Catalytic Asymmetric Oxygenations with the Environm H₂O₂ and O₂

Chemical Reviews 117, 11406-11459

DOI: 10.1021/acs.chemrev.7b00167

Citation Report

#	Article	IF	CITATIONS
1	Manganese complex-catalyzed oxidation and oxidative kinetic resolution of secondary alcohols by hydrogen peroxide. Chemical Science, 2017, 8, 7476-7482.	3.7	49
2	Superparamagnetic nanoparticles as a recyclable catalyst: a new access to phenol esters <i>via</i> cross dehydrogenative coupling reactions. RSC Advances, 2017, 7, 55756-55766.	1.7	5
3	Green Organocatalytic Oxidative Methods using Activated Ketones. ChemCatChem, 2018, 10, 2521-2535.	1.8	43
4	Palladium-catalyzed aerobic regio- and stereo-selective olefination reactions of phenols and acrylates <i>via</i> direct dehydrogenative C(sp ²)–O cross-coupling. Chemical Communications, 2018, 54, 4437-4440.	2.2	6
5	Enhanced visible light photocatalytic activity of g-C3N4assisted by hydrogen peroxide. Materials Research Express, 2018, 5, 046203.	0.8	2
6	Amphoteric reactivity of metal–oxygen complexes in oxidation reactions. Coordination Chemistry Reviews, 2018, 365, 41-59.	9.5	85
7	Copper-Catalyzed Oxidative Carbon–Carbon and/or Carbon–Heteroatom Bond Formation with O ₂ or Internal Oxidants. Accounts of Chemical Research, 2018, 51, 1092-1105.	7.6	166
8	Mechanistic Insights into the Enantioselective Epoxidation of Olefins by Bioinspired Manganese Complexes: Role of Carboxylic Acid and Nature of Active Oxidant. ACS Catalysis, 2018, 8, 4528-4538.	5.5	72
9	Synthesis, characterization, and reactivity of a chiral Fe(<scp>iv</scp>)–oxo complex bearing an <scp>l</scp> -proline-derived aminopyridine ligand. New Journal of Chemistry, 2018, 42, 8315-8319.	1.4	11
10	Direct reactivity studies of non-heme iron-oxo intermediates toward alkane oxidation. Catalysis Communications, 2018, 108, 77-81.	1.6	17
11	Diastereoselective α-Hydroxylation of N-tert-Butanesulfinyl Imidates and N′-tert-Butanesulfinyl Amidines with Molecular Oxygen. Organic Letters, 2018, 20, 1236-1239.	2.4	15
12	<i>cis</i> -Oxoruthenium complexes supported by chiral tetradentate amine (N ₄) ligands for hydrocarbon oxidations. Chemical Science, 2018, 9, 2803-2816.	3.7	13
13	Highly Enantioselective Oxidation of Spirocyclic Hydrocarbons by Bioinspired Manganese Catalysts and Hydrogen Peroxide. ACS Catalysis, 2018, 8, 2479-2487.	5.5	75
14	Surface Facet of CuFeO ₂ Nanocatalyst: A Key Parameter for H ₂ O ₂ Activation in Fenton-Like Reaction and Organic Pollutant Degradation. Environmental Science & Technology, 2018, 52, 6518-6525.	4.6	150
15	Copper-catalyzed C–H acyloxylation of 2-phenylpyridine using oxygen as the oxidant. RSC Advances, 2018, 8, 16378-16382.	1.7	10
16	Autoamplificationâ€Enhanced Oxidative Kinetic Resolution of <i>sec</i> â€Alcohols and Alkyl Mandelates, and its Kinetic Model. ChemCatChem, 2018, 10, 2693-2699.	1.8	11
17	Synthesis, characterization, spectral and catalytic activity of tetradentate (NNNO) azo-imine Schiff base copper(II) complexes. Inorganica Chimica Acta, 2018, 479, 221-228.	1.2	20
18	Survey of several catalytic systems for the epoxidation of a biobased ester sucrose soyate. Catalysis Communications, 2018, 111, 31-35.	1.6	3

#	Article	IF	CITATIONS
19	In-situ IR spectroscopy as a probe of oxidation/reduction of Ce in nanostructured CeO2. Applied Surface Science, 2018, 445, 548-554.	3.1	16
20	Hollow Pd–Sn Nanocrystals for Efficient Direct H ₂ O ₂ Synthesis: The Critical Role of Sn on Structure Evolution and Catalytic Performance. ACS Catalysis, 2018, 8, 3418-3423.	5.5	80
21	Solarâ€Driven Production of Hydrogen Peroxide from Water and Dioxygen. Chemistry - A European Journal, 2018, 24, 5016-5031.	1.7	106
22	Highly efficient asymmetric aerobic oxidative coupling of 2-naphthols in the presence of bioinspired iron aminopyridine complexes. Catalysis Communications, 2018, 104, 112-117.	1.6	14
23	Dynamically self-activated catalyst for direct synthesis of hydrogen peroxide (H2O2). Materials Today Energy, 2018, 10, 307-316.	2.5	7
24	Chiral Calcium-Catalyzed Asymmetric Epoxidation Reactions Using Hydrogen Peroxide as the Terminal Oxidant. Chemical and Pharmaceutical Bulletin, 2018, 66, 847-850.	0.6	3
25	Enantioselective Benzylic Hydroxylation of Arylalkanes with H ₂ O ₂ in Fluorinated Alcohols in the Presence of Chiral Mn Aminopyridine Complexes. ChemCatChem, 2018, 10, 5323-5330.	1.8	47
26	I2/Fe(NO3)3·9H2O-catalyzed oxidative synthesis of aryl carboxylic acids from aryl alkyl ketones and secondary benzylic alcohols. Tetrahedron Letters, 2018, 59, 4349-4354.	0.7	20
27	Wheel-Like Icosanuclear Peroxotitanate—A Stable Water-Soluble Catalyst for Oxygen Transfer Reactions. Inorganic Chemistry, 2018, 57, 14116-14122.	1.9	13
29	Stereoselective zwitterionic ring-opening polymerization of rac-lactide. Polymer, 2018, 154, 148-152.	1.8	14
30	New salan and salen vanadium complexes: Syntheses and application in sulfoxidation catalysis. Journal of Organometallic Chemistry, 2018, 870, 136-144.	0.8	14
31	The effects of Fe-bearing smectite clays on OH formation and diethyl phthalate degradation with polyphenols and H2O2. Journal of Hazardous Materials, 2018, 357, 483-490.	6.5	41
32	Activation mechanism of hydrogen peroxide by a divanadium–substituted polyoxometalate [γ–PV2W10O38(μ–OH)2]3–: A computational study. Journal of Molecular Graphics and Modelling, 2018, 85, 56-67.	, 1.3	3
33	UN Sustainable Development Goals: How can sustainable/green chemistry contribute? The view from the agrochemical industry. Current Opinion in Green and Sustainable Chemistry, 2018, 13, 158-163.	3.2	9
34	Chiral Titanium(IV) Complexes Containing Polydentate Ligands Based on α-Pinene. Catalytic Activity in Sulfoxidation with Hydrogen Peroxide. Organometallics, 2018, 37, 3437-3449.	1.1	9
35	Cascade Reactions of αâ€Phenylcinnamic Acid to Polycyclic Compounds Promoted by High Valent Transition Metal Halides. ChemistrySelect, 2018, 3, 8844-8848.	0.7	2
36	Decarbonylative Formation of Homoallyl Radical Capable of Annulation with <i>N</i> -Arylpropiolamides via Aldehyde Auto-oxidation. Organic Letters, 2018, 20, 5323-5326.	2.4	34
37	Asymmetric catalysis with octahedral stereogenic-at-metal complexes featuring chiral ligands. Coordination Chemistry Reviews, 2018, 376, 95-113.	9.5	51

