Detrital zircon U–Pb geochronological and sedimento Yunnan: Implications for the Early Cenozoic evolution of

Earth and Planetary Science Letters 476, 22-33 DOI: 10.1016/j.epsl.2017.07.025

Citation Report

#	Article	IF	CITATIONS
1	Heavy mineral analysis and detrital U-Pb ages of the intracontinental Paleo-Yangzte basin: Implications for a transcontinental source-to-sink system during Late Cretaceous time. Bulletin of the Geological Society of America, 2018, 130, 2087-2109.	3.3	31
2	High-resolution paleomagnetic constraint on the oldest hominoid- fossil-bearing sequence in the Xiaolongtan Basin, southeast margin of the Tibetan Plateau and its geologic implications. Global and Planetary Change, 2019, 182, 103001.	3.5	15
3	The formation and evolution of the paleo-Pearl River and its influence on the source of the northern South China sea. Marine and Petroleum Geology, 2019, 106, 171-189.	3.3	16
4	Provenance and Drainage Evolution of the Red River Revealed by Pb Isotopic Analysis of Detrital Kâ€Feldspar. Geophysical Research Letters, 2019, 46, 6415-6424.	4.0	12
5	Mesozoic–Cenozoic sedimentary rock records and applications for provenance of sediments and affiliation of the Simao Terrane, SW China. International Geology Review, 2019, 61, 2291-2312.	2.1	11
6	Into Africa via docked India: a fossil climbing perch from the Oligocene of Tibet helps solve the anabantid biogeographical puzzle. Science Bulletin, 2019, 64, 455-463.	9.0	15
7	Palaeodrainage evolution of the large rivers of East Asia, and Himalayan-Tibet tectonics. Earth-Science Reviews, 2019, 192, 601-630.	9.1	62
8	U-Pb geochronology of zircons from river sediments in Sri Lanka: Implications on early Archean to late Cambrian magmatism and episodic crustal growth. Journal of Asian Earth Sciences, 2019, 171, 388-412.	2.3	9
9	Detrital zircon ages: A key to unraveling provenance variations in the eastern Yinggehai–Song Hong Basin, South China Sea. AAPG Bulletin, 2019, 103, 1525-1552.	1.5	13
10	Reconstruction on regional paleo-drainage evolution in the northern Junggar Basin, China during the last ~27 myr from provenance analyses and its implications for uplift of the Altai Mountains. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 537, 109373.	2.3	9
11	Comparison of Detrital Zircon U-Pb and Muscovite 40Ar/39Ar Ages in the Yangtze Sediment: Implications for Provenance Studies. Minerals (Basel, Switzerland), 2020, 10, 643.	2.0	6
12	Eocene Rotation of the Northeastern Central Tibetan Plateau Indicating Stepwise Compressions and Eastward Extrusions. Geophysical Research Letters, 2020, 47, e2020GL088989.	4.0	22
13	Cenozoic Uplift of the Central Yunnan Fragment, Southwestern China, Revealed by Apatite (U-Th)/He Dating. Journal of Earth Science (Wuhan, China), 2020, 31, 735-742.	3.2	6
14	A Late Eoceneâ€Oligocene Throughâ€Flowing River Between the Upper Yangtze and South China Sea. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC009046.	2.5	35
15	Evolution of the Yangtze River network, southeastern Tibet: Insights from thermochronology and sedimentology. Lithosphere, 2020, 12, 3-18.	1.4	22
16	Evolution of the paleo-Mekong River in the Early Cretaceous: Insights from the provenance of sandstones in the Vientiane Basin, central Laos. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 545, 109651.	2.3	13
17	Detrital zircon U Pb geochronology of the Wuyu (Oiyug) Basin, southern Tibetan Plateau, and its geological implications. Gondwana Research, 2020, 83, 36-48.	6.0	1
18	⁴⁰ Ar/ ³⁹ Ar mica dating of late Cenozoic sediments in SE Tibet: implications for sediment recycling and drainage evolution. Journal of the Geological Society, 2020, 177, 843-854.	2.1	8

