Species. SSRN Electronic Journal, 0, , .	0.4	0
84	Mercapto-Functionalized Magnetic Metal-Organic Frameworks for Simultaneous Removal of Inorganic Selenium and Antimony Species. SSRN Electronic Journal, 0, , .	0.4	0
85	Synthesis, Attributes and Defect Control of Defect-Engineered Materials as Superior Adsorbents for Aqueous Species: A Review. Journal of Inorganic and Organometallic Polymers and Materials, 0, , .	3.7	2
86	Coordination polymers in adsorptive remediation of environmental contaminants. Coordination Chemistry Reviews, 2022, 470, 214694.	18.8	16
87	Universitetet i Oslo-67 (UiO-67)/graphite oxide composites with high capacities of toluene: Synthesis strategy and adsorption mechanism insight. Journal of Colloid and Interface Science, 2022, 627, 385-397.	9.4	85
88	Facile fabrication of Fe/Zr binary MOFs for arsenic removal in water: High capacity, fast kinetics and good reusability. Journal of Environmental Sciences, 2023, 128, 213-223.	6.1	12
89	Role of a secondary building unit of copper 2,3-Pyridinedicarboxylate coordination polymer in the interactions with ionic dyes. Inorganic Chemistry Communication, 2022, 144, 109888.	3.9	0
90	Mercapto-functionalized magnetic metal–organic framework for simultaneous removal of inorganic selenium and antimony species. Separation and Purification Technology, 2022, 301, 121952	7.9	8

CITATION REPORT

#	Article	IF	CITATIONS
91	Exceptional removal and immobilization of selenium species by bimetal-organic frameworks. Ecotoxicology and Environmental Safety, 2022, 245, 114097.	6.0	4
92	Tailored defect-rich cerium metal organic frameworks for efficient fluoride removal from wastewater. Separation and Purification Technology, 2022, 302, 122152.	7.9	3
93	Ultrathin metal organic framework nanosheets with rich defects for enhanced fluoride removal. Chemical Engineering Journal, 2023, 451, 138989.	12.7	14
94	Defect controlled MOF-808 for seawater uranium capture with high capacity and selectivity. Journal of Molecular Liquids, 2022, 367, 120514.	4.9	11
95	Hierarchically Ultrasmall Hf-Based MOF: Mesopore Adjustment and Reconstruction by Recycle Using Acid Etching Strategy. Chemical Engineering Journal, 2023, 455, 140632.	12.7	3
96	Water stable MOFs as emerging class of porous materials for potential environmental applications. Chemosphere, 2023, 313, 137607.	8.2	18
97	Self-assembled MOF microspheres with hierarchical porous structure for efficient uranium adsorption. Separation and Purification Technology, 2023, 314, 123526.	7.9	20
98	Enhanced CO2/N2 separation performance in HP-Cu-BTCs by modifying the open-metal sites and porosity using added templates. Korean Journal of Chemical Engineering, 2023, 40, 675-692.	2.7	1
99	Advanced porous adsorbents for radionuclides elimination. EnergyChem, 2023, 5, 100101.	19.1	84
100	Removal of metals from water using MOF-based composite adsorbents. Environmental Science: Water Research and Technology, 2023, 9, 1305-1330.	2.4	8
101	Understanding the Role of Synthetic Parameters in the Defect Engineering of UiO-66: A Review and Meta-analysis. Chemistry of Materials, 2023, 35, 3057-3072.	6.7	7
102	Advancements in wastewater Treatment: A computational analysis of adsorption characteristics of cationic dyes pollutants on amide Functionalized-MOF nanostructure MIL-53 (Al) surfaces. Separation and Purification Technology, 2023, 319, 124081.	7.9	13
103	Phosphoramidic acid functionalized silica microspheres for simultaneous removal of Cr(VI), As(V) and Se(VI) from aqueous solutions based on molecular geometry match. Journal of Environmental Chemical Engineering, 2023, 11, 110300.	6.7	3
104	Metal-organic frameworks as superior adsorbents for pesticide removal from water: The cutting-edge in characterization, tailoring, and application potentials. Coordination Chemistry Reviews, 2023, 493, 215303.	18.8	11
105	Recent progress in high-performance environmental impacts of the removal of radionuclides from wastewater based on metal–organic frameworks: a review. RSC Advances, 2023, 13, 25182-25208.	3.6	1
106	Coordination modulation: a way to improve the properties of metal–organic frameworks. Journal of Materials Chemistry A, 2023, 11, 22105-22131.	10.3	2
107	Critical Role of Defects in UiO-66 Nanocrystals for Catalysis and Water Remediation. ACS Applied Nano Materials, 2023, 6, 18698-18720.	5.0	3
108	Study of iron-based metal–organic framework for selenite removal from water. International Journal of Environmental Science and Technology, 0, , .	3.5	0

		HATION REPORT	
#	Article	IF	CITATIONS
109	UiO-66(Zr)-based functional materials for water purification: An updated review. , 2023, 2, 93-132.		0
110	Recent advances in functionalized porous adsorbents for radioactive waste water decontamination: Current status, research gap and future outlook. Materials Today Sustainability, 2024, 25, 100703.	4.1	0
111	Metal-Organic Frameworks: A promising solution for efficient removal of heavy metal ions and organic pollutants from industrial wastewater. Journal of Molecular Liquids, 2024, 399, 124365.	4.9	0