#	Article	IF	CITATIONS
38	Manganes-Porphyrin as Efficient Enantioselective Catalyst for Aerobic Epoxidation of Olefins. Catalysis Letters, 2018, 148, 2608-2618.	1.4	13
39	Catalytic Aerobic Oxidation of C(sp ³)â^'H Bonds. Angewandte Chemie - International Edition, 2019, 58, 7946-7970.	7.2	202
40	Katalytische, aerobe Oxidation von C(sp ³)â€Hâ€Bindungen. Angewandte Chemie, 2019, 131, 8028-8055.	1.6	35
41	Cu-catalyzed oxygenation of alkene-tethered amides with O ₂ <i>via</i> unactivated C bond cleavage: a direct approach to cyclic imides. Chemical Science, 2019, 10, 9099-9103.	3.7	26
42	Peroxide-Driven Hydroxylation of Small Alkanes Catalyzed by an Artificial P450BM3 Peroxygenase System. ACS Catalysis, 2019, 9, 7350-7355.	5.5	42
43	Controlling Selectivity in Alkene Oxidation: Anion Driven Epoxidation or Dihydroxylation Catalysed by [Iron(III)(Pyridine ontaining Ligand)] Complexes. ChemCatChem, 2019, 11, 4907-4915.	1.8	17
44	Bioinspired Manganese and Iron Complexes for Enantioselective Oxidation Reactions: Ligand Design, Catalytic Activity, and Beyond. Accounts of Chemical Research, 2019, 52, 2370-2381.	7.6	102
45	Green oxidant H ₂ O ₂ as a hydrogen atom transfer reagent for visible light-mediated Minisci reaction. New Journal of Chemistry, 2019, 43, 12533-12537.	1.4	37
46	Mild C–H functionalization of alkanes catalyzed by bioinspired copper(<scp>ii</scp>) cores. Organic and Biomolecular Chemistry, 2019, 17, 7706-7714.	1.5	15
47	Photocatalytic Oxygenation Reactions Using Water and Dioxygen. ChemSusChem, 2019, 12, 3931-3940.	3.6	33
48	Transformations of dimeric and tetrameric glycolato peroxotitanates and their thermal decompositions for the preparations of anatase and rutile oxides. Journal of Solid State Chemistry, 2019, 277, 169-174.	1.4	6
49	A Comparative Study of the Catalytic Behaviour of Alkoxy-1,3,5-Triazapentadiene Copper(II) Complexes in Cyclohexane Oxidation. Inorganics, 2019, 7, 82.	1.2	8
51	Aerobic Oxidative Sulfenylation of Pyrazolones and Pyrazoles Catalyzed by Metal-Free Flavin–lodine Catalysis. Journal of Organic Chemistry, 2019, 84, 14980-14986.	1.7	34
52	High-Spin Mn(V)-Oxo Intermediate in Nonheme Manganese Complex-Catalyzed Alkane Hydroxylation Reaction: Experimental and Theoretical Approach. Inorganic Chemistry, 2019, 58, 14842-14852.	1.9	46
53	Organophosphorus atalyzed Deoxygenation of Sulfonyl Chlorides: Electrophilic (Fluoroalkyl)sulfenylation by P ^{III} /P ^V =O Redox Cycling. Angewandte Chemie - International Edition, 2019, 58, 2864-2869.	7.2	76
54	Baeyer–Villiger Monooxygenases: Tunable Oxidative Biocatalysts. ACS Catalysis, 2019, 9, 11207-11241.	5.5	108
57	Frontiers of Green Catalytic Selective Oxidations. Green Chemistry and Sustainable Technology, 2019, ,	0.4	8
58	Trapping of a Highly Reactive Oxoiron(IV) Complex in the Catalytic Epoxidation of Olefins by Hydrogen Peroxide. Angewandte Chemie - International Edition, 2019, 58, 4012-4016.	7.2	41

