A single dose of peripherally infused EGFRvIII-directed induces adaptive resistance in patients with recurrent §

Science Translational Medicine

9,

DOI: 10.1126/scitranslmed.aaa0984

Citation Report

#	Article	IF	CITATIONS
1	Trial watch: Immunogenic cell death induction by anticancer chemotherapeutics. OncoImmunology, 2017, 6, e1386829.	2.1	209
2	The promises of immunotherapy in gliomas. Current Opinion in Neurology, 2017, 30, 650-658.	1.8	16
3	A New Model T on the Horizon?. Cell, 2017, 171, 1-3.	13.5	85
4	Chimeric antigen-receptor T-cell therapy for hematological malignancies and solid tumors: Clinical data to date, current limitations and perspectives. Current Research in Translational Medicine, 2017, 65, 93-102.	1.2	85
5	CAR T cells in glioblastoma. Nature Reviews Drug Discovery, 2017, 16, 602-602.	21.5	3
6	Adaptive resistance to CARs in glioma. Nature Reviews Clinical Oncology, 2017, 14, 586-586.	12.5	0
7	CAR T Cells Releasing IL-18 Convert to T-Bethigh FoxO1low Effectors that Exhibit Augmented Activity against Advanced Solid Tumors. Cell Reports, 2017, 21, 3205-3219.	2.9	282
9	Chimeric antigen receptor T cells for the treatment of lymphoma. Annals of Lymphoma, 2017, 1, 1-1.	4.5	0
10	Attack of the killer clones. Nature, 2017, 552, S64-S66.	13.7	1
11	Chimeric Antigen Receptors T Cell Therapy in Solid Tumor: Challenges and Clinical Applications. Frontiers in Immunology, 2017, 8, 1850.	2.2	161
12	CAR-T Cells: Next Generation Cancer Therapeutics. Journal of the Indian Institute of Science, 2018, 98, 21-31.	0.9	0
13	Role of Chimeric Antigen Receptor T Cell Therapy in Glioblastoma Multiforme. Molecular Neurobiology, 2018, 55, 8236-8242.	1.9	5
14	Constitutive and TNFα-inducible expression of chondroitin sulfate proteoglycan 4 in glioblastoma and neurospheres: Implications for CAR-T cell therapy. Science Translational Medicine, 2018, 10, .	5.8	96
15	The possibility of cancer immune editing in gliomas. A critical review. Oncolmmunology, 2018, 7, e1445458.	2.1	35
16	CAR T-cell therapy for glioblastoma: recent clinical advances and future challenges. Neuro-Oncology, 2018, 20, 1429-1438.	0.6	197
17	Optimizing EphA2-CAR T Cells for the Adoptive Immunotherapy of Glioma. Molecular Therapy - Methods and Clinical Development, 2018, 9, 70-80.	1.8	87
18	Potent antitumor efficacy of anti-GD2 CAR T cells in H3-K27M+ diffuse midline gliomas. Nature Medicine, 2018, 24, 572-579.	15.2	321
19	Quo Vadis—Do Immunotherapies Have a Role in Glioblastoma?. Current Treatment Options in Neurology, 2018, 20, 14.	0.7	22

#	Article	IF	Citations
20	Current state of immunotherapy for glioblastoma. Nature Reviews Clinical Oncology, 2018, 15, 422-442.	12.5	873
21	Current state and future prospects of immunotherapy for glioma. Immunotherapy, 2018, 10, 317-339.	1.0	60
22	Chimeric antigen receptor T-cell therapy for cancer: a basic research-oriented perspective. Immunotherapy, 2018, 10, 221-234.	1.0	7
23	Glycan-directed CAR-T cells. Glycobiology, 2018, 28, 656-669.	1.3	74
24	Chimeric Antigen Receptor T Cell Therapy: Challenges to Bench-to-Bedside Efficacy. Journal of Immunology, 2018, 200, 459-468.	0.4	155
25	Antigenic expression and spontaneous immune responses support the use of a selected peptide set from the IMA950 glioblastoma vaccine for immunotherapy of grade II and III glioma. OncoImmunology, 2018, 7, e1391972.	2.1	42
26	Recombinant expression of extracellular domain of mutant Epidermal Growth Factor Receptor in prokaryotic and baculovirus expression systems. International Journal of Biological Macromolecules, 2018, 110, 582-587.	3.6	4
27	miR-153 suppresses IDO1 expression and enhances CAR T cell immunotherapy. Journal of Hematology and Oncology, 2018, 11, 58.	6.9	98
28	Improving CART-Cell Therapy of Solid Tumors with Oncolytic Virus–Driven Production of a Bispecific T-cell Engager. Cancer Immunology Research, 2018, 6, 605-616.	1.6	199
29	<i>In vivo</i> evaluation of EGFRvIII mutation in primary glioblastoma patients via complex multiparametric MRI signature. Neuro-Oncology, 2018, 20, 1068-1079.	0.6	90
30	Adoptive Transfer of IL13Rα2-Specific Chimeric Antigen Receptor T Cells Creates a Pro-inflammatory Environment in Glioblastoma. Molecular Therapy, 2018, 26, 986-995.	3.7	55
31	CAR T cell immunotherapy for human cancer. Science, 2018, 359, 1361-1365.	6.0	1,968
32	Concepts for Immunotherapies in Gliomas. Seminars in Neurology, 2018, 38, 062-072.	0.5	26
33	Logic-gated approaches to extend the utility of chimeric antigen receptor T-cell technology. Biochemical Society Transactions, 2018, 46, 391-401.	1.6	26
34	CAR T-cell therapy for glioblastoma: ready for the next round of clinical testing?. Expert Review of Anticancer Therapy, 2018, 18, 451-461.	1.1	17
35	Advances in immunotherapy for pediatric acute myeloid leukemia. Expert Opinion on Biological Therapy, 2018, 18, 51-63.	1.4	13
36	CAR T-Cell Therapies in Glioblastoma: A First Look. Clinical Cancer Research, 2018, 24, 535-540.	3.2	103
37	Keeping the Engine Running: The Relevance and Predictive Value of Preclinical Models for CAR-T Cell Development. ILAR Journal, 2018, 59, 276-285.	1.8	5

λτιωνι Ρι

ARTICLE IF CITATIONS # Pancreatic cancer therapy with combined mesothelin-redirected chimeric antigen receptor T cells and 38 2.3 191 cytokine-armed oncolytic adenoviruses. JCI Insight, 2018, 3, . Oncolytic Virotherapy for Malignant Gliomas. Journal of Clinical Oncology, 2018, 36, 1440-1442. 0.8 The Landscape of CAR T Cells Beyond Acute Lymphoblastic Leukemia for Pediatric Solid Tumors. 40 American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical 1.8 20 Oncology Meeting, 2018, 38, 830-837. CAR-T cell therapy, a door is open to find innumerable possibilities of treatments for cancer patients. Turkish Journal of Haematology, 2018, 35, 217-228. Making CAR T Cells a Solid Option for Solid Tumors. Frontiers in Immunology, 2018, 9, 2593. 43 2.2 147 Updates in prognostic markers for gliomas. Neuro-Oncology, 2018, 20, vii17-vii26. Genetic engineering of T cells with chimeric antigen receptors for hematological malignancy 45 2.3 11 immunotherapy. Science China Life Sciences, 2018, 61, 1320-1332. Carbohydrate Targets for CAR T Cells in Solid Childhood Cancers. Frontiers in Oncology, 2018, 8, 513. 1.3 46 29 47 CAR T Cell Therapy for Neuroblastoma. Frontiers in Immunology, 2018, 9, 2380. 2.2 107 CAR-T Cells and Oncolytic Viruses: Joining Forces to Overcome the Solid Tumor Challenge. Frontiers 2.2 101 in Immunology, 2018, 9, 2460. Current Options and Future Directions in Immune Therapy for Glioblastoma. Frontiers in Oncology, 49 21 1.3 2018, 8, 578. Recent Advances in Oncolytic Virotherapy and Immunotherapy for Glioblastoma: A Glimmer of Hope in the Search for an Effective Therapy?. Cancers, 2018, 10, 492 CAR T Cell Therapy of Non-hematopoietic Malignancies: Detours on the Road to Clinical Success. 51 2.2 58 Frontiers in Immunology, 2018, 9, 2740. CART Immunotherapy: Development, Success, and Translation to Malignant Gliomas and Other Solid 1.3 Tumors. Frontiers in Oncology, 2018, 8, 453. 53 Immunotherapy offers a promising bet against brain cancer. Nature, 2018, 561, S42-S44. 13.7 10 Clinical Tracking of Cell Transfer and Cell Transplantation: Trials and Tribulations. Radiology, 2018, 54 289, 604-615. In situ administration of cytokine combinations induces tumor regression in mice. EBioMedicine, 2018, 55 2.7 10 37, 38-46. Checkpoint Blockade Reverses Anergy in IL-13Rα2 Humanized scFv-Based CAR T Cells to Treat Murine and Canine Gliomas. Molecular Therapy - Oncolytics, 2018, 11, 20-38.

#	Article	IF	CITATIONS
57	Receptor-Targeted Glial Brain Tumor Therapies. International Journal of Molecular Sciences, 2018, 19, 3326.	1.8	34
58	Neurotoxicity Associated with CD19-Targeted CAR-T Cell Therapies. CNS Drugs, 2018, 32, 1091-1101.	2.7	175
59	Harnessing the immune system in glioblastoma. British Journal of Cancer, 2018, 119, 1171-1181.	2.9	138
60	Fluorine-19 MRI for detection and quantification of immune cell therapy for cancer. , 2018, 6, 105.		75
61	Expanding the Therapeutic Window for CAR T Cell Therapy in Solid Tumors: The Knowns and Unknowns of CAR T Cell Biology. Frontiers in Immunology, 2018, 9, 2486.	2.2	169
62	A Critical Overview of Targeted Therapies for Glioblastoma. Frontiers in Oncology, 2018, 8, 419.	1.3	167
63	Novel Human NK Cell Line Carrying CAR Targeting EGFRvIII Induces Antitumor Effects in Glioblastoma Cells. Anticancer Research, 2018, 38, 5049-5056.	0.5	82
64	Selective Targeting of Glioblastoma with EGFRvIII/EGFR Bitargeted Chimeric Antigen Receptor T Cell. Cancer Immunology Research, 2018, 6, 1314-1326.	1.6	37
65	Engineered Tumor-Targeted T Cells Mediate Enhanced Anti-Tumor Efficacy Both Directly and through Activation of the Endogenous Immune System. Cell Reports, 2018, 23, 2130-2141.	2.9	233
66	Chimeric antigen receptor T-cell immunotherapy for glioblastoma: practical insights for neurosurgeons. Neurosurgical Focus, 2018, 44, E13.	1.0	25
67	Nanoparticles That Reshape the Tumor Milieu Create a Therapeutic Window for Effective T-cell Therapy in Solid Malignancies. Cancer Research, 2018, 78, 3718-3730.	0.4	83
68	Precision Neuro-oncology: the Role of Genomic Testing in the Management of Adult and Pediatric Gliomas. Current Treatment Options in Oncology, 2018, 19, 41.	1.3	8
69	CAR T Cells in Solid Tumors: Blueprints for Building Effective Therapies. Frontiers in Immunology, 2018, 9, 1740.	2.2	155
70	Chimeric Antigen Receptor T-Cells for the Treatment of B-Cell Acute Lymphoblastic Leukemia. Frontiers in Immunology, 2018, 9, 239.	2.2	35
71	Perspective on Translating Biomaterials Into Glioma Therapy: Lessons From in Vitro Models. Frontiers in Materials, 2018, 5, .	1.2	9
72	Advances on chimeric antigen receptor-modified T-cell therapy for oncotherapy. Molecular Cancer, 2018, 17, 91.	7.9	60
73	Reducing <i>Ex Vivo</i> Culture Improves the Antileukemic Activity of Chimeric Antigen Receptor (CAR) T Cells. Cancer Immunology Research, 2018, 6, 1100-1109.	1.6	189
74	Safety Strategies of Genetically Engineered T Cells in Cancer Immunotherapy. Current Pharmaceutical Design, 2018, 24, 78-83.	0.9	7

#	Article	IF	CITATIONS
75	The expansion of targetable biomarkers for CAR T cell therapy. Journal of Experimental and Clinical Cancer Research, 2018, 37, 163.	3.5	61
76	Challenges and prospects of chimeric antigen receptor T cell therapy in solid tumors. Medical Oncology, 2018, 35, 87.	1.2	24
77	Biomarkers of cytokine release syndrome and neurotoxicity related to CAR-T cell therapy. Biomarker Research, 2018, 6, 4.	2.8	184
78	CAR T cells for childhood diffuse midline gliomas. Nature Medicine, 2018, 24, 534-535.	15.2	3
79	Blood-based biomarkers for the diagnosis and monitoring of gliomas. Neuro-Oncology, 2018, 20, 1155-1161.	0.6	67
80	Strategies for enhancing adoptive T-cell immunotherapy against solid tumors using engineered cytokine signaling and other modalities. Expert Opinion on Biological Therapy, 2018, 18, 653-664.	1.4	26
81	CNS cancer immunity cycle and strategies to target this for glioblastoma. Oncotarget, 2018, 9, 22802-22816.	0.8	11
82	CD30-Redirected Chimeric Antigen Receptor T Cells Target CD30+ and CD30â^' Embryonal Carcinoma via Antigen-Dependent and Fas/FasL Interactions. Cancer Immunology Research, 2018, 6, 1274-1287.	1.6	53
83	Treatment of glioblastoma in adults. Therapeutic Advances in Neurological Disorders, 2018, 11, 175628641879045.	1.5	117
84	Tumor Antigen Escape from CAR T-cell Therapy. Cancer Discovery, 2018, 8, 1219-1226.	7.7	661
85	Immunotherapy of Primary Brain Tumors: Facts and Hopes. Clinical Cancer Research, 2018, 24, 5198-5205.	3.2	66
86	Chimeric antigen receptor T-cell approaches to HIV cure. Current Opinion in HIV and AIDS, 2018, 13, 446-453.	1.5	59
87	Programming CAR-T cells to kill cancer. Nature Biomedical Engineering, 2018, 2, 377-391.	11.6	267
88	Immunotherapy in CNS cancers: the role of immune cell trafficking. Neuro-Oncology, 2019, 21, 37-46.	0.6	76
89	Applications of Human Brain Organoids to Clinical Problems. Developmental Dynamics, 2019, 248, 53-64.	0.8	88
90	Programmed Death Ligand 1 Is a Negative Prognostic Marker in Recurrent Isocitrate Dehydrogenase-Wildtype Glioblastoma. Neurosurgery, 2019, 85, 280-289.	0.6	22
91	Rescuing imperfect antigens for immuno-oncology. Nature Biotechnology, 2019, 37, 1002-1003.	9.4	2
93	Alternative mRNA splicing in cancer immunotherapy. Nature Reviews Immunology, 2019, 19, 675-687.	10.6	169

#	ARTICLE	IF	CITATIONS
94	Mechanisms of immunotherapy resistance: lessons from glioblastoma. Nature Immunology, 2019, 20, 1100-1109.	7.0	421
95	Changing paradigms for targeted therapies against diffuse infiltrative gliomas: tackling a moving target. Expert Review of Neurotherapeutics, 2019, 19, 663-677.	1.4	3
96	Phase I Study of Lentiviral-Transduced Chimeric Antigen Receptor-Modified T Cells Recognizing Mesothelin in Advanced Solid Cancers. Molecular Therapy, 2019, 27, 1919-1929.	3.7	220
97	T cells expressing NKG2D chimeric antigen receptors efficiently eliminate glioblastoma and cancer stem cells. , 2019, 7, 171.		60
98	A long way to the battlefront: CAR T cell therapy against solid cancers. Journal of Cancer, 2019, 10, 3112-3123.	1.2	26
99	Comparative proteogenomic characterization of glioblastoma. CNS Oncology, 2019, 8, CNS37.	1.2	20
100	Bispecific Antibodies Enable Synthetic Agonistic Receptor-Transduced T Cells for Tumor Immunotherapy. Clinical Cancer Research, 2019, 25, 5890-5900.	3.2	31
101	CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity. Nature Biotechnology, 2019, 37, 1049-1058.	9.4	347
102	CAR T cells for brain tumors: Lessons learned and road ahead. Immunological Reviews, 2019, 290, 60-84.	2.8	151
103	Immunobiology of chimeric antigen receptor T cells and novel designs. Immunological Reviews, 2019, 290, 100-113.	2.8	16
104	Challenges and strategies for successful clinical development of immune checkpoint inhibitors in glioblastoma. Expert Opinion on Pharmacotherapy, 2019, 20, 1609-1624.	0.9	8
105	Chimeric Antigen Receptor T-Cell Therapy: Reach to Solid Tumor Experience. Oncology, 2019, 97, 59-74.	0.9	13
106	Challenges and Opportunities for Childhood Cancer Drug Development. Pharmacological Reviews, 2019, 71, 671-697.	7.1	13
107	Molecular targeted therapy of glioblastoma. Cancer Treatment Reviews, 2019, 80, 101896.	3.4	386
108	CAR-T cell therapy: a potential new strategy against prostate cancer. , 2019, 7, 258.		61
109	Quantification of histopathological findings using a novel image analysis platform. Journal of Toxicologic Pathology, 2019, 32, 319-327.	0.3	26
110	Immunotherapy Against Gliomas: is the Breakthrough Near?. Drugs, 2019, 79, 1839-1848.	4.9	10
111	Shortened ex vivo manufacturing time of EGFRvIII-specific chimeric antigen receptor (CAR) T cells reduces immune exhaustion and enhances antiglioma therapeutic function. Journal of Neuro-Oncology, 2019, 145, 429-439.	1.4	33

#	Article	IF	Citations
112	CAR-Engineered NK Cells for the Treatment of Glioblastoma: Turning Innate Effectors Into Precision Tools for Cancer Immunotherapy. Frontiers in Immunology, 2019, 10, 2683.	2.2	142
113	Systemic and local immunity following adoptive transfer of NY-ESO-1 SPEAR T cells in synovial sarcoma. , 2019, 7, 276.		101
114	Improved survival of chimeric antigen receptorâ€engineered T (<scp>CAR</scp> â€T) and tumorâ€specific T cells caused by antiâ€programmed cell death protein 1 singleâ€chain variable fragmentâ€producing <scp>CAR</scp> â€T cells. Cancer Science, 2019, 110, 3079-3088.	1.7	36
115	MDSC targeting with Gemtuzumab ozogamicin restores T cell immunity and immunotherapy against cancers. EBioMedicine, 2019, 47, 235-246.	2.7	114
116	The current state of immunotherapy for gliomas: an eye toward the future. Journal of Neurosurgery, 2019, 131, 657-666.	0.9	79
117	CXCR1- or CXCR2-modified CAR T cells co-opt IL-8 for maximal antitumor efficacy in solid tumors. Nature Communications, 2019, 10, 4016.	5.8	208
118	B7-H3-redirected chimeric antigen receptor T cells target glioblastoma and neurospheres. EBioMedicine, 2019, 47, 33-43.	2.7	101
119	B7-H3 as a Novel CAR-T Therapeutic Target for Glioblastoma. Molecular Therapy - Oncolytics, 2019, 14, 279-287.	2.0	120
120	Clinical lessons learned from the first leg of the CAR T cell journey. Nature Medicine, 2019, 25, 1341-1355.	15.2	400
121	Engineered T Cell Therapy for Cancer in the Clinic. Frontiers in Immunology, 2019, 10, 2250.	2.2	267
122	Toward T Cell-Mediated Control or Elimination of HIV Reservoirs: Lessons From Cancer Immunology. Frontiers in Immunology, 2019, 10, 2109.	2.2	32
123	Genetically engineered T cells for cancer immunotherapy. Signal Transduction and Targeted Therapy, 2019, 4, 35.	7.1	153
124	Deciphering brain tumor heterogeneity, one cell at a time. Nature Medicine, 2019, 25, 1474-1476.	15.2	8
125	Multispecific Targeting with Synthetic Ankyrin Repeat Motif Chimeric Antigen Receptors. Clinical Cancer Research, 2019, 25, 7506-7516.	3.2	43
126	Î ³ -Secretase inhibition increases efficacy of BCMA-specific chimeric antigen receptor T cells in multiple myeloma. Blood, 2019, 134, 1585-1597.	0.6	209
127	CAR-T Engineering: Optimizing Signal Transduction and Effector Mechanisms. BioDrugs, 2019, 33, 647-659.	2.2	20
128	In vivo CRISPR screening in CD8 T cells with AAV–Sleeping Beauty hybrid vectors identifies membrane targets for improving immunotherapy for glioblastoma. Nature Biotechnology, 2019, 37, 1302-1313.	9.4	123
129	Engineering and Design of Chimeric Antigen Receptors. Molecular Therapy - Methods and Clinical Development, 2019, 12, 145-156.	1.8	281

