Perspective and potential of smart optical materials

Smart Materials and Structures 26, 093001

DOI: 10.1088/1361-665x/aa7c32

Citation Report

#	Article	IF	CITATIONS
1	A Robust Soft Lens for Tunable Camera Application Using Dielectric Elastomer Actuators. Soft Robotics, 2018, 5, 777-782.	4.6	36
2	Soft piezoelectric polymer of poly[di(ethylene glycol) adipate] plasticized poly vinyl chloride and its strain sensing. Materials Letters, 2018, 227, 276-280.	1.3	15
3	Morphology induced plasmonic-excitonic interaction revealed by pump-probe spectroscopy. Optics and Laser Technology, 2019, 119, 105674.	2.2	4
4	Singleâ€Stimulusâ€Induced Modulation of Multiple Optical Properties. Advanced Materials, 2019, 31, e1900388.	11.1	39
5	Dynamic Tuning of Optical Transmittance of 1D Colloidal Assemblies of Magnetic Nanostructures. Advanced Intelligent Systems, 2019, 1, 1900099.	3.3	12
6	Monolithic focus-tunable lens technology enabled by disk-type dielectric-elastomer actuators. Scientific Reports, 2020, 10, 16937.	1.6	16
7	Development of solvent-free green PVC gel based varifocal micro-lens. Smart Materials and Structures, 2020, 29, 085049.	1.8	6
8	Organocatalytic Ring-Opening Polymerization Toward Poly(γ-amide-ε-caprolactone)s with Tunable Lower Critical Solution Temperatures. Macromolecules, 2020, 53, 5096-5104.	2.2	17
9	Poly(N-isopropylacrylamide)-based smart hydrogels: Design, properties and applications. Progress in Materials Science, 2021, 115, 100702.	16.0	402
10	Refractive Index Change of Cellulose Nanocrystal-Based Electroactive Polyurethane by an Electric Field. Frontiers in Bioengineering and Biotechnology, 2021, 9, 606008.	2.0	1
11	Seven-Coordinate Tb ³⁺ Complexes with 90% Quantum Yields: High-Performance Examples of Combined Singlet- and Triplet-to-Tb ³⁺ Energy-Transfer Pathways. Inorganic Chemistry, 2021, 60, 892-907.	1.9	33
12	A Review: All Solid-state Electroactive Polymer-based Tunable Lens. The Journal of Korea Robotics Society, 2021, 16, 41-48.	0.2	O
13	Transparent and Flexible Photon Sieve Made with Cellulose Nanofiber by Micro-Nano Structure Molding. International Journal of Precision Engineering and Manufacturing - Green Technology, 2022, 9, 1165-1175.	2.7	2
14	Visibleâ€toâ€MIR broadband modulating electrochromic metal oxidesâ€based coating for thermal management. Journal of the American Ceramic Society, 2021, 104, 2143-2157.	1.9	14
15	Development of G-Fresnel lens-based mu-spectrometer. , 2019, , .		1
16	Recent Advances in Bioinspired Hydrogels: Materials, Devices, and Biosignal Computing. ACS Biomaterials Science and Engineering, 2023, 9, 2048-2069.	2.6	27
17	Pockels cells-based intensity modulation using multiple biasing signals on a single-carrier light beam. Journal of Optics (India), 2022, 51, 283-288.	0.8	2
18	Three-Dimensional Printing of Liquid Crystals with Thermal Sensing Capability via Multimaterial Vat Photopolymerization. ACS Applied Polymer Materials, 2022, 4, 2951-2959.	2.0	16

#	Article	IF	CITATIONS
19	All-optical method for measuring the electrical parameters of passive electronic elements with active use of Pockels cells. Journal of Optics (India), 2023, 52, 944-948.	0.8	4
20	An alternating approach of using multi-passing technique for development of massive phase difference between two orthogonal components of light in an electro-optic Pockels cell. Journal of Optics (India), 2023, 52, 317-322.	0.8	3
21	Emerging Electrochromic Materials and Devices for Future Displays. Chemical Reviews, 2022, 122, 14679-14721.	23.0	175
22	Effect of electrode design and dust particle size on electrodynamics dust shield procedure. Physics Open, 2023, 14, 100131.	0.7	6
23	Broadband multispectral compatible absorbers for radar, infrared and visible stealth application. Progress in Materials Science, 2023, 135, 101088.	16.0	147
24	New Family of Luminescent Tetranuclear Lanthanide-Based Germsesquioxanes: Luminescence and Temperature Sensing. Organometallics, 0, , .	1.1	1