#	Article	IF	CITATIONS
59	Non-heme oxoiron(V) intermediates in chemo-, regio- and stereoselective oxidation of organic substrates. Coordination Chemistry Reviews, 2019, 384, 126-139.	9.5	53
60	Transition-metal, organic solvent and base free α-hydroxylation of β-keto esters and β-keto amides with peroxides in water. Tetrahedron, 2019, 75, 3856-3863.	1.0	10
61	Diverse Chemosensitizing 8,9-Secolindenane-Type Sesquiterpenoid Oligomers and Monomers from <i>Sarcandra glabra</i> . Journal of Organic Chemistry, 2019, 84, 9117-9126.	1.7	31
62	Carbonâ€Nanotubeâ€Appended PAMAM Dendrimers Bearing Iron(II) αâ€Keto Acid Complexes: Catalytic Nonâ€H Oxygenase Models. Chemistry - A European Journal, 2019, 25, 9191-9196.	eme 1.7	6
63	Improved template – ion exchange synthesis of Cu-nanostructured molecular sieves. Microporous and Mesoporous Materials, 2019, 284, 410-420.	2.2	4
64	Enantioselective Epoxidation of $\hat{1}^2$, $\hat{1}^2$ -Disubstituted Enamides with a Manganese Catalyst and Aqueous Hydrogen Peroxide. Organic Letters, 2019, 21, 2430-2435.	2.4	18
65	Ag-Based nanocomposites: synthesis and applications in catalysis. Nanoscale, 2019, 11, 7062-7096.	2.8	215
66	Preparation of O-Protected Cyanohydrins by Aerobic Oxidation of α-Substituted Malononitriles in the Presence of Diarylphosphine Oxides. Organic Letters, 2019, 21, 2597-2601.	2.4	19
67	Enantioselective Epoxidation of $\hat{1}^2$, $\hat{1}^3$ -Unsaturated Carboxylic Acids by a Cooperative Binuclear Titanium Complex. ACS Catalysis, 2019, 9, 3384-3388.	5.5	13
68	Asymmetric sulfoxidation by C1-symmetric V(IV)O(ONO) (S)-NOBIN Schiff-base vanadyl complexes. Canadian Journal of Chemistry, 2019, 97, 637-641.	0.6	1
69	Electron Transfer Control of Reductase versus Monooxygenase: Catalytic C–H Bond Hydroxylation and Alkene Epoxidation by Molecular Oxygen. ACS Central Science, 2019, 5, 671-682.	5.3	47
70	Trapping of a Highly Reactive Oxoiron(IV) Complex in the Catalytic Epoxidation of Olefins by Hydrogen Peroxide. Angewandte Chemie, 2019, 131, 4052-4056.	1.6	13
71	Recent developments in enantioselective iron-catalyzed transformations. Coordination Chemistry Reviews, 2019, 386, 1-31.	9.5	40
72	Recent advances in catalytic asymmetric dihydroxylation of olefins. Russian Chemical Reviews, 2019, 88, 1094-1103.	2.5	16
73	Simultaneously Providing Iron Source toward Electro-Fenton Process and Enhancing Hydrogen Peroxide Production via a Fe ₃ O ₄ Nanoparticles Embedded Graphite Felt Electrode. ACS Applied Materials & Interfaces, 2019, 11, 45692-45701.	4.0	36
74	Computational study on epoxidation of propylene by dioxygen using the silanol-functionalized polyoxometalate-supported osmium oxide catalyst. Inorganic Chemistry Frontiers, 2019, 6, 3482-3492.	3.0	7
75	Enantioselective Epoxypyrrolidines via a Tandem Cycloaddition/Autoxidation in Air and Mechanistic Studies. Organic Letters, 2019, 21, 423-427.	2.4	15
76	Heme and Nonheme High-Valent Iron and Manganese Oxo Cores in Biological and Abiological Oxidation Reactions. ACS Central Science, 2019, 5, 13-28.	5.3	275

#	Article	IF	CITATIONS
77	Synthesis, characterization and O2 reactivity of a bioinspired cobalt(II)-catecholate complex. Inorganica Chimica Acta, 2019, 488, 49-55.	1.2	5
78	Manganese-Catalyzed Asymmetric Oxidation of Methylene C–H of Spirocyclic Oxindoles and Dihydroquinolinones with Hydrogen Peroxide. Organic Letters, 2019, 21, 618-622.	2.4	48
79	State of the Art and Prospects in Metal–Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis. Chemical Reviews, 2020, 120, 1438-1511.	23.0	1,505
80	Bioâ€inspired Nonheme Iron Oxidation Catalysis: Involvement of Oxoiron(V) Oxidants in Cleaving Strong Câ°'H Bonds. Angewandte Chemie - International Edition, 2020, 59, 7332-7349.	7.2	104
81	Bioinspirierte Nichtâ€Häâ€Eisenoxidationskatalyse: Beteiligung von Oxoeisen(V)â€Oxidantien an der Spaltung starker Câ€Hâ€Bindungen. Angewandte Chemie, 2020, 132, 7400-7419.	1.6	13
82	Advances in Chemocatalytic Asymmetric Baeyer–Villiger Oxidations. Advanced Synthesis and Catalysis, 2020, 362, 1015-1031.	2.1	26
83	Alkane and alkene oxidation reactions catalyzed by nickel(II) complexes: Effect of ligand factors. Coordination Chemistry Reviews, 2020, 403, 213085.	9.5	44
84	Enantioselective C–H Lactonization of Unactivated Methylenes Directed by Carboxylic Acids. Journal of the American Chemical Society, 2020, 142, 1584-1593.	6.6	63
85	Cyclopentadienyl-silsesquioxane titanium compounds as suitable candidates for immobilization on silica-based supports. Inorganica Chimica Acta, 2020, 501, 119275.	1.2	6
86	Environmentally benign multiphase solid–liquid–gas catalysis. Green Chemistry, 2020, 22, 895-902.	4.6	4
87	Alloxan-Catalyzed Biomimetic Oxidations with Hydrogen Peroxide or Molecular Oxygen. ACS Catalysis, 2020, 10, 245-252.	5.5	20
88	Transition-metal catalyzed asymmetric reactions under continuous flow from 2015 to early 2020. Green Synthesis and Catalysis, 2020, 1, 121-133.	3.7	70
89	Oxidation of aromatic and aliphatic aldehydes to carboxylic acids by Geotrichum candidum aldehyde dehydrogenase. Tetrahedron, 2020, 76, 131387.	1.0	13
91	Shining Light on Ti ^{IV} Complexes: Exceptional Tools for Metallaphotoredox Catalysis. European Journal of Organic Chemistry, 2020, 2020, 6955-6965.	1.2	37
92	Catalytic O ₂ activation with synthetic models of α-ketoglutarate dependent oxygenases. Chemical Communications, 2020, 56, 14369-14372.	2.2	5
93	Highly Enantioselective Epoxidation of α,β-Unsaturated Ketones Using Amide-Based Cinchona Alkaloids as Hybrid Phase-Transfer Catalysts. Organic Letters, 2020, 22, 8687-8691.	2.4	25
94	Asymmetric Catalysis Mediated by Synthetic Peptides, Version 2.0: Expansion of Scope and Mechanisms. Chemical Reviews, 2020, 120, 11479-11615.	23.0	115
95	Sodium pyruvate as a peroxide scavenger in aerobic oxidation under carbene catalysis. Green Chemistry, 2020, 22, 6819-6826.	4.6	15