	Сітатіо	on Report	
#	Article	IF	CITATIONS
130	Emerging Applications of Artificial Intelligence in Neuro-Oncology. Radiology, 2019, 290, 607-618.	3.6	159
131	Genetic Modification Strategies to Enhance CAR T Cell Persistence for Patients With Solid Tumors. Frontiers in Immunology, 2019, 10, 218.	2.2	43
132	Detection of neoantigen-specific T cells following a personalized vaccine in a patient with glioblastoma. Oncolmmunology, 2019, 8, e1561106.	2.1	50
133	CAR T Cells for Solid Tumors: New Strategies for Finding, Infiltrating, and Surviving in the Tumor Microenvironment. Frontiers in Immunology, 2019, 10, 128.	2.2	568
134	Clinical chimeric antigen receptorâ€ī cell therapy: a new and promising treatment modality for glioblastoma. Clinical and Translational Immunology, 2019, 8, e1050.	1.7	33
135	Molecular Neuropathology in Practice: Clinical Profiling and Integrative Analysis of Molecular Alterations in Glioblastoma. Academic Pathology, 2019, 6, 2374289519848353.	0.7	21
136	Concepts of Personalized Medicine in Neuro-oncology. , 2019, , 153-158.		0
137	The making and function of CAR cells. Immunology Letters, 2019, 212, 53-69.	1.1	19
138	Supercharging adoptive T cell therapy to overcome solid tumor–induced immunosuppression. Science Translational Medicine, 2019, 11, .	5.8	100
139	Nucleic Acid-Based Therapeutics Relevant to Neuroimmune Conditions. Neurotherapeutics, 2019, 16, 314-318.	2.1	2
140	Gene editing for immune cell therapies. Nature Biotechnology, 2019, 37, 1425-1434.	9.4	147
141	Glioblastoma stem cells: lessons from the tumor hierarchy in a lethal cancer. Genes and Development, 2019, 33, 591-609.	2.7	303
142	Turning the Tide Against Regulatory T Cells. Frontiers in Oncology, 2019, 9, 279.	1.3	47
143	Combined Antitumor Effects of Sorafenib and GPC3-CAR T Cells in Mouse Models of Hepatocellular Carcinoma. Molecular Therapy, 2019, 27, 1483-1494.	3.7	100
144	Reprogramming the Tumor Microenvironment to Improve Immunotherapy: Emerging Strategies and Combination Therapies. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2019, 39, 165-174.	1.8	123
145	Practical Bioinformatic DNA-Sequencing Pipeline for Detecting Oncogene Amplification and EGFRvIII Mutational Status in Clinical Glioblastoma Samples. Journal of Molecular Diagnostics, 2019, 21, 514-524.	1.2	3
146	CAR-T with License to Kill Solid Tumors in Search of a Winning Strategy. International Journal of Molecular Sciences, 2019, 20, 1903.	1.8	15
147	The TICking clock of EGFR therapy resistance in glioblastoma: Target Independence or target Compensation. Drug Resistance Updates, 2019, 43, 29-37.	6.5	33

.

#	Article	IF	CITATIONS
148	Role of Apelin in Clioblastoma Vascularization and Invasion after Anti-VEGF Therapy: What Is the Impact on the Immune System?. Cancer Research, 2019, 79, 2104-2106.	0.4	15
150	Novel approaches to promote CAR T-cell function in solid tumors. Expert Opinion on Biological Therapy, 2019, 19, 789-799.	1.4	5
151	Differential Expression of Wilms' Tumor Protein in Diffuse Intrinsic Pontine Glioma. Journal of Neuropathology and Experimental Neurology, 2019, 78, 380-388.	0.9	5
152	Next-Generation Cancer Immunotherapy Targeting Glypican-3. Frontiers in Oncology, 2019, 9, 248.	1.3	86
153	Natural killer cells as a promising therapeutic target for cancer immunotherapy. Archives of Pharmacal Research, 2019, 42, 591-606.	2.7	29
154	Logic-Gated ROR1 Chimeric Antigen Receptor Expression Rescues T Cell-Mediated Toxicity to Normal Tissues and Enables Selective Tumor Targeting. Cancer Cell, 2019, 35, 489-503.e8.	7.7	218
155	Mechanisms of resistance to CAR T cell therapy. Nature Reviews Clinical Oncology, 2019, 16, 372-385.	12.5	518
156	Cancer Immunotherapy with T Cells Carrying Bispecific Receptors That Mimic Antibodies. Cancer Immunology Research, 2019, 7, 773-783.	1.6	19
157	The Emergence of Universal Immune Receptor T Cell Therapy for Cancer. Frontiers in Oncology, 2019, 9, 176.	1.3	64
158	Chimeric Antigen Receptor T Cell Immunotherapy for Tumor: A Review of Patent Literatures. Recent Patents on Anti-Cancer Drug Discovery, 2019, 14, 60-69.	0.8	1
159	Immunotherapy for High-Grade Gliomas: A Clinical Update and Practical Considerations for Neurosurgeons. World Neurosurgery, 2019, 124, 397-409.	0.7	19
160	Current State of Immunotherapy for Treatment of Glioblastoma. Current Treatment Options in Oncology, 2019, 20, 24.	1.3	215
161	Engineering for Success: Approaches to Improve Chimeric Antigen Receptor TÂCell Therapy for Solid Tumors. Drugs, 2019, 79, 401-415.	4.9	17
162	Chimeric antigen receptor T cell targeting EGFRvIII for metastatic lung cancer therapy. Frontiers of Medicine, 2019, 13, 57-68.	1.5	32
163	Next Generation CAR T Cells for the Immunotherapy of High-Grade Glioma. Frontiers in Oncology, 2019, 9, 69.	1.3	68
164	Efficiency of CAR-T Therapy for Treatment of Solid Tumor in Clinical Trials: A Meta-Analysis. Disease Markers, 2019, 2019, 1-11.	0.6	81
165	Virus-Based Immunotherapy of Glioblastoma. Cancers, 2019, 11, 186.	1.7	107
166	Mining-Guided Machine Learning Analyses Revealed the Latest Trends in Neuro-Oncology. Cancers, 2019, 11, 178.	1.7	7

#	Article	IF	CITATIONS
167	Chimeric Antigen Receptor T Cell Therapy for Solid Tumors: Current Status, Obstacles and Future Strategies. Cancers, 2019, 11, 191.	1.7	33
168	Antitumor Responses in the Absence of Toxicity in Solid Tumors by Targeting B7-H3 via Chimeric Antigen Receptor T Cells. Cancer Cell, 2019, 35, 221-237.e8.	7.7	286
169	Two-Dimensional Regulation of CAR-T Cell Therapy with Orthogonal Switches. Molecular Therapy - Oncolytics, 2019, 12, 124-137.	2.0	62
170	NR4A transcription factors limit CAR T cell function in solid tumours. Nature, 2019, 567, 530-534.	13.7	519
171	Engineered T Cell Therapies from a Drug Development Viewpoint. Engineering, 2019, 5, 140-149.	3.2	8
172	EGFR ^{vIII} : An Oncogene with Ambiguous Role. Journal of Oncology, 2019, 2019, 1-20.	0.6	45
173	Immunological ignorance is an enabling feature of the oligo-clonal T cell response to melanoma neoantigens. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23662-23670.	3.3	40
174	CRISPR-Cas9 disruption of PD-1 enhances activity of universal EGFRvIII CAR T cells in a preclinical model of human glioblastoma. , 2019, 7, 304.		181
175	CSPG4 as Target for CAR-T-Cell Therapy of Various Tumor Entities–Merits and Challenges. International Journal of Molecular Sciences, 2019, 20, 5942.	1.8	38
176	Delivery strategies of cancer immunotherapy: recent advances and future perspectives. Journal of Hematology and Oncology, 2019, 12, 126.	6.9	96
177	Multi-antigen-targeted chimeric antigen receptor T cells for cancer therapy. Journal of Hematology and Oncology, 2019, 12, 128.	6.9	106
179	Escape From ALL-CARTaz. Cancer Journal (Sudbury, Mass), 2019, 25, 217-222.	1.0	20
180	Rapid and ultrasensitive digital PCR (dPCR) profiling of EGFRvIII in tumor cells and tissues. Neuro-Oncology Advances, 2019, 1, vdz030.	0.4	5
181	Pilot Trial of Adoptive Transfer of Chimeric Antigen Receptor–transduced T Cells Targeting EGFRvIII in Patients With Glioblastoma. Journal of Immunotherapy, 2019, 42, 126-135.	1.2	231
182	Developing neoantigen-targeted T cell–based treatments for solid tumors. Nature Medicine, 2019, 25, 1488-1499.	15.2	173
183	Current status and hurdles for CAR-T cell immune therapy. Blood Science, 2019, 1, 148-155.	0.4	5
184	The path forward for anti-programmed cell death-1 therapy in gliomas. Current Opinion in Neurology, 2019, 32, 864-871.	1.8	3
185	Redirecting T cells to treat solid pediatric cancers. Cancer and Metastasis Reviews, 2019, 38, 611-624.	2.7	3

#	Article	IF	CITATIONS
186	A microbial-based cancer vaccine for induction of EGFRvIII-specific CD8+ T cells and anti-tumor immunity. PLoS ONE, 2019, 14, e0209153.	1.1	15
187	Genetically Engineered T-Cells for Malignant Glioma: Overcoming the Barriers to Effective Immunotherapy. Frontiers in Immunology, 2018, 9, 3062.	2.2	49
188	Multiparametric magnetic resonance imaging in the assessment of anti-EGFRvIII chimeric antigen receptor T cell therapy in patients with recurrent glioblastoma. British Journal of Cancer, 2019, 120, 54-56.	2.9	27
189	Teaching an old dog new tricks: next-generation CAR T cells. British Journal of Cancer, 2019, 120, 26-37.	2.9	240
190	Immunotherapy for Glioblastoma: Adoptive T-cell Strategies. Clinical Cancer Research, 2019, 25, 2042-2048.	3.2	77
191	Preventing Lck Activation in CAR T Cells Confers Treg Resistance but Requires 4-1BB Signaling for Them to Persist and Treat Solid Tumors in Nonlymphodepleted Hosts. Clinical Cancer Research, 2019, 25, 358-368.	3.2	51
192	High-affinity CD16-polymorphism and Fc-engineered antibodies enable activity of CD16-chimeric antigen receptor-modified T cells for cancer therapy. British Journal of Cancer, 2019, 120, 79-87.	2.9	36
193	CAR T Cells Targeting B7-H3, a Pan-Cancer Antigen, Demonstrate Potent Preclinical Activity Against Pediatric Solid Tumors and Brain Tumors. Clinical Cancer Research, 2019, 25, 2560-2574.	3.2	369
194	Lymphocytes in Cellular Therapy: Functional Regulation of CAR T Cells. Frontiers in Immunology, 2018, 9, 3180.	2.2	46
195	Delivery technologies for cancer immunotherapy. Nature Reviews Drug Discovery, 2019, 18, 175-196.	21.5	1,562
195 196	Delivery technologies for cancer immunotherapy. Nature Reviews Drug Discovery, 2019, 18, 175-196. Chimeric Antigen Receptor T-cell (CAR T) Therapy for Hematologic and Solid Malignancies: Efficacy and Safety—A Systematic Review with Meta-Analysis. Cancers, 2019, 11, 47.	21.5 1.7	1,562 54
	Chimeric Antigen Receptor T-cell (CAR T) Therapy for Hematologic and Solid Malignancies: Efficacy and		
196	Chimeric Antigen Receptor T-cell (CAR T) Therapy for Hematologic and Solid Malignancies: Efficacy and Safety—A Systematic Review with Meta-Analysis. Cancers, 2019, 11, 47. Activating the Nucleic Acid-Sensing Machinery for Anticancer Immunity. International Review of Cell	1.7	54
196 197	 Chimeric Antigen Receptor T-cell (CAR T) Therapy for Hematologic and Solid Malignancies: Efficacy and Safetyâ€"A Systematic Review with Meta-Analysis. Cancers, 2019, 11, 47. Activating the Nucleic Acid-Sensing Machinery for Anticancer Immunity. International Review of Cell and Molecular Biology, 2019, 344, 173-214. RNA-seq for identification of therapeutically targetable determinants of immune activation in human 	1.7 1.6	54 31
196 197 198	 Chimeric Antigen Receptor T-cell (CAR T) Therapy for Hematologic and Solid Malignancies: Efficacy and Safetyâ€"A Systematic Review with Meta-Analysis. Cancers, 2019, 11, 47. Activating the Nucleic Acid-Sensing Machinery for Anticancer Immunity. International Review of Cell and Molecular Biology, 2019, 344, 173-214. RNA-seq for identification of therapeutically targetable determinants of immune activation in human glioblastoma. Journal of Neuro-Oncology, 2019, 141, 95-102. 	1.7 1.6 1.4	54 31 5
196 197 198 199	Chimeric Antigen Receptor T-cell (CAR T) Therapy for Hematologic and Solid Malignancies: Efficacy and Safety—A Systematic Review with Meta-Analysis. Cancers, 2019, 11, 47. Activating the Nucleic Acid-Sensing Machinery for Anticancer Immunity. International Review of Cell and Molecular Biology, 2019, 344, 173-214. RNA-seq for identification of therapeutically targetable determinants of immune activation in human glioblastoma. Journal of Neuro-Oncology, 2019, 141, 95-102. Emerging Cellular Therapies for Cancer. Annual Review of Immunology, 2019, 37, 145-171.	1.7 1.6 1.4 9.5	54 31 5 263
196 197 198 199 200	Chimeric Antigen Receptor T-cell (CAR T) Therapy for Hematologic and Solid Malignancies: Efficacy and Safety—A Systematic Review with Meta-Analysis. Cancers, 2019, 11, 47. Activating the Nucleic Acid-Sensing Machinery for Anticancer Immunity. International Review of Cell and Molecular Biology, 2019, 344, 173-214. RNA-seq for identification of therapeutically targetable determinants of immune activation in human glioblastoma. Journal of Neuro-Oncology, 2019, 141, 95-102. Emerging Cellular Therapies for Cancer. Annual Review of Immunology, 2019, 37, 145-171. Glioblastoma Therapy in the Age of Molecular Medicine. Trends in Cancer, 2019, 5, 46-65.	1.7 1.6 1.4 9.5 3.8	54 31 5 263 68

#	Article	IF	CITATIONS
204	BCMA peptide-engineered nanoparticles enhance induction and function of antigen-specific CD8+ cytotoxic T lymphocytes against multiple myeloma: clinical applications. Leukemia, 2020, 34, 210-223.	3.3	35
205	Challenges and Prospects of Chimeric Antigen Receptor T-cell Therapy for Metastatic Prostate Cancer. European Urology, 2020, 77, 299-308.	0.9	38
206	The role of vascular endothelial growth factor in the hypoxic and immunosuppressive tumor microenvironment: perspectives for therapeutic implications. Medical Oncology, 2020, 37, 2.	1.2	145
207	The Evolving Protein Engineering in the Design of Chimeric Antigen Receptor T Cells. International Journal of Molecular Sciences, 2020, 21, 204.	1.8	28
208	Potential of Glioblastoma-Targeted Chimeric Antigen Receptor (CAR) T-Cell Therapy. CNS Drugs, 2020, 34, 127-145.	2.7	26
209	Assessment of the efficacy of passive cellular immunotherapy for glioma patients. Reviews in the Neurosciences, 2020, 31, 427-440.	1.4	1
210	An RNA vaccine drives expansion and efficacy of claudin-CAR-T cells against solid tumors. Science, 2020, 367, 446-453.	6.0	286
211	Transposon-mediated generation of CAR-T cells shows efficient anti B-cell leukemia response after ex vivo expansion. Gene Therapy, 2020, 27, 85-95.	2.3	27
212	Chimeric antigen receptor T cells in solid tumors: a war against the tumor microenvironment. Science China Life Sciences, 2020, 63, 180-205.	2.3	40
213	A Patient-Derived Clioblastoma Organoid Model and Biobank Recapitulates Inter- and Intra-tumoral Heterogeneity. Cell, 2020, 180, 188-204.e22.	13.5	529
214	Current challenges and emerging opportunities of CAR-T cell therapies. Journal of Controlled Release, 2020, 319, 246-261.	4.8	78
215	Important aspects of Tâ€cell collection by apheresis for manufacturing chimeric antigen receptor T cells. Advances in Cell and Gene Therapy, 2020, 3, e75.	0.6	6
216	Mechanisms of resistance to CAR T cell therapies. Seminars in Cancer Biology, 2020, 65, 91-98.	4.3	31
217	Brain immunology and immunotherapy in brain tumours. Nature Reviews Cancer, 2020, 20, 12-25.	12.8	389
218	Advances in chimeric antigen receptor T cells. Current Opinion in Hematology, 2020, 27, 368-377.	1.2	24
219	Take Advantage of Glutamine Anaplerosis, the Kernel of the Metabolic Rewiring in Malignant Gliomas. Biomolecules, 2020, 10, 1370.	1.8	12
220	Systemic Anti–PD-1 Immunotherapy Results in PD-1 Blockade on T Cells in the Cerebrospinal Fluid. JAMA Oncology, 2020, 6, 1947.	3.4	28
221	Immune Escape in Glioblastoma Multiforme and the Adaptation of Immunotherapies for Treatment. Frontiers in Immunology, 2020, 11, 582106.	2.2	50