#	Article	IF	CITATIONS
19	The present-day Yangtze River was established in the late Miocene: Evidence from detrital zircon ages. Journal of Asian Earth Sciences, 2021, 205, 104600.	2.3	17
20	New insights on the age of the Mengyejing Formation in the Simao Basin, SE Tethyan domain and its geological implications. Science China Earth Sciences, 2021, 64, 231-252.	5.2	6
21	Zircon U–Pb age constraints on the provenance of Upper Oligocene to Upper Miocene sandstones in the western Qiongdongnan Basin, South China sea. Marine and Petroleum Geology, 2021, 126, 104891.	3.3	7
22	Formation of the Three Gorges (Yangtze River) no earlier than 10ÂMa. Earth-Science Reviews, 2021, 216, 103601.	9.1	21
23	Paleogene Sedimentary Records of the Paleoâ€Jinshajiang (Upper Yangtze) in the Jianchuan Basin, Yunnan, SW China. Geochemistry, Geophysics, Geosystems, 2021, 22, e2020GC009500.	2.5	10
24	No connection between the Yangtze and Red rivers since the late Eocene. Marine and Petroleum Geology, 2021, 129, 105115.	3.3	9
25	Detrital zircon Uâ€Pb geochronology of the Jianchuan Basin, southeastern Tibetan Plateau, and its implications for tectonic and paleodrainage evolution. Terra Nova, 2021, 33, 560-572.	2.1	7
26	Cenozoic evolution of the Yangtze River: Constraints from detrital zircon U Pb ages. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 579, 110586.	2.3	6
27	Timing of river capture in major Yangtze River tributaries: Insights from sediment provenance and morphometric indices. Geomorphology, 2021, 392, 107915.	2.6	14
28	Southeastern continuation of the Bangong-Nujiang suture zone: Constraints from Middle Jurassic–Early Cretaceous sedimentary rocks in the western Baoshan block, SW China. Journal of Asian Earth Sciences, 2021, 221, 104944.	2.3	8
29	Reversal of the middle-upper Songhua River in the late Early Pleistocene, Northeast China. Geomorphology, 2020, 369, 107373.	2.6	10
30	Historical Dynamics of Semi-Humid Evergreen Forests in the Southeast Himalaya Biodiversity Hotspot: A Case Study of the Quercus franchetii Complex (Fagaceae). Frontiers in Plant Science, 2021, 12, 774232.	3.6	4
31	The Changes in Drainage Systems of Weihe Basin and Sanmenxia Basin Since Late Pliocene Give New Insights Into the Evolution of the Yellow River. Frontiers in Earth Science, 2022, 9, .	1.8	6
32	Cenozoic reorganization of fluvial systems in eastern China: Sedimentary provenance of detrital K-feldspar in Taiwan. Chemical Geology, 2022, 592, 120740.	3.3	6
33	Anisotropy of Magnetic Susceptibility Reveals Late Miocene Tectonic Activity in the Western Qaidam Basin. Frontiers in Earth Science, 2022, 10, .	1.8	0
34	Evolution of eastern Tibetan river systems is driven by the indentation of India. Communications Earth & Environment, 2021, 2, .	6.8	7
35	Existence of a continental-scale river system in eastern Tibet during the late Cretaceous–early Palaeogene. Nature Communications, 2021, 12, 7231.	12.8	28
36	Provenance of the early Paleozoic sedimentary succession in the Lancang Block, SW China: Implications for the tectonic evolution of the northern margin of Gondwana. Journal of Asian Earth Sciences, 2022, 231, 105229.	2.3	5

#	Article	IF	CITATIONS
37	Late Oligocene-early Miocene Origin of the First Bend of the Yangtze River explained by thrusting-induced river reorganization. Geomorphology, 2022, 411, 108303.	2.6	5
38	Evolution of drainage patterns in active fold-thrust belts: A case study in the Qilian Mountains. Frontiers in Earth Science, 0, 10, .	1.8	1
39	Sedimentary provenance perspectives on the evolution of the major rivers draining the eastern Tibetan Plateau. Earth-Science Reviews, 2022, 232, 104151.	9.1	15
40	Faunal evolution under the background of the Cenozoic greenhouse and icehouse climate. Chinese Science Bulletin, 2023, 68, 1557-1566.	0.7	3
41	How did sediments disperse and accumulate in the oceanic basin, South China Sea. Marine and Petroleum Geology, 2023, 147, 105979.	3.3	5
42	Detrital zircon U–Pb age constraints on the provenance of submarine channels in Ledong area, Yinggehai Basin, South China Sea. Marine and Petroleum Geology, 2023, , 106098.	3.3	0
43	Miocene rapid strike-slip faulting along the Altyn Tagh Fault, North Tibet: Insight from sedimentology records in the Tula and Qaidam basins. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 613, 111400.	2.3	4
44	Geochemical characteristics and provenance of the detrital sediments in the junction area of Yinggehai and Qiongdongnan basins, South China Sea. Scientific Reports, 2023, 13, .	3.3	1
45	Provenance evidence for the early-to-middle Pleistocene drainage reorganization of the Songhua River, NE China. Catena, 2023, 224, 107004.	5.0	1
46	Late Oligocene Formation of the Pearl River Triggered by the Opening of the South China Sea. Geophysical Research Letters, 2023, 50, .	4.0	1
47	From Desiccation to Reâ€Integration of the Yellow River Since the Last Glaciation. Geophysical Research Letters, 2023, 50, .	4.0	0
48	Sedimentary recycling in Jianchuan Basin, SE Tibetan Plateau: A solution to the debate on the formation age of the First Bend (Yangtze River). Geomorphology, 2023, 440, 108888.	2.6	2
49	Sedimentary provenance constraints on the Cretaceous to Cenozoic palaeogeography of the western margin of the Jianghan Basin, South China. Gondwana Research, 2024, 125, 343-358.	6.0	4
50	Evolution of eastern Asia river systems reconstructed by the mineralogy and detrital-zircon geochronology of modern Red River and coastal Vietnam river sand. Earth-Science Reviews, 2023, 245, 104572.	9.1	0
51	A Critical Appraisal of the Sensitivity of Detrital Zircon U–Pb Provenance Data to Constrain Drainage Network Evolution in Southeast Tibet. Journal of Geophysical Research F: Earth Surface, 2024, 129, .	2.8	0

CITATION REPORT