#	Article	IF	CITATIONS
96	Methods for selective benzylic C–H oxofunctionalization of organic compounds. Russian Chemical Reviews, 2020, 89, 587-628.	2.5	17
97	Exploring Green Chemistry with Aerobic Hypervalent Iodine Catalysis. Journal of Chemical Education, 2020, 97, 3816-3821.	1.1	4
98	Effect of Ligand Topology on the Reactivity of Chiral Tetradentate Aminopyridine Manganese Complexes. ACS Catalysis, 2020, 10, 11857-11863.	5.5	9
99	Ligand regulation for manganese-catalyzed enantioselective epoxidation of olefins without acid. Chemical Communications, 2020, 56, 13101-13104.	2.2	17
100	Asymmetric Catalytic Synthesis of Epoxides via Three-Component Reaction of Diazoacetates, 2-Oxo-3-ynoates, and Nitrosoarenes. Organic Letters, 2020, 22, 6744-6749.	2.4	10
101	Catalytic Enantioselective Methylene C(sp ³)–H Hydroxylation Using a Chiral Manganese Complex/Carboxylic Acid System. Organic Letters, 2020, 22, 9529-9533.	2.4	32
102	2,5-Diketopiperazine Catalysts as Activators of Dioxygen in Oxidative Processes. ACS Catalysis, 2020, 10, 7093-7099.	5.5	22
103	Stoichiometric Formation of an Oxoiron(IV) Complex by a Soluble Methane Monooxygenase Type Activation of O ₂ at an Iron(II)-Cyclam Center. Journal of the American Chemical Society, 2020, 142, 5924-5928.	6.6	27
104	A chemical looping technology for the synthesis of 2,2′-dibenzothiazole disulfide. Green Chemistry, 2020, 22, 2778-2785.	4.6	5
105	Recent Developments in Enantioselective Multicatalyzed Tandem Reactions. Advanced Synthesis and Catalysis, 2020, 362, 2289-2325.	2.1	42
106	Continuous Process Improvement in the Manufacture of Carfilzomib, Part 2: An Improved Process for Synthesis of the Epoxyketone Warhead. Organic Process Research and Development, 2020, 24, 490-499.	1.3	20
107	Iron and manganese oxo complexes, oxo wall and beyond. Nature Reviews Chemistry, 2020, 4, 404-419.	13.8	167
108	Artificial nonheme iron and manganese oxygenases for enantioselective olefin epoxidation and alkane hydroxylation reactions. Coordination Chemistry Reviews, 2020, 421, 213443.	9.5	82
109	An Enantioconvergent Benzylic Hydroxylation Using a Chiral Aryl Iodide in a Dual Activation Mode. ACS Catalysis, 2020, 10, 8042-8048.	5.5	34
110	Electron-Transfer and Redox Reactivity of High-Valent Iron Imido and Oxo Complexes with the Formal Oxidation States of Five and Six. Journal of the American Chemical Society, 2020, 142, 3891-3904.	6.6	43
111	Zero-Dimensional/Two-Dimensional Au _{<i>x</i>} Pd _{100–<i>x</i>} Nanocomposites with Enhanced Nanozyme Catalysis for Sensitive Glucose Detection. ACS Applied Materials & Interfaces, 2020, 12, 11616-11624.	4.0	81
112	Synthesis, crystal structure, and characterization of two Cu(II) and Ni(II) complexes of a tetradentate N2O2 Schiff base ligand and their application in fabrication of a hydrazine electrochemical sensor. Inorganica Chimica Acta, 2020, 506, 119537.	1.2	34
113	Chiral <i>N</i> , <i>N</i> ′-dioxide–iron(<scp>iii</scp>)-catalyzed asymmetric sulfoxidation with hydrogen peroxide. Chemical Communications, 2020, 56, 3233-3236.	2.2	16

#	Article	IF	CITATIONS
114	Asymmetric Epoxidation of α,βâ€Unsaturated Ketones Catalyzed by Chiral Iron Complexes of (R,R)â€3,4â€Điaminopyrrolidine Derived N4‣igands with Camphorsulfonyl Sidearms. Asian Journal of Organic Chemistry, 2020, 9, 616-621.	1.3	4
115	Regio―and Enantioselective Substrateâ€Directed Epoxidation. European Journal of Organic Chemistry, 2020, 2020, 2369-2378.	1.2	18
116	Unraveling the role of the lacunar Na ₇ PW ₁₁ O ₃₉ catalyst in the oxidation of terpene alcohols with hydrogen peroxide at room temperature. New Journal of Chemistry, 2020, 44, 2813-2820.	1.4	25
117	Modern Stereoselective Synthesis of Chiral Sulfinyl Compounds. Chemical Reviews, 2020, 120, 4578-4611.	23.0	127
118	Bandgap engineering of polymetric carbon nitride copolymerized by 2,5,8-triamino-tri-s-triazine (melem) and barbituric acid for efficient nonsacrificial photocatalytic H2O2 production. Applied Catalysis B: Environmental, 2020, 271, 118917.	10.8	72
119	The radical versus ionic mechanisms of reduced cobalamin inactivation by tert-butyl hydroperoxide and hydrogen peroxide in aqueous solution. New Journal of Chemistry, 2021, 45, 535-543.	1.4	12
120	Effective photodegradation of organic pollutantsin the presence of mono and bi-metallic complexes under visible-light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 406, 112996.	2.0	10
121	Enzymatic Kinetic Resolution by Addition of Oxygen. Angewandte Chemie - International Edition, 2021, 60, 4434-4447.	7.2	11
122	Photoexcited single metal atom catalysts for heterogeneous photocatalytic H2O2 production: Pragmatic guidelines for predicting charge separation. Applied Catalysis B: Environmental, 2021, 282, 119589.	10.8	74
123	Epoxidation of propylene by hydrogen peroxide catalyzed by the silanolâ€functionalized polyoxometalatesâ€supported ferrate: Electronic structure, bonding feature, and reaction mechanism. International Journal of Quantum Chemistry, 2021, 121, e26463.	1.0	2
124	Mechanistic investigation on the remote stereocontrol in the chiral Lewis base-catalyzed, SiCl4-promoted kinetic resolution of chlorinated cis-vinyl epoxides. Tetrahedron, 2021, 77, 131763.	1.0	2
125	Recent Advances on Catalytic Osmiumâ€Free Olefin <i>syn</i> â€Dihydroxylation. European Journal of Organic Chemistry, 2021, 2021, 877-896.	1.2	16
126	Preparation of Trace Fe ₂ P Modified N,P Coâ€doped Carbon Materials and their Application to Hydrogen Peroxide Detection. Electroanalysis, 2021, 33, 831-837.	1.5	10
127	Recent developments in polymer-supported ruthenium nanoparticles/complexes for oxidation reactions. Journal of Organometallic Chemistry, 2021, 933, 121658.	0.8	5
128	Enzymatic Kinetic Resolution by Addition of Oxygen. Angewandte Chemie, 2021, 133, 4482-4495.	1.6	0
129	Deep eutectic solvents as non-traditionally multifunctional media for the desulfurization process of fuel oil. Physical Chemistry Chemical Physics, 2021, 23, 785-805.	1.3	21
130	Catalytic Processes for the Neutralization of Sulfur Mustard. Chemistry - A European Journal, 2021, 27, 54-68.	1.7	31
131	Dual effect of the coordination field and sulphuric acid on the properties of a single-atom catalyst in the electrosynthesis of H ₂ O ₂ . Physical Chemistry Chemical Physics, 2021, 23, 21338-21349.	1.3	15