#	Article	IF	CITATIONS
222	New hints towards a precision medicine strategy for IDH wild-type glioblastoma. Annals of Oncology, 2020, 31, 1679-1692.	0.6	32
223	Potential Application of Chimeric Antigen Receptor (CAR)-T Cell Therapy in Renal Cell Tumors. Frontiers in Oncology, 2020, 10, 565857.	1.3	14
224	CAR T Cell Therapy for Solid Tumors: Bright Future or Dark Reality?. Molecular Therapy, 2020, 28, 2320-2339.	3.7	194
225	The current state of immunotherapy for primary and secondary brain tumors: similarities and differences. Japanese Journal of Clinical Oncology, 2020, 50, 1231-1245.	0.6	13
226	Preconditioning of the tumor microenvironment with oncolytic reovirus converts CD3-bispecific antibody treatment into effective immunotherapy. , 2020, 8, e001191.		40
227	Targeting Receptors on Cancer Cells with Protein Toxins. Biomolecules, 2020, 10, 1331.	1.8	22
228	Immunotherapeutics to Treat HIV in the Central Nervous System. Current HIV/AIDS Reports, 2020, 17, 499-506.	1.1	2
229	Tandem CAR-T cells targeting CD70 and B7-H3 exhibit potent preclinical activity against multiple solid tumors. Theranostics, 2020, 10, 7622-7634.	4.6	96
230	Tumor response and endogenous immune reactivity after administration of HER2 CAR T cells in a child with metastatic rhabdomyosarcoma. Nature Communications, 2020, 11, 3549.	5.8	103
231	Inflammation and lymphocyte infiltration are associated with shorter survival in patients with high-grade glioma. Oncolmmunology, 2020, 9, 1779990.	2.1	28
232	TRUCKS, the fourthâ€generation CAR T cells: Current developments and clinical translation. Advances in Cell and Gene Therapy, 2020, 3, e84.	0.6	85
233	The Landscape of Novel Therapeutics and Challenges in Glioblastoma Multiforme: Contemporary State and Future Directions. Pharmaceuticals, 2020, 13, 389.	1.7	36
234	Enhanced CAR-T activity against established tumors by polarizing human T cells to secrete interleukin-9. Nature Communications, 2020, 11, 5902.	5.8	55
235	Clinical implication of cellular vaccine in glioma: current advances and future prospects. Journal of Experimental and Clinical Cancer Research, 2020, 39, 257.	3.5	31
236	Targeting the Ubiquitin System in Glioblastoma. Frontiers in Oncology, 2020, 10, 574011.	1.3	21
237	Chimeric antigen receptor T-cell therapy in glioblastoma: charging the T cells to fight. Journal of Translational Medicine, 2020, 18, 428.	1.8	51
238	The Chimeric Antigen Receptor Detection Toolkit. Frontiers in Immunology, 2020, 11, 1770.	2.2	34
239	P2X7 Receptor Activity Limits Accumulation of T Cells within Tumors. Cancer Research, 2020, 80, 3906-3919.	0.4	36

#	Article	IF	CITATIONS
240	The Great War of Today: Modifications of CAR-T Cells to Effectively Combat Malignancies. Cancers, 2020, 12, 2030.	1.7	19
241	A Head Start: CAR-T Cell Therapy for Primary Malignant Brain Tumors. Current Treatment Options in Oncology, 2020, 21, 73.	1.3	1
242	Dual Targeting of Mesothelin and CD19 with Chimeric Antigen Receptor-Modified T Cells in Patients with Metastatic Pancreatic Cancer. Molecular Therapy, 2020, 28, 2367-2378.	3.7	32
243	Natural Born Killers: NK Cells in Cancer Therapy. Cancers, 2020, 12, 2131.	1.7	44
244	Stem cell programs in cancer initiation, progression, and therapy resistance. Theranostics, 2020, 10, 8721-8743.	4.6	208
245	Brief Overview of Chimeric Antigen Receptor–Mediated Immunotherapy for Glioblastoma Multiforme. , 2020, , 507-513.		Ο
246	Immune Escape After Adoptive T-cell Therapy for Malignant Gliomas. Clinical Cancer Research, 2020, 26, 5689-5700.	3.2	26
247	Personalized and translational approach for malignant brain tumors in the era of precision medicine: the strategic contribution of an experienced neurosurgery laboratory in a modern neurosurgery and neuro-oncology department. Journal of the Neurological Sciences, 2020, 417, 117083.	0.3	11
248	VAV1â€overexpressing YT cells display improved cytotoxicity against malignant cells. Biotechnology and Applied Biochemistry, 2020, 68, 849-855.	1.4	2
249	Overcoming key challenges in cancer immunotherapy with engineered T cells. Current Opinion in Oncology, 2020, 32, 398-407.	1.1	9
250	Improving the anti-solid tumor efficacy of CAR-T cells by inhibiting adenosine signaling pathway. Oncolmmunology, 2020, 9, 1824643.	2.1	24
251	Identification of Targets to Redirect CAR T Cells in Glioblastoma and Colorectal Cancer: An Arduous Venture. Frontiers in Immunology, 2020, 11, 565631.	2.2	24
252	Glioblastoma Immune Landscape and the Potential of New Immunotherapies. Frontiers in Immunology, 2020, 11, 585616.	2.2	76
253	Leptomeningeal Spread in Glioblastoma: Diagnostic and Therapeutic Challenges. Oncologist, 2020, 25, e1763-e1776.	1.9	33
254	Checkpoint inhibitor immunotherapy for glioblastoma: current progress, challenges and future outlook. Expert Review of Clinical Pharmacology, 2020, 13, 1147-1158.	1.3	8
255	Effective combination immunotherapy using oncolytic viruses to deliver CAR targets to solid tumors. Science Translational Medicine, 2020, 12, .	5.8	140
256	Beyond CAR T cells: Engineered Vγ9Vδ2 T cells to fight solid tumors. Immunological Reviews, 2020, 298, 117-133.	2.8	9
257	Neurotoxicity and Cytokine Release Syndrome After Chimeric Antigen Receptor T Cell Therapy: Insights Into Mechanisms and Novel Therapies. Frontiers in Immunology, 2020, 11, 1973.	2.2	148

#	Article	IF	CITATIONS
258	Transcriptional Spatial Profiling of Cancer Tissues in the Era of Immunotherapy: The Potential and Promise. Cancers, 2020, 12, 2572.	1.7	38
259	Engineering CAR T Cells to Target the HIV Reservoir. Frontiers in Cellular and Infection Microbiology, 2020, 10, 410.	1.8	29
260	CAR T-Cell Cancer Therapy Targeting Surface Cancer/Testis Antigens. Frontiers in Immunology, 2020, 11, 1568.	2.2	20
261	CAR T Cell Therapy for Pediatric Brain Tumors. Frontiers in Oncology, 2020, 10, 1582.	1.3	37
262	The Landscape of CAR-T Cell Clinical Trials against Solid Tumors—A Comprehensive Overview. Cancers, 2020, 12, 2567.	1.7	70
263	Arming Anti-EGFRvIII CAR-T With TGFβ Trap Improves Antitumor Efficacy in Glioma Mouse Models. Frontiers in Oncology, 2020, 10, 1117.	1.3	19
264	Oxidative Stress—Part of the Solution or Part of the Problem in the Hypoxic Environment of a Brain Tumor. Antioxidants, 2020, 9, 747.	2.2	12
265	Chimeric Antigen Receptor (CAR)-Modified Immune Effector Cell Therapy for Acute Myeloid Leukemia (AML). Cancers, 2020, 12, 3617.	1.7	7
266	Graft-versus-cancereffect and innovative approaches in the treatment of refractory solid tumors. Turkish Journal of Medical Sciences, 2020, 50, 1697-1706.	0.4	3
267	Chimeric Antigen Receptor T-Cell Therapy in Glioblastoma: Current and Future. Frontiers in Immunology, 2020, 11, 594271.	2.2	34
268	Generation and biobanking of patient-derived glioblastoma organoids and their application in CAR T cell testing. Nature Protocols, 2020, 15, 4000-4033.	5.5	89
269	Visualization of Diagnostic and Therapeutic Targets in Glioma With Molecular Imaging. Frontiers in Immunology, 2020, 11, 592389.	2.2	23
270	B7-H3-Targeted CAR-T Cells Exhibit Potent Antitumor Effects on Hematologic and Solid Tumors. Molecular Therapy - Oncolytics, 2020, 17, 180-189.	2.0	67
271	The update of chimeric antigen receptor-T cells therapy in glioblastoma. Journal of the Chinese Medical Association, 2020, 83, 442-445.	0.6	5
272	Overcoming Heterogeneity of Antigen Expression for Effective CAR T Cell Targeting of Cancers. Cancers, 2020, 12, 1075.	1.7	57
273	Intravital imaging reveals synergistic effect of CAR T-cells and radiation therapy in a preclinical immunocompetent glioblastoma model. Oncolmmunology, 2020, 9, 1757360.	2.1	46
274	Gene modification strategies for next-generation CAR T cells against solid cancers. Journal of Hematology and Oncology, 2020, 13, 54.	6.9	98
276	Chimeric antigen receptor therapy in hematological malignancies: antigenic targets and their clinical research progress. Annals of Hematology, 2020, 99, 1681-1699.	0.8	5

#	ARTICLE	IF	CITATIONS
277	High-affinity mutant Interleukin-13 targeted CAR T cells enhance delivery of clickable biodegradable fluorescent nanoparticles to glioblastoma. Bioactive Materials, 2020, 5, 624-635.	8.6	34
278	Adult immuno-oncology: using past failures to inform the future. Neuro-Oncology, 2020, 22, 1249-1261.	0.6	19
279	Biomarkers for immunotherapy for treatment of glioblastoma. , 2020, 8, e000348.		33
280	Management of glioblastoma: State of the art and future directions. Ca-A Cancer Journal for Clinicians, 2020, 70, 299-312.	157.7	969
281	CAR-T Cells Hit the Tumor Microenvironment: Strategies to Overcome Tumor Escape. Frontiers in Immunology, 2020, 11, 1109.	2.2	165
282	Immunotherapy and Response Assessment in Malignant Glioma. Topics in Magnetic Resonance Imaging, 2020, 29, 95-102.	0.7	5
283	The Rational Development of CD133-Targeting Immunotherapies for Glioblastoma. Cell Stem Cell, 2020, 26, 832-844.e6.	5.2	114
284	Single-Cell Atlas Reveals Complexity of the Immunosuppressive Microenvironment of Initial and Recurrent Glioblastoma. Frontiers in Immunology, 2020, 11, 835.	2.2	111
285	Allogeneic FLT3 CAR T Cells with an Off-Switch Exhibit Potent Activity against AML and Can Be Depleted to Expedite Bone Marrow Recovery. Molecular Therapy, 2020, 28, 2237-2251.	3.7	50
286	Immunosuppressive IDO in Cancer: Mechanisms of Action, Animal Models, and Targeting Strategies. Frontiers in Immunology, 2020, 11, 1185.	2.2	131
287	Bioactivity and safety of B7â€H3â€ŧargeted chimeric antigen receptor T cells against anaplastic meningioma. Clinical and Translational Immunology, 2020, 9, e1137.	1.7	41
288	Molecular Heterogeneity and Immunosuppressive Microenvironment in Glioblastoma. Frontiers in Immunology, 2020, 11, 1402.	2.2	156
289	Tumor Interferon Signaling Is Regulated by a IncRNA INCR1 Transcribed from the PD-L1 Locus. Molecular Cell, 2020, 78, 1207-1223.e8.	4.5	43
290	Chimeric antigen receptor T ell therapies: Optimising the dose. British Journal of Clinical Pharmacology, 2020, 86, 1678-1689.	1.1	25
291	<p>Aptamer-Conjugated Gold Nanoparticles Targeting Epidermal Growth Factor Receptor Variant III for the Treatment of Glioblastoma</p> . International Journal of Nanomedicine, 2020, Volume 15, 1363-1372.	3.3	42
292	Adoptive Cell Therapy—Harnessing Antigen-Specific T Cells to Target Solid Tumours. Cancers, 2020, 12, 683.	1.7	34
293	T-Cell based therapies for overcoming neuroanatomical and immunosuppressive challenges within the glioma microenvironment. Journal of Neuro-Oncology, 2020, 147, 281-295.	1.4	32
294	Engineering T Cells to Treat Cancer: The Convergence of Immuno-Oncology and Synthetic Biology. Annual Review of Cancer Biology, 2020, 4, 121-139.	2.3	13

#	Article	IF	CITATIONS
295	Introduction to immunotherapy for brain tumor patients: challenges and future perspectives. Neuro-Oncology Practice, 2020, 7, 465-476.	1.0	10
296	Chlorotoxin-directed CAR T cells for specific and effective targeting of glioblastoma. Science Translational Medicine, 2020, 12, .	5.8	150
297	Quantitative Control of Gene-Engineered T-Cell Activity through the Covalent Attachment of Targeting Ligands to a Universal Immune Receptor. Journal of the American Chemical Society, 2020, 142, 6554-6568.	6.6	36
298	Adoptive Cell Therapy Targeting Neoantigens: A Frontier for Cancer Research. Frontiers in Immunology, 2020, 11, 176.	2.2	101
299	T cell-engaging therapies — BiTEs and beyond. Nature Reviews Clinical Oncology, 2020, 17, 418-434.	12.5	296
300	Point-Of-Care CAR T-Cell Production (ARI-0001) Using a Closed Semi-automatic Bioreactor: Experience From an Academic Phase I Clinical Trial. Frontiers in Immunology, 2020, 11, 482.	2.2	77
301	Chimeric Antigen Receptor Cell Therapy: Overcoming Obstacles to Battle Cancer. Cancers, 2020, 12, 842.	1.7	21
302	Pharmacologic inhibition of lysine-specific demethylase 1 as a therapeutic and immune-sensitization strategy in pediatric high-grade glioma. Neuro-Oncology, 2020, 22, 1302-1314.	0.6	42
304	T Cell Dysfunction and Exhaustion in Cancer. Frontiers in Cell and Developmental Biology, 2020, 8, 17.	1.8	226
305	Prospects and challenges for use of CAR T cell therapies in solid tumors. Expert Opinion on Biological Therapy, 2020, 20, 503-516.	1.4	37
306	Identification of Immune-Related Genes Contributing to the Development of Glioblastoma Using Weighted Gene Co-expression Network Analysis. Frontiers in Immunology, 2020, 11, 1281.	2.2	40
307	Neurological Complications of CAR T Cell Therapy. Current Oncology Reports, 2020, 22, 83.	1.8	16
308	PD-L1 Expression in Glioblastoma, the Clinical and Prognostic Significance: A Systematic Literature Review and Meta-Analysis. Frontiers in Oncology, 2020, 10, 1015.	1.3	48
309	Nanomedicine and Onco-Immunotherapy: From the Bench to Bedside to Biomarkers. Nanomaterials, 2020, 10, 1274.	1.9	26
310	Versatile chimeric antigen receptor platform for controllable and combinatorial T cell therapy. Oncolmmunology, 2020, 9, 1785608.	2.1	35
311	Augmenting engineered T-cell strategies in solid cancers through epigenetic priming. Cancer Immunology, Immunotherapy, 2020, 69, 2169-2178.	2.0	4
312	Advances in Anti-Cancer Immunotherapy: Car-T Cell, Checkpoint Inhibitors, Dendritic Cell Vaccines, and Oncolytic Viruses, and Emerging Cellular and Molecular Targets. Cancers, 2020, 12, 1826.	1.7	46
313	Current Clinical Evidence and Potential Solutions to Increase Benefit of CAR T-Cell Therapy for Patients with Solid Tumors. Oncolmmunology, 2020, 9, 1777064.	2.1	25

#	Article	IF	CITATIONS
314	Emerging immunotherapies for malignant glioma: from immunogenomics to cell therapy. Neuro-Oncology, 2020, 22, 1425-1438.	0.6	37
315	Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges. Nature Reviews Clinical Oncology, 2020, 17, 251-266.	12.5	408
316	CAR T cells and checkpoint inhibition for the treatment of glioblastoma. Expert Opinion on Biological Therapy, 2020, 20, 579-591.	1.4	37
317	Advanced biomaterials for cancer immunotherapy. Acta Pharmacologica Sinica, 2020, 41, 911-927.	2.8	62
318	Combined-therapeutic strategies synergistically potentiate glioblastoma multiforme treatment <i>via</i> nanotechnology. Theranostics, 2020, 10, 3223-3239.	4.6	59
319	EGFRvIII upregulates DNA mismatch repair resulting in increased temozolomide sensitivity of MGMT promoter methylated glioblastoma. Oncogene, 2020, 39, 3041-3055.	2.6	42
320	Controlling Cytokine Release Syndrome to Harness the Full Potential of CAR-Based Cellular Therapy. Frontiers in Oncology, 2020, 9, 1529.	1.3	23
321	Adoptive Cell Therapy: A Novel and Potential Immunotherapy for Glioblastoma. Frontiers in Oncology, 2020, 10, 59.	1.3	24
322	Antibody-mediated delivery of viral epitopes to tumors harnesses CMV-specific T cells for cancer therapy. Nature Biotechnology, 2020, 38, 420-425.	9.4	48
323	Tumor antigens in glioma. Seminars in Immunology, 2020, 47, 101385.	2.7	34
324	Chondroitin sulfate derived theranostic and therapeutic nanocarriers for tumor-targeted drug delivery. Carbohydrate Polymers, 2020, 233, 115837.	5.1	34
325	Implications of T cell receptor biology on the development of new T cell therapies for cancer. Immunotherapy, 2020, 12, 89-103.	1.0	9
326	Combined proteomics/miRNomics of dendritic cell immunotherapy-treated glioblastoma patients as a screening for survival-associated factors. Npj Vaccines, 2020, 5, 5.	2.9	19
327	Inhibition of PP2A with LB-100 Enhances Efficacy of CAR-T Cell Therapy Against Glioblastoma. Cancers, 2020, 12, 139.	1.7	29
328	Advancing CAR T-Cell Therapy for Solid Tumors: Lessons Learned from Lymphoma Treatment. Cancers, 2020, 12, 125.	1.7	50
329	Finding the Keys to the CAR: Identifying Novel Target Antigens for T Cell Redirection Immunotherapies. International Journal of Molecular Sciences, 2020, 21, 515.	1.8	49
330	Prospects of biological and synthetic pharmacotherapies for glioblastoma. Expert Opinion on Biological Therapy, 2020, 20, 305-317.	1.4	16
331	Human Anti-tumor Immunity: Insights from Immunotherapy Clinical Trials. Immunity, 2020, 52, 36-54.	6.6	127

#	Article	IF	CITATIONS
332	Trial watch: chemotherapy-induced immunogenic cell death in immuno-oncology. Oncolmmunology, 2020, 9, 1703449.	2.1	156
333	Enhancing Chimeric Antigen Receptor T-Cell Efficacy in Solid Tumors. Clinical Cancer Research, 2020, 26, 2444-2451.	3.2	94
334	Development of CAR-T cell therapy for B-ALL using a point-of-care approach. OncoImmunology, 2020, 9, 1752592.	2.1	23
335	Targeting Cancer Stem Cells by Genetically Engineered Chimeric Antigen Receptor T Cells. Frontiers in Genetics, 2020, 11, 312.	1.1	27
336	Drug Conjugates for Targeting Eph Receptors in Glioblastoma. Pharmaceuticals, 2020, 13, 77.	1.7	7
337	Immunotherapy in Glioblastoma: Current Shortcomings and Future Perspectives. Cancers, 2020, 12, 751.	1.7	66
338	Cellular immunotherapy: a clinical state-of-the-art of a new paradigm for cancer treatment. Clinical and Translational Oncology, 2020, 22, 1923-1937.	1.2	14
339	Advances in living cell-based anticancer therapeutics. Biomaterials Science, 2020, 8, 2344-2365.	2.6	22
340	Organoid Models of Glioblastoma to Study Brain Tumor Stem Cells. Frontiers in Cell and Developmental Biology, 2020, 8, 220.	1.8	38
341	Editorial: HIV and Cancer Immunotherapy: Similar Challenges and Converging Approaches. Frontiers in Immunology, 2020, 11, 519.	2.2	7
342	Effect of CRISPR/Cas9-Mediated PD-1-Disrupted Primary Human Third-Generation CAR-T Cells Targeting EGFRvIII on In Vitro Human Glioblastoma Cell Growth. Cells, 2020, 9, 998.	1.8	64
343	Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro-Oncology, 2020, 22, 1073-1113.	0.6	543
344	Clinical practice: chimeric antigen receptor (CAR) T cells: a major breakthrough in the battle against cancer. Clinical and Experimental Medicine, 2020, 20, 469-480.	1.9	8
345	Locoregionally administered B7-H3-targeted CAR T cells for treatment of atypical teratoid/rhabdoid tumors. Nature Medicine, 2020, 26, 712-719.	15.2	172
346	Locoregional delivery of CAR T cells to the cerebrospinal fluid for treatment of metastatic medulloblastoma and ependymoma. Nature Medicine, 2020, 26, 720-731.	15.2	141
347	A review of glioblastoma immunotherapy. Journal of Neuro-Oncology, 2021, 151, 41-53.	1.4	159
348	Revving the CAR – Combination strategies to enhance CAR T cell effectiveness. Blood Reviews, 2021, 45, 100695.	2.8	22
349	Bortezomib enhances cytotoxicity of ex vivo-expanded gamma delta T cells against acute myeloid leukemia and T-cell acute lymphoblastic leukemia. Cytotherapy, 2021, 23, 12-24.	0.3	19

