Exceptional points enhance sensing in an optical micro

Nature 548, 192-196

DOI: 10.1038/nature23281

Citation Report

#	Article	IF	CITATIONS
1	Exceptional points make for exceptional sensors. Physics Today, 2017, 70, 23-26.	0.3	11
2	Floquet exceptional points and chirality in non-Hermitian Hamiltonians. Journal of Physics A: Mathematical and Theoretical, 2017, 50, 505201.	2.1	35
3	Optical sensing gets exceptional. Nature, 2017, 548, 161-162.	27.8	14
4	Click and discover. Nature, 2017, 548, 162-164.	27.8	3
5	Spectral signatures of exceptional points and bifurcations in the fundamental active photonic dimer. Physical Review A, 2017, 96, .	2.5	23
6	Enhanced nonlinear frequency conversion and Purcell enhancement at exceptional points. Physical Review B, 2017, 96, .	3.2	28
7	Parity-time symmetry meets photonics: A new twist in non-Hermitian optics. Europhysics Letters, 2017, 120, 64001.	2.0	222
8	Two-dimensional imaging and modification of nanophotonic resonator modes using a focused ion beam. Optica, 2017, 4, 1444.	9.3	10
9	All-optical control of ultrahigh-Q silica microcavities with iron oxide nanoparticles. Optics Letters, 2017, 42, 5133.	3.3	23
10	Non-Hermitian robust edge states in one dimension: Anomalous localization and eigenspace condensation at exceptional points. Physical Review B, 2018, 97, .	3.2	447
11	Pair of Exceptional Points in a Microdisk Cavity under an Extremely Weak Deformation. Physical Review Letters, 2018, 120, 093902.	7.8	40
12	Enhanced response of non-Hermitian photonic systems near exceptional points. Physical Review A, 2018, 97, .	2.5	12
13	Cross-polarization mode coupling and exceptional points in photonic crystal slabs. Physical Review A, 2018, 97, .	2.5	25
14	Effect of non-Hermiticity on adiabatic elimination in coupled waveguides. Physical Review A, 2018, 97, .	2.5	4
15	Parity-time-symmetric coupled asymmetric dimers. Physical Review A, 2018, 97, .	2.5	39
16	Parity–time symmetric photonics. National Science Review, 2018, 5, 183-199.	9.5	76
17	Lead Halide Perovskite Based Microdisk Lasers for Onâ€Chip Integrated Photonic Circuits. Advanced Optical Materials, 2018, 6, 1701266.	7.3	48
18	Observation of bulk Fermi arc and polarization half charge from paired exceptional points. Science, 2018, 359, 1009-1012.	12.6	438

#	Article	IF	CITATIONS
19	Non-Hermitian physics and PT symmetry. Nature Physics, 2018, 14, 11-19.	16.7	1,620
20	Exceptional point engineered glass slide for microscopic thermal mapping. Nature Communications, 2018, 9, 1764.	12.8	37
21	Onâ€Chip Spiral Waveguides for Ultrasensitive and Rapid Detection of Nanoscale Objects. Advanced Materials, 2018, 30, e1800262.	21.0	49
22	Laminated graphene oxide-supported high-efficiency microwave absorber fabricated by an in situ growth approach. Carbon, 2018, 129, 310-320.	10.3	138
23	Observation of slowly decaying eigenmodes without exceptional points in Floquet dissipative synthetic circuits. Communications Physics, 2018, 1 , .	5. 3	26
24	Winding around non-Hermitian singularities. Nature Communications, 2018, 9, 4808.	12.8	65
25	Unidirectional light emission in PT-symmetric microring lasers. Optics Express, 2018, 26, 27153.	3.4	41
26	Exceptional Points in Whispering-Gallery Microcavities. , 2018, , .		0
27	Accessing the Exceptional Points in Coupled Fabry–Perot Resonators through Hybrid Integration. ACS Photonics, 2018, 5, 4920-4927.	6.6	13
28	Nonadiabatic Modal Dynamics Around Exceptional Points in an All-Lossy Dual-Mode Optical Waveguide: Toward Chirality-Driven Asymmetric Mode Conversion. Physical Review Applied, 2018, 10, .	3.8	21
29	Role of nonorthogonality of energy eigenstates in quantum systems with localized losses. Physical Review A, 2018, 98, .	2.5	6
30	Light dynamics in <i>PT</i> -symmetric multilayers: Phase transition, nonreciprocity, and propagation direction locking. Journal of Physics: Conference Series, 2018, 1092, 012100.	0.4	1
31	Phase-sensitive photothermal imaging of ultrahigh-Q polyoxide toroidal microresonators. Applied Physics Letters, 2018, 113, 231105.	3.3	3
32	Non-Hermiticity and conservation of orthogonal relation in dielectric microcavity. Journal of Physics Communications, 2018, 2, 075007.	1.2	5
33	Higher Order Exceptional Points in Discrete Photonics Platforms. Springer Tracts in Modern Physics, 2018, , 261-275.	0.1	8
34	PT-Symmetry and Non-Hermitian Wave Transport in Microwaves and RF Circuits. Springer Tracts in Modern Physics, 2018, , 351-405.	0.1	0
35	Non-Hermitian Effects Due to Asymmetric Backscattering of Light in Whispering-Gallery Microcavities. Springer Tracts in Modern Physics, 2018, , 155-184.	0.1	2
36	Exceptional points in two dissimilar coupled diode lasers. Applied Physics Letters, 2018, 113, .	3.3	26

#	Article	IF	CITATIONS
37	Switching Terahertz Waves using Exceptional Points. Physical Review Applied, 2018, 10, .	3.8	9
38	Wave Engineering in Complex Media. , 2018, , .		0
39	Loss-induced transparency in optomechanics. Optics Express, 2018, 26, 25199.	3.4	52
40	Parity-time symmetry in optical microcavity systems. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 222001.	1.5	45
41	Chiral microresonator assisted by Rydberg-atom ensembles. Physical Review A, 2018, 98, .	2.5	10
42	Non-Hermitian Chern Bands. Physical Review Letters, 2018, 121, 136802.	7.8	593
43	Topological Phases of Non-Hermitian Systems. Physical Review X, 2018, 8, .	8.9	792
44	A Tunable Optofluidic Microlaser in a Photostable Conjugated Polymer. Advanced Materials, 2018, 30, e1804556.	21.0	44
45	Three-Dimensional Anisotropic Microlaser from GaN-Based Self-Bent-Up Microdisk. ACS Photonics, 2018, 5, 4259-4264.	6.6	14
46	Mode coupling inPT-symmetric photonic crystals with a flat band. Physical Review A, 2018, 98, .	2.5	2
47	Active polarization control with a parity-time-symmetric plasmonic resonator. Physical Review B, 2018, 98, .	3.2	12
48	Fundamental limits and non-reciprocal approaches in non-Hermitian quantum sensing. Nature Communications, 2018, 9, 4320.	12.8	191
49	Exceptional points in the Riesz-Feller Hamiltonian with an impenetrable rectangular potential. Physical Review A, 2018, 98, .	2.5	3
50	Topological states of non-Hermitian systems. European Physical Journal: Special Topics, 2018, 227, 1295-1308.	2.6	210
51	Anomalous helical edge states in a non-Hermitian Chern insulator. Physical Review B, 2018, 98, .	3.2	156
52	Curved Nanomembrane-Based Concentric Ring Cavities for Supermode Hybridization. Nano Letters, 2018, 18, 7261-7267.	9.1	15
53	Parity-time symmetry along with nonlocal optical solitons and their active controls in a Rydberg atomic gas. Physical Review A, 2018, 98, .	2.5	23
54	Time-asymmetric loop around an exceptional point over the full optical communications band. Nature, 2018, 562, 86-90.	27.8	139

#	Article	IF	CITATIONS
55	Radiation-Pressure-Antidamping Enhanced Optomechanical Spring Sensing. ACS Photonics, 2018, 5, 4164-4169.	6.6	16
56	Simultaneous Observation of a Topological Edge State and Exceptional Point in an Open and Non-Hermitian Acoustic System. Physical Review Letters, 2018, 121, 124501.	7.8	168
57	Wireless whispering-gallery-mode sensor for thermal sensing and aerial mapping. Light: Science and Applications, 2018, 7, 62.	16.6	58
58	Hybrid exceptional point and its dynamical encircling in a two-state system. Physical Review A, 2018, 98,	2.5	22
59	Complex symmetric Hamiltonians and exceptional points of order four and five. Physical Review A, 2018, 98, .	2.5	11
60	Synthesizing exceptional points with three resonators. Physical Review A, 2018, 98, .	2.5	11
61	Nano Bimetallic@Carbon Layer on Porous Carbon Nanofibers with Multiple Interfaces for Microwave Absorption Applications. ACS Applied Nano Materials, 2018, 1, 5712-5721.	5.0	45
62	Wave-scattering method for waveguide–microcavity coupling. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 811.	2.1	3
63	<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT</mml:mi </mml:math> symmetry breaking in multilayers with resonant loss and gain locks light propagation direction. Physical Review B, 2018, 98, .	3.2	42
64	Polarization-based control of phonon laser action in a \hat{A} Parity Time-symmetric optomechanical system. Communications Physics, 2018, 1, .	5. 3	22
65	Pulse shortening in an actively mode-locked laser with parity-time symmetry. APL Photonics, 2018, 3, 086103.	5.7	20
66	Controllable and selective single-mode lasing in polymer microbottle resonator. Optics Express, 2018, 26, 20183.	3.4	10
67	<pre><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT</mml:mi></mml:math> -symmetric circuit QED. Physical Review A, 2018, 97, .</pre>	2.5	79
68	Generalized parity–time symmetry condition for enhanced sensor telemetry. Nature Electronics, 2018, 1, 297-304.	26.0	186
69	Simplified symmetry for electronics. Nature Electronics, 2018, 1, 268-269.	26.0	0
70	Giant Resonance and Anomalous Quality Factor Scaling in Degenerate Band Edge Coupled Resonator Optical Waveguides. Journal of Lightwave Technology, 2018, 36, 3030-3039.	4.6	24
71	Darkâ€Field Sensors based on Organometallic Halide Perovskite Microlasers. Advanced Materials, 2018, 30, e1801481.	21.0	36
72	Dynamically Encircling Exceptional Points: <i>InÂsitu</i> Control of Encircling Loops and the Role of the Starting Point. Physical Review X, 2018, 8, .	8.9	106

#	Article	IF	CITATIONS
73	Whispering gallery modes in a single silica microparticle attached to an optical microfiber and their application for highly sensitive displacement sensing. Optics Express, 2018, 26, 195.	3.4	26
74	Magnon-induced transparency and amplification in ??-symmetric cavity-magnon system. Optics Express, 2018, 26, 20248.	3.4	87
75	End-fire injection of light into high-Q silicon microdisks. Optica, 2018, 5, 612.	9.3	44
76	Loss-induced control of light propagation direction in passive linear coupled optical cavities. Photonics Research, 2018, 6, 525.	7.0	10
77	Backcoupling manipulation in silicon ring resonators. Photonics Research, 2018, 6, 620.	7.0	18
78	Non-Hermitian lattices with a flat band and polynomial power increase [Invited]. Photonics Research, 2018, 6, A10.	7.0	48
79	Parity-time-symmetric whispering-gallery mode nanoparticle sensor [Invited]. Photonics Research, 2018, 6, A23.	7.0	79
80	Passive parity-time-symmetry-breaking transitions without exceptional points in dissipative photonic systems [Invited]. Photonics Research, 2018, 6, A51.	7.0	34
81	PT-Symmetric Microring Laser Gyroscope. , 2018, , .		0
82	Exceptional points of third-order in a layered optical microdisk cavity. New Journal of Physics, 2018, 20, 083016.	2.9	29
83	Parity-Time Symmetry in Optics. , 2018, , 291-301.		2
84	Population transfer at exceptional points in the spectra of the hydrogen atom in parallel electric and magnetic fields. Physical Review A, 2018, 98, .	2.5	3
85	Exceptional points and photonic catastrophe. Optics Letters, 2018, 43, 2929.	3.3	22
86	No exceptional precision of exceptional-point sensors. Physical Review A, 2018, 98, .	2.5	123
87	A phonon laser operating at an exceptional point. Nature Photonics, 2018, 12, 479-484.	31.4	264
88	All-Optical Tunable Microlaser Based on an Ultrahigh- $\langle i \rangle Q \langle i \rangle$ Erbium-Doped Hybrid Microbottle Cavity. ACS Photonics, 2018, 5, 3794-3800.	6.6	58
89	Non-Hermitian dynamics of slowly varying Hamiltonians. Physical Review A, 2018, 98, .	2.5	18
90	Optomechanically Induced Transparency at Exceptional Points. Physical Review Applied, 2018, 10, .	3.8	99

#	Article	IF	CITATIONS
91	Highâ€Performance Terahertz Sensing at Exceptional Points in a Bilayer Structure. Advanced Theory and Simulations, 2018, 1, 1800070.	2.8	28
92	Analytic eigenvalue structure of a coupled-oscillator system beyond the ground state. Physical Review A, 2018, 98, .	2.5	2
93	Rate equation analysis and non-Hermiticity in coupled semiconductor laser arrays. Journal of Applied Physics, 2018, 123, .	2.5	27
94	Parity–time-symmetric mechanical systems by the cavity optomechanical effect. Optics Letters, 2018, 43, 4088.	3.3	7
95	Spontaneous T-symmetry breaking and exceptional points in cavity quantum electrodynamics systems. Science Bulletin, 2018, 63, 1096-1100.	9.0	22
96	Scattering properties of a parity-time-antisymmetric non-Hermitian system. Physical Review A, 2018, 98, .	2.5	14
97	Transporting the Optical Chirality through the Dynamical Barriers in Optical Microcavities. Laser and Photonics Reviews, 2018, 12, 1800027.	8.7	22
98	Exceptional points by coupling of modes with different angular momenta in deformed microdisks: A perturbative analysis. Physical Review A, 2018, 98, .	2.5	18
99	Incident Direction Independent Wave Propagation and Unidirectional Lasing. Physical Review Letters, 2018, 121, 073901.	7.8	91
100	Parity-time-symmetric topological superconductor. Physical Review B, 2018, 98, .	3.2	132
101	Experimental Demonstration of an Anisotropic Exceptional Point. Physical Review Letters, 2018, 121, 085702.	7.8	80
102	Edge States and Topological Invariants of Non-Hermitian Systems. Physical Review Letters, 2018, 121, 086803.	7.8	1,148
103	Level attraction in a microwave optomechanical circuit. Physical Review A, 2018, 98, .	2.5	51
104	Invited Article: Mitigation of dynamical instabilities in laser arrays via non-Hermitian coupling. APL Photonics, 2018, 3, 060802.	5.7	38
105	Exceptional points of resonant states on a periodic slab. Physical Review A, 2018, 97, .	2. 5	15
106	Nonreciprocity in synthetic photonic materials with nonlinearity. MRS Bulletin, 2018, 43, 443-451.	3.5	19
107	Observation of an anti-PT-symmetric exceptional point and energy-difference conserving dynamics in electrical circuit resonators. Nature Communications, 2018, 9, 2182.	12.8	180
108	SOI Waveguide-Based Biochemical Sensors. , 2019, , 423-448.		6

#	Article	IF	CITATIONS
109	Formation of Resonance State Exceptional Points in Two-Dimensional Periodic Structures. , 2019, , .		2
110	Tunable Openâ€Access Microcavities for Solidâ€State Quantum Photonics and Polaritonics. Advanced Quantum Technologies, 2019, 2, 1900060.	3.9	30
111	Non-Bloch Band Theory of Non-Hermitian Systems. Physical Review Letters, 2019, 123, 066404.	7.8	533
112	Direct Generation of Tunable Orbital Angular Momentum Beams in Microring Lasers with Broadband Exceptional Points. ACS Photonics, 2019, 6, 1895-1901.	6.6	44
113	Exceptional Point Enhances Sensitivity of Optomechanical Mass Sensors. Physical Review Applied, 2019, 12, .	3.8	69
114	Exceptional points enhance wireless readout. Nature Electronics, 2019, 2, 323-324.	26.0	19
115	Classification of Exceptional Points and Non-Hermitian Topological Semimetals. Physical Review Letters, 2019, 123, 066405.	7.8	244
116	Exceptional points in 1D arrays of quantum harmonic oscillators. Europhysics Letters, 2019, 127, 20001.	2.0	4
117	Sensitive readout of implantable microsensors using a wireless system locked to an exceptional point. Nature Electronics, 2019, 2, 335-342.	26.0	125
118	Hybrid Coupling Model for Terahertz Metamaterials: Design and Applications. , 2019, , .		0
119	Topological phase transition independent of system non-Hermiticity. Physical Review B, 2019, 100, .	3.2	42
120	Magnetic-field-controlled magnon chaos in an active cavity-magnon system. Laser Physics Letters, 2019, 16, 045208.	1.4	15
121	Non-Hermitian Magnon-Photon Interference in an Atomic Ensemble. Physical Review Letters, 2019, 122, 253602.	7.8	18
122	mathvariant="script">PT-symmetric fermionic theories in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>1</mml:mn><mml:mo>+<mml:mrow><mml:mn>3</mml:mn><mml:mo>+<th>2.0</th><th>20</th></mml:mo></mml:mrow></mml:mo></mml:mrow></mml:math>	2.0	20
123	dimensions. Physical Review A, 2019, 99,. Breakup and Recovery of Topological Zero Modes in Finite Non-Hermitian Optical Lattices. Physical Review Letters, 2019, 123, 165701.	7.8	99
124	Nonâ€Hermitian Selective Thermal Emitters using Metal–Semiconductor Hybrid Resonators. Advanced Materials, 2019, 31, e1904154.	21.0	22
125	Flat band in two-dimensional non-Hermitian optical lattices. Physical Review A, 2019, 100, .	2.5	24
126	Inversion symmetric non-Hermitian Chern insulator. Physical Review B, 2019, 100, .	3.2	29