#	Article	IF	CITATIONS
132	Directing transition metal-based oxygen-functionalization catalysis. Chemical Science, 2021, 12, 8967-8995.	3.7	9
133	Aerobic asymmetric oxygenation catalysis: a well forgotten… future?. Mendeleev Communications, 2021, 31, 8-13.	0.6	5
134	Olefin Epoxidation Catalyzed by Titanium–Salalen Complexes: Synergistic H ₂ O ₂ Activation by Dinuclear Ti Sites, Ligand H-Bonding, and π-Acidity. ACS Catalysis, 2021, 11, 3206-3217.	5.5	13
135	Non-heme perferryl intermediates: Effect of spin state on the epoxidation enantioselectivity. Molecular Catalysis, 2021, 502, 111403.	1.0	7
136	Aerobic Oxidations in Asymmetric Synthesis: Catalytic Strategies and Recent Developments. Frontiers in Chemistry, 2021, 9, 614944.	1.8	9
137	Solventâ€Promoted Oxidation of Aromatic Alcohols/Aldehydes to Carboxylic Acids by a Laccaseâ€ŢEMPO System: Efficient Access to 2,5â€Furandicarboxylic Acid and 5â€Methylâ€2â€Pyrazinecarboxylic Acid. Advanced Sustainable Systems, 2021, 5, 2000297.	2.7	19
138	A solvent-free solid catalyst for the selective and color-indicating ambient-air removal of sulfur mustard. Communications Chemistry, 2021, 4, .	2.0	7
139	Manganese Catalyzed Enantioselective Epoxidation of <i>î±</i> , <i>î²</i> â€Unsaturated Amides with H ₂ O ₂ . Advanced Synthesis and Catalysis, 2021, 363, 2778-2782.	2.1	12
140	Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide. Nature Catalysis, 2021, 4, 374-384.	16.1	474
141	Effect of the Ligand Backbone on the Reactivity and Mechanistic Paradigm of Nonâ€Heme Iron(IV)â€Oxo during Olefin Epoxidation. Angewandte Chemie, 2021, 133, 14149-14158.	1.6	4
142	Kinetic resolution of indolines by asymmetric hydroxylamine formation. Nature Communications, 2021, 12, 2512.	5.8	21
143	Effect of the Ligand Backbone on the Reactivity and Mechanistic Paradigm of Nonâ€Heme Iron(IV)â€Oxo during Olefin Epoxidation. Angewandte Chemie - International Edition, 2021, 60, 14030-14039.	7.2	12
144	Biomimetic metal-oxidant adducts as active oxidants in oxidation reactions. Coordination Chemistry Reviews, 2021, 435, 213807.	9.5	35
147	Peroxides in metal complex catalysis. Coordination Chemistry Reviews, 2021, 437, 213859.	9.5	41
148	Transition Metal atalyzed Câ^'H Oxidation of Saturated Hydrocarbons with Molecular Oxygen. Chemical Record, 2021, 21, 1928-1940.	2.9	9
149	Molybdenum/Tungstenâ€Based Heteropoly Salts in Oxidations. Chemistry - an Asian Journal, 2021, 16, 2753-2772.	1.7	6
150	Enantioselective Synthesis of Spiroâ€oxiranes: An Asymmetric Addition/Aldol/Spirocyclization Domino Cascade. Angewandte Chemie - International Edition, 2021, 60, 21189-21194.	7.2	9
151	A review of the role of hydrogen peroxide in organic transformations. Journal of Industrial and Engineering Chemistry, 2021, 104, 295-332.	2.9	30

#	Article	IF	CITATIONS
152	Enantioselective Synthesis of Spiroâ€oxiranes: An Asymmetric Addition/Aldol/Spirocyclization Domino Cascade. Angewandte Chemie, 2021, 133, 21359-21364.	1.6	3
153	The sequential C–H oxidation/asymmetric phosphonylation of primary alcohols to synthesize α-hydroxy phosphonates. Green Synthesis and Catalysis, 2021, 2, 315-319.	3.7	8
154	Efficient Aliphatic C–H Oxidation and C╀ Epoxidation Catalyzed by Porous Organic Polymer-Supported Single-Site Manganese Catalysts. ACS Catalysis, 2021, 11, 10964-10973.	5.5	23
155	Theoretical and experimental investigations of the enantioselective epoxidation of olefins catalyzed by manganese complexes. Chinese Chemical Letters, 2022, 33, 1515-1518.	4.8	8
156	Palladiumâ€Aminopyridine Catalyzed Câ^'H Oxygenation: Probing the Nature of Metal Based Oxidant. ChemCatChem, 2021, 13, 5109-5120.	1.8	5
157	Multiscale structural engineering of carbon nitride for enhanced photocatalytic H2O2 production. Nano Research, 2023, 16, 4524-4530.	5.8	21
159	Amine/ketone cooperative catalysis with H2O2. Trends in Chemistry, 2021, 3, 892-893.	4.4	0
160	Geotrichum candidum aldehyde dehydrogenase-inorganic nanocrystal with enhanced activity. Enzyme and Microbial Technology, 2021, 150, 109866.	1.6	8
161	Unveiling structure-function relationships in deep eutectic solvents based biomimetic catalysis for aerobic oxidative desulfurization. Fuel, 2022, 308, 122070.	3.4	28
162	Efficient Direct H ₂ O ₂ Synthesis Enabled by PdPb Nanorings via Inhibiting the O–O Bond Cleavage in O ₂ and H ₂ O ₂ . ACS Catalysis, 2021, 11, 1106-1118.	5.5	45
163	Chiral Primary Amine/Ketone Cooperative Catalysis for Asymmetric α-Hydroxylation with Hydrogen Peroxide. Journal of the American Chemical Society, 2021, 143, 1078-1087.	6.6	34
165	Organophosphorusâ€Catalyzed Deoxygenation of Sulfonyl Chlorides: Electrophilic (Fluoroalkyl)sulfenylation by P III /P V =O Redox Cycling. Angewandte Chemie, 2019, 131, 2890-2895.	1.6	16
166	Direct C–H Oxidation of Aromatic Substrates in the Presence of Biomimetic Iron Complexes. Green Chemistry and Sustainable Technology, 2019, , 253-276.	0.4	1
167	Recent Advances in Bioinspired Asymmetric Epoxidations with Hydrogen Peroxide. Green Chemistry and Sustainable Technology, 2019, , 199-221.	0.4	1
168	K ⁺ , Ni and carbon co-modification promoted two-electron O ₂ reduction for photocatalytic H ₂ O ₂ production by crystalline carbon nitride. Journal of Materials Chemistry A, 2021, 9, 24056-24063.	5.2	30
169	Exploration of highly electron-rich manganese complexes in enantioselective oxidation catalysis; a focus on enantioselective benzylic oxidation. Catalysis Science and Technology, 2021, 11, 7751-7763.	2.1	6
170	Oxygen Atom Transfer Mechanism for <scp>Vanadiumâ€Oxo</scp> Porphyrin Complexes Mediated Aerobic Olefin Epoxidation. Chinese Journal of Chemistry, 2022, 40, 115-122.	2.6	10
171	Site and Enantioselective Aliphatic Câ^'H Oxidation with Bioinspired Chiral Complexes. Chemical Record, 2021, 21, 4000-4014.	2.9	27