#	Article	IF	CITATIONS
350	CAR-T cells: Early successes in blood cancer and challenges in solid tumors. Acta Pharmaceutica Sinica B, 2021, 11, 1129-1147.	5.7	47
351	Clinical CAR-T Cell and Oncolytic Virotherapy for Cancer Treatment. Molecular Therapy, 2021, 29, 505-520.	3.7	48
352	Modelâ€Based Cellular Kinetic Analysis of Chimeric Antigen Receptorâ€T Cells in Humans. Clinical Pharmacology and Therapeutics, 2021, 109, 716-727.	2.3	49
353	Olaparib Suppresses MDSC Recruitment via SDF1α/CXCR4 Axis to Improve the Anti-tumor Efficacy of CAR-T Cells on Breast Cancer in Mice. Molecular Therapy, 2021, 29, 60-74.	3.7	51
354	T-cell–engaging Therapy for Solid Tumors. Clinical Cancer Research, 2021, 27, 1595-1603.	3.2	21
355	Disentangling the therapeutic tactics in GBM: From bench to bedside and beyond. Cell Biology International, 2021, 45, 18-53.	1.4	8
356	Intravital molecular imaging reveals the restrained capacity of CTLs in the killing of tumor cells in the liver. Theranostics, 2021, 11, 194-208.	4.6	9
357	Macrophage-Based Approaches for Cancer Immunotherapy. Cancer Research, 2021, 81, 1201-1208.	0.4	327
358	Biomaterials to enhance antigen-specific T cell expansion for cancer immunotherapy. Biomaterials, 2021, 268, 120584.	5.7	40
359	What is New in Neuro-oncology?. Neurologic Clinics, 2021, 39, 163-179.	0.8	3
360	Targeting PAK4 to reprogram the vascular microenvironment and improve CAR-T immunotherapy for glioblastoma. Nature Cancer, 2021, 2, 83-97.	5.7	56
361	Cell-surface antigen profiling of pediatric brain tumors: B7-H3 is consistently expressed and can be targeted via local or systemic CAR T-cell delivery. Neuro-Oncology, 2021, 23, 999-1011.	0.6	63
362	CRISPR Screening of CAR T Cells and Cancer Stem Cells Reveals Critical Dependencies for Cell-Based Therapies. Cancer Discovery, 2021, 11, 1192-1211.	7.7	78
363	Considerations when treating high-grade pediatric glioma patients with immunotherapy. Expert Review of Neurotherapeutics, 2021, 21, 205-219.	1.4	5
364	Non-invasive monitoring of the kinetic infiltration and therapeutic efficacy of nanoparticle-labeled chimeric antigen receptor T cells in glioblastoma via 7.0-Tesla magnetic resonance imaging. Cytotherapy, 2021, 23, 211-222.	0.3	17
365	Emerging Immunotherapies in the Treatment of Brain Metastases. Oncologist, 2021, 26, 231-241.	1.9	29
366	Emerging vistas in CAR T-cell therapy: challenges and opportunities in solid tumors. Expert Opinion on Biological Therapy, 2021, 21, 145-160.	1.4	12

#	Article	IF	CITATIONS
368	Glioma immunoediting, a driver of tumor evolution, and the next battle for immunotherapy. Oncotarget, 2021, 12, 8-9.	0.8	2
369	Recent advances and discoveries in the mechanisms and functions of CAR T cells. Nature Reviews Cancer, 2021, 21, 145-161.	12.8	436
370	Fn14-targeted BiTE and CAR-T cells demonstrate potent preclinical activity against glioblastoma. Oncolmmunology, 2021, 10, 1983306.	2.1	11
371	Recent updates on chimeric antigen receptor T cell therapy for hepatocellular carcinoma. Cancer Gene Therapy, 2021, 28, 1075-1087.	2.2	23
372	Immunotherapy for glioblastoma as a means to overcome resistance to standard therapy. , 2021, , 635-665.		0
373	Nanomaterials for T-cell cancer immunotherapy. Nature Nanotechnology, 2021, 16, 25-36.	15.6	191
374	Advances in radiotherapy and comprehensive treatment of high-grade glioma: immunotherapy and tumor-treating fields. Journal of Cancer, 2021, 12, 1094-1104.	1.2	12
375	Intratumoral IL-12 delivery empowers CAR-T cell immunotherapy in a pre-clinical model of glioblastoma. Nature Communications, 2021, 12, 444.	5.8	150
376	CAR T cells in solid tumors: challenges and opportunities. Stem Cell Research and Therapy, 2021, 12, 81.	2.4	312
377	Antitumor activity of the third generation EphA2 CAR-T cells against glioblastoma is associated with interferon gamma induced PD-L1. Oncolmmunology, 2021, 10, 1960728.	2.1	20
378	Novel highâ€affinity EGFRvIIIâ€specific chimeric antigen receptor T cells effectively eliminate human glioblastoma. Clinical and Translational Immunology, 2021, 10, e1283.	1.7	19
379	Current Advances in Immunotherapy for Glioblastoma. Current Oncology Reports, 2021, 23, 21.	1.8	26
380	Immunotherapy of Glioblastoma: Current Strategies and Challenges in Tumor Model Development. Cells, 2021, 10, 265.	1.8	50
381	Imaging Tumor-Infiltrating Lymphocytes in Brain Tumors with [64Cu]Cu-NOTA-anti-CD8 PET. Clinical Cancer Research, 2021, 27, 1958-1966.	3.2	21
382	Immunotherapy and Its Development for Gynecological (Ovarian, Endometrial and Cervical) Tumors: From Immune Checkpoint Inhibitors to Chimeric Antigen Receptor (CAR)-T Cell Therapy. Cancers, 2021, 13, 840.	1.7	17
383	Pathogenetic Features and Current Management of Glioblastoma. Cancers, 2021, 13, 856.	1.7	29
384	Enhanced anti-tumor efficacy of IL-7/CCL19-producing human CAR-T cells in orthotopic and patient-derived xenograft tumor models. Cancer Immunology, Immunotherapy, 2021, 70, 2503-2515.	2.0	28
385	Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nature Medicine, 2021, 27, 212-224.	15.2	376

#	Article	IF	CITATIONS
386	Cellular therapy for the treatment of solid tumors. Transfusion and Apheresis Science, 2021, 60, 103056.	0.5	10
387	Glioma Stem Cells as Immunotherapeutic Targets: Advancements and Challenges. Frontiers in Oncology, 2021, 11, 615704.	1.3	27
388	Dual-Target CAR-Ts with On- and Off-Tumour Activity May Override Immune Suppression in Solid Cancers: A Mathematical Proof of Concept. Cancers, 2021, 13, 703.	1.7	12
389	Polymeric Micelles in Cancer Immunotherapy. Molecules, 2021, 26, 1220.	1.7	22
390	Case Report: Reversible Neurotoxicity and a Clinical Response Induced by BCMA-Directed Chimeric Antigen Receptor T Cells Against Multiple Myeloma With Central Nervous System Involvement. Frontiers in Immunology, 2021, 12, 552429.	2.2	10
391	Cancer cell heterogeneity & plasticity in glioblastoma and brain tumors. Seminars in Cancer Biology, 2022, 82, 162-175.	4.3	58
393	Neural stem cells secreting bispecific T cell engager to induce selective antiglioma activity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	18
394	Chimeric Antigen Receptor T-Cell Therapy: Updates in Glioblastoma Treatment. Neurosurgery, 2021, 88, 1056-1064.	0.6	14
396	Organoid Models of Glioblastoma and Their Role in Drug Discovery. Frontiers in Cellular Neuroscience, 2021, 15, 605255.	1.8	31
397	Preclinical Assessment of AMG 596, a Bispecific T-cell Engager (BiTE) Immunotherapy Targeting the Tumor-specific Antigen EGFRvIII. Molecular Cancer Therapeutics, 2021, 20, 925-933.	1.9	17
398	Genetic engineering of T cells for immunotherapy. Nature Reviews Genetics, 2021, 22, 427-447.	7.7	63
399	Neurological Complications of Targeted Therapies and Immunotherapies for Cancer. Current Treatment Options in Neurology, 2021, 23, 1.	0.7	3
400	Immunotherapy: A Potential Approach for High-Grade Spinal Cord Astrocytomas. Frontiers in Immunology, 2020, 11, 582828.	2.2	8
401	New Era of Immunotherapy in Pediatric Brain Tumors: Chimeric Antigen Receptor T-Cell Therapy. International Journal of Molecular Sciences, 2021, 22, 2404.	1.8	4
402	The Role of Cytokines and Chemokines in Shaping the Immune Microenvironment of Glioblastoma: Implications for Immunotherapy. Cells, 2021, 10, 607.	1.8	32
403	Against the Resilience of High-Grade Gliomas: The Immunotherapeutic Approach (Part I). Brain Sciences, 2021, 11, 386.	1.1	14
404	Synergy of Immunostimulatory Genetherapy with Immune Checkpoint Blockade Motivates Immune Response to Eliminate Cancer. Advanced Functional Materials, 2021, 31, 2100715.	7.8	23
405	Parking CAR T Cells in Tumours: Oncolytic Viruses as Valets or Vandals?. Cancers, 2021, 13, 1106.	1.7	16

#	Article	IF	CITATIONS
406	Indoleamine 2,3-Dioxygenase 1 Inhibitor-Loaded Nanosheets Enhance CAR-T Cell Function in Esophageal Squamous Cell Carcinoma. Frontiers in Immunology, 2021, 12, 661357.	2.2	12
407	Enhancing CAR-T cell efficacy in solid tumors by targeting the tumor microenvironment. Cellular and Molecular Immunology, 2021, 18, 1085-1095.	4.8	74
408	Challenging Hurdles of Current Targeting in Glioblastoma: A Focus on Immunotherapeutic Strategies. International Journal of Molecular Sciences, 2021, 22, 3493.	1.8	4
409	Adapter Chimeric Antigen Receptor (AdCAR)-Engineered NK-92 Cells for the Multiplex Targeting of Bone Metastases. Cancers, 2021, 13, 1124.	1.7	5
410	Cellular Immunotherapy Targeting Cancer Stem Cells: Preclinical Evidence and Clinical Perspective. Cells, 2021, 10, 543.	1.8	14
411	Allogeneic CAR T Cells: An Alternative to Overcome Challenges of CAR T Cell Therapy in Glioblastoma. Frontiers in Immunology, 2021, 12, 640082.	2.2	64
412	Rational nanocarrier design towards clinical translation of cancer nanotherapy. Biomedical Materials (Bristol), 2021, 16, 032005.	1.7	14
413	Administration of B7-H3 targeted chimeric antigen receptor-T cells induce regression of glioblastoma. Signal Transduction and Targeted Therapy, 2021, 6, 125.	7.1	41
414	Engineered cells as glioblastoma therapeutics. Cancer Gene Therapy, 2022, 29, 156-166.	2.2	7
415	Immunotherapy for recurrent glioblastoma: practical insights and challenging prospects. Cell Death and Disease, 2021, 12, 299.	2.7	25
416	Decipher the Glioblastoma Microenvironment: The First Milestone for New Groundbreaking Therapeutic Strategies. Genes, 2021, 12, 445.	1.0	43
417	Nanoparticles for Enhanced Adoptive T Cell Therapies and Future Perspectives for CNS Tumors. Frontiers in Immunology, 2021, 12, 600659.	2.2	19
418	InÂvivo CART cell imaging: Paving the way for success in CART cell therapy. Molecular Therapy - Oncolytics, 2021, 20, 625-633.	2.0	14
419	How Do We Meet the Challenge of Chimeric Antigen Receptor T-Cell Therapy for Solid Tumors?. Cancer Journal (Sudbury, Mass), 2021, 27, 134-142.	1.0	1
420	Anti-CD19 CAR T cells potently redirected to kill solid tumor cells. PLoS ONE, 2021, 16, e0247701.	1.1	14
421	CAR T cell therapy as a promising approach in cancer immunotherapy: challenges and opportunities. Cellular Oncology (Dordrecht), 2021, 44, 495-523.	2.1	32
422	Therapeutic applications of the cancer immunoediting hypothesis. Seminars in Cancer Biology, 2022, 78, 63-77.	4.3	29
423	Current Immunotherapies for Glioblastoma Multiforme. Frontiers in Immunology, 2020, 11, 603911.	2.2	77

#	Article	IF	CITATIONS
424	A Pan-Histone Deacetylase Inhibitor Enhances the Antitumor Activity of B7-H3–Specific CAR T Cells in Solid Tumors. Clinical Cancer Research, 2021, 27, 3757-3771.	3.2	25
425	CAR-T cells and BiTEs in solid tumors: challenges and perspectives. Journal of Hematology and Oncology, 2021, 14, 65.	6.9	50
426	Industrializing engineered autologous T cells as medicines for solid tumours. Nature Reviews Drug Discovery, 2021, 20, 476-488.	21.5	12
427	CAR TÂcell therapy in solid tumors: aÂshort review. Memo - Magazine of European Medical Oncology, 2021, 14, 143-149.	0.3	17
428	Physiological Imaging Methods for Evaluating Response to Immunotherapies in Glioblastomas. International Journal of Molecular Sciences, 2021, 22, 3867.	1.8	13
429	CAR-T in Cancer Treatment: Develop in Self-Optimization, Win-Win in Cooperation. Cancers, 2021, 13, 1955.	1.7	4
430	Mechanisms of response and resistance to CAR T cell therapies. Current Opinion in Immunology, 2021, 69, 56-64.	2.4	18
431	CAR T Cells. Neurosurgery Clinics of North America, 2021, 32, 249-263.	0.8	3
432	Fully human antibody V _H domains to generate mono and bispecific CAR to target solid tumors. , 2021, 9, e002173.		8
433	A nonviral, nonintegrating DNA nanovector platform for the safe, rapid, and persistent manufacture of recombinant T cells. Science Advances, 2021, 7, .	4.7	43
434	Effect of physicochemical properties on inÂvivo fate of nanoparticle-based cancer immunotherapies. Acta Pharmaceutica Sinica B, 2021, 11, 886-902.	5.7	42
435	Commentary: Chimeric Antigen Receptor T-Cell Therapy: Updates in Glioblastoma Treatment. Neurosurgery, 2021, 89, E68-E69.	0.6	1
436	SynNotch-CAR T cells overcome challenges of specificity, heterogeneity, and persistence in treating glioblastoma. Science Translational Medicine, 2021, 13, .	5.8	215
437	IFNγ Is Critical for CAR T Cell–Mediated Myeloid Activation and Induction of Endogenous Immunity. Cancer Discovery, 2021, 11, 2248-2265.	7.7	86
438	CAR-NK Cells in the Treatment of Solid Tumors. International Journal of Molecular Sciences, 2021, 22, 5899.	1.8	69
439	Targeting Treg cells with GITR activation alleviates resistance to immunotherapy in murine glioblastomas. Nature Communications, 2021, 12, 2582.	5.8	96
440	Chimeric Antigen Receptor T Cells for Glioblastoma. Neurology, 2021, 97, 218-230.	1.5	19
441	Immunotherapy and radiation for high-grade glioma: a narrative review. Translational Cancer Research, 2021, 10, 2537-2570.	0.4	6

#	Article	IF	CITATIONS
442	Case Report: Prolonged Survival Following EGFRvIII CAR T Cell Treatment for Recurrent Glioblastoma. Frontiers in Oncology, 2021, 11, 669071.	1.3	34
443	Detection of engineered T cells in FFPE tissue by multiplex in situ hybridization and immunohistochemistry. Journal of Immunological Methods, 2021, 492, 112955.	0.6	1
444	BRD4 inhibition boosts the therapeutic effects of epidermal growth factor receptor-targeted chimeric antigen receptor TÂcells in glioblastoma. Molecular Therapy, 2021, 29, 3011-3026.	3.7	15
445	Overview of Cellular Immunotherapies within Transfusion Medicine for the Treatment of Malignant Diseases. International Journal of Molecular Sciences, 2021, 22, 5120.	1.8	0
446	Approaches for refining and furthering the development of CAR-based T cell therapies for solid malignancies. Expert Opinion on Drug Discovery, 2021, 16, 1105-1117.	2.5	3
447	An Oncolytic Virus Expressing IL15/IL15Rα Combined with Off-the-Shelf EGFR-CAR NK Cells Targets Glioblastoma. Cancer Research, 2021, 81, 3635-3648.	0.4	89
448	Phase I clinical trial of EGFR-specific CAR-T cells generated by the piggyBac transposon system in advanced relapsed/refractory non-small cell lung cancer patients. Journal of Cancer Research and Clinical Oncology, 2021, 147, 3725-3734.	1.2	59
449	Immunotherapy for Glioblastoma: Current Progress and Challenges. Frontiers in Immunology, 2021, 12, 676301.	2.2	83
450	Opening of the Blood–Brain Barrier Using Low-Intensity Pulsed Ultrasound Enhances Responses to Immunotherapy in Preclinical Glioma Models. Clinical Cancer Research, 2021, 27, 4325-4337.	3.2	58
451	CAR T Cell-Based Immunotherapy for the Treatment of Glioblastoma. Frontiers in Neuroscience, 2021, 15, 662064.	1.4	80
452	The antigenâ€binding moiety in the driver's seat of CARs. Medicinal Research Reviews, 2022, 42, 306-342.	5.0	21
453	Navigating CAR-T cells through the solid-tumour microenvironment. Nature Reviews Drug Discovery, 2021, 20, 531-550.	21.5	236
454	How Can We Engineer CAR T Cells to Overcome Resistance?. Biologics: Targets and Therapy, 2021, Volume 15, 175-198.	3.0	8
455	The Potential Role of the Intestinal Micromilieu and Individual Microbes in the Immunobiology of Chimeric Antigen Receptor T-Cell Therapy. Frontiers in Immunology, 2021, 12, 670286.	2.2	16
456	Nanotechnology synergized immunoengineering for cancer. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 163, 72-101.	2.0	8
457	Tumor-associated hematopoietic stem and progenitor cells positively linked to glioblastoma progression. Nature Communications, 2021, 12, 3895.	5.8	28
458	Synergistic immunotherapy of glioblastoma by dual targeting of IL-6 and CD40. Nature Communications, 2021, 12, 3424.	5.8	74
459	The immune landscape of common CNS malignancies: implications for immunotherapy. Nature Reviews Clinical Oncology, 2021, 18, 729-744.	12.5	50