#	ARTICLE	IF	CITATIONS
127	Nonlinear light diffraction by electromagnetically induced gratings with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT</mml:mi></mml:math> symmetry in a Rydberg atomic gas. Physical Review A, 2019, 100, .	2.5	35
128	Rotation sensing in two coupled whispering-gallery-mode resonators with loss and gain. Physical Review A, $2019,100,.$	2.5	9
129	Enhanced polarization photodetection of metallic cavity ensemble through spontaneously configured lateral electrodes. Nanotechnology, 2019, 30, 495204.	2.6	0
130	Sensitivity of parameter estimation near the exceptional point of a non-Hermitian system. New Journal of Physics, 2019, 21, 083002.	2.9	84
131	Parity-Time-Anyonic Coupled Resonators System With Tunable Exceptional Points. IEEE Access, 2019, 7, 107874-107878.	4.2	5
132	Nonclassical light at exceptional points of a quantum <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT</mml:mi></mml:math> -symmetric two-mode system. Physical Review A, 2019, 100	2.5	33
133	Spectral Modulation of Optofluidic Coupled-Microdisk Lasers in Aqueous Media. Nanomaterials, 2019, 9, 1439.	4.1	6
134	Controllable Kerr and Raman-Kerr frequency combs in functionalized microsphere resonators. Nanophotonics, 2019, 8, 2321-2329.	6.0	23
135	Experimental Observation of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>P</mml:mi><mml:mi>T</mml:mi></mml:math> Symmetry Breaking near Divergent Exceptional Points. Physical Review Letters, 2019, 123, 193901.	7.8	75
136	Unitarity corridors to exceptional points. Physical Review A, 2019, 100, .	2.5	17
137	Photon excitation and photon-blockade effects in optomagnonic microcavities. Physical Review A, 2019, 100, .	2.5	34
138	Quantum Noise Theory of Exceptional Point Amplifying Sensors. Physical Review Letters, 2019, 123, 180501.	7.8	140
139	Parity–Time Symmetry Synthetic Lasers: Physics and Devices. Advanced Optical Materials, 2019, 7, 1900694.	7.3	40
140	Enhanced stability, bistability, and exceptional points in saturable active photonic couplers. Physical Review A, 2019, 100, .	2.5	33
141	High-order exceptional points of counterpropagating waves in weakly deformed microdisk cavities. Physical Review A, 2019, 100, .	2.5	22
142	Regular-Orbit-Engineered Chaotic Photon Transport in Mixed Phase Space. Physical Review Letters, 2019, 123, 173903.	7.8	13
143	Symmetry and Topology in Non-Hermitian Physics. Physical Review X, 2019, 9, .	8.9	683
144	Non-Hermitian Many-Body Localization. Physical Review Letters, 2019, 123, 090603.	7.8	166

#	Article	IF	CITATIONS
145	Controlling photonic spin Hall effect via exceptional points. Physical Review B, 2019, 100, .	3.2	55
146	Dynamically encircling an exceptional point in anti-parity-time symmetric systems: asymmetric mode switching for symmetry-broken modes. Light: Science and Applications, 2019, 8, 88.	16.6	128
147	Non-Hermitian engineering for brighter broadband pseudothermal light. Physical Review A, 2019, 100, .	2.5	4
148	Quantum state tomography across the exceptional point in a single dissipative qubit. Nature Physics, 2019, 15, 1232-1236.	16.7	217
149	Encounter of higher order exceptional singularities and towards cascaded state conversion. Physica Scripta, 2019, 94, 085202.	2.5	10
150	Non-Hermitian Hopf-link exceptional line semimetals. Physical Review B, 2019, 99, .	3.2	131
151	Bulk-boundary correspondence in a non-Hermitian system in one dimension with chiral inversion symmetry. Physical Review B, 2019, 99, .	3.2	279
152	Topological unification of time-reversal and particle-hole symmetries in non-Hermitian physics. Nature Communications, 2019, 10, 297.	12.8	206
153	Symmetry-protected nodal phases in non-Hermitian systems. Physical Review B, 2019, 99, .	3.2	183
154	Three-Dimensional Microtubular Devices for Lab-on-a-Chip Sensing Applications. ACS Sensors, 2019, 4, 1476-1496.	7.8	38
155	Non-Hermitian phase transition and eigenstate localization induced by asymmetric coupling. Physical Review A, 2019, 99, .	2.5	24
156	Topology and exceptional points of massive Dirac models with generic non-Hermitian perturbations. Physical Review B, 2019, 99, .	3.2	38
157	Dynamically encircling exceptional points in a three-mode waveguide system. Communications Physics, 2019, 2, .	5.3	47
158	Interacting non-Hermitian ultracold atoms in a harmonic trap: Two-body exact solution and a high-order exceptional point. Physical Review A, 2019, 99, .	2.5	19
159	Distinct outcomes by dynamically encircling an exceptional point along homotopic loops. Physical Review A, 2019, 99, .	2.5	12
160	Non-Hermitian dynamics without dissipation in quantum systems. Physical Review A, 2019, 99, .	2.5	49
161	Loschmidt Echo and Fidelity Decay Near an Exceptional Point. Annalen Der Physik, 2019, 531, 1900054.	2.4	17
162	Periodic table for topological bands with non-Hermitian symmetries. Physical Review B, 2019, 99, .	3.2	283

#	Article	IF	CITATIONS
163	Non-Hermitian systems and topology: A transfer-matrix perspective. Physical Review B, 2019, 99, .	3.2	142
164	Dispersive readout of a weakly coupled qubit via the parity-time-symmetric phase transition. Physical Review A, 2019, 99, .	2.5	15
165	Anisotropic exceptional points of arbitrary order. Physical Review B, 2019, 99, .	3.2	32
166	Neuromorphic Functions of Light in Parityâ€Timeâ€Symmetric Systems. Advanced Science, 2019, 6, 1900771.	11.2	14
167	Exceptional magnetic sensitivity of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="script">P</mml:mi><mml:mi mathvariant="script">P</mml:mi><mml:mi mathvariant="script">T</mml:mi></mml:mrow></mml:math> -symmetric cavity magnon polaritons. Physical Review B, 2019, 99, .	3.2	55
168	Indirect link between resonant and guided modes on uniform and periodic slabs. Physical Review A, 2019, 99, .	2.5	10
169	Robust exceptional points in disordered systems. Europhysics Letters, 2019, 126, 17002.	2.0	20
170	Using Backscattering and Backcoupling in Silicon Ring Resonators as a New Degree of Design Freedom. Laser and Photonics Reviews, 2019, 13, 1800244.	8.7	27
171	State conversions around exceptional points. Journal of Physics A: Mathematical and Theoretical, 2019, 52, 485301.	2.1	1
172	Topological gapless matters in three-dimensional ultracold atomic gases. Frontiers of Physics, 2019, 14, 1.	5.0	21
173	Controllable <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT</mml:mi></mml:math> phase transition and asymmetric soliton scattering in atomic gases with linear and nonlinear potentials. Physical Review A, 2019, 99, .	2.5	12
174	Knotted non-Hermitian metals. Physical Review B, 2019, 99, .	3.2	93
175	Nonlocal homogenization of PT -symmetric multilayered structures. Physical Review A, 2019, 99, .	2.5	10
176	Scully-Lamb quantum laser model for parity-time-symmetric whispering-gallery microcavities: Gain saturation effects and nonreciprocity. Physical Review A, 2019, 99, .	2.5	43
177	Symmetry protected topological phases characterized by isolated exceptional points. Physical Review B, 2019, 99, .	3.2	45
178	Sensing with Exceptional Surfaces in Order to Combine Sensitivity with Robustness. Physical Review Letters, 2019, 122, 153902.	7.8	141
179	Interference-modulated photon statistics in whispering-gallery-mode microresonator optomechanics. Physical Review A, 2019, 99, .	2.5	9
180	Mode-splitting based optofluidic sensing at exceptional points in tubular microcavities. Optics Communications, 2019, 446, 128-133.	2.1	5

#	Article	IF	CITATIONS
181	Topological dynamics of an adiabatically varying Hamiltonian around third order exceptional points. Physica Scripta, 2019, 94, 105509.	2.5	9
182	Parity-time-symmetry–enhanced sideband generation in an optomechanical system. Physical Review A, 2019, 99, .	2.5	25
183	Waveguide-based chemo- and biosensors: complex emulsions for the detection of caffeine and proteins. Lab on A Chip, 2019, 19, 1327-1331.	6.0	34
184	Unidirectional emission from a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="script">P</mml:mi><mml:mi mathvariant="script">T</mml:mi></mml:mrow></mml:math> -symmetric annular microcavity. Physical Review A. 2019. 99	2.5	4
185	Perfectly Absorbing Exceptional Points and Chiral Absorbers. Physical Review Letters, 2019, 122, 093901.	7.8	101
186	Emerging opportunities for ultra-high Q whispering gallery mode microcavities. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	5.1	58
187	Willis Metamaterial on a Structured Beam. Physical Review X, 2019, 9, .	8.9	41
188	Analysis of Kerr Noise in Angular-Rate Sensing Based on Mode Splitting in a Whispering-Gallery-Mode Microresonator. Micromachines, 2019, 10, 150.	2.9	2
189	Parity–time symmetry and exceptional points in photonics. Nature Materials, 2019, 18, 783-798.	27.5	940
190	Nonfluorescent Optical Probing of Single Molecules and Nanoparticles. Journal of Physical Chemistry C, 2019, 123, 14107-14117.	3.1	15
191	Influence of Surface Roughness on Microring-Based Phase Shifters. IEEE Photonics Technology Letters, 2019, 31, 813-816.	2.5	8
192	High-Sensitivity Wireless Displacement Sensing Enabled by PT-Symmetric Telemetry. IEEE Transactions on Antennas and Propagation, 2019, 67, 3445-3449.	5.1	39
193	The dawn of non-Hermitian optics. Communications Physics, 2019, 2, .	5.3	121
194	Enhanced sideband responses in a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT</mml:mi></mml:math> -symmetric-like cavity magnomechanical system. Physical Review A, 2019, 99, .	2.5	51
195	Arbitrary order exceptional point induced by photonic spin–orbit interaction in coupled resonators. Nature Communications, 2019, 10, 832.	12.8	85
196	Robust lasing modes in coupled colloidal quantum dot microdisk pairs using a non-Hermitian exceptional point. Nature Communications, 2019, 10, 561.	12.8	32
197	Multinanoparticle scattering in a multimode microspheroid resonator. Physical Review A, 2019, 99, .	2.5	1
198	Effects of gain saturation on the quantum properties of light in a non-Hermitian gain-loss coupler. Physical Review A, 2019, 99, .	2.5	8

#	Article	IF	CITATIONS
199	Non-Hermitian extensions of higher-order topological phases and their biorthogonal bulk-boundary correspondence. Physical Review B, 2019, 99, .	3.2	181
200	Non-Hermiticity and exceptional points in coherently coupled vertical cavity laser diode arrays. Applied Physics Letters, 2019, 114, .	3.3	23
201	Probing dark universe with exceptional points. Physics of the Dark Universe, 2019, 23, 100244.	4.9	9
202	A Whole Surface of Exceptional Points. Physics Magazine, 0, 12, .	0.1	1
203	Parity–Time Symmetry in Bidirectionally Coupled Semiconductor Lasers. Photonics, 2019, 6, 122.	2.0	7
204	Controllable high-speed polariton waves in a PT-symmetric lattice. New Journal of Physics, 2019, 21, 123008.	2.9	5
205	Synchronization of Mutually Delay-Coupled Quantum Cascade Lasers with Distinct Pump Strengths. Photonics, 2019, 6, 125.	2.0	14
206	Voigt Exceptional Points in an Anisotropic ZnO-Based Planar Microcavity: Square-Root Topology, Polarization Vortices, and Circularity. Physical Review Letters, 2019, 123, 227401.	7.8	35
207	Biochemical sensing in graphene-enhanced microfiber resonators with individual molecule sensitivity and selectivity. Light: Science and Applications, 2019, 8, 107.	16.6	70
208	Dynamical characterization of non-Hermitian Floquet topological phases in one dimension. Physical Review B, 2019, 100, .	3.2	46
209	Nonadiabatic transitions through exceptional points in the band structure of a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>P</mml:mi><mml:mi>T</mml:mi>-symmetric lattice. Physical Review A, 2019, 100, .</mml:mrow></mml:math>	<b ഇ.চা:mrc	oww/mml:ma
210	Enhanced Sensing and Nondegraded Thermal Noise Performance Based on <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="script">P</mml:mi><mml:mi></mml:mi></mml:mrow></mml:math> -Symmetric Electronic Circuits with a Sixth-Order Exceptional Point. Physical Review Letters, 2019, 123,	7.8	109
211	Tuning the Effective <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="script">P</mml:mi><mml:mi mathvariant="script">T</mml:mi></mml:mrow></mml:math> Phase of Plasmonic Eigenmodes. Physical Review Letters, 2019, 123, 213903.	7.8	31
212	Observation of the exceptional-point-enhanced Sagnac effect. Nature, 2019, 576, 65-69.	27.8	240
213	Non-Hermitian ringÂlaser gyroscopes with enhanced Sagnac sensitivity. Nature, 2019, 576, 70-74.	27.8	183
214	Non-Hermitian defect states from lifetime differences. Physical Review A, 2019, 100, .	2.5	8
215	Higher-order topological degeneracies and progress towards unique successive state switching in a four-level open system. Physical Review A, 2019, 100, .	2.5	13
216	Quantum exceptional points of non-Hermitian Hamiltonians and Liouvillians: The effects of quantum jumps. Physical Review A, 2019, 100, .	2.5	172

#	Article	IF	CITATIONS
217	Delayed sudden death of entanglement at exceptional points. Physical Review A, 2019, 100, .	2.5	28
218	Ultrasensitive Exceptional Point Circuit for Enhanced Physiological Sensing. , 2019, , .		0
219	Non-Hermitian Hamiltonians and no-go theorems in quantum information. Physical Review A, 2019, 100,	2.5	65
220	High- <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Q</mml:mi></mml:math> Quasibound States in the Continuum for Nonlinear Metasurfaces. Physical Review Letters, 2019, 123, 253901.	7.8	419
221	Methane Gas Photonic Sensor Based on Resonant Coupled Cavities. Sensors, 2019, 19, 5171.	3.8	7
222	Parityâ€Time Symmetry in Nonâ€Hermitian Complex Optical Media. Advanced Materials, 2020, 32, e1903639.	21.0	68
223	Experimental Observation of an Exceptional Surface in Synthetic Dimensions with Magnon Polaritons. Physical Review Letters, 2019, 123, 237202.	7.8	112
224	<pre><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT</mml:mi></mml:math> -symmetric non-Hermitian Dirac semimetals. Physical Review B, 2019, 100, .</pre>	3.2	44
225	Increasing dielectric loss of a graphene oxide nanoparticle to enhance the microwave thermoacoustic imaging contrast of breast tumor. Nanoscale, 2019, 11, 22222-2229.	5.6	17
226	Graphene enhanced intra-resonator biochemical detection with individual molecule sensitivity and selectivity. , 2019, , .		1
227	Exceptional points in optics and photonics. Science, 2019, 363, .	12.6	1,156
228	Exceptional Points of Degeneracy Induced by Linear Time-Periodic Variation. Physical Review Applied, 2019, 11 , .	3.8	44
229	High-order exceptional points in ultracold Bose gases. Physical Review A, 2019, 99, .	2.5	41
230	Highly Controllable Lasing Actions in Lead Halide Perovskite–Si ₃ N ₄ Hybrid Microâ€Resonators. Laser and Photonics Reviews, 2019, 13, 1800189.	8.7	19
231	Band flips and bound-state transitions in leaky-mode photonic lattices. Physical Review B, 2019, 99, .	3.2	60
232	Onâ€Chipâ€Integrated Methylammonium Halide Perovskite Optical Sensors. Advanced Optical Materials, 2019, 7, 1801308.	7.3	15
233	Minimally asymmetric state conversion around exceptional singularities in a specialty optical microcavity. Journal of Optics (United Kingdom), 2019, 21, 025201.	2.2	12
234	Electronically programmable photonic molecule. Nature Photonics, 2019, 13, 36-40.	31.4	155