#	Article	IF	CITATIONS
172	Photocatalytic Air Purification Using Functional Polymeric Carbon Nitrides. Advanced Science, 2021, 8, e2102376.	5.6	24
173	Nâ€hydroxyphthalimide Catalyzed Epoxidation of Inactive Aliphatic Olefins with Air at Room Temperature. Asian Journal of Organic Chemistry, 0, , .	1.3	Ο
174	Promoter role of tungsten in W-Pd/Al2O3 catalyst for direct synthesis of H2O2: Modification of Pd/PdO ratio. Applied Catalysis A: General, 2021, 628, 118392.	2.2	9
175	Synthesis of Polystyrene Supported Diarylprolinol and Its Catalytic Enantioselective Epoxidation of Chalcone. Journal of Organic Chemistry Research, 2019, 07, 70-79.	0.1	0
176	Non-covalent Organocatalytic Approach in the Asymmetric Epoxidation of Electron-Poor Alkenes: Recent Developments. Green Chemistry and Sustainable Technology, 2019, , 113-135.	0.4	1
177	Asymmetric Epoxidation Catalyzed by Biologically Inspired Non-heme Iron Catalysts and Hydrogen Peroxide. Green Chemistry and Sustainable Technology, 2019, , 161-197.	0.4	0
178	Recent developments in stereoselective organocatalytic oxyfunctionalizations. Physical Sciences Reviews, 2021, 6, .	0.8	2
179	Highly permeable and antioxidative graphene oxide membranes for concentration of hydrogen peroxide aqueous solution. Journal of Membrane Science, 2022, 643, 120036.	4.1	8
180	Enthalpy–Entropy Compensation Effect in Oxidation Reactions by Manganese(IV)-Oxo Porphyrins and Nonheme Iron(IV)-Oxo Models. Journal of the American Chemical Society, 2021, 143, 18559-18570.	6.6	16
181	Metal-free visible-light-promoted C(sp ³)–H functionalization of aliphatic cyclic ethers using trace O ₂ . Green Chemistry, 2021, 23, 9454-9459.	4.6	24
182	Catalytic oxidation of styrene by dinuclear Mn(III) coordination compound with asymmetric tridentate half-Salen type NNO-donor ligand. Polyhedron, 2022, 211, 115537.	1.0	3
184	Chiral Iron Complexes in Asymmetric Organic Transformations. Advanced Synthesis and Catalysis, 2022, 364, 696-714.	2.1	26
185	Asymmetric Epoxidation of Olefins Catalyzed by Substituted Aminobenzimidazole Manganese Complexes Derived from <i>L</i> â€Proline. Advanced Synthesis and Catalysis, 2022, 364, 593-600.	2.1	7
186	Visible light-promoted enantioselective aerobic oxidation of pyrazolones by phase transfer catalysis. Green Synthesis and Catalysis, 2022, 3, 102-109.	3.7	8
187	An H ₂ O ₂ Molecule Stabilized inside Open age C ₆₀ Derivatives by a Hydroxy Stopper. Chemistry - A European Journal, 2022, 28, e202103836.	1.7	7
188	Remote Amino Acid Recognition Enables Effective Hydrogen Peroxide Activation at a Manganese Oxidation Catalyst. Angewandte Chemie, 2022, 134, .	1.6	1
189	Remote Amino Acid Recognition Enables Effective Hydrogen Peroxide Activation at a Manganese Oxidation Catalyst. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
190	Porous organic polymer-supported manganese catalysts with tunable wettability for efficient oxidation of secondary alcohols. Journal of Catalysis, 2022, 406, 87-95.	3.1	5