#	Article	IF	CITATIONS
460	Targeting Tumor-Associated Antigen: A Promising CAR-T Therapeutic Strategy for Glioblastoma Treatment. Frontiers in Pharmacology, 2021, 12, 661606.	1.6	8
461	A CAR RNA FISH assay to study functional and spatial heterogeneity of chimeric antigen receptor T cells in tissue. Scientific Reports, 2021, 11, 12921.	1.6	1
462	Secretion of bispecific protein of anti-PD-1 fused with TGF-β trap enhances antitumor efficacy of CAR-T cell therapy. Molecular Therapy - Oncolytics, 2021, 21, 144-157.	2.0	33
463	Novel Receptor Tyrosine Kinase Pathway Inhibitors for Targeted Radionuclide Therapy of Glioblastoma. Pharmaceuticals, 2021, 14, 626.	1.7	14
464	T cells armed with C-X-C chemokine receptor type 6 enhance adoptive cell therapy for pancreatic tumours. Nature Biomedical Engineering, 2021, 5, 1246-1260.	11.6	80
465	Advancing therapy for osteosarcoma. Nature Reviews Clinical Oncology, 2021, 18, 609-624.	12.5	319
466	Enhancing proteasomal processing improves survival for a peptide vaccine used to treat glioblastoma. Science Translational Medicine, 2021, 13, .	5.8	8
468	IL-21 Optimizes the CAR-T Cell Preparation Through Improving Lentivirus Mediated Transfection Efficiency of T Cells and Enhancing CAR-T Cell Cytotoxic Activities. Frontiers in Molecular Biosciences, 2021, 8, 675179.	1.6	12
469	A stealth antigen SPESP1, which is epigenetically silenced in tumors, is a suitable target for cancer immunotherapy. Cancer Science, 2021, 112, 2705-2713.	1.7	6
470	Current progress in chimeric antigen receptor T cell therapy for glioblastoma multiforme. Cancer Medicine, 2021, 10, 5019-5030.	1.3	13
471	Innovative and Promising Strategies to Enhance Effectiveness of Immunotherapy for CNS Tumors: Where Are We?. Frontiers in Immunology, 2021, 12, 634031.	2.2	2
472	Advanced Immunotherapy Approaches for Glioblastoma. Advanced Therapeutics, 2021, 4, 2100046.	1.6	8
473	Identification of cell surface targets for CAR-T cell therapies and antibody–drug conjugates in breast cancer. ESMO Open, 2021, 6, 100102.	2.0	24
474	First-in-Human Trial of EphA2-Redirected CAR T-Cells in Patients With Recurrent Glioblastoma: A Preliminary Report of Three Cases at the Starting Dose. Frontiers in Oncology, 2021, 11, 694941.	1.3	37
475	P32-specific CAR T cells with dual antitumor and antiangiogenic therapeutic potential in gliomas. Nature Communications, 2021, 12, 3615.	5.8	25
476	Self-assembled peptide and protein nanostructures for anti-cancer therapy: Targeted delivery, stimuli-responsive devices and immunotherapy. Nano Today, 2021, 38, 101119.	6.2	135
477	Advances in Immunotherapy for Adult Glioblastoma. Cancers, 2021, 13, 3400.	1.7	9
478	Radiotherapy to Enhance Chimeric Antigen Receptor T-Cell Therapeutic Efficacy in Solid Tumors. JAMA Oncology, 2021, 7, 1051.	3.4	25

#	Article	IF	CITATIONS
479	Novel strategies for immuno-oncology breakthroughs with cell therapy. Biomarker Research, 2021, 9, 62.	2.8	18
480	IDH Mutations in Glioma: Double-Edged Sword in Clinical Applications?. Biomedicines, 2021, 9, 799.	1.4	37
481	Oncolytic Viruses for Malignant Glioma: On the Verge of Success?. Viruses, 2021, 13, 1294.	1.5	28
482	Advances in pharmacotherapy for neuroblastoma. Expert Opinion on Pharmacotherapy, 2021, 22, 2383-2404.	0.9	6
483	Immunotherapy in Glioblastoma: A Clinical Perspective. Cancers, 2021, 13, 3721.	1.7	16
484	Crosstalk Between Tumor-Associated Microglia/Macrophages and CD8-Positive T Cells Plays a Key Role in Glioblastoma. Frontiers in Immunology, 2021, 12, 650105.	2.2	15
485	A deep insight into CRISPR/Cas9 application in CAR-T cell-based tumor immunotherapies. Stem Cell Research and Therapy, 2021, 12, 428.	2.4	63
486	T Cells Retain Pivotal Antitumoral Functions under Tumor-Treating Electric Fields. Journal of Immunology, 2021, 207, 709-719.	0.4	11
487	Modified Therapeutic Antibodies: Improving Efficacy. Engineering, 2021, 7, 1529-1540.	3.2	3
489	Adoptive cellular therapy in solid tumor malignancies: review of the literature and challenges ahead. , 2021, 9, e002723.		92
490	Emergent Fluorous Molecules and Their Uses in Molecular Imaging. Accounts of Chemical Research, 2021, 54, 3060-3070.	7.6	22
491	Development of a Clinically Relevant Reporter for Chimeric Antigen Receptor T-cell Expansion, Trafficking, and Toxicity. Cancer Immunology Research, 2021, 9, 1035-1046.	1.6	14
492	Tumor rejection in <i>Cblb</i> ^{â^'/â^'} mice depends on IL-9 and Th9 cells. , 2021, 9, e002889.		11
493	Treatment-Related Adverse Events of Chimeric Antigen Receptor T-Cell (CAR T) in Clinical Trials: A Systematic Review and Meta-Analysis. Cancers, 2021, 13, 3912.	1.7	25
494	Chimeric antigen receptor macrophage for glioblastoma immunotherapy: the way forward. Immunotherapy, 2021, 13, 879-883.	1.0	16
495	Optimizing T Cell-Based Therapy for Glioblastoma. Frontiers in Immunology, 2021, 12, 705580.	2.2	9
496	Engineering-enhanced CAR T cells for improved cancer therapy. Nature Cancer, 2021, 2, 780-793.	5.7	60
497	VEGFR-2 redirected CAR-T cells are functionally impaired by soluble VEGF-A competition for receptor binding. , 2021, 9, e002151.		16

#	ARTICLE Bispecific CAR T Cells against EpCAM and Inducible ICAM-1 Overcome Antigen Heterogeneity and	IF	CITATIONS
498	Generate Superior Antitumor Responses. Cancer Immunology Research, 2021, 9, 1158-1174.	1.6	28
500	Blood–Brain Barrier, Cell Junctions, and Tumor Microenvironment in Brain Metastases, the Biological Prospects and Dilemma in Therapies. Frontiers in Cell and Developmental Biology, 2021, 9, 722917.	1.8	13
501	APLN/APLNR Signaling Controls Key Pathological Parameters of Glioblastoma. Cancers, 2021, 13, 3899.	1.7	7
502	Immune Microenvironment Landscape in CNS Tumors and Role in Responses to Immunotherapy. Cells, 2021, 10, 2032.	1.8	12
503	Novel EGFRvIII-CAR transgenic mice for rigorous preclinical studies in syngeneic mice. Neuro-Oncology, 2022, 24, 259-272.	0.6	6
504	The multifactorial roles of microglia and macrophages in the maintenance and progression of glioblastoma. Journal of Neuroimmunology, 2021, 357, 577633.	1.1	16
505	Single-cell imaging of T cell immunotherapy responses in vivo. Journal of Experimental Medicine, 2021, 218, .	4.2	16
506	The Interplay between Glioblastoma and Its Microenvironment. Cells, 2021, 10, 2257.	1.8	57
507	Comparative analysis of TCR and CAR signaling informs CAR designs with superior antigen sensitivity and in vivo function. Science Signaling, 2021, 14, .	1.6	67
508	Genomic landscape of gliosarcoma: distinguishing features and targetable alterations. Scientific Reports, 2021, 11, 18009.	1.6	11
509	Chimeric antigen receptor (CAR) immunotherapy: basic principles, current advances, and future prospects in neuro-oncology. Immunologic Research, 2021, 69, 471-486.	1.3	8
510	High-Affinity Chimeric Antigen Receptor With Cross-Reactive scFv to Clinically Relevant EGFR Oncogenic Isoforms. Frontiers in Oncology, 2021, 11, 664236.	1.3	14
511	Current Immunotherapeutic Strategies for the Treatment of Glioblastoma. Cancers, 2021, 13, 4548.	1.7	16
512	Glial and myeloid heterogeneity in the brain tumour microenvironment. Nature Reviews Cancer, 2021, 21, 786-802.	12.8	83
513	Future generation of combined multimodal approach to treat brain glioblastoma multiforme and potential impact on micturition control. Reviews in the Neurosciences, 2022, 33, 313-326.	1.4	1
514	Designing Clinical Trials for Combination Immunotherapy: A Framework for Glioblastoma. Clinical Cancer Research, 2022, 28, 585-593.	3.2	18
515	BETting on BRD4 inhibition to combat adaptive resistance to CAR TÂcell therapy in glioblastoma. Molecular Therapy, 2021, 29, 2896-2897.	3.7	0
516	Tumor Cell IDO Enhances Immune Suppression and Decreases Survival Independent of Tryptophan Metabolism in Glioblastoma. Clinical Cancer Research, 2021, 27, 6514-6528.	3.2	48

#	Article	IF	CITATIONS
517	Harnessing EV communication to restore antitumor immunity. Advanced Drug Delivery Reviews, 2021, 176, 113838.	6.6	7
518	New Immunotherapeutic Approaches for Clioblastoma. Journal of Immunology Research, 2021, 2021, 1-19.	0.9	7
519	Molecular Features of Glioma Determined and Validated Using Combined TCGA and GTEx Data Analyses. Frontiers in Oncology, 2021, 11, 729137.	1.3	4
520	Glioblastoma multiforme (GBM): An overview of current therapies and mechanisms of resistance. Pharmacological Research, 2021, 171, 105780.	3.1	196
521	BCMA CAR-T Therapy Is Safe and Effective for Refractory/Relapsed Multiple Myeloma With Central Nervous System Involvement. Journal of Immunotherapy, 2021, Publish Ahead of Print, 25-34.	1.2	8
522	Glioblastoma as an age-related neurological disorder in adults. Neuro-Oncology Advances, 2021, 3, vdab125.	0.4	30
523	CXCR5 guides migration and tumor eradication of anti-EGFR chimeric antigen receptor TÂcells. Molecular Therapy - Oncolytics, 2021, 22, 507-517.	2.0	17
524	Bispecific antibody-mediated redirection of NKG2D-CAR natural killer cells facilitates dual targeting and enhances antitumor activity. , 2021, 9, e002980.		28
525	Short Review on Advances in Hydrogel-Based Drug Delivery Strategies for Cancer Immunotherapy. Tissue Engineering and Regenerative Medicine, 2022, 19, 263-280.	1.6	11
527	HIV-1 persistence in the CNS: Mechanisms of latency, pathogenesis and an update on eradication strategies. Virus Research, 2021, 303, 198523.	1.1	17
528	Immune checkpoint inhibitors in GBM. Journal of Neuro-Oncology, 2021, 155, 1-11.	1.4	16
529	Genetical engineering for NK and T cell immunotherapy with CRISPR/Cas9 technology: Implications and challenges. Cellular Immunology, 2021, 369, 104436.	1.4	5
530	Effectiveness of 4-1BB-costimulated HER2-targeted chimeric antigen receptor T cell therapy for synovial sarcoma. Translational Oncology, 2021, 14, 101227.	1.7	2
531	Cellular therapeutics in immuno-oncology. , 2022, , 237-265.		1
532	Synthetic receptors for logic gated T cell recognition and function. Current Opinion in Immunology, 2022, 74, 9-17.	2.4	7
533	Delivery strategies for STING agonists. , 2022, , 333-357.		0
535	Toward precision immunotherapy using multiplex immunohistochemistry and in silico methods to define the tumor immune microenvironment. Cancer Immunology, Immunotherapy, 2021, 70, 1811-1820.	2.0	11
536	Adoptive Cell Therapy in Hepatocellular Carcinoma: Biological Rationale and First Results in Early Phase Clinical Trials. Cancers, 2021, 13, 271.	1.7	39

#	Article	IF	CITATIONS
537	Preclinical Chimeric Antibody Chimeric Antigen Receptor T Cell Progress in Digestive System Cancers. Cancer Biotherapy and Radiopharmaceuticals, 2021, 36, 307-315.	0.7	1
538	Glioblastoma cell-induced immunosuppression causing chemoresistance. , 2021, , 293-317.		3
539	Adenosinergic Pathway: A Hope in the Immunotherapy of Glioblastoma. Cancers, 2021, 13, 229.	1.7	13
540	Chimeric Antigen Receptor (CAR) T Cell Therapy for Cancer. Challenges and Opportunities: An Overview. Methods in Molecular Biology, 2021, 2174, 219-244.	0.4	7
541	Advances and Challenges of CAR T Cells in Clinical Trials. Recent Results in Cancer Research, 2020, 214, 93-128.	1.8	10
542	CAR T Cell Therapy Progress and Challenges for Solid Tumors. Cancer Treatment and Research, 2020, 180, 297-326.	0.2	23
543	Immunotherapy for Neuro-Oncology. Advances in Experimental Medicine and Biology, 2020, 1244, 183-203.	0.8	10
544	Chimeric Antigen Receptor (CAR) Redirected T Cells. Learning Materials in Biosciences, 2021, , 251-302.	0.2	1
545	Novel Therapies for Glioblastoma. Current Neurology and Neuroscience Reports, 2020, 20, 19.	2.0	50
546	EGFRvIII-CAR-T Cells with PD-1 Knockout Have Improved Anti-Glioma Activity. Pathology and Oncology Research, 2020, 26, 2135-2141.	0.9	30
547	Unique challenges for glioblastoma immunotherapy—discussions across neuro-oncology and non-neuro-oncology experts in cancer immunology. Meeting Report from the 2019 SNO Immuno-Oncology Think Tank. Neuro-Oncology, 2021, 23, 356-375.	0.6	59
553	Boosting engineered T cells. Science, 2019, 365, 119-120.	6.0	10
554	Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immune effector cell-related adverse events. , 2020, 8, e001511.		138
555	MyD88/CD40 signaling retains CAR T cells in a less differentiated state. JCI Insight, 2020, 5, .	2.3	34
556	Autologous CMV-specific T cells are a safe adjuvant immunotherapy for primary glioblastoma multiforme. Journal of Clinical Investigation, 2020, 130, 6041-6053.	3.9	37
557	Integrated regulatory models for inference of subtypeâ€ s pecific susceptibilities in glioblastoma. Molecular Systems Biology, 2020, 16, e9506.	3.2	5
558	EFEMP2 indicates assembly of M0 macrophage and more malignant phenotypes of glioma. Aging, 2020, 12, 8397-8412.	1.4	30
559	A systematic review and meta-analysis of topoisomerase inhibition in pre-clinical glioma models. Oncotarget, 2018, 9, 11387-11401.	0.8	9

#	Article	IF	CITATIONS
560	EGFR806-CAR T cells selectively target a tumor-restricted EGFR epitope in glioblastoma. Oncotarget, 2019, 10, 7080-7095.	0.8	52
561	When better still might not be good enough. Translational Cancer Research, 2017, 6, S1244-S1247.	0.4	3
562	Lessons learned from rindopepimut treatment in patients with EGFRvIII-expressing glioblastoma. Translational Cancer Research, 2018, 7, S510-S513.	0.4	19
563	The Current State of Potential Therapeutic Modalities for Glioblastoma Multiforme: A Clinical Review. Current Drug Metabolism, 2020, 21, 564-578.	0.7	23
564	Analysis of in vitro cytotoxicity of human NK cell line co-expressing a PSMA-specific CAR and an antitumor agent lactaptin. Genes and Cells, 2018, 13, 89-93.	0.2	2
565	Adoptive immunotherapy with CAR modified T cells in cancer current landscape and future perspectives. Frontiers in Bioscience - Landmark, 2019, 24, 1284-1315.	3.0	12
566	Cytokines in CAR T Cell–Associated Neurotoxicity. Frontiers in Immunology, 2020, 11, 577027.	2.2	110
567	Adaptor CAR Platforms—Next Generation of T Cell-Based Cancer Immunotherapy. Cancers, 2020, 12, 1302.	1.7	45
568	Randomized Controlled Immunotherapy Clinical Trials for GBM Challenged. Cancers, 2021, 13, 32.	1.7	27
569	3D Culture Systems for Exploring Cancer Immunology. Cancers, 2021, 13, 56.	1.7	44
570	The Role of Immune Checkpoints after Cellular Therapy. International Journal of Molecular Sciences, 2020, 21, 3650.	1.8	7
570 571		1.8 1.8	7 106
	2020, 21, 3650. Molecular Mechanisms of Treatment Resistance in Glioblastoma. International Journal of Molecular		
571	2020, 21, 3650. Molecular Mechanisms of Treatment Resistance in Glioblastoma. International Journal of Molecular Sciences, 2021, 22, 351. The advances in targeted therapy and immunotherapy for glioblastoma: Basic research and clinical	1.8	106
571 572	 2020, 21, 3650. Molecular Mechanisms of Treatment Resistance in Glioblastoma. International Journal of Molecular Sciences, 2021, 22, 351. The advances in targeted therapy and immunotherapy for glioblastoma: Basic research and clinical trials. Glioma (Mumbai, India), 2018, 1, 79. GPC1 specific CAR-T cells eradicate established solid tumor without adverse effects and synergize 	1.8 0.0	106 4
571 572 573	 2020, 21, 3650. Molecular Mechanisms of Treatment Resistance in Glioblastoma. International Journal of Molecular Sciences, 2021, 22, 351. The advances in targeted therapy and immunotherapy for glioblastoma: Basic research and clinical trials. Glioma (Mumbai, India), 2018, 1, 79. GPC1 specific CAR-T cells eradicate established solid tumor without adverse effects and synergize with anti-PD-1 Ab. ELife, 2020, 9, . Characterization of the Genomic and Immunologic Diversity of Malignant Brain Tumors through 	1.8 0.0 2.8	106 4 41
571 572 573 574	2020, 21, 3650. Molecular Mechanisms of Treatment Resistance in Glioblastoma. International Journal of Molecular Sciences, 2021, 22, 351. The advances in targeted therapy and immunotherapy for glioblastoma: Basic research and clinical trials. Glioma (Mumbai, India), 2018, 1, 79. GPC1 specific CAR-T cells eradicate established solid tumor without adverse effects and synergize with anti-PD-1 Ab. ELife, 2020, 9, . Characterization of the Genomic and Immunologic Diversity of Malignant Brain Tumors through Multisector Analysis. Cancer Discovery, 2022, 12, 154-171. Critical care management of chimeric antigen receptor Tâ€cell therapy recipients. Ca-A Cancer Journal	1.8 0.0 2.8 7.7	106 4 41 34