#	Article	IF	CITATIONS
235	Electrically Pumped Microring Parity-Time-Symmetric Lasers. Proceedings of the IEEE, 2020, 108, 827-836.	21.3	17
236	Perspective on topological states of non-Hermitian lattices. JPhys Materials, 2020, 3, 014002.	4.2	101
237	Controlled optical bistability in parity-time-symmetric coupled micro-cavities: Possibility of all-optical switching. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 117, 113780.	2.7	12
238	Nanoparticle-mediated chiral light chaos based on non-Hermitian mode coupling. Nanoscale, 2020, 12, 2118-2125.	5.6	12
239	Loss in acoustic metasurfaces: a blessing in disguise. MRS Communications, 2020, 10, 32-41. 2A <mml:math <="" display="inline" id="d1e273" td="" xmlns:mml="http://www.w3.org/1998/Math/Math/ML"><td>1.8</td><td>20</td></mml:math>	1.8	20
240	altimg= si5.svg > <mml:mrow><mml:mi mathvariant="normal">14</mml:mi><mml:mi mathvariant="normal">m</mml:mi> Tm<mml:math altimg="si104.svg" display="inline" id="d1e281" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow< td=""><td>2.1</td><td>5</td></mml:mrow<></mml:msup></mml:math></mml:mrow>	2.1	5
241	Bulk–edge correspondence and stability of multiple edge states of a \$mathcal{PT}\$-symmetric non-Hermitian system by using non-unitary quantum walks. Progress of Theoretical and Experimental Physics, 2020, 2020, .	6.6	10
242	Microspheres with Atomic-Scale Tolerances Generate Hyperdegeneracy. Physical Review X, 2020, 10, .	8.9	7
243	Nanoscatterer-mediated frequency combs in cavity optomagnonics. Physical Review A, 2020, 102, .	2.5	15
244	Modal Purcell factor in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT</mml:mi></mml:math> -symmetric waveguides. Physical Review B, 2020, 102, .	3.2	6
245	Real frequency splitting indirectly coupled anti-parity-time symmetric nanoparticle sensor. Journal of Applied Physics, 2020, 128 , .	2.5	16
246	Label-Free Plasmonic Detection of Untethered Nanometer-Sized Brownian Particles. ACS Nano, 2020, 14, 14212-14218.	14.6	13
248	Hybrid magnonics: Physics, circuits, and applications for coherent information processing. Journal of Applied Physics, 2020, 128, .	2.5	141
249	Tunability and switching of Fano and Lorentz resonances in <i>PTX</i> -symmetric electronic systems. Applied Physics Letters, 2020, 117, .	3.3	19
250	Controllable Light Propagation and Slow Light in Two Coupled Resonators with Nanoparticles. Journal of Physical Chemistry C, 2020, 124, 17379-17386.	3.1	0
251	Microfluidic Whispering Gallery Mode Optical Sensors for Biological Applications. Laser and Photonics Reviews, 2020, 14, 2000135.	8.7	38
252	Perfect absorption in complex scattering systems with or without hidden symmetries. Nature Communications, 2020, 11, 5826.	12.8	33
253	Hierarchical Construction of Higher-Order Exceptional Points. Physical Review Letters, 2020, 125, 203602.	7.8	41

#	Article	IF	CITATIONS
254	Roadmap for photon-magnon coupling and its applications. Solid State Physics, 2020, , 39-71.	0.5	13
255	Fundamental Thermal Noise Limits for Optical Microcavities. Physical Review X, 2020, 10, .	8.9	19
256	The Analytic Eigenvalue Structure of the 1+1 Dirac Oscillator. Chinese Physics Letters, 2020, 37, 090303.	3.3	0
257	Exceptional Points of Degeneracy Directly Induced by Space–Time Modulation of a Single Transmission Line. IEEE Antennas and Wireless Propagation Letters, 2020, 19, 1906-1910.	4.0	13
258	Critical Review: digital resolution biomolecular sensing for diagnostics and life science research. Lab on A Chip, 2020, 20, 2816-2840.	6.0	35
259	Non-Hermitian Floquet Phases with Even-Integer Topological Invariants in a Periodically Quenched Two-Leg Ladder. Entropy, 2020, 22, 746.	2.2	12
260	Whispering-Gallery Sensors. Matter, 2020, 3, 371-392.	10.0	165
261	Relative Entropy as a Measure of Difference between Hermitian and Non-Hermitian Systems. Entropy, 2020, 22, 809.	2.2	3
262	Interaction-induced dynamical <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT</mml:mi></mml:math> -symmetry breaking in dissipative Fermi-Hubbard models. Physical Review A, 2020, 102, .	2.5	19
263	Passage through exceptional point: case study. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20190831.	2.1	13
264	Non-Hermitian Topological Sensors. Physical Review Letters, 2020, 125, 180403.	7.8	157
265	Hamiltonian Hopping for Efficient Chiral Mode Switching in Encircling Exceptional Points. Physical Review Letters, 2020, 125, 187403.	7.8	44
266	Exponentially-enhanced quantum sensing with non-Hermitian lattice dynamics. Nature Communications, 2020, 11, 5382.	12.8	75
267	The Particle Induced Mode Splitting and Exceptional Points in Whispering-Gallery Mode Microcavity. IEEE Photonics Journal, 2020, 12, 1-14.	2.0	4
268	Energy Band Attraction Effect in Non-Hermitian Systems. Physical Review Letters, 2020, 125, 137703.	7.8	7
269	Maximal Shannon entropy in the vicinity of an exceptional point in an open microcavity. Scientific Reports, 2020, 10, 12551.	3.3	6
270	Exceptional points and dynamics of a non-Hermitian two-level system without PT symmetry. Europhysics Letters, 2020, 131, 34001.	2.0	6
271	Breaking Anti-PT Symmetry by Spinning a Resonator. Nano Letters, 2020, 20, 7594-7599.	9.1	103

#	Article	IF	CITATIONS
272	Quantum information dynamics in a high-dimensional parity-time-symmetric system. Physical Review A, 2020, 102 , .	2.5	20
273	Steering Directional Light Emission and Mode Chirality through Postshaping of Cavity Geometry. Laser and Photonics Reviews, 2020, 14, 2000118.	8.7	7
274	Liouvillian exceptional points of any order in dissipative linear bosonic systems: Coherence functions and switching between <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT</mml:mi></mml:math> and anti- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT</mml:mi></mml:math> symmetries. Physical Review A, 2020, 102, .	2.5	39
275	Parity-time Symmetry Based on Time Modulation. Physical Review Applied, 2020, 14, .	3.8	22
276	Rotation-time symmetry in bosonic systems and the existence of exceptional points in the absence of \$\${mathscr{PT}}\$\$ symmetry. Scientific Reports, 2020, 10, 19906.	3.3	6
277	Exceptional Points in Plasmonic Waveguides Do Not Require Gain or Loss. Physical Review Applied, 2020, 14, .	3.8	4
278	Experimental Investigation of Quantum <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">P</mml:mi><mml:mi mathvariant="script">P</mml:mi><mml:mi mathvariant="script">T</mml:mi></mml:math> -Enhanced Sensor. Physical Review Letters, 2020, 125, 240506.	7.8	36
279	Theory of reflectionless scattering modes. Physical Review A, 2020, 102, .	2.5	47
280	Chiral State Conversion in a Levitated Micromechanical Oscillator with In Situ Control of Parameter Loops. Chinese Physics Letters, 2020, 37, 100301.	3.3	1
281	Mode coupling and enhanced Kerr nonlinearity with multiple Rayleigh scatterers containing a single dipole quantum emitter surrounding a whispering-gallery microcavity. European Physical Journal Plus, 2020, 135, 1.	2.6	1
282	The Measurement of Nanoparticle Concentrations by the Method of Microcavity Mode Broadening Rate. Sensors, 2020, 20, 5950.	3.8	0
283	Two dimension PT symmetry spacial soliton in atomic gases with linear and nonlinear potentials. Optik, 2020, 213, 164705.	2.9	2
284	Intuitive model of exceptional points in an optical whispering-gallery microcavity perturbed by nanoparticles. Physical Review A, 2020, 101, .	2.5	7
285	Prospects and fundamental limits in exceptional point-based sensing. Nature Communications, 2020, 11, 2454.	12.8	69
286	Continuously-tunable light–matter coupling in optical microcavities with 2D semiconductors. Scientific Reports, 2020, 10, 8303.	3.3	13
287	Enhancing Parameter Estimation Precision in a Dissipative Environment with Twoâ€Photon Driving. Annalen Der Physik, 2020, 532, 1900387.	2.4	3
288	Waveguide-induced coalescence of exceptional points. Physical Review A, 2020, 101, .	2.5	6
289	Equivalence of Effective Non-Hermitian Hamiltonians in the Context of Open Quantum Systems and Strongly Correlated Electron Systems. Physical Review Letters, 2020, 124, 196401.	7.8	29

#	Article	IF	CITATIONS
290	Generalized bulk–boundary correspondence in non-Hermitian topolectrical circuits. Nature Physics, 2020, 16, 747-750.	16.7	471
291	Dynamic magnetization in non-Hermitian quantum spin systems. Physical Review B, 2020, 101, .	3.2	16
292	The effect of thermal-induced noise on doubly-coupled-ring optical gyroscope sensor around exceptional point. Optics Communications, 2020, 474, 126108.	2.1	5
293	Optothermally induced mechanical oscillation in a silk fibroin coated high- <i>Q</i> microsphere. Applied Physics Letters, 2020, 116, .	3.3	8
294	Robustness of exceptional-point-based sensors against parametric noise: The role of Hamiltonian and Liouvillian degeneracies. Physical Review A, 2020, 101, .	2.5	38
295	Non-Hermitian mobility edges in one-dimensional quasicrystals with parity-time symmetry. Physical Review B, 2020, 101, .	3.2	73
296	Siliconâ€Based Integrated Labelâ€Free Optofluidic Biosensors: Latest Advances and Roadmap. Advanced Materials Technologies, 2020, 5, 1901138.	5.8	62
297	Giant Enhancement of Rotation Sensing with <mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="script">P</mml:mi><mml:mi mathvariant="script">T</mml:mi></mml:mrow></mml:math> -Symmetric Circular Bragg Lasers. Physical	3.8	3
298	Review Applied, 2020, 13, . Experimental Investigation of State Distinguishability in Parity-Time Symmetric Quantum Dynamics. Physical Review Letters, 2020, 124, 230402.	7.8	19
299	PT -symmetric chiral metamaterials: Asymmetric effects and PT -phase control. Physical Review B, 2020, 101, .	3.2	17
300	Visualizable detection of nanoscale objects using anti-symmetric excitation and non-resonance amplification. Nature Communications, 2020, 11, 2754.	12.8	7
301	Effects of Shallow Suspension in Low-loss Waveguide-integrated Chalcogenide Microdisk Resonators. Journal of Lightwave Technology, 2020, , 1-1.	4.6	7
302	Phase transition of non-Hermitian topological edge states in microwave regime. Applied Physics Letters, 2020, 116, 211104.	3.3	9
303	High-order exceptional points in supersymmetric arrays. Physical Review A, 2020, 101, .	2.5	43
304	Many-body approach to non-Hermitian physics in fermionic systems. Physical Review B, 2020, 101, .	3.2	66
305	Photonic topological fermi nodal disk in non-Hermitian magnetic plasma. Light: Science and Applications, 2020, 9, 40.	16.6	12
306	High-Order Parity-Time Symmetric Model for Stable Three-Coil Wireless PowerÂTransfer. Physical Review Applied, 2020, 13, .	3.8	21
307	Exceptional Point and toward Mode-Selective Optical Isolation. ACS Photonics, 2020, 7, 967-974.	6.6	40

#	Article	IF	CITATIONS
308	Dynamics and topology of non-Hermitian elastic lattices with non-local feedback control interactions. New Journal of Physics, 2020, 22, 053004.	2.9	65
309	Entanglement of microwave-optical modes in a strongly coupled electro-optomechanical system. Physical Review A, 2020, 101, .	2.5	21
310	Fano Resonance in Artificial Photonic Molecules. Advanced Optical Materials, 2020, 8, 1902153.	7.3	34
311	Chipâ€Based Optical Isolator and Nonreciprocal Parityâ€Time Symmetry Induced by Stimulated Brillouin Scattering. Laser and Photonics Reviews, 2020, 14, 1900278.	8.7	31
312	Petermann-factor sensitivity limit near an exceptional point in a Brillouin ring laser gyroscope. Nature Communications, 2020, 11, 1610.	12.8	104
313	Nonlinearity-induced anomalous mode collapse and nonchiral asymmetric mode switching around multiple exceptional points. Physical Review B, 2020, 101, .	3.2	13
314	Shape Deformation of Nanoresonator: A Quasinormal-Mode Perturbation Theory. Physical Review Letters, 2020, 125, 013901.	7.8	39
315	PT-Symmetric Absorber-Laser Enables Electromagnetic Sensors with Unprecedented Sensitivity. ACS Photonics, 2020, 7, 2080-2088.	6.6	60
316	Topological invariants, zero mode edge states and finite size effect for a generalized non-reciprocal Su-Schrieffer-Heeger model. European Physical Journal B, 2020, 93, 1.	1.5	23
317	Hybrid-Liouvillian formalism connecting exceptional points of non-Hermitian Hamiltonians and Liouvillians via postselection of quantum trajectories. Physical Review A, 2020, 101, .	2.5	58
318	Third-order exceptional point and successive switching among three states in an optical microcavity. Physical Review A, 2020, 101, .	2.5	19
319	Non-Hermitian scattering on a tight-binding lattice. Physical Review A, 2020, 102, .	2.5	17
320	Bulk-boundary correspondence in non-Hermitian Hopf-link exceptional line semimetals. Physical Review B, 2020, 102, .	3.2	18
321	Environmentally Induced Exceptional Points in Elastodynamics. Physical Review Applied, 2020, 13, .	3.8	26
322	Synthetic Anti-PT Symmetry in a Single Microcavity. Physical Review Letters, 2020, 124, 053901.	7.8	98
323	Mechanical Exceptional-Point-Enhanced Second-Order Sideband Generation. IEEE Access, 2020, 8, 18884-18892.	4.2	2
324	Hybrid exceptional point created from type-III Dirac point. Physical Review B, 2020, 101, .	3.2	33
325	Reconfigurable symmetry-broken laser in a symmetric microcavity. Nature Communications, 2020, 11, 1136.	12.8	35

#	Article	IF	CITATIONS
326	Quadratic optomechanical coupling in an active-passive-cavity system. Physical Review A, 2020, 101, .	2.5	7
327	Symmetry-breaking-induced plasmonic exceptional points and nanoscale sensing. Nature Physics, 2020, 16, 462-468.	16.7	178
328	Exceptional points enhancing second-order sideband generation in a whispering-gallery-mode microresonator optomechanical system coupled with nanoparticles. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 095401.	1.5	0
329	Collectively induced exceptional points of quantum emitters coupled to nanoparticle surface plasmons. Physical Review A, 2020, 101, .	2.5	16
330	Vector Exceptional Points with Strong Superchiral Fields. Physical Review Letters, 2020, 124, 083901.	7.8	32
331	Improving photon antibunching with two dipole-coupled atoms in whispering-gallery-mode microresonators. Physical Review A, 2020, 101, .	2.5	8
332	Non-Hermitian Floquet topological superconductors with multiple Majorana edge modes. Physical Review B, 2020, 101 , .	3.2	49
333	Relationship between exceptional points and the Kondo effect in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>f</mml:mi></mml:math> -electron materials. Physical Review B, 2020, 101, .	3.2	32
334	Enhancing the Speed and Sensitivity of a Nonlinear Optical Sensor with Noise. Physical Review Applied, 2020, 13 , .	3.8	8
335	Observation of an exceptional point in a non-Hermitian metasurface. Nanophotonics, 2020, 9, 1031-1039.	6.0	55
336	Electromagnetically induced transparency at a chiral exceptional point. Nature Physics, 2020, 16, 334-340.	16.7	156
337	Sensing Enhancement at an Exceptional Point in a Nonreciprocal Fiber Ring Cavity. Journal of Lightwave Technology, 2020, 38, 2511-2515.	4.6	9
338	Quantum Sensing with a Single-Qubit Pseudo-Hermitian System. Physical Review Letters, 2020, 124, 020501.	7.8	36
339	Reservoir-Mediated Quantum Correlations in Non-Hermitian Optical System. Physical Review Letters, 2020, 124, 030401.	7.8	30
340	Quantum and semiclassical exceptional points of a linear system of coupled cavities with losses and gain within the Scully-Lamb laser theory. Physical Review A, 2020, 101, .	2.5	37
341	Nonconservative Coupling in a Passive Silicon Microring Resonator. Physical Review Letters, 2020, 124, 013606.	7.8	5
342	Chirality-enabled unidirectional light emission and nanoparticle detection in parity-time-symmetric microcavity. Physical Review A, 2020, 101, .	2.5	4
343	Angle-Resolved Thermal Emission Spectroscopy Characterization of Non-Hermitian Metacrystals. Physical Review Applied, 2020, 13, .	3.8	19