#	Article	IF	CITATIONS
191	Porous carbon-doped g-C3N4 with tunable band structure for boosting photocatalytic H2O2 production with simultaneous pollutants removal. Journal of Environmental Chemical Engineering, 2022, 10, 107116.	3.3	7
192	Recent Development of Aerobic Oxidative Transformations by Flavin Catalysis. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2022, 80, 27-35.	0.0	0
193	Immobilization of Baeyer–Villiger monooxygenase from acetone grown Fusarium sp Biotechnology Letters, 2022, 44, 461-471.	1.1	5
194	Green solvent free epoxidation of olefins by a heterogenised hydrazone-dioxidotungsten(<scp>vi</scp>) coordination compound. RSC Advances, 2022, 12, 4813-4827.	1.7	20
195	Complex Nanomaterials in Catalysis for Chemically Significant Applications: From Synthesis and Hydrocarbon Processing to Renewable Energy Applications. Advances in Materials Science and Engineering, 2022, 2022, 1-72.	1.0	25
196	Nickel Single Atoms Anchored on Ultrathin Carbon Nitride for Selective Hydrogen Peroxide Generation with Enhanced Photocatalytic Activity. SSRN Electronic Journal, 0, , .	0.4	0
197	<i>syn</i> â€Selektive Epoxidierung von chiralen, terminalen Allylalkoholen mit einem Titanâ€Salalenâ€Katalysator und Wasserstoffperoxid. Angewandte Chemie, 2022, 134, .	1.6	1
198	<i>syn</i> ‣elective Epoxidation of Chiral Terminal Allylic Alcohols with a Titanium Salalen Catalyst and Hydrogen Peroxide. Angewandte Chemie - International Edition, 2022, 61, .	7.2	8
199	Direct Aerobic α-Hydroxylation of Arylacetates for the Synthesis of Mandelates. Journal of Organic Chemistry, 2022, 87, 4298-4304.	1.7	7
200	Site-Selective Catalytic Epoxidation of Alkenes with Tunable Atomic Precision by Molecularly Imprinted Artificial Epoxidases. ACS Catalysis, 2022, 12, 3444-3451.	5.5	9
201	Methane Monooxygenase Mimic Asymmetric Oxidation: Self-Assembling μ-Hydroxo, Carboxylate-Bridged Diiron(III)-Catalyzed Enantioselective Dehydrogenation. Journal of the American Chemical Society, 2022, 144, 5976-5984.	6.6	12
202	Recent developments in enantioselective titanium-catalyzed transformations. Coordination Chemistry Reviews, 2022, 463, 214537.	9.5	6
203	α-Hydroxylation of α,α-Disubstituted <i>N</i> - <i>tert</i> Butanesulfinyl Ketimines with Molecular Oxygen: Stereoselective Synthesis of α-Tertiary Hydroxyimines. Organic Letters, 2022, 24, 746-751.	2.4	8
204	Excellent Catalytic Performances of a Au/C–CuO Binary System in the Selective Oxidation of Benzylamines to Imines under Atmospheric Oxygen. ACS Omega, 2021, 6, 34339-34346.	1.6	5
205	Highly efficient C(CO)–C(alkyl) bond cleavage in ketones to access esters over ultrathin N-doped carbon nanosheets. Chemical Science, 2022, 13, 5196-5204.	3.7	6
206	H-Bond Mediated Phase-Transfer Catalysis: Enantioselective Generating of Quaternary Stereogenic Centers in β-Keto Esters. Molecules, 2022, 27, 2508.	1.7	2
207	Asymmetric Epoxidation of Olefins with Sodium Percarbonate Catalyzed by Bis-amino-bis-pyridine Manganese Complexes. Molecules, 2022, 27, 2538.	1.7	6
208	Palladium(II)-Catalyzed Enantioselective Hydrooxygenation of Unactivated Terminal Alkenes. Journal of the American Chemical Society, 2022, 144, 7972-7977.	6.6	11

ARTICLE IF CITATIONS Enhancing photocatalytic hydrogen peroxide production of Ti-based metal–organic frameworks: The 209 5.8 23 leading role of facet engineering. Nano Research, 2022, 15, 6045-6053. Triphenyllead Hydroperoxide: A 1D Coordination Peroxo Polymer, Single-Crystal-to-Single-Crystal Disproportionation to a Superoxo/Hydroxo Complex, and Application in Catalysis. Inorganic Chemistry, 2022, 61, 8193-8205. Chemoselective Oxyfunctionalization of Functionalized Benzylic Compounds with a Manganese 211 7.2 14 Catalyst. Angewandte Chemie - International Edition, 2022, 61, . Expedient cobalt-catalyzed stereospecific cascade C–N and C–O bond formation of styrene oxides with hydrazones. Chemical Communications, 2022, 58, 7090-7093. Boosting exciton dissociation by regulating dielectric constant in covalent organic framework for 213 2.9 33 photocatalysis. Chem Catalysis, 2022, 2, 1734-1747. Chemoselective Oxyfunctionalization of Functionalized Benzylic Compounds with a Manganese 1.6 Catalyst. Angewandte Chemie, 2022, 134, . Nickel single atoms anchored on ultrathin carbon nitride for selective hydrogen peroxide generation 215 6.6 32 with enhanced photocatalytic activity. Chemical Engineering Journal, 2022, 446, 137379. Cu(<scp>ii</scp>)/SPDO complex catalyzed asymmetric Baeyerâ€"Villiger oxidation of 2-arylcyclobutanones and its application for the total synthesis of eupomatilones 5 and 6. Chemical 3.7 Science, 2022, 13, 8429-8435 Dehydrogenation Based Asymmetric Epoxidation of Arylalkanes to Chiral Epoxides. Chinese Journal of 217 2.6 7 Chemistry, 0, , . Highly efficient and robust aerobic co-oxidation of olefins and aldehydes over CoO_{<i>x</i>} dispersed within hierarchical silicalite-1 zeolites. Green Chemistry, 2022, 24, 4.6 6200-6214. Novel Copper(II) Complexes with Dipinodiazafluorene Ligands: Synthesis, Structure, Magnetic and 219 1.7 6 Catalytic Properties. Molecules, 2022, 27, 4072. Metal-Free Atom-Economical Synthesis of Tetra-Substituted Imidazoles via Flavin-lodine Catalyzed Aerobic Cross-Dehydrogenative Coupling of Amidines and Chalcones. Journal of Organic Chemistry, 1.7 2022, 87, 10372-10376. Reversible Plasmonic Switch in a Molecular Oxidation Catalysis Process. ACS Catalysis, 2022, 12, 221 5.5 2 9908-9921. High activity and selectivity of single palladium atom for oxygen hydrogenation to H2O2. Nature 5.8 39 Communications, 2022, 13, . Coordinating single-atom catalysts on two-dimensional nanomaterials: A paradigm towards bolstered 223 9.5 25 photocatalytic energy conversion. Coordination Chemistry Reviews, 2022, 471, 214743. Photocatalytic H2O2 production Systems: Design strategies and environmental applications. Chemical Engineering Journal, 2023, 451, 138489. 224 Asymmetric epoxidation of enones: effect of surfactants, radical scavengers and morphology of 225 catalysts on reaction rates, chemical yields and enantioselectivities in phase-transfer catalysis. 2.31 Organic Chemistry Frontiers, 2022, 9, 4902-4909. Stereoselective synthesis of the isoxazolidine ring <i>via</i>manganese(<scp>iii</scp>)-catalysed aminoperoxidation of unactivated alkenes using molecular oxygen in air under ambient conditions. 4.6 Green Chemistry, 2022, 24, 7162-7170.