#	Article	IF	CITATIONS
578	Fibrin gel enhances the antitumor effects of chimeric antigen receptor T cells in glioblastoma. Science Advances, 2021, 7, eabg5841.	4.7	35
579	Adoptive cell therapy with tumor-specific Th9 cells induces viral mimicry to eliminate antigen-loss-variant tumor cells. Cancer Cell, 2021, 39, 1610-1622.e9.	7.7	25
580	Novel Redirected T–Cell Immunotherapies for Advanced Prostate Cancer. Clinical Cancer Research, 2022, 28, 576-584.	3.2	26
581	NK Cell-Based Immunotherapy and Therapeutic Perspective in Gliomas. Frontiers in Oncology, 2021, 11, 751183.	1.3	10
582	Chimeric Antigen Receptor (CAR) T Cell Therapy for Glioblastoma. NeuroMolecular Medicine, 2022, 24, 35-40.	1.8	6
583	From Hematopoietic Stem Cell Transplantation to Chimeric Antigen Receptor Therapy: Advances, Limitations and Future Perspectives. Cells, 2021, 10, 2845.	1.8	6
584	Oncolytic Viro-Immunotherapy: An Emerging Option in the Treatment of Gliomas. Frontiers in Immunology, 2021, 12, 721830.	2.2	50
585	GD2 CAR T cells against human glioblastoma. Npj Precision Oncology, 2021, 5, 93.	2.3	43
586	T-Cell Immunotherapy for Pediatric High-Grade Gliomas: New Insights to Overcoming Therapeutic Challenges. Frontiers in Oncology, 2021, 11, 718030.	1.3	5
587	Orthogonal Design of Experiments for Optimization of Lipid Nanoparticles for mRNA Engineering of CAR T Cells. Nano Letters, 2022, 22, 533-542.	4.5	57
588	Enhancing adoptive CD8 T cell therapy by systemic delivery of tumor associated antigens. Scientific Reports, 2021, 11, 19794.	1.6	6
590	CAR T cell therapy in solid tumors; with an extensive focus on obstacles and strategies to overcome the challenges. International Immunopharmacology, 2021, 101, 108260.	1.7	3
591	Papers of note in <i>Science Translational Medicine</i> 9 (399). Science Signaling, 2017, 10, .	1.6	0
592	Engineered T Cells for glioblastoma therapy. Glioma (Mumbai, India), 2018, 1, 125.	0.0	1
594	Chimeric antigen receptor T-cells for glioblastoma: The journey ahead. Glioma (Mumbai, India), 2019, 2, 88.	0.0	0
595	Immune checkpoint modulation: Tenets and implications in glioblastoma. Glioma (Mumbai, India), 2019, 2, 20.	0.0	0
596	Evidence mounts for a role for immune cells in the brain. Nature Medicine, 0, , .	15.2	0
600	Check and Checkmate: Battling Cancer with Multiplex Immunotherapy. Molecular Therapy, 2020, 28, 1236-1237.	3.7	1

		CITATION REPO	ORT	
#	Article	I	F	CITATIONS
603	Facing CAR T Cell Challenges on the Deadliest Paediatric Brain Tumours. Cells, 2021, 10, 29)40.	1.8	5
604	CAR T Cell Therapy's Potential for Pediatric Brain Tumors. Cancers, 2021, 13, 5445.	i	1.7	10
605	Inhibiting Lysine Demethylase 1A Improves L1CAM-Specific CAR T Cell Therapy by Unleashi Antigen-Independent Killing via the FAS-FASL Axis. Cancers, 2021, 13, 5489.	ng	1.7	2
606	Nanoparticle designs for delivery of nucleic acid therapeutics as brain cancer therapies. Adv Drug Delivery Reviews, 2021, 179, 113999.	vanced	6.6	32
607	Toll-like receptors and toll-like receptor-targeted immunotherapy against glioma. Journal of Hematology and Oncology, 2021, 14, 176.		6.9	47
608	Chimeric Antigen Receptor T-Cell Therapy in Lung Cancer: Potential and Challenges. Frontie Immunology, 2021, 12, 782775.	ers in states and state	2.2	23
609	Multi-institutional noninvasive in vivo characterization of <i>IDH</i> , 1p/19q, and EGFRvIII using neuro-Cancer Imaging Phenomics Toolkit (neuro-CaPTk). Neuro-Oncology Advances, iv22-iv34.		0.4	12
610	Cellular Immunotherapy Treatment Scheduling to Address Antigen Escape. , 2020, , .			3
612	Gangliosides and Tumor-Associated Ganglioside (TAG) Modulate Receptor-Tyrosine Kinases 2020, , 123-167.	(RTKs).,		0
613	Immunotherapy and Radiosurgery. , 2020, , 423-436.			0
614	Current status and prospects for quantitative analysis of digital image of pathological specusing image processing software including artificial intelligence. Translational and Regulate Sciences, 2020, 2, 72-79.		0.2	2
617	Immunotherapy for Glioblastomas. , 0, , .			0
618	Multispecific targeting of glioblastoma with tumor microenvironment-responsive multifunce engineered NK cells. Proceedings of the National Academy of Sciences of the United States 2021, 118, .		3.3	45
619	Chimeric Antigen Receptor T Cells With Modified Interleukin-13 Preferentially Recognize IL Suppress Malignant Glioma: A Preclinical Study. Frontiers in Immunology, 2021, 12, 71500		2.2	10
620	Engineered CAR-T and novel CAR-based therapies to fight the immune evasion of glioblastc cavat lapidem. Expert Review of Anticancer Therapy, 2021, 21, 1333-1353.	ima: gutta	1.1	9
622	A Primer on Chimeric Antigen Receptor T-cell Therapy: What Does It Mean for Pathologists of Pathology and Laboratory Medicine, 2021, 145, 704-716.	?. Archives	1.2	1
623	Lessons learned from rindopepimut treatment in patients with EGFRvIII-expressing glioblast Translational Cancer Research, 2018, 7, S510-S513.	coma.	0.4	6
624	Target selection of CAR T cell therapy in accordance with the TME for solid tumors. America of Cancer Research, 2019, 9, 228-241.	an Journal	1.4	23

		CITATION REPORT		
#	Article		IF	CITATIONS
625	CAR-armed cell therapy for gliomas. American Journal of Cancer Research, 2019, 9, 255	54-2566.	1.4	2
626	PiggyBac-modified CD19-expressing 4T1 cell line for the evaluation of CAR construct. I Journal of Clinical and Experimental Pathology, 2019, 12, 2631-2638.	nternational	0.5	1
627	Innovative strategies to advance CAR T cell therapy for solid tumors. American Journal Research, 2020, 10, 1979-1992.	of Cancer	1.4	2
628	Organoid models of glioblastoma: advances, applications and challenges. American Jou Research, 2020, 10, 2242-2257.	ırnal of Cancer	1.4	8
629	Targeting claudins in cancer: diagnosis, prognosis and therapy. American Journal of Ca 2021, 11, 3406-3424.	ncer Research,	1.4	3
630	ADME of Biologicals and New Therapeutic Modalities. , 2021, , .			0
631	Clinical determinants of relapse following CAR-T therapy for hematologic malignancies active strategies to overcome therapeutic limitations. Current Research in Translationa 2022, 70, 103320.	: Coupling Il Medicine,	1.2	9
632	Is There a Role for Immunotherapy in Central Nervous System Cancers?. Hematology/C of North America, 2022, 36, 237-252.	Incology Clinics	0.9	5
633	HER2-specific chimeric antigen receptor-T cells for targeted therapy of metastatic colo Cell Death and Disease, 2021, 12, 1109.	rectal cancer.	2.7	24
635	Neurosurgery at the crossroads of immunology and nanotechnology. New reality in the pandemic. Advanced Drug Delivery Reviews, 2022, 181, 114033.	2 COVID-19	6.6	5
636	Genetically Modified Cellular Therapies for Malignant Gliomas. International Journal of Sciences, 2021, 22, 12810.	Molecular	1.8	9
637	A review of neurotoxicities associated with immunotherapy and a framework for evalu Neuro-Oncology Advances, 2021, 3, v108-v120.	ation.	0.4	6
638	Associação Brasileira de Hematologia, Hematologia, Hemoterapia e Terapia Celular genetically modified cells. Review article: Cell therapy in solid tumors. Hematology, Tra Cell Therapy, 2021, 43, S78-S83.		0.1	1
639	Epitope spreading driven by the joint action of CART cells and pharmacological STING scounteracts tumor escape via antigen-loss variants. , 2021, 9, e003351.	stimulation		14
640	Emerging Approaches for Solid Tumor Treatment Using CAR-T Cell Therapy. Internatior Molecular Sciences, 2021, 22, 12126.	al Journal of	1.8	8
641	Using chimeric antigen receptor T-cell therapy to fight glioblastoma multiforme: past, j future developments. Journal of Neuro-Oncology, 2022, 156, 81-96.	present and	1.4	9
642	For whom the T cells troll? Bispecific T-cell engagers in glioblastoma. , 2021, 9, e00367	'9 .		11
643	Enhancing CAR-T Cell Therapy with Functional Nucleic Acids. ACS Pharmacology and To Science, 2021, 4, 1716-1727.	ranslational	2.5	5

#	Article	IF	CITATIONS
644	Deleting DNMT3A in CAR T cells prevents exhaustion and enhances antitumor activity. Science Translational Medicine, 2021, 13, eabh0272.	5.8	123
645	Genetic ablation of PRDM1 in antitumor T cells enhances therapeutic efficacy of adoptive immunotherapy. Blood, 2022, 139, 2156-2172.	0.6	33
646	Antigen multimers: Specific, sensitive, precise, and multifunctional high-avidity CAR-staining reagents. Matter, 2021, 4, 3917-3940.	5.0	4
647	CAR T cells in immunotherapy. Oncolog-Hematolog Ro, 2021, 3, 22.	0.0	0
648	Novel adapter CAR-T cell technology for precisely controllable multiplex cancer targeting. Oncolmmunology, 2021, 10, .	2.1	16
649	TMEM158 promotes the proliferation and migration of glioma cells via STAT3 signaling in glioblastomas. Cancer Gene Therapy, 2022, 29, 1117-1129.	2.2	14
650	Improving the ability of CAR-T cells to hit solid tumors: Challenges and strategies. Pharmacological Research, 2022, 175, 106036.	3.1	31
651	A BAFF ligand-based CAR-T cell targeting three receptors and multiple B cell cancers. Nature Communications, 2022, 13, 217.	5.8	27
652	GPC2-CAR TÂcells tuned for low antigen density mediate potent activity against neuroblastoma without toxicity. Cancer Cell, 2022, 40, 53-69.e9.	7.7	60
653	Targeting immunoliposomes to EGFR-positive glioblastoma. ESMO Open, 2022, 7, 100365.	2.0	42
654	Expanding the role of interventional oncology for advancing precision immunotherapy of solid tumors. Molecular Therapy - Oncolytics, 2022, 24, 194-204.	2.0	7
655	Immunotherapy for Neuro-oncology. Advances in Experimental Medicine and Biology, 2021, 1342, 233-258.	0.8	4
656	CAR-T cells for pediatric brain tumors: Present and future. Bulletin Du Cancer, 2021, 108, S109-S116.	0.6	1
658	CAR-T Plus Radiotherapy: A Promising Combination for Immunosuppressive Tumors. Frontiers in Immunology, 2021, 12, 813832.	2.2	15
659	CD70 as an actionable immunotherapeutic target in recurrent glioblastoma and its microenvironment. , 2022, 10, e003289.		31
660	The Road to CAR T-Cell Therapies for Pediatric CNS Tumors: Obstacles and New Avenues. Frontiers in Oncology, 2022, 12, 815726.	1.3	1
661	In vivo imaging of nanoparticle-labeled CAR T cells. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	40
662	Dose-dependent thresholds of dexamethasone destabilize CAR T-cell treatment efficacy. PLoS Computational Biology, 2022, 18, e1009504.	1.5	8

#	Article	IF	CITATIONS
663	Triggering anti-GBM immune response with EGFR-mediated photoimmunotherapy. BMC Medicine, 2022, 20, 16.	2.3	15
665	A Systematic Review on PD-1 Blockade and PD-1 Gene-Editing of CAR-T Cells for Glioma Therapy: From Deciphering to Personalized Medicine. Frontiers in Immunology, 2021, 12, 788211.	2.2	5
666	Chimeric Antigen Receptor T-Cell Therapy in Metastatic Castrate-Resistant Prostate Cancer. Cancers, 2022, 14, 503.	1.7	21
667	The current landscape of immunotherapy for pediatric brain tumors. Nature Cancer, 2022, 3, 11-24.	5.7	21
668	Human epidermal growth factor receptor 2 (HER2)-specific chimeric antigen receptor (CAR) for tumor immunotherapy; recent progress. Stem Cell Research and Therapy, 2022, 13, 40.	2.4	28
669	Strategies for Improving the Efficacy of CAR T Cells in Solid Cancers. Cancers, 2022, 14, 571.	1.7	12
670	Chimeric antigen receptor engineered T cells and their application in the immunotherapy of solid tumours. Expert Reviews in Molecular Medicine, 2022, 24, e7.	1.6	8
671	Immunotherapeutic treatments for spinal and peripheral nerve tumors: a primer. Neurosurgical Focus, 2022, 52, E8.	1.0	1
672	Glioma Immunotherapy: Advances and Challenges for Spinal Cord Gliomas. Neurospine, 2022, , .	1.1	11
673	Advances in Immunotherapies for Gliomas. Current Neurology and Neuroscience Reports, 2022, 22, 1-10.	2.0	9
674	IL-13Rα2 humanized scFv-based CAR-T cells exhibit therapeutic activity against glioblastoma. Molecular Therapy - Oncolytics, 2022, 24, 443-451.	2.0	8
675	Current Immunotherapeutic Approaches for Malignant Gliomas. Brain Tumor Research and Treatment, 2022, 10, 1.	0.4	5
676	Light ontrollable Binary Switch Activation of CAR T Cells. ChemMedChem, 2022, 17, .	1.6	5
677	Glioma targeted therapy: insight into future of molecular approaches. Molecular Cancer, 2022, 21, 39.	7.9	274
678	The War Is on: The Immune System against Glioblastoma—How Can NK Cells Drive This Battle?. Biomedicines, 2022, 10, 400.	1.4	5
679	Recent advances in the prevention and management of cytokine release syndrome after chimeric antigen receptor T-cell therapy. European Journal of Inflammation, 2022, 20, 1721727X2210787.	0.2	Ο
680	CAR T Cell Immunotherapy Beyond Haematological Malignancy. Immune Network, 2022, 22, e6.	1.6	11
682	Controlling Cell Trafficking: Addressing Failures in CAR T and NK Cell Therapy of Solid Tumours. Cancers, 2022, 14, 978.	1.7	12

#	Article	IF	CITATIONS
683	CAR T Cell Therapy in Primary Brain Tumors: Current Investigations and the Future. Frontiers in Immunology, 2022, 13, 817296.	2.2	35
684	Defined tumor antigen-specific T cells potentiate personalized TCR-T cell therapy and prediction of immunotherapy response. Cell Research, 2022, 32, 530-542.	5.7	54
685	Innovating Strategies and Tailored Approaches in Neuro-Oncology. Cancers, 2022, 14, 1124.	1.7	3
686	Comprehensive BCMA Expression Profiling in Adult Normal Human Brain Suggests a Low Risk of On-target Neurotoxicity in BCMA-targeting Multiple Myeloma Therapy. Journal of Histochemistry and Cytochemistry, 2022, 70, 273-287.	1.3	8
687	Autologous, lentivirusâ€modified, Tâ€rapa cell "micropharmacies†for lysosomal storage disorders. EMBO Molecular Medicine, 2022, 14, e14297.	3.3	5
688	A Bibliometric and Knowledge-Map Analysis of CAR-T Cells From 2009 to 2021. Frontiers in Immunology, 2022, 13, 840956.	2.2	30
689	PSMA-targeting TGFβ-insensitive armored CAR T cells in metastatic castration-resistant prostate cancer: a phase 1 trial. Nature Medicine, 2022, 28, 724-734.	15.2	171
690	Preclinical Evaluation of CAR T Cell Function: In Vitro and In Vivo Models. International Journal of Molecular Sciences, 2022, 23, 3154.	1.8	15
691	Enhancement of CD70-specific CAR T treatment by IFN-Î ³ released from oHSV-1-infected glioblastoma. Cancer Immunology, Immunotherapy, 2022, 71, 2433-2448.	2.0	11
693	Engineering Our Future: Advancing Cell and Gene Therapy in Neurosurgery. Neurosurgery, 2022, 68, 11-16.	0.6	0
694	GMP-Compliant Manufacturing of TRUCKs: CAR T Cells targeting GD2 and Releasing Inducible IL-18. Frontiers in Immunology, 2022, 13, 839783.	2.2	20
695	In situ antigen modification-based target-redirected universal chimeric antigen receptor T (TRUE) Tj ETQq1 10.78	4314 rgBT 6.9	- Overlock 1
696	Immunotherapy of glioblastoma: Recent advances and future prospects. Human Vaccines and Immunotherapeutics, 2022, 18, 1-16.	1.4	29
697	Bispecific Antibody Expressed by an Oncolytic Herpes Simplex Virus Type 2 Can Transform Heterologous T Cells Into Uniform Tumor Killer Cells. Human Gene Therapy, 2022, 33, 649-663.	1.4	5
698	Enhancing CAR T function with the engineered secretion of C.Âperfringens neuraminidase. Molecular Therapy, 2022, 30, 1201-1214.	3.7	7
699	T lymphocytes as dynamic regulators of glioma pathobiology. Neuro-Oncology, 2022, 24, 1647-1657.	0.6	18
700	To go or not to go? Biological logic gating engineered T cells. , 2022, 10, e004185.		18
701	Recent Advances in the Therapeutic Strategies of Glioblastoma Multiforme. Neuroscience, 2022, 491, 240-270.	1.1	22

		CITATION R	itation Report		
#	Article		IF	Citations	
702	Pharmacotherapeutic Treatment of Glioblastoma: Where Are We to Date?. Drugs, 202	2, 82, 491-510.	4.9	18	
703	Hurdles to breakthrough in CAR T cell therapy of solid tumors. Stem Cell Research and 13, 140.	Therapy, 2022,	2.4	20	
704	Directing CAR T cells towards the tumor vasculature for the treatment of solid tumors. Et Biophysica Acta: Reviews on Cancer, 2022, 1877, 188701.	. Biochimica	3.3	12	
705	CAR TÂcell therapy and the tumor microenvironment: Current challenges and opportu Molecular Therapy - Oncolytics, 2022, 25, 69-77.	nities.	2.0	60	
706	A quantitative view of strategies to engineer cell-selective ligand binding. Integrative B	iology (United) Tj ETQq0	0 0 rgBT /0	Overlock 10 Tf	

707	Tumor treating fields: a comprehensive overview of the underlying molecular mechanism. Expert Review of Molecular Diagnostics, 2022, 22, 19-28.	1.5	12
708	A Novel Peptide-MHC Targeted Chimeric Antigen Receptor T Cell Forms a T Cell-like Immune Synapse. Biomedicines, 2021, 9, 1875.	1.4	4
709	Immunotherapy against Gliomas. , 0, , .		0
710	Single-Cell Analysis of Target Antigens of CAR-T Reveals a Potential Landscape of "On-Target, Off-Tumor Toxicity― Frontiers in Immunology, 2021, 12, 799206.	2.2	22
711	The safety and efficacy of CAR-T cells in the treatment of prostate cancer: review. Biomarkers, 2022, 27, 22-34.	0.9	1
712	Immunotherapy Resistance in Glioblastoma. Frontiers in Genetics, 2021, 12, 750675.	1.1	13
713	Addressing the obstacles of CAR T cell migration in solid tumors: wishing a heavy traffic. Critical Reviews in Biotechnology, 2022, 42, 1079-1098.	5.1	15
714	Cancer-Homing CAR-T Cells and Endogenous Immune Population Dynamics. International Journal of Molecular Sciences, 2022, 23, 405.	1.8	11
715	NK Cells Armed with Chimeric Antigen Receptors (CAR): Roadblocks to Successful Development. Cells, 2021, 10, 3390.	1.8	17
716	Advances in Immunotherapy for the Treatment of Adult Glioblastoma: Overcoming Chemical and Physical Barriers. Cancers, 2022, 14, 1627.	1.7	7
717	Target isoforms are an overlooked challenge and opportunity in chimeric antigen receptor cell therapy. Immunotherapy Advances, 2022, 2, .	1.2	7
718	Emerging therapies for glioblastoma: current state and future directions. Journal of Experimental and Clinical Cancer Research, 2022, 41, 142.	3.5	103
719	Emerging Biomarkers for Immunotherapy in Glioblastoma. Cancers, 2022, 14, 1940.	1.7	6