#	Article	IF	CITATIONS
344	Diabolical points in coupled active cavities with quantum emitters. Light: Science and Applications, 2020, 9, 6.	16.6	20
345	Multi-Parameter Sensing in a Multimode Self-Interference Micro-Ring Resonator by Machine Learning. Sensors, 2020, 20, 709.	3.8	21
346	Parity-time symmetry based on resonant optical tunneling effect for biosensing. Optics Communications, 2020, 475, 125815.	2.1	5
347	Higher-order exceptional points in ferromagnetic trilayers. Physical Review B, 2020, 101, .	3.2	32
348	2D Material Optoelectronics for Information Functional Device Applications: Status and Challenges. Advanced Science, 2020, 7, 2000058.	11.2	215
349	Analytical analysis of and quasi- symmetry in thick diffraction gratings using coupled-wave theory. Journal of Optics (United Kingdom), 2020, 22, 065605.	2.2	0
350	Generalized Berry phase for a bosonic Bogoliubov system with exceptional points. Physical Review A, 2020, 101, .	2.5	16
351	Active Nanophotonics. Proceedings of the IEEE, 2020, 108, 628-654.	21.3	40
352	Robust and efficient wireless power transfer using a switch-mode implementation of a nonlinear parity–time symmetric circuit. Nature Electronics, 2020, 3, 273-279.	26.0	78
353	Unambiguous scattering matrix for non-Hermitian systems. Physical Review A, 2020, 101, .	2.5	16
354	New development of nanoscale spectroscopy using scanning probe microscope. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, 030801.	2.1	8
355	Bulk-boundary correspondence in non-Hermitian systems: stability analysis for generalized boundary conditions. European Physical Journal D, 2020, 74, 1.	1.3	49
356	Highâ€order exceptional points and enhanced sensing in subwavelength resonator arrays. Studies in Applied Mathematics, 2021, 146, 440-462.	2.4	14
357	Nanophotonic optical gyroscope with sensitivity enhancement around "mirrored―exceptional points. Optics Communications, 2021, 483, 126674.	2.1	2
358	Nonlinear Sensing with Whispering-Gallery Mode Microcavities: From Label-Free Detection to Spectral Fingerprinting. Nano Letters, 2021, 21, 1566-1575.	9.1	28
359	Pseudoâ€Hermitian Systems Constructed by Transformation Optics with Robustly Balanced Loss and Gain. Advanced Photonics Research, 2021, 2, 2000081.	3.6	13
360	Remote weak-signal measurement via bound states in optomechanical systems. Communications in Theoretical Physics, 2021, 73, 025102.	2.5	3
361	Topological mode switching in modulated structures with dynamic encircling of an exceptional point. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 477, 20200766.	2.1	8

#	Article	IF	CITATIONS
362	Real-time sensing on the angular coordinates of nanoparticles using whispering-gallery mode optical microcavities. Europhysics Letters, 2021, 133, 14002.	2.0	2
363	Floquet Spectrum and Dynamics for Non-Hermitian Floquet One-Dimension Lattice Model. International Journal of Theoretical Physics, 2021, 60, 355-365.	1.2	2
364	Maximum information states for coherent scattering measurements. Nature Physics, 2021, 17, 564-568.	16.7	30
365	Non-Hermitian Physics and Engineering in Silicon Photonics. Topics in Applied Physics, 2021, , 323-364.	0.8	2
366	Dynamic Framework for Criticality-Enhanced Quantum Sensing. Physical Review Letters, 2021, 126, 010502.	7.8	63
367	Floquet second-order topological insulators in non-Hermitian systems. Physical Review B, 2021, 103, .	3.2	32
368	Enhanced Radio-Frequency Sensors Based on a Self-Dual Emitter-Absorber. Physical Review Applied, 2021, 15, .	3.8	18
369	In the Field of Quantum Technologies. Springer Series in Solid-state Sciences, 2021, , 99-131.	0.3	0
370	Purcell Effect in PT-Symmetric Waveguides. Topics in Applied Physics, 2021, , 493-522.	0.8	0
371	Graphene-Fiber Biochemical Sensors: Principles, Implementations, and Advances. Photonic Sensors, 2021, 11, 123-139.	5.0	9
372	Unidirectional emission and nanoparticle detection in a deformed circular square resonator. Optics Express, 2021, 29, 1666.	3.4	5
373	Electro-optic tuning of non-Hermiticity in a silicon microring resonator., 2021,,.		2
374	Quantum Engineering With Hybrid Magnonic Systems and Materials <i>(Invited Paper)</i>). IEEE Transactions on Quantum Engineering, 2021, 2, 1-36.	4.9	69
375	Recent advances in nanocavities and their applications. Chemical Communications, 2021, 57, 4875-4885.	4.1	8
376	Chiral symmetry in non-Hermitian systems: Product rule and Clifford algebra. Physical Review B, 2021, 103, .	3.2	13
377	Application of Parity-Time Symmetry to Low-Frequency Wireless Power Transfer System. IEEJ Journal of Industry Applications, 2022, 11, 59-68.	1.1	2
378	Exotic Coupling Between Plasmonic Nanoparticles Through Geometric Configurations. Journal of Lightwave Technology, 2021, 39, 6646-6652.	4.6	4
379	High-order exceptional point based optical sensor. Optics Express, 2021, 29, 6080.	3.4	26

#	Article	IF	CITATIONS
380	Kerr-nonlinearity induced bistable-like parity-time phase transition in coupled waveguides. Optics Express, 2021, 29, 7935.	3.4	6
381	Enhanced cross-Kerr nonlinearity induced $$ PT $$ -symmetry in optical lattices. Journal of Optics (United) Tj ETQq 11	0.784314 2.2	rgBT /Overl
382	Observation of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT</mml:mi></mml:math> -symmetric quantum coherence in a single-ion system. Physical Review A, 2021, 103, .	2.5	42
383	Wireless Magnetic Actuation with a Bistable Parity-Time-Symmetric Circuit. Physical Review Applied, 2021, 15, .	3.8	7
384	Floquet exceptional contours in Lindblad dynamics with time-periodic drive and dissipation. Physical Review A, 2021, 103, .	2.5	10
385	Temporal correlation beyond quantum bounds in non-Hermitian PT- symmetric dynamics of a two level system. Journal of Physics A: Mathematical and Theoretical, 2021, 54, 115301.	2.1	4
386	Sensing and Induced Transparency with a Synthetic Anti-PT Symmetric Optical Resonator. ACS Omega, 2021, 6, 5463-5470.	3.5	7
387	Strongly Coupled Systems for Nonlinear Optics. Laser and Photonics Reviews, 2021, 15, 2000514.	8.7	31
388	Controlling wave fronts with tunable disordered non-Hermitian multilayers. Scientific Reports, 2021, 11, 4790.	3.3	4
389	Observation of topological bound states in a double Su-Schrieffer-Heeger chain composed of split ring resonators. Physical Review Research, 2021, 3, .	3.6	25
390	Exceptional points enhance sum sideband generation in a mechanical <i>PT</i> -symmetric system. Optics Express, 2021, 29, 4875.	3.4	7
391	Observing exceptional point degeneracy of radiation with electrically pumped photonic crystal coupled-nanocavity lasers. Optica, 2021, 8, 184.	9.3	22
392	Exceptional topology of non-Hermitian systems. Reviews of Modern Physics, 2021, 93, .	45.6	680
393	Color-detuning-dynamics-based quantum sensing with dressed states driving. Optics Express, 2021, 29, 5358.	3.4	1
394	Successive switching among four states in a gain-loss-assisted optical microcavity hosting exceptional points up to order four. Physical Review A, 2021, 103, .	2.5	8
395	Non-diffracting states at exceptional points. Optics Letters, 2021, 46, 765.	3.3	5
396	Exceptional points in Fabry–Perot cavities with spatially distributed gain and loss. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 1205.	2.1	2
397	Multimode Interference Induced Optical Routing in an Optical Microcavity. Annalen Der Physik, 2021, 533, 2000506.	2.4	8

#	Article	IF	CITATIONS
399	Anti-parity-time symmetric phase transition in diffusive systems*. Chinese Physics B, 2021, 30, 030505.	1.4	4
400	Practical lineshape of a laser operating near an exceptional point. Scientific Reports, 2021, 11, 6164.	3.3	2
401	Fully deterministic analysis on photonic whispering-gallery modes of irregular polygonal microcavities with testing in hexagons. Physical Review A, 2021, 103, .	2.5	3
402	Perturbations of the scattering resonances of an open cavity by small particles: Part IIâ€"the transverse electric polarization case. Zeitschrift Fur Angewandte Mathematik Und Physik, 2021, 72, 1.	1.4	1
403	Role of Spectral Resonance Features and Surface Chemistry in the Optical Sensitivity of Light-Confining Nanoporous Photonic Crystals. ACS Applied Materials & Light-Confining Nanoporous Photonic Crystals. ACS Applied Nanoporous Photonic Crystals. ACS Applied Nanoporous Photonic Crystals. ACS Applied Nanoporous Photonic Crystals Nanoporous P	8.0	9
404	Birefringent whispering gallery cavities designed by linear transformation optics. Optics Express, 2021, 29, 9242.	3.4	3
405	Chirality of exceptional points in bianisotropic metasurfaces. Optics Express, 2021, 29, 11582.	3.4	9
406	Husimi functions for coupled optical resonators. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2021, 38, 573.	1.5	1
407	Evolution and global charge conservation for polarization singularities emerging from non-Hermitian degeneracies. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	17
408	Nondissipative non-Hermitian dynamics and exceptional points in coupled optical parametric oscillators. Optica, 2021, 8, 415.	9.3	27
409	Sensitivity of topological edge states in a non-Hermitian dimer chain. Photonics Research, 2021, 9, 574.	7.0	34
410	Tuning of Two-Dimensional Plasmon–Exciton Coupling in Full Parameter Space: A Polaritonic Non-Hermitian System. Nano Letters, 2021, 21, 2596-2602.	9.1	21
411	Enhanced emission from a single quantum dot in a microdisk at a deterministic diabolical point. Optics Express, 2021, 29, 14231.	3.4	7
412	Spectral singularities with directional sensitivity. Physical Review A, 2021, 103, .	2.5	5
413	Proposal of Unsupervised Gas Classification by Multimode Microresonator. IEEE Photonics Journal, 2021, 13, 1-11.	2.0	6
414	Gas sensing near exceptional points. Journal Physics D: Applied Physics, 2021, 54, 254001.	2.8	11
415	Emulating exceptional-point encirclements using imperfect (leaky) photonic components: asymmetric mode-switching and omni-polarizer action. Optica, 2021, 8, 563.	9.3	19
416	On-chip chalcogenide microresonators with low-threshold parametric oscillation. Photonics Research, 2021, 9, 1272.	7.0	21

#	Article	IF	Citations
417	Exceptional Point and Cross-Relaxation Effect in a Hybrid Quantum System. PRX Quantum, 2021, 2, .	9.2	43
418	Loss Compensation Symmetry for TE Modes of Asymmetrical Optical Coupler with Gain and Loss. , 2021,		O
419	Nonunitary Scaling Theory of Non-Hermitian Localization. Physical Review Letters, 2021, 126, 166801.	7.8	57
420	Nonorientability-induced <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mimathvariant="script">PT</mml:mimathvariant="script"></mml:math> phase transition in ladder lattices. Physical Review A, 2021, 103, .	2.5	1
421	Recent Progress on Optoplasmonic Whisperingâ€Galleryâ€Mode Microcavities. Advanced Optical Materials, 2021, 9, 2100143.	7.3	34
422	Coherent single-spin electron resonance spectroscopy manifested at an exceptional-point singularity in doped polyacetylene. Physical Review A, 2021, 103, .	2.5	5
423	Skin effect and winding number in disordered non-Hermitian systems. Physical Review B, 2021, 103, .	3.2	65
424	PTX-symmetric metasurfaces for sensing applications. Frontiers of Optoelectronics, 2021, 14, 211-220.	3.7	19
425	Exceptional points and enhanced sensitivity in PT-symmetric continuous elastic media. Journal of the Mechanics and Physics of Solids, 2021, 149, 104325.	4.8	30
426	Tuning exceptional points with Kerr nonlinearity. Physical Review A, 2021, 103, .	2.5	12
427	Biosensing Near the Exceptional Point Based on Resonant Optical Tunneling Effect. Micromachines, 2021, 12, 426.	2.9	5
428	Fundamental limits for reciprocal and nonreciprocal non-Hermitian quantum sensing. Physical Review A, 2021, 103, .	2.5	27
429	Enhanced energy harvesting near exceptional points in systems with (pseudo-)PT-symmetry. Communications Physics, 2021, 4, .	5. 3	12
430	Perturbations of circuit evolution matrices with Jordan blocks. Journal of Mathematical Physics, 2021, 62, .	1.1	6
431	New perspective on chiral exceptional points with application to discrete photonics. APL Photonics, 2021, 6, .	5.7	14
432	Spontaneous PT-symmetry breaking in lasing dynamics. Communications Physics, 2021, 4, .	5. 3	7
433	Experimental Demonstration of Multimode Microresonator Sensing by Machine Learning. IEEE Sensors Journal, 2021, 21, 9046-9053.	4.7	13
434	Experimental Realization of Sensitivity Enhancement and Suppression with Exceptional Surfaces. Laser and Photonics Reviews, 2021, 15, 2000569.	8.7	38

#	Article	IF	CITATIONS
435	Dynamically Encircling an Exceptional Point in a Real Quantum System. Physical Review Letters, 2021, 126, 170506.	7.8	53
436	Quantum exceptional points of non-Hermitian Hamiltonian and Liouvillian in dissipative quantum Rabi model*. Chinese Physics B, 2021, 30, 110309.	1.4	3
437	Gain-saturation-induced self-sustained oscillations in non-Hermitian optomechanics. Physical Review A, 2021, 103 , .	2.5	4
438	Topological Encoded Vector Beams for Monitoring Amyloid‣ipid Interactions in Microcavity. Advanced Science, 2021, 8, 2100096.	11.2	11
439	Nonlinear-dissipation-induced nonreciprocal exceptional points. Optics Express, 2021, 29, 17613.	3.4	8
440	Strong-coupling diagnostics for multimode open systems. Physical Review Research, 2021, 3, .	3.6	1
441	Breaking reciprocity in a non-Hermitian photonic coupler with saturable absorption. Physical Review A, 2021, 103, .	2.5	2
442	Imaging and Controlling Photonic Modes in Perovskite Microcavities. Advanced Materials, 2021, 33, 2100775.	21.0	5
443	Symmetry Classes of Open Fermionic Quantum Matter. Physical Review X, 2021, 11, .	8.9	38
444	Effects of renormalization and non-Hermiticity on nonlinear responses in strongly correlated electron systems. Physical Review B, 2021, 103, .	3.2	19
445	Local master equations bypass the secular approximation. Quantum - the Open Journal for Quantum Science, 0, 5, 451.	0.0	27
446	Observation of the exceptional point in superconducting qubit with dissipation controlled by parametric modulation*. Chinese Physics B, 2021, 30, 100309.	1.4	2
447	Level attraction and exceptional points in a resonant spin-orbit torque system. Physical Review B, 2021, 103, .	3.2	5
448	Enhanced Sensing of Weak Anharmonicities through Coherences in Dissipatively Coupled Anti-PT Symmetric Systems. Physical Review Letters, 2021, 126, 180401.	7.8	50
449	Designing plasmonic exceptional points by transformation optics. Optics Express, 2021, 29, 16046.	3.4	2
450	Nanocavity mediated directional coupler in plasmonics waveguides. Optics Communications, 2021, , 127160.	2.1	0
451	Rayleigh scatterer-induced steady exceptional points of stable-island modes in a deformed optical microdisk. Optics Letters, 2021, 46, 2980.	3.3	6
452	Non-Hermitian semi-Dirac semi-metals. Journal of Physics Condensed Matter, 2021, 33, 225401.	1.8	6

#	Article	IF	CITATIONS
453	Synchronization and coalescence in a dissipative two-qubit system. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 477, 20200850.	2.1	5
454	Allan deviation tells the binding properties in single-molecule sensing with whispering-gallery-mode optical microcavities. Physical Review Research, 2021, 3, .	3.6	5
455	Fermi's Golden Rule for Spontaneous Emission in Absorptive and Amplifying Media. Physical Review Letters, 2021, 127, 013602.	7.8	23
456	Observation of Non-Bloch Parity-Time Symmetry and Exceptional Points. Physical Review Letters, 2021, 126, 230402.	7.8	100
457	Unsupervised Learning of Non-Hermitian Topological Phases. Physical Review Letters, 2021, 126, 240402.	7.8	22
458	Tunable Polymer/Airâ€Bragg Optical Microcavity Configurations for Controllable Light–Matter Interaction Scenarios. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100182.	2.4	4
459	Encircling an exceptional point in a multiwaveguide anti–parity-time-symmetry system. Physical Review A, 2021, 103, .	2.5	6
460	Microdisk cavities with a Brewster notch. Physical Review Research, 2021, 3, .	3.6	4
461	Passive <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT</mml:mi></mml:math> -symmetric Floquet coupler. Physical Review A, 2021, 103, .	2.5	1
462	Quantum exceptional chamber induced by large nondipole effect of a quantum dot coupled to a nano-plasmonic resonator. Nanophotonics, 2021, 10, 2431-2440.	6.0	5
463	Direct observation of chaotic resonances in optical microcavities. Light: Science and Applications, 2021, 10, 135.	16.6	17
464	Floquet <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>ï€</mml:mi></mml:math> mode engineering in non-Hermitian waveguide lattices. Physical Review Research, 2021, 3, .	3.6	20
465	Ultra-sensitive passive wireless sensor exploiting high-order exceptional point for weakly coupling detection. New Journal of Physics, 2021, 23, 063008.	2.9	15
466	Enhanced avionic sensing based on Wigner's cusp anomalies. Science Advances, 2021, 7, .	10.3	4
467	Scaling theory of absorption in the frozen mode regime. Optics Letters, 2021, 46, 3053.	3.3	6
468	Talbot effects induced by gain-loss modulated optical lattices in a coherent atomic medium. Physical Review A, 2021, 103, .	2.5	7
469	Approaches to tuning the exceptional point of PT-symmetric double ridge stripe lasers. Optics Express, 2021, 29, 20440.	3.4	6
470	Quantum phase transition in a non-Hermitian XY spin chain with global complex transverse field. Journal of Physics Condensed Matter, 2021, 33, 295401.	1.8	8