#	Article	IF	CITATIONS
227	Enhancing the catalytic performance of PdAu catalysts by W-induced strong interaction for the direct synthesis of H ₂ 0 ₂ . Catalysis Science and Technology, 2022, 12, 5290-5301.	2.1	1
228	Peroxide-Selective Reduction of O ₂ at Redox-Inactive Rare-Earth(III) Triflates Generates an Ambiphilic Peroxide. Journal of the American Chemical Society, 2022, 144, 17295-17306.	6.6	4
229	Ni―and Pdâ€based homogeneous catalyst systems for direct oxygenation of C(sp ³)â€H groups. Applied Organometallic Chemistry, 2023, 37, .	1.7	2
230	Cobalt(II) atalyzed Transfer Hydrogenation of Simple Alkenes. Advanced Synthesis and Catalysis, 0, , .	2.1	1
232	Revisiting the Mukaiyama-type epoxidation for the conversion of styrene into styrene carbonate in the presence of O ₂ and CO ₂ . Reaction Chemistry and Engineering, 2023, 8, 345-354.	1.9	2
233	A Computational Study of the MoO2(acac)2 Catalyzed Epoxidation of Ethylene with Hydrogen Peroxide and tâ€Butyl Hydroperoxid. ChemCatChem, 0, , .	1.8	3
234	catalytic properties in alkene epoxidation with hydrogen peroxide, and related mechanistic studies. Inorganica Chimica Acta, 2023, 546, 121288.	1.2	1
235	A Common Active Intermediate in the Oxidation of Alkenes, Alcohols and Alkanes with H ₂ O ₂ and a Mn(II)/Pyridinâ€2â€Carboxylato Catalyst. ChemCatChem, 2023, 15, .	1.8	0
236	Divergent synthesis of quinoxalin-2(1 <i>H</i>)-one derivatives through photoinduced C–H functionalization without a photocatalyst. Organic Chemistry Frontiers, 2023, 10, 611-623.	2.3	0
237	Decagram-scale synthesis of heterometallic Ag/Ti cluster as sustainable catalyst for selective oxidation of sulfides. Journal of Catalysis, 2023, 417, 185-193.	3.1	9
238	Asymmetric Sâ \in O Bond Formation by Oxidation. , 2022, , .		0
241	Epoxidation of Electronâ€Deficient Alkenes Triggered by Visibleâ€Lightâ€Driven Phenol Photooxidation for the Synthesis of Epoxy Dienone Products. Advanced Synthesis and Catalysis, 2023, 365, 194-200.	2.1	1
242	Strong synergy between single atoms and single-atom alloys enables active and selective H2O2 synthesis. Chem Catalysis, 2022, 2, 3607-3620.	2.9	8
243	Investigation of the substituent effects on the oxidation of styrene derivatives by silicaâ€supported heterogeneous oxidovanadium(V) coordination compound. Applied Organometallic Chemistry, 2023, 37, .	1.7	6
244	Redox-active molecules as organocatalysts for selective oxidative transformations – an unperceived organocatalysis field. Beilstein Journal of Organic Chemistry, 0, 18, 1672-1695.	1.3	4
245	Solventâ€Polarityâ€Induced Assembly of Calixarene apped Titaniumâ€Oxo Clusters with Catalytic Activity in the Oxygenation of Sulfides. European Journal of Inorganic Chemistry, 0, , .	1.0	1
246	Industrial Applications of Asymmetric Oxidations. , 2022, , .		0
247	Graphitic Carbon Nitride Based Materials Towards Photoproduction of H ₂ O ₂ . ChemPhotoChem, 2023, 7, .	1.5	8

#	Article	IF	CITATIONS
248	Asymmetric Catalytic Aerobic Oxidative Radical Addition/Hydroxylation/1,4-Aryl Migration Reaction of Olefins. ACS Catalysis, 2023, 13, 815-823.	5.5	3
249	Enzyme immobilization on a 3D-printed reactor for aldehyde oxidation to carboxylic acid under mild conditions. Reaction Chemistry and Engineering, 0, , .	1.9	0
250	Modulation of Lewis and BrÃ,nsted acid centers with oxygen vacancies for Nb2O5 electrocatalysts: Towards highly efficient simultaneously electrochemical ozone and hydrogen peroxide production. Chemical Engineering Science, 2023, 271, 118573.	1.9	6
251	Tuning the electronic properties of supported Cu catalysts for efficient epoxidation of long-chain α-olefins. Fuel, 2023, 342, 127829.	3.4	3
252	Aerobic cross-dehydrogenative coupling of toluenes and <i>o</i> -phenylenediamines by flavin photocatalysis for the facile synthesis of benzimidazoles. Organic and Biomolecular Chemistry, 2023, 21, 2081-2085.	1.5	1
253	Computation Study on Copper-Catalyzed Aerobic Intramolecular Aminooxygenative Câ•€ Bond Cleavage to Imides: Different Roles of Mononuclear and Dinuclear Copper Complexes. ACS Catalysis, 2023, 13, 3815-3829.	5.5	3
254	New Catalysts for Asymmetric Oxidation of Prochiral Sulfides Based on Vanadium Complexes with Levopimaric Acid Derivatives. Kinetics and Catalysis, 2022, 63, 676-686.	0.3	0
255	Alternatives to water oxidation in the photocatalytic water splitting reaction for solar hydrogen production. Nanoscale, 2023, 15, 6521-6535.	2.8	5
256	Graphitic carbon nitride (g-C ₃ N ₄) based heterogeneous single atom catalysts: synthesis, characterisation and catalytic applications. Journal of Materials Chemistry A, 2023, 11, 8599-8646.	5.2	18
257	Photosynthesis of Hydrogen Peroxide Based on g‑C ₃ N ₄ : The Road of a Costâ€Effective Clean Fuel Production. Small, 2023, 19, .	5.2	16
270	Recent advances in computational studies on Cu-catalyzed aerobic reactions: cooperation of copper catalysts and dioxygen. Organic and Biomolecular Chemistry, 2023, 21, 7852-7872.	1.5	0
272	β-Trifluoromethylated enones as trifluoromethylated synthons in asymmetric catalysis. Organic Chemistry Frontiers, 2023, 10, 5519-5537.	2.3	Ο