#	Article	IF	CITATIONS
720	Next-Generation CAR T-cell Therapies. Cancer Discovery, 2022, 12, 1625-1633.	7.7	53
721	Targeting brain lesions of non-small cell lung cancer by enhancing CCL2-mediated CAR-T cell migration. Nature Communications, 2022, 13, 2154.	5.8	25
722	Reprogramming the tumor microenvironment by genome editing for precision cancer therapy. Molecular Cancer, 2022, 21, 98.	7.9	36
738	Glioblastoma: The Current State of Biology and Therapeutic Strategies. Cancer Research, 2022, 82, 769-772.	0.4	9
739	Chimeric Antigen Receptor (CAR) T Cell Therapy for Glioblastoma. Cancer Treatment and Research, 2022, 183, 161-184.	0.2	2
740	Advances in Chimeric Antigen Receptor (CAR) T-Cell Therapies for the Treatment of Primary Brain Tumors. Antibodies, 2022, 11, 31.	1.2	4
741	Glioblastoma: Pitfalls and Opportunities of Immunotherapeutic Combinations. OncoTargets and Therapy, 2022, Volume 15, 437-468.	1.0	11
742	A Conceptual Framework for Inducing T Cell-Mediated Immunity Against Glioblastoma. Seminars in Immunopathology, 2022, 44, 697-707.	2.8	5
743	BOXR1030, an anti-GPC3 CAR with exogenous GOT2 expression, shows enhanced T cell metabolism and improved anti-cell line derived tumor xenograft activity. PLoS ONE, 2022, 17, e0266980.	1.1	12
745	Olfactory Receptor OR2H1 Is an Effective Target for CAR T Cells in Human Epithelial Tumors. Molecular Cancer Therapeutics, 2022, 21, 1184-1194.	1.9	12
746	Intrathecal delivery and its applications in leptomeningeal disease. Advanced Drug Delivery Reviews, 2022, 186, 114338.	6.6	9
747	Comprehensive Analysis of Sterol O-Acyltransferase 1 as a Prognostic Biomarker and Its Association With Immune Infiltration in Glioma. Frontiers in Oncology, 2022, 12, .	1.3	6
748	PD1 Expression in EGFRvIII-Directed CAR T Cell Infusion Product for Glioblastoma Is Associated with Clinical Response. Frontiers in Immunology, 2022, 13, .	2.2	10
749	Recent Advances in Solid Tumor CAR-T Cell Therapy: Driving Tumor Cells From Hero to Zero?. Frontiers in Immunology, 2022, 13, .	2.2	31
750	Metabolism in the progression and metastasis of brain tumors. Cancer Letters, 2022, 539, 215713.	3.2	14
751	Spatial organization of heterogeneous immunotherapy target antigen expression in high-grade glioma. Neoplasia, 2022, 30, 100801.	2.3	2
752	Locally secreted BiTEs complement CAR TÂcells by enhancing killing of antigen heterogeneous solid tumors. Molecular Therapy, 2022, 30, 2537-2553.	3.7	32
753	è",è [≁] 纳米颗粒(LNP)-mRNA体内递é€ç³»ç»Ÿåœ¨CAR-T细胞ä¸çš"ç"究进展. Zhejiang Da Xue Xue Bac 2022, , .) Yi Xue Ba	in $=$ Journal \circ

#	Article	IF	CITATIONS
754	Time 2EVOLVE: predicting efficacy of engineered T-cells – how far is the bench from the bedside?. , 2022, 10, e003487.		13
755	嵌å•̂抗原å⊷ä¼′2"Tç»†èƒžç——æ³•åœ¨æ²»ç——æ¶æ€§å®žä¼′2"è,¿ç~¤çsŏ"äֻ′床ç"ç©¶èį›å±•. Zhejiang Da Xue	Xuæ Bao N	′i Xoue Ban = J
756	Resection of Noncontrast-Enhancing Regions Deteriorated the Immunotherapeutic Efficacy of HSPPC-96 Vaccination in Treating Glioblastoma. Frontiers in Oncology, 2022, 12, .	1.3	0
757	NKG2C+ NK Cells for Immunotherapy of Glioblastoma Multiforme. International Journal of Molecular Sciences, 2022, 23, 5857.	1.8	9
758	Dialogue among Lymphocytes and Microglia in Glioblastoma Microenvironment. Cancers, 2022, 14, 2632.	1.7	3
759	Updates in IDH-Wildtype Glioblastoma. Neurotherapeutics, 2022, 19, 1705-1723.	2.1	26
760	Clioblastoma, an opportunity T cell trafficking could bring for the treatment. Molecular Biology Reports, 0, , .	1.0	4
761	Safety and Efficacy of Chimeric Antigen Receptor T-Cell Therapy for Glioblastoma: A Systemic Review and Meta-Analysis. Frontiers in Oncology, 0, 12, .	1.3	6
762	The future of cancer immunotherapy for brain tumors: a collaborative workshop. Journal of Translational Medicine, 2022, 20, .	1.8	7
763	CAR-T cells for cancer immunotherapy—the barriers ahead and the pathsÂthrough. International Reviews of Immunology, 2022, 41, 567-581.	1.5	1
764	Mechanism and therapeutic potential of tumor-immune symbiosis in glioblastoma. Trends in Cancer, 2022, 8, 839-854.	3.8	23
765	The Intricate Epigenetic and Transcriptional Alterations in Pediatric High-Grade Gliomas: Targeting the Crosstalk as the Oncogenic Achilles' Heel. Biomedicines, 2022, 10, 1311.	1.4	3
766	Current and future perspectives of chimeric antigen receptors against glioblastoma. Immunotherapy Advances, 2022, 2, .	1.2	3
767	Challenges in glioblastoma immunotherapy: mechanisms of resistance and therapeutic approaches to overcome them. British Journal of Cancer, 2022, 127, 976-987.	2.9	26
768	Application of blood brain barrier models in pre-clinical assessment of glioblastoma-targeting CAR-T based immunotherapies. Fluids and Barriers of the CNS, 2022, 19, .	2.4	8
769	Drug Delivery Systems in the Development of Novel Strategies for Glioblastoma Treatment. Pharmaceutics, 2022, 14, 1189.	2.0	6
770	A multimodal imaging workflow for monitoring CAR T cell therapy against solid tumor from whole-body to single-cell level. Theranostics, 2022, 12, 4834-4850.	4.6	5
771	Neurosurgical Clinical Trials for Glioblastoma: Current and Future Directions. Brain Sciences, 2022, 12, 787.	1.1	3

#	Article	IF	CITATIONS
772	Combining locoregional CAR-T cells, autologous + allogeneic tumor lysate vaccination and levamisole in treatment of glioblastoma. Immunopharmacology and Immunotoxicology, 2022, 44, 797-808.	1.1	1
773	Synthetic Immunotherapy: Programming Immune Cells with Novel and Sophisticated Logic Capabilities. Transplantation and Cellular Therapy, 2022, 28, 560-571.	0.6	4
774	Brain cancer stem cells: resilience through adaptive plasticity and hierarchical heterogeneity. Nature Reviews Cancer, 2022, 22, 497-514.	12.8	40
775	Epidermal Growth Factor Receptor Variant III Mutation, an Emerging Molecular Marker in Glioblastoma Multiforme Patients: A Single Institution Study on the Indian Population. Cureus, 2022, ,	0.2	1
776	Glioblastoma Treatment: State-of-the-Art and Future Perspectives. International Journal of Molecular Sciences, 2022, 23, 7207.	1.8	38
777	Immunotherapy in Glioblastoma: Current Approaches and Future Perspectives. International Journal of Molecular Sciences, 2022, 23, 7046.	1.8	19
778	Translational landscape of glioblastoma immunotherapy for physicians: guiding clinical practice with basic scientific evidence. Journal of Hematology and Oncology, 2022, 15, .	6.9	23
779	From Anti-HER-2 to Anti-HER-2-CAR-T Cells: An Evolutionary Immunotherapy Approach for Gastric Cancer. Journal of Inflammation Research, 0, Volume 15, 4061-4085.	1.6	1
780	Clinical Investigations of CAR-T Cell Therapy for Solid Tumors. Frontiers in Immunology, 0, 13, .	2.2	8
781	Impact of molecular and clinical variables on survival outcome with immunotherapy for glioblastoma patients: A systematic review and metaâ€analysis. CNS Neuroscience and Therapeutics, 2022, 28, 1476-1491.	1.9	5
782	Natural killer cell awakening: unleash cancer-immunity cycle against glioblastoma. Cell Death and Disease, 2022, 13, .	2.7	15
783	Challenges in the Treatment of Glioblastoma by Chimeric Antigen Receptor T-Cell Immunotherapy and Possible Solutions. Frontiers in Immunology, 0, 13, .	2.2	6
784	Barriers and Opportunities for CAR T-Cell Targeting of Solid Tumors. Immunological Investigations, 2022, 51, 2215-2225.	1.0	5
785	Immunotherapy of glioblastoma explants induces interferon- \hat{I}^3 responses and spatial immune cell rearrangements in tumor center, but not periphery. Science Advances, 2022, 8, .	4.7	24
786	CAR T-Cell-Based gene therapy for cancers: new perspectives, challenges, and clinical developments. Frontiers in Immunology, 0, 13, .	2.2	48
787	Efficacy of cancer-specific anti-podoplanin CAR-T cells and oncolytic herpes virus G47Δ combination therapy against glioblastoma. Molecular Therapy - Oncolytics, 2022, 26, 265-274.	2.0	30
788	Mechanisms of immune effector <scp>cellâ€associated</scp> neurotoxicity syndrome after <scp>CARâ€T</scp> treatment. WIREs Mechanisms of Disease, 2022, 14, .	1.5	5
789	Site-Specific Considerations on Engineered T Cells for Malignant Gliomas. Biomedicines, 2022, 10, 1738.	1.4	7

#	Article	IF	CITATIONS
790	Small Molecules and Immunotherapy Agents for Enhancing Radiotherapy in Glioblastoma. Biomedicines, 2022, 10, 1763.	1.4	4
791	Design and Validation of Inducible TurboCARs with Tunable Induction and Combinatorial Cytokine Signaling. Cancer Immunology Research, 2022, 10, 1069-1083.	1.6	5
792	Programmable Attenuation of Antigenic Sensitivity for a Nanobody-Based EGFR Chimeric Antigen Receptor Through Hinge Domain Truncation. Frontiers in Immunology, 0, 13, .	2.2	8
793	The Regulatory Effects of MicroRNAs on Tumor Immunity. BioMed Research International, 2022, 2022, 1-12.	0.9	2
794	Future development of chimeric antigen receptor T cell therapies for patients suffering from malignant glioma. Current Opinion in Oncology, 2022, 34, 661-669.	1.1	1
795	Establishment of an efficient exÂvivo expansion strategy for human natural killer cells stimulated by defined cytokine cocktail and antibodies against natural killer cell activating receptors. Regenerative Therapy, 2022, 21, 185-191.	1.4	10
796	Cancer Immunotherapy: Diverse Approaches and Obstacles. Current Pharmaceutical Design, 2022, 28, 2387-2403.	0.9	4
797	Living biobank-based cancer organoids: prospects and challenges in cancer research. Cancer Biology and Medicine, 2022, 19, 965-982.	1.4	9
798	Immunology Meets Bioengineering: Improving the Effectiveness of Glioblastoma Immunotherapy. Cancers, 2022, 14, 3698.	1.7	8
799	Multiepitope supramolecular peptide nanofibers eliciting coordinated humoral and cellular antitumor immune responses. Science Advances, 2022, 8, .	4.7	10
800	Reshaping the tumor microenvironment with oncolytic viruses, positive regulation of the immune synapse, and blockade of the immunosuppressive oncometabolic circuitry. , 2022, 10, e004935.		19
801	CAR-T Immunotherapy to Beat Solid Tumors: From Challenges to Improvements. , 0, 8, 54-63.		0
802	Understanding CAR TÂcell-tumor interactions: Paving the way for successful clinical outcomes. Med, 2022, 3, 538-564.	2.2	11
803	Pediatric Diffuse Midline Gliomas: An Unfinished Puzzle. Diagnostics, 2022, 12, 2064.	1.3	20
804	Current progress in CAR‑T cell therapy for tumor treatment (Review). Oncology Letters, 2022, 24, .	0.8	7
805	Anti-Fn14-Conjugated Prussian Blue Nanoparticles as a Targeted Photothermal Therapy Agent for Glioblastoma. Nanomaterials, 2022, 12, 2645.	1.9	8
806	Emerging roles of ferroptosis in glioma. Frontiers in Oncology, 0, 12, .	1.3	6
807	Single-cell transcriptomics reveals shared immunosuppressive landscapes of mouse and human neuroblastoma. , 2022, 10, e004807.		8

#	Article	IF	CITATIONS
808	Immunogenic Cell Death Enhances Immunotherapy of Diffuse Intrinsic Pontine Glioma: From Preclinical to Clinical Studies. Pharmaceutics, 2022, 14, 1762.	2.0	4
809	Combinatorial approaches to effective therapy in glioblastoma (GBM): Current status and what the future holds. International Reviews of Immunology, 2022, 41, 582-605.	1.5	12
810	The multifaceted mechanisms of malignant glioblastoma progression and clinical implications. Cancer and Metastasis Reviews, 2022, 41, 871-898.	2.7	8
811	Combined treatment with epigenetic agents enhances anti-tumor activity of MACE-D4 peptide-specific T cells by upregulating the MACE-D4 expression in glioma. Frontiers in Oncology, 0, 12, .	1.3	3
812	Recurrent Clioblastoma Treatment: State of the Art and Future Perspectives in the Precision Medicine Era. Biomedicines, 2022, 10, 1927.	1.4	16
813	Cancer vaccines: the next immunotherapy frontier. Nature Cancer, 2022, 3, 911-926.	5.7	207
814	Induced expression of CCL19 promotes the anti-tumor ability of CAR-T cells by increasing their infiltration ability. Frontiers in Immunology, 0, 13, .	2.2	2
815	Emerging immune-based technologies for high-grade gliomas. Expert Review of Anticancer Therapy, 2022, 22, 957-980.	1.1	1
816	CAR T cells targeting the ganglioside NGcGM3 control ovarian tumors in the absence of toxicity against healthy tissues. Frontiers in Immunology, 0, 13, .	2.2	2
818	Poor correlation between preclinical and patient efficacy data for tumor targeted monotherapies in glioblastoma: the results of a systematic review. Journal of Neuro-Oncology, 2022, 159, 539-549.	1.4	6
819	Advanced Cell Therapies for Glioblastoma. Frontiers in Immunology, 0, 13, .	2.2	7
820	GPC3-targeted CAR-T cells secreting B7H3-targeted BiTE exhibit potent cytotoxicity activity against hepatocellular carcinoma cell in the in vitro assay. Biochemistry and Biophysics Reports, 2022, 31, 101324.	0.7	3
821	NKp44-based chimeric antigen receptor effectively redirects primary T cells against synovial sarcoma. Translational Oncology, 2022, 25, 101521.	1.7	1
822	CAR-T-Cell Therapy for Solid Tumors Positive for Fibronectin Extra Domain B. Cells, 2022, 11, 2863.	1.8	3
823	Overcoming T-cell exhaustion in glioblastoma: A narrative review. Glioma (Mumbai, India), 2022, 5, 56.	0.0	0
824	The Interface of Cancer, Their Microenvironment and Nanotechnology. Oncologie, 2022, 24, 371-411.	0.2	2
825	Chimeric antigen receptor T cell therapy for cancer: clinical applications and practical considerations. BMJ, The, 0, , e068956.	3.0	4
827	All-trans retinoic acid works synergistically with the γ-secretase inhibitor crenigacestat to augment BCMA on multiple myeloma and the efficacy of BCMA-CAR T cells. Haematologica, 2023, 108, 568-580.	1.7	7

#	Article	IF	CITATIONS
828	Multifunctional mRNA-Based CAR T Cells Display Promising Antitumor Activity Against Glioblastoma. Clinical Cancer Research, 2022, 28, 4747-4756.	3.2	28
829	Development of GPC2-directed chimeric antigen receptors using mRNA for pediatric brain tumors. , 2022, 10, e004450.		16
830	Rethinking cancer targeting strategies in the era of smart cell therapeutics. Nature Reviews Cancer, 2022, 22, 693-702.	12.8	21
831	Recent Advances in Glioma Cancer Treatment: Conventional and Epigenetic Realms. Vaccines, 2022, 10, 1448.	2.1	3
832	Characterization and Treatment of Spinal Tumors. Intensive Care Research, 2022, 2, 76-95.	0.2	6
833	EGFR, the Lazarus target for precision oncology in glioblastoma. Neuro-Oncology, 2022, 24, 2035-2062.	0.6	16
834	LY6G6D is a selectively expressed colorectal cancer antigen that can be used for targeting a therapeutic T-cell response by a T-cell engager. Frontiers in Immunology, 0, 13, .	2.2	2
835	Development of immunotherapy for high-grade gliomas: Overcoming the immunosuppressive tumor microenvironment. Frontiers in Medicine, 0, 9, .	1.2	10
836	CAR-T Cell Therapy for Solid Tumors: Are we Still That Far? a Systematic Review of Literature. Cancer Investigation, 2022, 40, 923-937.	0.6	4
837	The Interplay of Tumor Vessels and Immune Cells Affects Immunotherapy of Glioblastoma. Biomedicines, 2022, 10, 2292.	1.4	6
838	High-performance multiplex drug-gated CAR circuits. Cancer Cell, 2022, 40, 1294-1305.e4.	7.7	33
839	Current and promising treatment strategies in glioma. Reviews in the Neurosciences, 2022, .	1.4	3
840	Glioblastoma microenvironment and its reprogramming by oncolytic virotherapy. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	7
841	Engaging innate immunity for targeting the epidermal growth factor receptor: Therapeutic options leveraging innate immunity versus adaptive immunity versus inhibition of signaling. Frontiers in Oncology, 0, 12, .	1.3	3
842	Paving the road to make chimeric antigen receptorâ€Tâ€cell therapy effective against solid tumors. Cancer Science, 2022, 113, 4020-4029.	1.7	2
843	Immunotherapy approaches for the treatment of diffuse midline gliomas. Oncolmmunology, 2022, 11, .	2.1	18
844	Chimeric Antigen Receptor (CAR) T-cell Therapy: A New Genetically Engineered Method of Immunotherapy for Cancer. Current Cancer Drug Targets, 2022, 22, .	0.8	1
845	GD2-targeting CAR-T cells enhanced by transgenic IL-15 expression are an effective and clinically feasible therapy for glioblastoma. , 2022, 10, e005187.		30