#	Article	IF	CITATIONS
471	Universal route for the emergence of exceptional points in PT-symmetric metamaterials with unfolding spectral symmetries. New Journal of Physics, 2021, 23, 063079.	2.9	7
472	Highlighting photonics: looking into the next decade. ELight, 2021, 1, .	23.9	218
473	Non-Hermitian topological phases and dynamical quantum phase transitions: a generic connection. New Journal of Physics, 2021, 23, 063041.	2.9	17
474	Observation of exceptional point in a PT broken non-Hermitian system simulated using a quantum circuit. Scientific Reports, 2021, 11, 13795.	3.3	5
475	Generating high-order quantum exceptional points in synthetic dimensions. Physical Review A, 2021, 104, .	2.5	21
476	Singleâ€Shot Interaction and Synchronization of Random Microcavity Lasers. Advanced Materials Technologies, 2021, 6, 2100562.	5.8	6
477	Enhancing the sensitivity of optomechanical mass sensors with a laser in a squeezed state. Physical Review A, 2021, 104, .	2.5	8
478	Ultrahigh electric and magnetic near field enhancement based on high-Q whispering gallery modes in subwavelength all-dielectric resonators. Applied Physics Express, 2021, 14, 082004.	2.4	10
479	\$mathcal {P}mathcal {T}\$-symmetry in Compact Phase Space for a Linear Hamiltonian. International Journal of Theoretical Physics, 2021, 60, 3286-3305.	1.2	0
480	Multimode parity-time symmetry and loss compensation in coupled waveguides with loss and gain. Physical Review A, 2021, 104, .	2.5	7
481	Simulating many-body non-Hermitian <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT</mml:mi></mml:math> -symmetric spin dynamics. Physical Review B, 2021, 104, .	3.2	7
482	Exceptional behaviour without exceptional effort. Nature Photonics, 2021, 15, 556-557.	31.4	0
483	Discrepancy between transmission spectrum splitting and eigenvalue splitting: a reexamination on exceptional point-based sensors. Photonics Research, 2021, 9, 1645.	7.0	5
484	Special Issue on the 60th anniversary of the first laserâ€"Series I: Microcavity Photonicsâ€"from fundamentals to applications. Light: Science and Applications, 2021, 10, 141.	16.6	5
485	Parameter estimation and quantum entanglement in PT symmetrical cavity magnonics system. Results in Physics, 2021, 26, 104430.	4.1	6
486	Coupling-induced nonunitary and unitary scattering in anti- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT</mml:mi></mml:math> -symmetric non-Hermitian systems. Physical Review A, 2021, 104.	2.5	6
487	Direct Measurement of Topological Properties of an Exceptional Parabola. Physical Review Letters, 2021, 127, 034301.	7.8	22
488	Model for the Description of the Relaxation of Quantum-Mechanical Systems with Closely Spaced Energy Levels. JETP Letters, 2021, 114, 51-57.	1.4	6

#	Article	IF	CITATIONS
489	Anomalous-order exceptional point and non-Markovian Purcell effect at threshold in one-dimensional continuum systems. Physical Review Research, 2021, 3, .	3.6	8
490	Energy-level attraction and heating-resistant cooling of mechanical resonators with exceptional points. Physical Review A, 2021, 104, .	2.5	11
491	Quasibound states in the continuum induced by <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT</mml:mi></mml:math> symmetry breaking. Physical Review B, 2021, 104, .	3.2	22
492	Tunable coupling of chip-scale photonic molecules via thermal actuation. Optical Materials Express, 2021, 11, 3194.	3.0	5
493	Light Absorption in Nanowire Photonic Crystal Slabs and the Physics of Exceptional Points: The Shape Shifter Modes. Sensors, 2021, 21, 5420.	3.8	0
494	Quantum Coherence Regulated by Nanoparticles in a Whisperingâ€Galleryâ€Mode Microresonator. Annalen Der Physik, 2021, 533, 2100210.	2.4	6
495	Switching between singular points and exceptional-point-enhanced sensing in non-Hermitian photonic structures. , 2021 , , .		0
496	Exceptional points of degeneracy in traveling wave tubes. Journal of Mathematical Physics, 2021, 62, .	1.1	5
497	Constant intensity discrete diffraction in anti-PT-symmetric electric circuits. Results in Physics, 2021, 27, 104491.	4.1	5
498	Scalable higher-order exceptional surface with passive resonators. Optics Letters, 2021, 46, 4025.	3.3	10
499	Configurable Phase Transitions in a Topological Thermal Material. Physical Review Letters, 2021, 127, 105901.	7.8	31
500	Optical Energy-Difference Conservation in a Synthetic Anti-PT-Symmetric System. Physical Review Letters, 2021, 127, 083601.	7.8	10
501	Robust exceptional point of arbitrary order in coupled spinning cylinders. Optics Express, 2021, 29, 29720.	3.4	5
502	Comparative study of Hermitian and non-Hermitian topological dielectric photonic crystals. Physical Review A, 2021, 104, .	2.5	18
503	Coherent perfect absorption at an exceptional point. Science, 2021, 373, 1261-1265.	12.6	150
504	Parity–time symmetric optical neural networks. Optica, 2021, 8, 1328.	9.3	15
505	Extraordinary transmission in an add-drop filter configuration driven by Nonconservative Coupling. Optics Letters, 2021, 46, 5284-5287.	3.3	0
506	Tunable anti–parity-time-symmetric chaos in optomechanics. Physical Review A, 2021, 104, .	2.5	7

#	Article	IF	CITATIONS
507	Exceptional-surface-enhanced rotation sensing with robustness in a whispering-gallery-mode microresonator. Physical Review A, 2021, 104 , .	2.5	11
508	Cascaded microring resonator configuration with inbuilt tapered regions for simultaneous detection of assorted nanoparticles. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 3027.	2.1	1
509	Experimental Measurement of the Divergent Quantum Metric of an Exceptional Point. Physical Review Letters, 2021, 127, 107402.	7.8	36
510	Spontaneous emission in micro- or nanophotonic structures. PhotoniX, 2021, 2, .	13.5	28
511	Self-Assembled Biophotonic Lasing Network Driven by Amyloid Fibrils in Microcavities. ACS Nano, 2021, 15, 15007-15016.	14.6	5
512	Optical normal-mode-induced phonon-sideband splitting in the photon-blockade effect. Physical Review A, 2021, 104, .	2.5	7
513	Enhancement of Sensitivity Near Exceptional Point by Constructing Nonreciprocal Fiber Cavity Assisted by Isolator and Erbium-Doped Fiber. IEEE Sensors Journal, 2021, 21, 18823-18828.	4.7	5
514	Synchronization in <i>PT</i> -symmetric optomechanical resonators. Photonics Research, 2021, 9, 2152.	7. O	9
515	Protected quantum coherence by gain and loss in a noisy quantum kicked rotor. Journal of Physics Condensed Matter, 2021, 34, .	1.8	1
516	Quantum Jumps in the Non-Hermitian Dynamics of a Superconducting Qubit. Physical Review Letters, 2021, 127, 140504.	7.8	43
517	Dielectric super-absorbing metasurfaces via PT symmetry breaking. Optica, 2021, 8, 1290.	9.3	75
518	Unconventional modes induced chiral symmetry breaking in optical microcavity. Optics and Laser Technology, 2022, 146, 107557.	4.6	3
519	Hunting for the non-Hermitian exceptional points with fidelity susceptibility. Physical Review Research, 2021, 3, .	3.6	22
520	Exceptional Points as Lasing Prethresholds. Laser and Photonics Reviews, 2021, 15, 2000450.	8.7	16
521	Real-time observation of the thermo-optical and heat dissipation processes in microsphere resonators. Optics Express, 2021, 29, 2402.	3.4	5
522	Observation of anti-parity-time-symmetry, phase transitions and exceptional points in an optical fibre. Nature Communications, 2021, 12, 486.	12.8	59
523	Strongly Enhanced Raman Optical Activity of Chiral Molecules by Vector Exceptional Points. Journal of Physical Chemistry C, 2020, 124, 24970-24977.	3.1	3
524	Synthesis of lossless electric circuits based on prescribed Jordan forms. Journal of Mathematical Physics, 2020, 61, .	1.1	7

#	Article	IF	Citations
525	Non-Hermitian physics. Advances in Physics, 2020, 69, 249-435.	14.4	695
526	Enhanced sensitivity of optical gyroscope in a mechanical parity-time-symmetric system based on exceptional point. New Journal of Physics, 2020, 22, 093009.	2.9	23
527	Loss compensation symmetry in a multimode waveguide coupler. Laser Physics Letters, 2020, 17, 116202.	1.4	6
528	Spectral and transport properties of a \$mathcal{P}mathcal{T}\$-symmetric tight-binding chain with gain and loss. Journal of Physics A: Mathematical and Theoretical, 2020, 53, 445308.	2.1	6
529	Visualizing one-dimensional non-hermitian topological phases. Journal of Physics Communications, 2020, 4, 095005.	1.2	5
530	Dynamical preparation of a steady off-diagonal long-range order state in the Hubbard model with a local non-Hermitian impurity. Physical Review B, 2020, 102, .	3. 2	10
531	Unconventional Singularity in Anti-Parity-Time Symmetric Cavity Magnonics. Physical Review Letters, 2020, 125, 147202.	7.8	91
532	Synthetic exceptional points and unidirectional zero reflection in non-Hermitian acoustic systems. Physical Review Materials, 2018, 2, .	2.4	47
533	Terahertz topological plasmon polaritons for robust temperature sensing. Physical Review Materials, 2020, 4, .	2.4	10
534	Non-Hermitian Weyl physics in topological insulator ferromagnet junctions. Physical Review Research, 2019, $1, \dots$	3.6	76
535	Transition from Dirac points to exceptional points in anisotropic waveguides. Physical Review Research, 2019, 1 , .	3.6	7
536	Exceptional points and the topology of quantum many-body spectra. Physical Review Research, 2019, 1, .	3.6	37
537	Nonorthogonality constraints in open quantum and wave systems. Physical Review Research, 2019, 1, .	3.6	15
538	Microstar cavities: An alternative concept for the confinement of light. Physical Review Research, 2020, 2, .	3.6	5
539	Exceptional points in dissipatively coupled spin dynamics. Physical Review Research, 2020, 2, .	3.6	28
540	Nonreciprocal response theory of non-Hermitian mechanical metamaterials: Response phase transition from the skin effect of zero modes. Physical Review Research, 2020, 2, .	3.6	60
541	Correlations in non-Hermitian systems and diagram techniques for the steady state. Physical Review Research, 2020, 2, .	3.6	7
542	Robust extended-range wireless power transfer using a higher-order PT-symmetric platform. Physical Review Research, 2020, 2, .	3.6	42

#	Article	IF	Citations
543	Photonic non-Hermitian skin effect and non-Bloch bulk-boundary correspondence. Physical Review Research, 2020, 2, .	3.6	116
544	Coherent virtual absorption of light in microring resonators. Physical Review Research, 2020, 2, .	3.6	10
545	Topological protection in non-Hermitian Haldane honeycomb lattices. Physical Review Research, 2020, 2, .	3.6	13
546	Conserved quantities in parity-time symmetric systems. Physical Review Research, 2020, 2, .	3.6	31
547	Asymmetric balance in symmetry breaking. Physical Review Research, 2020, 2, .	3.6	38
548	Orientation-sensed optomechanical accelerometers based on exceptional points. Physical Review Research, 2020, 2, .	3.6	14
549	Decay suppression of spontaneous emission of a single emitter in a high- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>Q</mml:mi></mml:math> cavity at exceptional points. Physical Review Research, 2020, 2, .	3.6	25
550	Robust localized zero-energy modes from locally embedded PT -symmetric defects. Physical Review Research, 2020, 2, .	3.6	19
551	Critical fluctuations at a many-body exceptional point. Physical Review Research, 2020, 2, .	3.6	49
552	Real spectra in non-Hermitian topological insulators. Physical Review Research, 2020, 2, .	3.6	24
553	Topological semimetal phase with exceptional points in one-dimensional non-Hermitian systems. Physical Review Research, 2020, 2, .	3.6	38
554	Phase transitions and generalized biorthogonal polarization in non-Hermitian systems. Physical Review Research, 2020, 2, .	3.6	29
555	Non-hermitian dynamics in delay coupled semiconductor lasers. , 2019, , .		1
556	Anomalies in light scattering. Advances in Optics and Photonics, 2019, 11, 892.	25.5	161
557	Photonic molecule quantum optics. Advances in Optics and Photonics, 2020, 12, 60.	25. 5	31
558	Sensitivity of Parameter Estimation near the Exceptional point of a non-Hermitian system., 2019,,.		3
559	Petermann-factor limited sensing near an exceptional point. , 2020, , .		1
560	Exceptional points for resonant states on parallel circular dielectric cylinders. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 1659.	2.1	15

#	ARTICLE	IF	CITATIONS
561	On-chip high sensitivity rotation sensing based on higher-order exceptional points. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 2618.	2.1	8
562	High-sensitivity refractometric sensing with an indirectly coupled active and passive microresonator-waveguide system. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 1083.	2.1	3
563	Tunable slow and fast light in parity-time-symmetric optomechanical systems with phonon pump. Optics Express, 2018, 26, 28834.	3.4	21
564	White light cavity formation and superluminal lasing near exceptional points. Optics Express, 2018, 26, 32091.	3.4	13
565	Unidirectional emission of high-Q scarred modes in a rounded D-shape microcavity. Optics Express, 2018, 26, 34864.	3.4	6
566	Mechanical exceptional-point-induced transparency and slow light. Optics Express, 2019, 27, 8069.	3.4	33
567	Amplification of nonlinear polariton pulses in waveguides. Optics Express, 2019, 27, 10692.	3.4	2
568	Robust hybrid hyper-controlled-not gates assisted by an input-output process of low-Q cavities. Optics Express, 2019, 27, 17493.	3.4	21
569	Berry phase in an anti-PT symmetric metal-semiconductor complex system. Optics Express, 2019, 27, 22237.	3.4	8
570	Enhanced sensitivity at high-order exceptional points in a passive wireless sensing system. Optics Express, 2019, 27, 27562.	3.4	40
571	Symmetry-breaking-induced dynamics in a nonlinear microresonator. Optics Express, 2019, 27, 28133.	3.4	7
572	Parity-time-symmetry-breaking gyroscopes: lasing without gain and subthreshold regimes. Optics Express, 2019, 27, 34169.	3.4	14
573	Portable microresonator-based label-free detector: monotonous resonance splitting with particle adsorption. Optics Express, 2019, 27, 34997.	3.4	9
574	Non-PT-symmetric two-layer cylindrical waveguide for exceptional-point-enhanced optical devices. Optics Express, 2019, 27, 37494.	3.4	17
575	Exceptional cones in 4D parameter space. Optics Express, 2020, 28, 1758.	3.4	16
576	Enhanced four-wave mixing in <i>P T</i> -symmetric optomechanical systems. Optics Express, 2020, 28, 9049.	3.4	7
577	Tunable polarization beam splitter and broadband optical power sensor using hybrid microsphere resonators. Optics Express, 2020, 28, 32847.	3.4	3
578	Non-Hermitian multimode interference. Optics Letters, 2020, 45, 1962.	3.3	4

#	ARTICLE	IF	Citations
579	Enhanced rotation sensing and exceptional points in a parity–time-symmetric coupled-ring gyroscope. Optics Letters, 2020, 45, 6538.	3.3	16
580	Tunable sub-kHz single-mode fiber laser based on a hybrid microbottle resonator. Optics Letters, 2018, 43, 5315.	3.3	15
581	Quantum interference and exceptional points. Optics Letters, 2018, 43, 5371.	3.3	15
582	Non-Hermitian heterostructure for two-parameter sensing. Optics Letters, 2019, 44, 1626.	3.3	9
583	Scattering-free channels of invisibility across non-Hermitian media. Optica, 2020, 7, 619.	9.3	24
584	Exceptional points in polaritonic cavities and subthreshold Fabry–Perot lasers. Optica, 2020, 7, 1015.	9.3	32
585	Fluctuations and noise-limited sensing near the exceptional point of parity-time-symmetric resonator systems. Optica, 2018, 5, 1342.	9.3	80
586	Nanoparticle sensing with a spinning resonator. Optica, 2018, 5, 1424.	9.3	81
587	Experimental simulation of anti-parity-time symmetric Lorentz dynamics. Optica, 2019, 6, 67.	9.3	35
588	Exceptional surfaces in PT-symmetric non-Hermitian photonic systems. Optica, 2019, 6, 190.	9.3	129
589	Exceptional points and the ring laser gyroscope. Photonics Research, 2020, 8, 252.	7.0	20
590	Microbubble resonators combined with a digital optical frequency comb for high-precision air-coupled ultrasound detectors. Photonics Research, 2020, 8, 303.	7.0	30
591	Real-time monitoring of hydrogel phase transition in an ultrahigh Q microbubble resonator. Photonics Research, 2020, 8, 497.	7.0	34
592	Frequency-tuning-induced state transfer in optical microcavities. Photonics Research, 2020, 8, 490.	7.0	13
593	Review of exceptional point-based sensors. Photonics Research, 2020, 8, 1457.	7.0	174
594	Non-Hermitian degeneracies of internal–external mode pairs in dielectric microdisks. Photonics Research, 2019, 7, 464.	7.0	16
595	Mode splitting revealed by Fano interference. Photonics Research, 2019, 7, 647.	7.0	5
596	Exceptional points of any order in a single, lossy waveguide beam splitter by photon-number-resolved detection. Photonics Research, 2019, 7, 862.	7.0	47

#	Article	IF	CITATIONS
597	Brillouin cavity optomechanics sensing with enhanced dynamical backaction. Photonics Research, 2019, 7, 1440.	7.0	24
598	Hybridization of different types of exceptional points. Photonics Research, 2019, 7, 1473.	7.0	14
599	Active topological photonics. Nanophotonics, 2020, 9, 547-567.	6.0	170
600	On-chip nanophotonics and future challenges. Nanophotonics, 2020, 9, 3733-3753.	6.0	85
601	Non-Hermitian and topological photonics: optics at an exceptional point. Nanophotonics, 2020, 10, 403-423.	6.0	135
602	Deep-learning powered whispering gallery mode sensor based on multiplexed imaging at fixed frequency. Opto-Electronic Advances, 2020, 3, 200048-200048.	13.3	21
603	Cascaded PT-symmetric artificial sheets: multimodal manipulation of self-dual emitter-absorber singularities, and unidirectional and bidirectional reflectionless transparencies. Journal Physics D: Applied Physics, 2022, 55, 085301.	2.8	5
604	Topological physics of non-Hermitian optics and photonics: a review. Journal of Optics (United) Tj ETQq1 1 0.784	-314 rgBT 2.2	/Oggrlock 10
605	Exceptional Points through Variation of Distances between Four Coaxial Dielectric Disks. Photonics, 2021, 8, 460.	2.0	4
606	Multimode -symmetry thresholds and third-order exceptional points in coupled dielectric waveguides with loss and gain. Journal of Optics (United Kingdom), 2021, 23, 125002.	2.2	5
607	Diffusive skin effect and topological heat funneling. Communications Physics, 2021, 4, .	5. 3	21
608	Microcavity Sensor Enhanced by Spontaneous Chiral Symmetry Breaking. Physical Review Applied, 2021, 16, .	3.8	3
609	Experimental demonstration of coherence flow in PT- and anti-PT-symmetric systems. Communications Physics, 2021, 4, .	5.3	17
610	Characteristic influence of exceptional points in quantum dynamics. Journal of Physics: Conference Series, 2021, 2038, 012011.	0.4	4
611	Dynamics of elastic hyperbolic lattices. Extreme Mechanics Letters, 2021, 49, 101491.	4.1	9
612	Complex Mirror Symmetry in Optics. , 2018, , .		0
613	Robust non-Hermitian sensors. , 2018, , .		0
614	Coupled microcavities with unidirectional single mode via femtosecond laser direct-writing. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 064203.	0.5	1

#	Article	IF	CITATIONS
615	Unidirectional Light Generation in PT-symmetric Microring Lasers. , 2018, , .		1
616	Enhanced whispering gallery mode sensors. , 2018, , .		0
617	Parity-Time Symmetric Laser and Absorber. , 2018, , .		1
618	Revisiting the absorption and transmission properties of coupled open waveguides. Photonics Research, 2018, 6, 1003.	7.0	2
619	Extremely high Q and unidirectional laser emission due to combination of the Kolmogorov–Arnold–Moser barrier and the chaotic sea in a dielectric microdisk. Optics Letters, 2018, 43, 6097.	3.3	4
620	Spatially locked mode in defected microring resonators. , 2019, , .		2
621	Glass in Integrated Photonics. Springer Handbooks, 2019, , 1441-1481.	0.6	1
622	Non-Hermitian Selective Thermal Emitters Using Hybrid Plasmonic-Photonic Resonators. , 2019, , .		0
623	Optoelectronic biosensing in graphene driven fiber resonators with single-molecule sensitivity and selectivity. , 2019, , .		1
624	Detection of "anomalies―inside microcavities through parametric fluorescence: a formalism based on modulated commutation relations and consequences on the concept of density of states. Journal of the Optical Society of America B: Optical Physics, 2019, 36, C62.	2.1	2
625	the relations between white light cavities and exceptional points in PT-symmetric systems. , 2019, , .		0
626	Nonreciprocal parity-time phase in magnetized waveguides. Optics Express, 2019, 27, 27385.	3.4	0
627	Enhanced nonlinear instabilities in photonic circuits with exceptional point degeneracies. Photonics Research, 2020, 8, 737.	7.0	7
628	Enhanced modulation characteristics in broken symmetric coupled microring lasers. Optics Express, 2020, 28, 19608.	3.4	6
629	A Concept for a Leaky Wave Antenna Oscillator With Second Order Degeneracy. , 2020, , .		0
630	Design of a non-Hermitian on-chip mode converter using phase change materials. Optics Letters, 2020, 45, 4630.	3.3	8
631	Sensing Via Exceptional Points in Space and Time Periodic Systems and in PT-Symmetric Systems. , 2020, , .		0
632	Exceptional points in a topological waveguide-cavity coupled system. New Journal of Physics, 2021, 23, 113025.	2.9	7

#	Article	IF	Citations
633	Observation of miniaturized bound states in the continuum with ultra-high quality factors. Science Bulletin, 2022, 67, 359-366.	9.0	52
634	Inseparability in parity-time-symmetric microcavities: power spectrum. Journal of Optics (India), 0, , 1.	1.7	0
635	Pump-controlled RGB single-mode polymer lasers based on a hybrid 2D–3D μ-cavity for temperature sensing. Nanophotonics, 2021, 10, 4591-4599.	6.0	10
636	Non-Hermitian time evolution: From static to parametric instability. Physical Review A, 2021, 104, .	2.5	2
637	Quasinormal Modes, Local Density of States, and Classical Purcell Factors for Coupled Loss-Gain Resonators. Physical Review X, 2021, 11, .	8.9	18
638	Spinning indirectly coupled optical resonators. Applied Physics Express, 2021, 14, 012002.	2.4	1
639	Switching between singular points in non-PT-symmetric multilayer structures using phase-change materials. Optics Express, 2021, 29, 454.	3.4	1
640	Non-Hermitian analysis of surface creeping waves in optical microcavities: Nature of external resonances. Physical Review A, 2020, 102, .	2.5	2
641	The exceptional points of non-Hermitian optical systems: Scattering matrix definition, coherent perfect absorption, and lasing. AIP Conference Proceedings, 2020, , .	0.4	0
642	Single-Molecule Sensing. Biological and Medical Physics Series, 2020, , 233-298.	0.4	0
643	Crossing the exceptional point in a fiber-plasmonic waveguide -INVITED. EPJ Web of Conferences, 2020, 238, 08002.	0.3	0
644	Active tuning of silicon photonic microring resonator towards a chiral exceptional point., 2020,,.		0
645	Topological compensation of Rayleigh scattering induced reflection in a single mode waveguide. , 2020, , .		2
646	Multiple exceptional points in bulk parity-time symmetric optical media. OSA Continuum, 2020, 3, 305.	1.8	0
647	Exceptional Point Based He-Ne Ring Laser Gyroscope. , 2020, , .		0
648	Crossing the exceptional point in a hybrid plasmonic fiber. , 2020, , .		0
649	Analysis of stability catastrophe of confocal cavity. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 224202.	0.5	1
650	Accessing the Exceptional Points in a Graphene Plasmon–Vibrational Mode Coupled System. ACS Photonics, 2021, 8, 3241-3248.	6.6	10

#	Article	IF	CITATIONS
651	Controlling Sound in Non-Hermitian Acoustic Systems. Physical Review Applied, 2021, 16, .	3.8	41
652	Exceptional points in a dielectric spheroid. Physical Review A, 2021, 104, .	2.5	12
653	Direct measurement of a non-Hermitian topological invariant in a hybrid light-matter system. Science Advances, 2021, 7, eabj8905.	10.3	48
654	Chiral modes near exceptional points in symmetry broken H1 photonic crystal cavities. Physical Review Research, 2021, 3, .	3.6	10
656	Exceptional point of sixth-order degeneracy in a modified coupled-resonator optical waveguide. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 2319.	2.1	11
657	Three-dimensional sensing of arbitrarily shaped nanoparticles by whispering gallery mode resonators. Optics Express, 2020, 28, 31297.	3.4	2
658	Hybrid parity-time modulation phase and geometric phase in metasurfaces. Optics Express, 2020, 28, 28896.	3.4	5
659	Extreme field confinement in zigzag plasmonic crystals. Nanotechnology, 2020, 31, 495206.	2.6	0
660	Exceptional points of Bloch eigenmodes on a dielectric slab with a periodic array of cylinders. Physica Scripta, 2020, 95, 095507.	2.5	6
661	Resonant-amplified and invisible Bragg scattering based on spin coalescing modes. Physical Review B, 2020, 102, .	3.2	1
662	Variable optical chirality in atomic assisted microcavity*. Chinese Physics B, 2020, 29, 114207.	1.4	1
663	Exceptional points in composite structures consisting of two dielectric diffraction gratings with Lorentzian line shape. Journal of Physics: Conference Series, 2021, 2015, 012049.	0.4	0
664	Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator. Nature Communications, 2021, 12, 6716.	12.8	64
665	Mode degeneracy and enhanced sensitivity in electrically injected PT-symmetric semiconductor laser with a quasi-high-order exceptional point. Applied Physics Express, 2021, 14, 122005.	2.4	5
666	Chiral/directional mode transfer based on a tunable non-Hermitian system. Optics Express, 2021, 29, 44146.	3.4	3
667	Mode coupling and locking of a î-shaped cantilever resonator using laser-induced asymmetric modulation. Journal Physics D: Applied Physics, O, , .	2.8	0
668	Spectra, eigenstates and transport properties of a PT -symmetric ring. Journal of Physics A: Mathematical and Theoretical, 2022, 55, 015304.	2.1	3
669	Near-unit efficiency of chiral state conversion via hybrid-Liouvillian dynamics. Physical Review A, 2021, 104, .	2.5	5

#	Article	IF	Citations
670	Information constraint in open quantum systems. Physical Review B, 2021, 104, .	3.2	6
671	A Stable 1550nm WGM Laser Generated by Yb ³⁺ /Er ³⁺ Co-doped Silica Microspheres under νm ASE Source Pumping. Journal of Physics: Conference Series, 2021, 2112, 012013.	0.4	2
672	Topological delocalization transitions and mobility edges in the nonreciprocal Maryland model. Journal of Physics Condensed Matter, 2022, 34, 115402.	1.8	11
673	Highly sensitive gas sensor based on a parity-time-symmetric system. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2022, 39, 227.	1.5	2
674	Sensing at Exceptional Points. , 2020, , .		0
675	Universal Behavior of the Scattering Matrix Near Thresholds in Photonics. , 2021, , .		0
676	Parity-Time Symmetry and Exceptional Points [Electromagnetic Perspectives]. IEEE Antennas and Propagation Magazine, 2021, 63, 110-121.	1.4	21
677	Filling up complex spectral regions through non-Hermitian disordered chains. Chinese Physics B, 2022, 31, 050307.	1.4	11
678	Influence of non-Hermitian mode topology on refractive index sensing with plasmonic waveguides. Photonics Research, 0 , , .	7.0	4
679	Imaginary couplings in non-Hermitian coupled-mode theory: Effects on exceptional points of optical resonators. Physical Review A, 2022, 105, .	2.5	14
680	Exponentially Enhanced Quantum Non-Hermitian Sensing via Optimized Coherent Drive. Physical Review Applied, 2022, 17, .	3.8	8
681	Fabrication of high Q microtoroid cavity on a silicon wafer by wet etching. , 2022, , .		0
682	Pseudospin–Orbit Coupling for Chiral Light Routings in Gauge-Flux-Biased Coupled Microring Resonators. ACS Photonics, 2022, 9, 586-596.	6.6	2
683	Fourth order exceptional points with spinning resonators. Europhysics Letters, 0, , .	2.0	0
684	Maximal quantum entanglement at exceptional points via unitary and thermal dynamics. Physical Review A, 2022, 105, .	2.5	6
685	Exceptional Bound States and Negative Entanglement Entropy. Physical Review Letters, 2022, 128, 010402.	7.8	27
686	Observing a changing Hilbert-space inner product. Physical Review Research, 2022, 4, .	3.6	4
687	Optimized steering: Quantum state engineering and exceptional points. Physical Review A, 2022, 105, .	2.5	13

#	Article	IF	CITATIONS
689	Dispersive Temporal Interferometry toward Singleâ€Shot Probing Ultrashort Time Signal with Attosecond Resolution. Advanced Photonics Research, 2022, 3, .	3.6	6
690	Experimental realization of non-Abelian permutations in a three-state non-Hermitian system. National Science Review, 2022, 9, .	9.5	15
691	Ultralowâ€Threshold and Highâ€Quality Whisperingâ€Galleryâ€Mode Lasing from Colloidal Core/Hybridâ€Shell Quantum Wells. Advanced Materials, 2022, 34, e2108884.	21.0	28
692	Topological edge states at singular points in non-Hermitian plasmonic systems. Photonics Research, 0,	7.0	6
693	Shortcuts to adiabaticity with general two-level non-Hermitian systems. Physical Review A, 2022, 105, .	2.5	7
694	Exceptional points and enhanced nanoscale sensing with a plasmon-exciton hybrid system. Photonics Research, 2022, 10, 557.	7.0	11
695	Quantized quasinormal-mode theory of coupled lossy and amplifying resonators. Physical Review A, 2022, 105, .	2.5	11
696	Chiral and degenerate perfect absorption on exceptional surfaces. Nature Communications, 2022, 13, 599.	12.8	55
697	Interferometric method to estimate the eigenvalues of a non-Hermitian two-level optical system. Photonics Research, 2022, 10, 1134.	7.0	7
698	Reverse-chiral response of two <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">T</mml:mi></mml:math> -symmetric optical systems hosting conjugate exceptional points. Physical Review A. 2022. 105	2.5	7
699	Quantum non-Hermitian topological sensors. Physical Review Research, 2022, 4, .	3.6	32
700	Topological optomechanical amplifier in synthetic PT \$mathcal{PT}\$ -symmetry. Nanophotonics, 2022, 11, 1149-1158.	6.0	15
701	Nonequilibrium stationary states of quantum non-Hermitian lattice models. Physical Review B, 2022, 105, .	3.2	36
702	Non-reciprocal energy transfer through the Casimir effect. Nature Nanotechnology, 2022, 17, 148-152.	31.5	18
703	Higher-order exceptional point in a pseudo-Hermitian cavity optomechanical system. Physical Review A, 2021, 104, .	2.5	26
704	Signatures of Liouvillian Exceptional Points in a Quantum Thermal Machine. PRX Quantum, 2021, 2, .	9.2	20
705	Interferometric Biosensing. Nanostructure Science and Technology, 2022, , 5-36.	0.1	2
706	Quantum Fisher information perspective on sensing in anti-PT symmetric systems. Physical Review Research, 2022, 4, .	3.6	4

#	Article	IF	CITATIONS
707	Generalized theory of optical resonator and waveguide modes and their linear and Kerr nonlinear coupling. Physical Review A, 2022, 105 , .	2.5	2
708	Negative Gilbert damping. Physical Review B, 2022, 105, .	3.2	6
709	Dimerization-induced mobility edges and multiple reentrant localization transitions in non-Hermitian quasicrystals. Physical Review B, 2022, 105, .	3.2	18
710	Non-Hermitian metasurface with non-trivial topology. Nanophotonics, 2022, 11, 1159-1165.	6.0	13
711	Exceptional hexagonal warping effect in multi-Weyl semimetals. Physical Review B, 2022, 105, .	3.2	11
712	Unitary Scattering Protected by Pseudo-Hermiticity. Chinese Physics Letters, 2022, 39, 037302.	3.3	8
713	Surface plasmon polaritons in optical lattices with $f(T)$ mathcal $f(T)$ shows and $f(T)$ mathcal $f(T)$ mathcal $f(T)$ and $f(T)$ shows a surface plasmon polaritons in optical lattices with $f(T)$ mathcal $f(T)$ mathcal $f(T)$ shows a surface plasmon polariton polariton polariton polaritons in optical lattices with $f(T)$ mathcal $f(T)$ mathcal $f(T)$ shows a surface plasmon polariton polar	2.6	1
714	A Non-volatile Quasi-Continuous All-Optical Fiber Programmable Platform Based on GST-Coated Microspheres. ACS Photonics, 2022, 9, 1180-1187.	6.6	7
715	Dissipative Floquet dynamical quantum phase transition. Physical Review A, 2022, 105, .	2.5	22
716	Boost the sensitivity of optical sensors with interface modes. Science Bulletin, 2022, 67, 777-778.	9.0	2
717	Enhanced nanoparticle sensing by mode intensity in a non-reciprocally coupled microcavity. Journal of Applied Physics, 2022, 131, .	2.5	6
718	Tunable partial polarization beam splitter and optomechanically induced Faraday effect. Physical Review A, 2022, 105, .	2.5	6
719	Chaotic dynamics on exceptional surfaces. Physical Review A, 2022, 105, .	2.5	4
720	The design of optical non-reciprocal abnormal transmission based on PT asymmetric system. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2022, .	1.5	0
721	Exceptional point of nanocylinder-loaded silicon microring for single nanoparticle detection. , 2022, , .		1
722	Quasinormal Mode Theory of Chiral Power Flow from Linearly Polarized Dipole Emitters Coupled to Index-Modulated Microring Resonators Close to an Exceptional Point. ACS Photonics, 2022, 9, 1315-1326.	6.6	8
723	Continuous-Wave Operation of Microcavity Quantum Cascade Lasers in Whispering-Gallery Mode. ACS Photonics, 2022, 9, 1172-1179.	6.6	7
724	Nonreciprocal coupling in space-time modulated systems at exceptional points. Physical Review B, 2022, 105, .	3.2	9