#	Article	IF	CITATIONS
846	Prospective approaches to enhancing CAR T cell therapy for glioblastoma. Frontiers in Immunology, 0, 13, .	2.2	6
847	Signaling pathways in the regulation of cancer stem cells and associated targeted therapy. MedComm, 2022, 3, .	3.1	14
849	Clinical utility of CAR T cell therapy in brain tumors: Lessons learned from the past, current evidence and the future stakes. International Reviews of Immunology, 0, , 1-19.	1.5	2
850	SLC7A5 is a lung adenocarcinoma-specific prognostic biomarker and participates in forming immunosuppressive tumor microenvironment. Heliyon, 2022, 8, e10866.	1.4	5
851	Spatial transcriptomics technology in cancer research. Frontiers in Oncology, 0, 12, .	1.3	21
852	Chimeric antigen receptor T cells applied to solid tumors. Frontiers in Immunology, 0, 13, .	2.2	9
853	A review of spatial profiling technologies for characterizing the tumor microenvironment in immuno-oncology. Frontiers in Immunology, 0, 13, .	2.2	12
854	Tumor buster - where will the CAR-T cell therapy â€ [~] missile' go?. Molecular Cancer, 2022, 21, .	7.9	23
855	Advances and Hurdles in CAR T Cell Immune Therapy for Solid Tumors. Cancers, 2022, 14, 5108.	1.7	9
856	Clinical and Translational Advances in Glioma Immunotherapy. Neurotherapeutics, 2022, 19, 1799-1817.	2.1	14
857	Enhanced radiation-induced immunogenic cell death activates chimeric antigen receptor T cells by targeting CD39 against glioblastoma. Cell Death and Disease, 2022, 13, .	2.7	11
858	The Oncogenesis of Clial Cells in Diffuse Gliomas and Clinical Opportunities. Neuroscience Bulletin, 2023, 39, 393-408.	1.5	2
859	The affinity of antigen-binding domain on the antitumor efficacy of CAR T cells: Moderate is better. Frontiers in Immunology, 0, 13, .	2.2	17
860	Chimeric Antigen Receptor Immunotherapy for Solid Tumors: Choosing the Right Ingredients for the Perfect Recipe. Cancers, 2022, 14, 5351.	1.7	1
861	Advances in immunotherapy for glioblastoma multiforme. Frontiers in Immunology, 0, 13, .	2.2	24
862	EGFR as a potent CAR T target in triple negative breast cancer brain metastases. Breast Cancer Research and Treatment, 2023, 197, 57-69.	1.1	6
863	Immunotherapy approaches for adult glioma: knowledge gained from recent clinical trials. Current Opinion in Neurology, 2022, 35, 803-813.	1.8	7
864	Challenges in glioblastoma research: focus on the tumor microenvironment. Trends in Cancer, 2023, 9, 9-27.	3.8	53

#	Article	IF	CITATIONS
865	The IAP antagonist birinapant enhances chimeric antigen receptor TÂcell therapy for glioblastoma by overcoming antigen heterogeneity. Molecular Therapy - Oncolytics, 2022, 27, 288-304.	2.0	9
866	Identification of glioblastoma-specific antigens expressed in patient-derived tumor cells as candidate targets for chimeric antigen receptor T cell therapy. Neuro-Oncology Advances, 2023, 5, .	0.4	1
867	CAR T-cells for colorectal cancer immunotherapy: Ready to go?. Frontiers in Immunology, 0, 13, .	2.2	11
868	Myeloid cell heterogeneity in the tumor microenvironment and therapeutic implications for childhood central nervous system (CNS) tumors. Journal of Neuroimmunology, 2023, 374, 578009.	1.1	0
869	Immunotherapy for the treatment of pediatric brain tumors: a narrative review. Translational Pediatrics, 2022, 11, 2040-2056.	0.5	2
870	Immunotherapeutic Strategies for Glioma Treatment. , 2022, , .		0
871	CAR-T cell combination therapy: the next revolution in cancer treatment. Cancer Cell International, 2022, 22, .	1.8	23
872	CAR-T cell therapy in triple-negative breast cancer: Hunting the invisible devil. Frontiers in Immunology, 0, 13, .	2.2	24
873	Pediatric versus adult high grade glioma: Immunotherapeutic and genomic considerations. Frontiers in Immunology, 0, 13, .	2.2	6
874	Overcoming on-target, off-tumour toxicity of CAR T cell therapy for solid tumours. Nature Reviews Clinical Oncology, 2023, 20, 49-62.	12.5	74
875	Bottlenecks and opportunities in immunotherapy for glioma: a narrative review. Journal of Bio-X Research, 0, Publish Ahead of Print, .	0.3	0
876	Advances in CAR T cell immunotherapy for paediatric brain tumours. Frontiers in Oncology, 0, 12, .	1.3	3
877	Synthetic Biology in the Engineering of CAR-T and CAR-NK Cell Therapies: Facts and Hopes. Clinical Cancer Research, 2023, 29, 1390-1402.	3.2	6
878	CD8+ T cell exhaustion and cancer immunotherapy. Cancer Letters, 2023, 559, 216043.	3.2	18
879	Tumor Microenvironment and Microvascular Density in Human Glioblastoma. Cells, 2023, 12, 11.	1.8	5
880	Enhancing CAR T-cell therapies against solid tumors: Mechanisms and reversion of resistance. Frontiers in Immunology, 0, 13, .	2.2	6
881	Tandem chimeric antigen receptor (CAR) T cells targeting EGFRvIII and IL-13Rα2 are effective against heterogeneous glioblastoma. Neuro-Oncology Advances, 2023, 5, .	0.4	4
883	Comprehensive clinical evaluation of CAR-T cell immunotherapy for solid tumors: a path moving forward or a dead end?. Journal of Cancer Research and Clinical Oncology, 2023, 149, 2709-2734.	1.2	6

#	Article	IF	CITATIONS
884	Phase I CAR-T Clinical Trials Review. Anticancer Research, 2022, 42, 5673-5684.	0.5	0
885	T cell exhaustion assessment algorism in tumor microenvironment predicted clinical outcomes and immunotherapy effects in glioma. Frontiers in Genetics, 0, 13, .	1.1	0
886	CAR Exosome-Based Therapeutics. , 2023, , 1-14.		0
887	Combination of GD2-directed bispecific trifunctional antibody therapy with Pd-1 immune checkpoint blockade induces anti-neuroblastoma immunity in a syngeneic mouse model. Frontiers in Immunology, 0, 13, .	2.2	2
888	Signaling pathways in brain tumors and therapeutic interventions. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	13
889	Single-cell RNA sequencing reveals changes in glioma-associated macrophage polarization and cellular states of malignant gliomas with high AQP4 expression. Cancer Gene Therapy, 2023, 30, 716-726.	2.2	3
890	Immunotherapy as a New Therapeutic Approach for Brain and Spinal Cord Tumors. Advances in Experimental Medicine and Biology, 2023, , 73-84.	0.8	3
891	Advanced T and Natural Killer Cell Therapy for Glioblastoma. Journal of Korean Neurosurgical Society, 2023, 66, 356-381.	0.5	0
892	Safety and antitumor activity of GD2-Specific 4SCAR-T cells in patients with glioblastoma. Molecular Cancer, 2023, 22, .	7.9	26
893	The Role of Cellular Immunity and Adaptive Immunity in Pathophysiology of Brain and Spinal Cord Tumors. Advances in Experimental Medicine and Biology, 2023, , 51-72.	0.8	0
894	Systemic Treatment in Clioblastoma. , 0, , .		0
895	Chimeric Antigen Receptor T-Cell Therapy for Solid Tumors: The Past and the Future. Journal of Immunotherapy and Precision Oncology, 2023, 6, 19-30.	0.6	1
896	Molecular pathology and clinical implications of diffuse glioma. Chinese Medical Journal, 2022, 135, 2914-2925.	0.9	9
897	The Tumor Immune Microenvironment in Primary CNS Neoplasms: A Review of Current Knowledge and Therapeutic Approaches. International Journal of Molecular Sciences, 2023, 24, 2020.	1.8	4
898	Recurrent Clioblastoma: Ongoing Clinical Challenges and Future Prospects. OncoTargets and Therapy, 0, Volume 16, 71-86.	1.0	6
899	CAR T cells: engineered immune cells to treat brain cancers and beyond. Molecular Cancer, 2023, 22, .	7.9	7
900	The Blood-Brain Barrier: Implications for Experimental Cancer Therapeutics. Annual Review of Cancer Biology, 2023, 7, .	2.3	0
901	Bright future or blind alley? CAR-T cell therapy for solid tumors. Frontiers in Immunology, 0, 14, .	2.2	10

ARTICLE IF CITATIONS # Chimeric antigen receptor-modified cells for the treatment of solid tumors: First steps in a 902 0 thousand-mile march., 2023, , 97-131. Tumor immunology., 2023, , 245-452. 904 T cell exhaustion in malignant gliomas. Trends in Cancer, 2023, 9, 270-292. 3.8 23 Current advances and challenges in CAR T-Cell therapy for solid tumors: tumor-associated antigens and the tumor microenvironment. Experimental Hematology and Oncology, 2023, 12, . Emerging Challenges to Cellular Therapy of Cancer. Cancer Journal (Sudbury, Mass), 2023, 29, 20-27. 906 1.0 2 Reprogramming systemic and local immune function to empower immunotherapy against glioblastoma. 5.8 Nature Communications, 2023, 14, . CAR-cell therapy in the era of solid tumor treatment: current challenges and emerging therapeutic 908 7.9 65 advances. Molecular Cancer, 2023, 22, . Clinical Effects of Immuno-Oncology Therapy on Glioblastoma Patients: A Systematic Review. Brain 909 1.1 Sciences, 2023, 13, 159. Glioblastoma treatment slowly moves toward change: novel druggable targets and translational 910 2.5 0 horizons in 2022. Expert Opinion on Drug Discovery, 2023, 18, 269-286. CARs and Drugs: Pharmacological Ways of Boosting CAR-T-Cell Therapy. International Journal of 1.8 Molecular Sciences, 2023, 24, 2342. Advancing CAR T cell therapy through the use of multidimensional omics data. Nature Reviews 913 12.5 30 Clinical Oncology, 2023, 20, 211-228. 914 Immunotherapies in rare cancers. Molecular Cancer, 2023, 22, . Solid tumours: Building bridges to CARâ€T success. Clinical and Translational Discovery, 2023, 3, . 915 0.2 2 Combating pancreatic cancer with ovarian cancer cells. Aging, 2023, 15, 2189-2207. 1.4 Metabolic challenges and interventions in CAR T cell therapy. Science Immunology, 2023, 8, . 917 5.6 13 CAR T-cells to treat brain tumors. Brain Research Bulletin, 2023, 196, 76-98. 1.4 Natural Killer Cell-Based Immunotherapy against Glioblastoma. International Journal of Molecular 920 1.8 4 Sciences, 2023, 24, 2111. Human antibodies targeting ENPP1 as candidate therapeutics for cancers. Frontiers in Immunology, 0, 2.2 14, .

		TATION REPORT		
#	Article	IF	CITATIONS	
922	Massively parallel knock-in engineering of human T cells. Nature Biotechnology, 2023, 41, 1239-1255.	9.4	11	
923	IL7 and IL7 Flt3L co-expressing CAR T cells improve therapeutic efficacy in mouse EGFRvIII heterogeneous glioblastoma. Frontiers in Immunology, 0, 14, .	2.2	12	
924	A Case Study of Chimeric Antigen Receptor T Cell Function: Donor Therapeutic Differences in Activity and Modulation with Verteporfin. Cancers, 2023, 15, 1085.	1.7	1	
925	IL15 modification enables CAR T cells to act as a dual targeting agent against tumor cells and myeloid-derived suppressor cells in GBM. , 2023, 11, e006239.		10	
926	CAR Based Immunotherapy of Solid Tumours—A Clinically Based Review of Target Antigens. Biology, 2023, 12, 287.	1.3	9	
927	Small-molecule toosendanin reverses macrophage-mediated immunosuppression to overcome glioblastoma resistance to immunotherapy. Science Translational Medicine, 2023, 15, .	5.8	10	
928	Multivalent inÂvivo delivery of DNA-encoded bispecific TÂcell engagers effectively controls heterogeneous GBM tumors and mitigates immune escape. Molecular Therapy - Oncolytics, 2023, 28, 249-263.	2.0	5	
929	Recent Developments in Glioblastoma Therapy: Oncolytic Viruses and Emerging Future Strategies. Viruses, 2023, 15, 547.	1.5	15	
930	CAR-T Therapy in GBM: Current Challenges and Avenues for Improvement. Cancers, 2023, 15, 1249.	1.7	8	
931	Immunotherapy associated central nervous system complications in primary brain tumors. Frontiers in Oncology, 0, 13, .	1.3	2	
932	PHGDH-mediated endothelial metabolism drives glioblastoma resistance to chimeric antigen receptor TÂcell immunotherapy. Cell Metabolism, 2023, 35, 517-534.e8.	7.2	20	
933	TCR-engineered adoptive cell therapy effectively treats intracranial murine glioblastoma. , 2023, 11, e006121.		1	
935	Challenges of Anti-Mesothelin CAR-T-Cell Therapy. Cancers, 2023, 15, 1357.	1.7	8	
937	Increased EGFRvIII Epitope Accessibility after Tyrosine Kinase Inhibitor Treatment of Glioblastoma Cells Creates More Opportunities for Immunotherapy. International Journal of Molecular Sciences, 2023, 24, 4350.	1.8	3	
938	CAR immune cells: design principles, resistance and the next generation. Nature, 2023, 614, 635-648.	13.7	96	
939	CAR T Cell Therapy in Glioblastoma: Overcoming Challenges Related to Antigen Expression. Cancers, 2023, 15, 1414.	1.7	9	
940	Mesothelin-targeting T cells bearing a novel T cell receptor fusion construct (TRuC) exhibit potent antitumor efficacy against solid tumors. Oncolmmunology, 2023, 12, .	2.1	10	
941	Adoptive Immunotherapy Is a Successful Step into Bright Future. , 2022, , 1-16.		0	

#	Article	IF	CITATIONS
942	Myeloidcells in the immunosuppressive microenvironment in glioblastoma: The characteristics and therapeutic strategies. Frontiers in Immunology, 0, 14, .	2.2	1
943	Metabolic Barriers to Glioblastoma Immunotherapy. Cancers, 2023, 15, 1519.	1.7	2
944	CAR-T Cells in the Treatment of Ovarian Cancer: A Promising Cell Therapy. Biomolecules, 2023, 13, 465.	1.8	8
945	Human <scp>EGFRvIII</scp> chimeric antigen receptor T cells demonstrate favorable safety profile and curative responses in orthotopic glioblastoma. Clinical and Translational Immunology, 2023, 12, .	1.7	1
946	Applications and current challenges of chimeric antigen receptor T cells in treating high-grade gliomas in adult and pediatric populations. Immunotherapy, 2023, 15, 383-396.	1.0	1
947	Recent Emerging Immunological Treatments for Primary Brain Tumors: Focus on Chemokine-Targeting Immunotherapies. Cells, 2023, 12, 841.	1.8	3
948	Anti-VEGF therapy improves EGFR-vIII-CAR-T cell delivery and efficacy in syngeneic glioblastoma models in mice. , 2023, 11, e005583.		17
949	Advances in CAR-T Cell Therapy in Head and Neck Squamous Cell Carcinoma. Journal of Clinical Medicine, 2023, 12, 2173.	1.0	6
950	Single-cell transcriptomic atlas-guided development of CAR-T cells for the treatment of acute myeloid leukemia. Nature Biotechnology, 2023, 41, 1618-1632.	9.4	15
952	The current landscape of CAR T-cell therapy for solid tumors: Mechanisms, research progress, challenges, and counterstrategies. Frontiers in Immunology, 0, 14, .	2.2	23
953	The peculiar challenge of bringing CAR-T cells into the brain: Perspectives in the clinical application to the treatment of pediatric central nervous system tumors. Frontiers in Immunology, 0, 14, .	2.2	4
954	Current Challenges and Potential Strategies for Designing a New Generation of Chimeric Antigen Receptor-T cells with High Anti-tumor Activity in Solid Tumors. Current Tissue Microenvironment Reports, 2023, 4, 1-16.	1.3	0
955	Use of phage display biopanning as a tool to design CAR-T cells against glioma stem cells. Frontiers in Oncology, 0, 13, .	1.3	2
956	Immunotherapy for Primary Cancers of Central Nervous System. , 2023, , 1-21.		0
957	The Glioma Immune Landscape: A Double-Edged Sword for Treatment Regimens. Cancers, 2023, 15, 2024.	1.7	8
958	T _{STEM} -like CAR-T cells exhibit improved persistence and tumor control compared with conventional CAR-T cells in preclinical models. Science Translational Medicine, 2023, 15, .	5.8	20
959	Targeting advanced prostate cancer with STEAP1 chimeric antigen receptor T cell and tumor-localized IL-12 immunotherapy. Nature Communications, 2023, 14, .	5.8	15
960	Recent advances and future challenges of tumor vaccination therapy for recurrent glioblastoma. Cell Communication and Signaling, 2023, 21, .	2.7	7

#	Article	IF	Citations
962	Personalised therapeutic approaches to glioblastoma: A systematic review. Frontiers in Medicine, 0, 10,	1.2	4
963	Gene Targets of CAR-T Cell Therapy for Glioblastoma. Cancers, 2023, 15, 2351.	1.7	4
964	Immunotherapy in glioblastoma treatment: Current state and future prospects. World Journal of Clinical Oncology, 0, 14, 138-159.	0.9	13
965	Vector enabled CRISPR gene editing – A revolutionary strategy for targeting the diversity of brain pathologies. Coordination Chemistry Reviews, 2023, 487, 215172.	9.5	0
966	Understanding the activity of antibody–drug conjugates in primary and secondary brain tumours. Nature Reviews Clinical Oncology, 2023, 20, 372-389.	12.5	18
988	Impact of CAR-T cell therapy on treating viral infections: unlocking the door to recovery. Human Cell, 2023, 36, 1839-1842.	1.2	1
1020	Tumor-associated macrophage-related strategies for glioma immunotherapy. Npj Precision Oncology, 2023, 7, .	2.3	5
1032	Revolutionizing cancer treatment: a comprehensive review of CAR-T cell therapy. , 2023, 40, .		3
1039	From signalling pathways to targeted therapies: unravelling glioblastoma's secrets and harnessing two decades of progress. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	3
1042	Cancer Immunotherapy. , 2023, , 121-154.		0
1043	Gene Editing and Gene Therapy in Oncology. , 2023, , 155-180.		4
1048	Potential of Biotechnology in Cancer Management. , 2023, , 9-44.		0
1050	Brain Tumors: Types, Diagnostic Biomarkers, and New Therapeutic Approaches. , 2023, , 1-21.		0
1060	CAR T cell therapy for patients with solid tumours: key lessons to learn and unlearn. Nature Reviews Clinical Oncology, 2024, 21, 47-66.	12.5	14
1062	Neurotoxicity of Cancer Immunotherapies Including CAR T Cell Therapy. Current Neurology and Neuroscience Reports, 0, , .	2.0	0
1079	Recent advances and current challenges in CAR-T cell therapy. Biotechnology Letters, 2024, 46, 115-126.	1.1	0
1085	CAR-T cell therapy: a game-changer in cancer treatment and beyond. Clinical and Translational Oncology, 0, , .	1.2	0
1087	Advances in antigenic vaccines for glioblastoma. , 2024, , .		0

ARTICLE

IF CITATIONS