#	Article	IF	CITATIONS
725	Nonlinear all-optical modulator based on non-Hermitian PT symmetry. Photonics Research, 2022, 10, 980.	7.0	5
726	Fully integrated parity–time-symmetric electronics. Nature Nanotechnology, 2022, 17, 262-268.	31.5	32
727	Chiral exceptional point in transformation cavity. Optics Letters, 2022, 47, 1705.	3.3	1
728	Nonlinear dynamics of the non-Hermitian Su-Schrieffer-Heeger model. Physical Review B, 2022, 105, .	3.2	10
729	Extreme Diffraction Control in Metagratings Leveraging Bound States in the Continuum and Exceptional Points. Laser and Photonics Reviews, 2022, 16 , .	8.7	29
730	Hermitian chiral boundary states in non-Hermitian topological insulators. Physical Review B, 2022, 105, .	3.2	5
731	Exceptional odd-frequency pairing in non-Hermitian superconducting systems. Physical Review B, 2022, 105, .	3.2	13
732	On the response of the Taiji microresonator against small perturbation of the counter propagating mode. , 2022, , .		3
733	Impact of non-Hermitian mode interaction on inter-cavity light transfer. Photonics Research, 2022, 10, 1232.	7.0	3
734	Fundamentals and Applications of Topological Polarization Singularities. Frontiers in Physics, 2022, 10, .	2.1	4
735	Exceptional points and pseudo-Hermiticity in real potential scattering. SciPost Physics, 2022, 12, .	4.9	1
736	Decoherence-Induced Exceptional Points in a Dissipative Superconducting Qubit. Physical Review Letters, 2022, 128, 110402.	7.8	31
737	Non-Hermitian Weyl semimetal and its Floquet engineering. Physical Review B, 2022, 105, .	3.2	12
738	Exceptional points in optically pumped magnetometer. Journal Physics D: Applied Physics, 0, , .	2.8	0
739	Electromagnetically Induced Transparency and Absorption in Directly Coupled Whispering-Gallery Mode Microcavities. IEEE Photonics Journal, 2022, 14, 1-8.	2.0	2
740	Topological engineering of terahertz light using electrically tunable exceptional point singularities. Science, 2022, 376, 184-188.	12.6	27
741	Enhanced chiroptical responses through coherent perfect absorption in a parity-time symmetric system. Communications Physics, 2022, 5, .	5.3	5
742	Experimental demonstration of extremely asymmetric flexural wave absorption at the exceptional point. Extreme Mechanics Letters, 2022, 52, 101649.	4.1	13

#	Article	IF	Citations
743	Amplifying charge-sensing in micromechanical oscillators based on synchronization. Sensors and Actuators A: Physical, 2022, 339, 113517.	4.1	1
744	Taper-assisted coupling between two optical cavities at exceptional point and bound state in the continuum. Optics Communications, 2022, 513, 128076.	2.1	2
745	Asymmetric guidance of multiple hybrid modes through a gain-loss-assisted planar coupled-waveguide system hosting higher-order exceptional points. Physical Review A, 2021, 104, .	2.5	1
746	A new type of non-Hermitian phase transition in open systems far from thermal equilibrium. Scientific Reports, 2021, 11, 24054.	3.3	6
747	Non-Hermiticity-induced reentrant localization in a quasiperiodic lattice. New Journal of Physics, 2021, 23, 123048.	2.9	13
748	Detecting deformed commutators with exceptional points in optomechanical sensors. New Journal of Physics, 2021, 23, 123037.	2.9	8
749	One-sided destructive quantum interference from an exceptional-point-based metasurface. Physical Review A, 2021, 104, .	2.5	8
750	Surface exceptional points in a topological Kondo insulator. Physical Review B, 2021, 104, .	3.2	2
751	Non-Hermitian topological states in 2D line-graph lattices: evolving triple exceptional points on reciprocal line graphs. New Journal of Physics, 2021, 23, 123038.	2.9	1
752	Universal Behavior of the Scattering Matrix Near Thresholds in Photonics. Physical Review Letters, 2021, 127, 277401.	7.8	1
753	Transition from degeneracy to coalescence: Theorem and applications. Physical Review B, 2021, 104, .	3.2	6
754	Magnetic Suppression of Non-Hermitian Skin Effects. Physical Review Letters, 2021, 127, 256402.	7.8	29
755	Whispering-gallery-mode sensors for biological and physical sensing. Nature Reviews Methods Primers, 2021, 1 , .	21.2	66
756	Regulated Photon Transport in Chaotic Microcavities by Tailoring Phase Space. Physical Review Letters, 2021, 127, 273902.	7.8	11
757	Non-Hermitian bulk-boundary correspondence and singular behaviors of generalized Brillouin zone. New Journal of Physics, 2021, 23, 123007.	2.9	12
758	Chiral mode transfer of symmetry-broken states in anti-parity-time-symmetric mechanical system. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 477, .	2.1	2
759	General Rules Governing the Dynamical Encircling of an Arbitrary Number of Exceptional Points. Physical Review Letters, 2021, 127, 253901.	7.8	27
760	Observation of higher-order exceptional points in a non-local acoustic metagrating. Communications Physics, 2021, 4, .	5.3	19

#	Article	IF	Citations
761	Light-Controlled Exceptional Point Sensor Based on Azo-Functionalized Whispering Gallery Mode Microcavity. IEEE Sensors Journal, 2022, 22, 10485-10491.	4.7	2
762	Enhanced-Sensitivity Noncontact Measurement of Liquid Concentration Based on Passive GPT-Symmetry. IEEE Sensors Journal, 2022, 22, 11184-11193.	4.7	3
763	Deflection and manipulation of weak optical solitons by non-Hermitian electromagnetically induced gratings in Rydberg atoms. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 133202.	0.5	2
764	Environment-assisted strong coupling regime. Quantum - the Open Journal for Quantum Science, 0, 6, 684.	0.0	3
765	Searching for exceptional points and inspecting non-contractivity of trace distance in (anti-)\$\$mathcal {PT}!\$\$-symmetric systems. Quantum Information Processing, 2022, 21, 1.	2.2	5
766	Fast encirclement of an exceptional point for highly efficient and compact chiral mode converters. Nature Communications, 2022, 13, 2123.	12.8	33
767	Real non-Hermitian energy spectra without any symmetry. Chinese Physics B, 2022, 31, 070308.	1.4	6
768	Experimental demonstration of exceptional points of degeneracy in linear time periodic systems and exceptional sensitivity. Journal of Applied Physics, 2022, 131, .	2.5	9
769	Unidirectional reflectionless anti-parity-time-symmetric photonic lattices of thermal atoms. Physical Review A, 2022, 105, .	2.5	11
770	Tunable nonreciprocal transmission based on non-Hermitian optical system with magnetic optical materials in a one-dimensional multilayer structure. Journal of Electromagnetic Waves and Applications, 2022, 36, 2104-2114.	1.6	2
771	Mesoscopic MÃ \P bius ladder lattices as non-Hermitian model systems. Journal of Physics A: Mathematical and Theoretical, 0, , .	2.1	0
772	Curving the space by non-Hermiticity. Nature Communications, 2022, 13, 2184.	12.8	21
773	Exceptional points in lossy media lead to deep polynomial wave penetration with spatially uniform power loss. Nature Nanotechnology, 2022, 17, 583-589.	31.5	12
774	Investigation of the effect of quantum measurement on parity-time symmetry. Science China: Physics, Mechanics and Astronomy, 2022, 65, 1 .	5.1	0
775	Limitations of Sensing at an Exceptional Point. ACS Photonics, 2022, 9, 1554-1566.	6.6	16
776	Unconventional steady states and topological phases in an open two-level non-Hermitian system. New Journal of Physics, 2022, 24, 053028.	2.9	0
777	Non-Hermitian pseudo mobility edge in a coupled chain system. Physical Review B, 2022, 105, .	3.2	10
778	Integrated refractive index sensor based on an AlN-PSiO ₂ hybrid plasmonic microdisk resonator. Applied Optics, 2022, 61, 4980.	1.8	0

#	Article	IF	CITATIONS
779	Quantum magnonics: When magnon spintronics meets quantum information science. Physics Reports, 2022, 965, 1-74.	25.6	195
780	Response strengths of open systems at exceptional points. Physical Review Research, 2022, 4, .	3.6	14
781	High-order exceptional point in a quantum system of two qubits with interaction. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.5	0
782	Fast Switching Acoustic Sensor With Ultrahigh Sensitivity and Wide Dynamic Response Range Based on Ultrahigh- <i>Q</i> CaF ₂ Resonator. Journal of Lightwave Technology, 2022, 40, 5775-5780.	4.6	8
783	Non-Hermitian Sensing in Photonics and Electronics: A Review. Sensors, 2022, 22, 3977.	3.8	18
784	Chirality sensing employing parity-time-symmetric and other resonant gain-loss optical systems. Physical Review B, 2022, 105, .	3.2	6
785	Experimental observation of partial parity-time symmetry and its phase transition with a laser-driven cesium atomic gas. Physical Review A, 2022, 105, .	2.5	7
786	Exceptional Photon Blockade: Engineering Photon Blockade with Chiral Exceptional Points. Laser and Photonics Reviews, 2022, 16, .	8.7	28
787	Observation of non-Hermitian aggregation effects induced by strong interactions. Physical Review B, 2022, 105, .	3.2	17
788	Dynamic transition from insulating state to <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Î-</mml:mi></mml:math> -pairing state in a composite non-Hermitian system. Physical Review B, 2022, 105, .	3.2	2
789	2Âμm Laser generation and amplification based on dual Tm3+-doped high-Q silica microsphere using an ASE light source for pumping. Optics and Laser Technology, 2022, 153, 108282.	4.6	7
790	Strong Cooperative Effects between Plasmonic Nanoantennas Mediated by Whispering Gallery Modes of Wavelength-Scale Dielectric Resonators. SSRN Electronic Journal, 0, , .	0.4	0
792	Emergent phase transitions in a cluster Ising model with dissipation. Physical Review A, 2022, 105, .	2.5	7
793	Fundamental issues with light propagation through <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT</mml:mi></mml:math> -symmetric systems. Physical Review A, 2022, 105, .	2.5	1
794	Exceptional Points of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>P</mml:mi><mml:mi>T</mml:mi></mml:mrow></mml:math> -Symmetric Reflectionless States in Complex Scattering Systems. Physical Review Letters, 2022, 128, .	7.8	14
7 95	Parity-Time Symmetry Enabled Band-Pass Filter Featuring High Bandwidth-Tunable Contrast Ratio. Photonics, 2022, 9, 380.	2.0	3
796	Continuous-wave microcavity quantum cascade lasers in whispering-gallery modes up to 50 °C. Optics Express, 2022, 30, 22671.	3.4	4
797	Nonlinear Optical Potential with Parity-Time Symmetry in a Coherent Atomic Gas. Symmetry, 2022, 14, 1135.	2.2	0

#	Article	IF	CITATIONS
798	Enantiomer-discriminating sensing using optical cavities at exceptional points. Physical Review A, 2022, 105, .	2.5	8
799	Tunable mechanical-mode coupling based on nanobeam-double optomechanical cavities. Photonics Research, 2022, 10, 1819.	7.0	5
800	Anyonic-parity-time symmetry in complex-coupled lasers. Science Advances, 2022, 8, .	10.3	11
801	Anomalous hybridization of spectral winding topology in quantized steady-state responses. Physical Review B, 2022, 105, .	3.2	4
802	Measuring Newtonian constant of gravitation at an exceptional point in an optomechanical system. Optics Communications, 2022, 520, 128534.	2.1	2
803	High-order exceptional point in a quantum system of two qubits with interaction. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 130303.	0.5	1
804	Wireless Sensing for Monitoring of Coal Gangue Mixing Based on PT Symmetry. IEEE Access, 2022, 10, 66401-66408.	4.2	1
805	High-sensitivity in various gyrator-based circuits with exceptional points of degeneracy. EPJ Applied Metamaterials, 2022, 9, 8.	1.5	0
806	Experimental observation of chiral inversion at exceptional points of non-Hermitian systems. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 131101.	0.5	1
807	Non-Hermitian mosaic dimerized lattices. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 130302.	0.5	1
808	Scattering-Assisted and Logic-Controllable WGM Laser in Liquid Crystal Micropillar. Journal of Lightwave Technology, 2022, 40, 5216-5223.	4.6	3
809	Exceptional mode topological surface laser. Physical Review B, 2022, 105, .	3.2	1
810	Light dynamics around an exceptional point in a 1D photonic bandgap waveguide. Physica Scripta, 2022, 97, 085501.	2.5	3
811	Mode attraction in Floquet systems with memory: Application to magnonics. Physical Review B, 2022, 105, .	3.2	2
812	Linear response theory of open systems with exceptional points. Nature Communications, 2022, 13, .	12.8	13
813	Analytic theory of multicavity klystrons. Journal of Mathematical Physics, 2022, 63, 062703.	1.1	1
814	Real spectra and phase transition of skin effect in nonreciprocal systems. Physical Review B, 2022, 105, .	3.2	15
815	Linear and nonlinear Bragg diffraction by electromagnetically induced gratings with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT</mml:mi></mml:math> symmetry and their active control in a Rydberg atomic gas. Physical Review A. 2022. 105.	2.5	5

#	Article	IF	CITATIONS
816	Exceptional point shifted by Kerr effect in anti-parity-time symmetry system. Journal of Applied Physics, 2022, 131, .	2.5	2
817	Cavity-mediated level attraction and repulsion between magnons. Physical Review B, 2022, 105, .	3.2	7
818	Scattering of mechanical waves from the perspective of open systems. Mechanics of Materials, 2022, 172, 104399.	3.2	3
819	Light–Matter Interactions in Hybrid Material Metasurfaces. Chemical Reviews, 2022, 122, 15177-15203.	47.7	42
820	Mesoscopic transport signatures of disorder-induced non-Hermitian phases. Physical Review Research, 2022, 4, .	3.6	3
821	Exceptional Precision of a Nonlinear Optical Sensor at a Square-Root Singularity. Physical Review Letters, 2022, 129, .	7.8	14
822	Encircling exceptional points in non-Hermitian systems with quasidegenerate energy levels. Physical Review A, 2022, 105, .	2.5	2
823	Knot topology of exceptional point and non-Hermitian no-go theorem. Physical Review Research, 2022, 4, .	3.6	26
824	Strong cooperative effects between plasmonic nanoantennas mediated by whispering gallery modes of wavelength-scale dielectric resonators. Results in Physics, 2022, 40, 105815.	4.1	1
825	Heterodyne Detection of Backscattering for Whispering-Gallery-Mode Sensors. Optics Letters, 0, , .	3.3	0
826	Amplification of quantum signals by the non-Hermitian skin effect. Physical Review B, 2022, 106, .	3.2	9
827	Reconfigurable chiral exceptional point and tunable non-reciprocity in a non-Hermitian system with phase-change material. Optics Express, 2022, 30, 27812.	3.4	0
828	Non-Hermitian tunable exceptional point system based on coupled fiber-optic Fabry-Pérot microcavities for broadband microwave signal generation. Results in Physics, 2022, 39, 105784.	4.1	0
829	Beyond the Petermann limit: Prospect of increasing sensor precision near exceptional points. Physical Review A, 2022, 106, .	2.5	4
830	Exceptional-point-based accelerometers with enhanced signal-to-noise ratio. Nature, 2022, 607, 697-702.	27.8	50
831	Exceptional Points and Skin Modes in Non-Hermitian Metabeams. Physical Review Applied, 2022, $18,\ldots$	3.8	13
832	Chiral Perfect Absorption on Exceptional Surfaces. , 2022, , .		0
833	Repeatedly and Superbroad Wavelength Tuning Microcavity in a Single Sn-Doped CdS Microcone. Journal of Physical Chemistry C, 2022, 126, 12696-12703.	3.1	0

#	Article	IF	Citations
834	The Promise of Softâ€Matterâ€Enabled Quantum Materials. Advanced Materials, 2023, 35, .	21.0	4
835	Experimental demonstration of mode-matching and Sagnac effect in a millimeter-scale wedged resonator gyroscope. Photonics Research, 2022, 10, 2115.	7.0	11
836	Classification of multiple arbitrary-order non-Hermitian singularities. Physical Review A, 2022, 106, .	2.5	0
837	Phase-controlled photon blockade in optomechanical systems. Fundamental Research, 2023, 3, 30-36.	3.3	7
838	Exceptional-Point Phase Transition in Coupled Magnonic Waveguides. Physical Review Applied, 2022, 18,	3.8	11
839	Stabilized Dirac points in one-dimensional non-Hermitian optical lattices. Optics Letters, 2022, 47, 4732.	3.3	1
840	Exotic Zitterbewegung-like motion of wave packets near exceptional points. Physical Review B, 2022, 106, .	3.2	2
841	Two-way enhancement of sensitivity by tailoring higher-order exceptional points. Physical Review A, 2022, 106, .	2.5	3
842	Cyclotron quantization and mirror-time transition on nonreciprocal lattices. Physical Review B, 2022, 106, .	3.2	12
843	Non-resonant exceptional points as enablers of noise-resilient sensors. Communications Physics, 2022, 5, .	5.3	8
844	Grating-based microcavity with independent control of resonance energy and linewidth for non-Hermitian polariton system. Applied Physics Letters, 2022, 121, .	3.3	4
845	Diffraction-free beam propagation at the exceptional point of non-Hermitian Glauber Fock lattices. Journal of Optics (United Kingdom), 0, , .	2.2	0
846	Far-Field Correlations Verifying Non-Hermitian Degeneracy of Optical Modes. Physical Review Letters, 2022, 129, .	7.8	1
847	Unveiling the Enhancement of Spontaneous Emission at Exceptional Points. Physical Review Letters, 2022, 129, .	7.8	14
848	Novel phase regimes of parity-time-symmetric coupled-ring systems at exceptional points. Photonics Research, 0, , .	7.0	0
849	A review on non-Hermitian skin effect. Advances in Physics: X, 2022, 7, .	4.1	46
850	Exceptional points with memory in a microcavity Brillouin laser. Optica, 2022, 9, 971.	9.3	4
852	The missing link between standing- and traveling-wave resonators. Nanophotonics, 2022, .	6.0	O

#	ARTICLE	IF	CITATIONS
853	Exceptional-point-enhanced Brillouin micro-optical gyroscope based on self-injection locking. Optics Communications, 2023, 528, 129008.	2.1	3
854	Symmetry breaking and spectral structure of the interacting Hatano-Nelson model. Physical Review B, 2022, 106, .	3.2	39
855	Entropic measure of directional emissions in microcavity lasers. Physical Review A, 2022, 106, .	2.5	2
856	Single Molecule Sensing., 2022, , 257-345.		1
857	Logical WGM laser assisted by mesogens scattering. , 2022, , .		0
858	Ghost Sensing., 2022,,.		1
859	Research progress of parity-time symmetry and anti-symmetry. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 171101.	0.5	4
860	Polarization-dependent unidirectional reflectionless in non-Hermitian metasurface and its application in near-field grayscale imaging. Applied Physics Letters, 2022, 121, .	3.3	10
861	Perturbation influence of a parity-time optical resonator pair. AIP Advances, 2022, 12, 085230.	1.3	0
862	Excitation of absorbing exceptional points in the time domain. Physical Review A, 2022, 106, .	2.5	7
863	Overcoming the Diffraction Limit on the Size of Dielectric Resonators Using an Amplifying Medium. Physical Review Letters, 2022, 129, .	7.8	1
864	Plasmonic Nanosensors and Metasensors Based on New Physical Mechanisms. Chemosensors, 2022, 10, 397.	3.6	1
865	Experimental unsupervised learning of non-Hermitian knotted phases with solid-state spins. Npj Quantum Information, 2022, 8, .	6.7	17
866	Annihilation of exceptional points from different Dirac valleys in a 2D photonic system. Nature Communications, 2022, 13, .	12.8	21
867	Distance between exceptional points and diabolic points and its implication for the response strength of non-Hermitian systems. Physical Review Research, 2022, 4, .	3.6	11
868	Higher-order exceptional point in a blue-detuned non-Hermitian cavity optomechanical system. Physical Review A, 2022, 106, .	2.5	7
869	Symmetry protected exceptional points of interacting fermions. Physical Review Research, 2022, 4, .	3.6	8
870	Onâ€Chip Chiral Mode Switching by Encircling an Exceptional Point in an Antiâ€Parityâ€Time Symmetric System. Laser and Photonics Reviews, 2022, 16, .	8.7	10

#	Article	IF	CITATIONS
871	Riemann-Encircling Exceptional Points for Efficient Asymmetric Polarization-Locked Devices. Physical Review Letters, 2022, 129, .	7.8	31
872	Multimode resonances, intermode bound states, and bound states in the continuum in waveguides. Physical Review B, 2022, 106, .	3.2	6
873	CPA-Lasing Associated with the Quasibound States in the Continuum in Asymmetric Non-Hermitian Structures. ACS Photonics, 2022, 9, 3035-3042.	6.6	10
874	Microwave-induced thermoacoustic imaging with functional nanoparticles. Journal of Innovative Optical Health Sciences, 2023, 16 , .	1.0	2
875	Magneto-optical isolation and topological edge states at singular points in plasmonic structures. , 2022, , .		0
876	Exceptional spectrum and dynamic magnetization. Journal of Physics Condensed Matter, 0, , .	1.8	0
877	Non-Hermitian chiral anomalies. Physical Review Research, 2022, 4, .	3.6	8
878	Hermitian Nonlinear Wave Mixing Controlled by a <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>P</mml:mi><mml:mi>T</mml:mi></mml:math> -Symmetric Phase Transition. Physical Review Letters, 2022, 129	7.8	4
879	Manipulating the non-Hermitian skin effect via electric fields. Physical Review B, 2022, 106, .	3.2	7
880	Revisit the Poynting vector in <i>PT</i> <symmetric 2022,="" 30,="" 38753.<="" coupled="" express,="" optics="" td="" waveguides.=""><td>3.4</td><td>4</td></symmetric>	3.4	4
881	On the design of non-Hermitian elastic metamaterial for broadband perfect absorbers. International Journal of Engineering Science, 2022, 181, 103768.	5.0	11
882	Research progress of non-Hermitian electromagnetic metasurfaces. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 247802.	0.5	2
883	Creating and controlling exceptional points of non-Hermitian Hamiltonians via homodyne Lindbladian invariance. Physical Review A, 2022, 106 , .	2.5	3
884	Non-Hermitian topology and exceptional-point geometries. Nature Reviews Physics, 2022, 4, 745-760.	26.6	98
885	Manipulating cavity photon dynamics by topologically curved space. Light: Science and Applications, 2022, 11, .	16.6	6
886	Simultaneous ground-state cooling of multiple degenerate mechanical modes through the cross-Kerr effect. Optics Letters, 2022, 47, 5529.	3.3	2
887	A Monolithic Grapheneâ€Functionalized Microlaser for Multispecies Gas Detection. Advanced Materials, 2022, 34, .	21.0	16
888	Anomalous spontaneous emission dynamics at chiral exceptional points. Optics Express, 2022, 30, 41784.	3.4	1

#	Article	IF	CITATIONS
889	Light funneling by spin-orbit-coupled chiral particles on an arbitrary order exceptional surface. Optics Express, 2022, 30, 42495.	3.4	1
890	Exceptional Precision of a Nonlinear Optical Sensor at a Square-Root Singularity. , 2022, , .		1
891	Spectrally programmable fiber microcavity laser with dye-doped liquid crystals. Optics and Laser Technology, 2023, 158, 108860.	4.6	1
892	Recent advances in coherent perfect absorber-lasers and their future applications. Journal of Central South University, 2022, 29, 3203-3216.	3.0	2
893	Exceptional points at bound states in the continuum in photonic integrated circuits. Nanophotonics, 2022, 11, 4909-4917.	6.0	13
894	On-Demand Parity-Time Symmetry in a Lone Oscillator through Complex Synthetic Gauge Fields. Physical Review Applied, 2022, 18, .	3.8	5
895	Interconversion of exceptional points between different orders in non-Hermitian systems. New Journal of Physics, 0, , .	2.9	0
896	Resonance energy transfer near higher-order exceptional points of non-Hermitian Hamiltonians. Physical Review B, 2022, 106, .	3.2	3
897	Experimental Identification of the Secondâ€Order Nonâ€Hermitian Skin Effect with Physicsâ€Graphâ€Informed Machine Learning. Advanced Science, 2022, 9, .	11,2	27
898	Simulating topological materials with photonic synthetic dimensions in cavities. , 2022, $1, \dots$		1
899	Coalescence of non-Markovian dissipation, quantum Zeno effect, and non-Hermitian physics in a simple realistic quantum system. Physical Review A, 2022, 106, .	2.5	3
900	Topology and its detection in a dissipative Aharonov-Bohm chain. Physical Review A, 2022, 106, .	2.5	4
901	Optical Pattern Formation in a Rydberg-Dressed Atomic Gas with Non-Hermitian Potentials. Photonics, 2022, 9, 856.	2.0	1
902	Demonstration of intracellular real-time molecular quantification via FRET-enhanced optical microcavity. Nature Communications, 2022, 13 , .	12.8	10
903	Transmission across non-Hermitian -symmetric quantum dots and ladders. Journal of Physics Condensed Matter, 2023, 35, 055301.	1.8	4
904	Nonlinear Optomechanically Induced Transparency in a Spinning Kerr Resonator. Chinese Physics Letters, 2022, 39, 124202.	3.3	2
905	Exceptional Points in Parity-Time-Symmetric Subwavelength Metamaterials. SIAM Journal on Mathematical Analysis, 2022, 54, 6223-6253.	1.9	6
906	Dynamical encircling of the exceptional point in a largely detuned multimode optomechanical system. Physical Review A, 2022, 106, .	2.5	6

#	Article	IF	CITATIONS
907	Fundamental constraints on the observability of non-Hermitian effects in passive systems. Physical Review A, 2022, 106, .	2.5	4
908	Bifunctional sensing based on an exceptional point with bilayer metasurfaces. Optics Express, 2023, 31, 492.	3.4	10
909	Mechanical squeezing in an active-passive-coupled double-cavity optomechanical system via pump modulation. Optics Express, 2022, 30, 47070.	3.4	1
910	Radiative anti-parity-time plasmonics. Nature Communications, 2022, 13, .	12.8	10
911	Dominated mode switching and nanoparticle detection at exceptional points. Journal of the Optical Society of America B: Optical Physics, 2023, 40, 108.	2.1	1
912	Exceptional Points Induced by Time-Varying Mass to Enhance the Sensitivity of Defect Detection. Physical Review Applied, 2022, 18, .	3.8	4
913	Imaginary Gauge Transformation in Momentum Space and Dirac Exceptional Point. Physical Review Letters, 2022, 129, .	7.8	2
914	Nonreciprocal transmission in a nonlinear coupled heterostructure. Optics Express, 2022, 30, 46357.	3.4	3
915	Diverse lateral shifts of beams in non-Hermitian waveguide arrays. Optics Express, 2022, 30, 46982.	3.4	0
916	Diabolical points in the coupled ridge resonators. Journal of the Optical Society of America B: Optical Physics, O, , .	2.1	0
917	Quantum thermometry with a dissipative quantum Rabi system. European Physical Journal Plus, 2022, 137, .	2.6	2
918	Electrically driven on-chip transferrable micro-LEDs. Applied Physics Letters, 2022, 121, 241107.	3.3	1
919	Optomechanical compensatory cooling mechanism with exceptional points. Physical Review A, 2022, 106, .	2. 5	0
920	Non-Hermitian skin effect edge. Physical Review B, 2022, 106, .	3.2	6
921	Non-Hermitian physics in magnetic systems. Journal of Applied Physics, 2022, 132, .	2. 5	19
922	Tale of Two Resonances: Waveguide–Plasmon Coupling and High <i>Q</i> Factor Engineering on the Nanoscale. ACS Photonics, 2023, 10, 2-12.	6.6	6
923	Cavity magnonics for large and small amplitude precession. Journal of Applied Physics, 2022, 132, 223901.	2.5	1
924	Thermal photonics with broken symmetries. ELight, 2022, 2, .	23.9	35

#	Article	IF	CITATIONS
925	Tunable high-? resonance and abnormalphase-shift in PT-symmetric meta-molecules. , 0, , .		0
926	Symmetry-protected third-order exceptional points in staggered flatband rhombic lattices. Photonics Research, 2023, 11, 225.	7.0	3
927	Perfect light absorber with PT phase transition via coupled topological interface states. Photonics Research, $0, , .$	7.0	0
928	Stable Atomic Magnetometer in Parity-Time Symmetry Broken Phase. Physical Review Letters, 2023, 130, .	7.8	6
929	Emergent non-Hermitian localization phenomena in the synthetic space of zero-dimensional bosonic systems. Physical Review A, 2023, 107, .	2.5	5
931	Exceptional Points in a Spiral Ring Cavity for Enhanced Biosensing. Journal of Lightwave Technology, 2023, , 1-9.	4.6	2
932	Nonreciprocal charge and spin transport induced by non-Hermitian skin effect in mesoscopic heterojunctions. Physical Review B, 2023, 107, .	3.2	4
933	Enhancing the sensitivity of nonlinearity sensors through homodyne detection in dissipatively coupled systems. Physical Review A, 2023, 107, .	2.5	3
934	Single-Mode Lasing with Spontaneous Symmetry Breaking from a Perovskite Microdisk Dimer. ACS Photonics, 2023, 10, 43-48.	6.6	2
935	Resonant leaky modes in all-dielectric metasystems: Fundamentals and applications. Physics Reports, 2023, 1008, 1-66.	25.6	54
936	Revisiting the hierarchical construction of higher-order exceptional points. Physical Review A, 2022, 106, .	2. 5	7
937	Deterministic bulk-boundary correspondences for skin and edge modes in a general two-band non-Hermitian system. Physical Review Research, 2022, 4, .	3 . 6	2
938	Harnessing Dynamical Encircling of an Exceptional Point in Anti- <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="script">P</mml:mi><mml:mi mathvariant="script">T</mml:mi></mml:mrow></mml:math> -Symmetric Integrated Photonic Systems. Physical Review Letters, 2022, 129, .	7.8	10
939	Critical and noncritical non-Hermitian topological phase transitions in one-dimensional chains. Physical Review B, 2023, 107, .	3.2	2
940	Non-Hermitian topological photonics. Optical Materials Express, 2023, 13, 870.	3.0	7
941	Nonlinearity in optomechanical microresonators –phenomena, applications, and future. Fundamental Research, 2023, , .	3.3	0
942	On-chip mechanical exceptional points based on an optomechanical zipper cavity. Science Advances, 2023, 9, .	10.3	7
943	General properties of fidelity in non-Hermitian quantum systems with PT symmetry. Quantum - the Open Journal for Quantum Science, 0, 7, 960.	0.0	6

#	Article	IF	CITATIONS
944	Optical Analogs of Rabi Splitting in Integrated Waveguideâ€Coupled Resonators. , 2023, 2, .		4
945	Precise Control of Singleâ€Crystal Perovskite Nanolasers. Advanced Materials, 2023, 35, .	21.0	3
946	Dynamics of cubic–quintic nonlinear <mml:math altimg="si40.svg" display="inline" id="d1e2139" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT</mml:mi </mml:math> -symmetry mechanical oscillators. Physica D: Nonlinear Phenomena, 2023, 449, 133750.	2.8	1
947	Synthetic magnetism for solitons in optomechanical array. Chaos, Solitons and Fractals, 2023, 170, 113333.	5.1	O
948	Electrical thermo-optic tuning of ultrahigh-Q silica microsphere with laser-induced graphene. Optics Communications, 2023, 536, 129371.	2.1	1
949	Observation of an exceptional point with an LR-shunted resonator. Mechanical Systems and Signal Processing, 2023, 196, 110297.	8.0	2
950	Signature of exceptional point phase transition in Hermitian systems. Quantum - the Open Journal for Quantum Science, 0, 7, 982.	0.0	1
951	Absorption-lasing effects and exceptional points in parity-time symmetric non-Hermitian metaplates. Journal of Sound and Vibration, 2023, 555, 117710.	3.9	6
952	Experimental observation of the exceptional point in a nanocylinder-loaded silicon microring. , 2023, , .		0
953	Investigating exceptional points in dark-bright mode-coupled plasmonic systems. Optics Express, 2023, 31, 6156.	3.4	0
954	Enhanced sensing of optomechanically induced nonlinearity by linewidth suppression and optical bistability in cavity-waveguide systems. Optics Express, 2023, 31, 9236.	3.4	2
955	Non-Hermitian coupling of orbital angular momentum modes in optical waveguides. Journal of the Optical Society of America B: Optical Physics, 2023, 40, 682.	2.1	0
956	Various topological phases and their abnormal effects of topological acoustic metamaterials., 2023, 2, 179-230.		3
957	Reconfigurable enhancement of actuation forces by engineered losses in non-Hermitian metamaterials. Extreme Mechanics Letters, 2023, 59, 101979.	4.1	4
958	Detection sensitivity enhancement of magnon Kerr nonlinearity in cavity magnonics induced by coherent perfect absorption. Physical Review B, 2023, 107, .	3.2	4
959	Topological phases and non-Hermitian topology in photonic artificial microstructures. Nanophotonics, 2023, 12, 2273-2294.	6.0	3
960	Non-Hermitian control of confined optical skyrmions in microcavities formed by photonic spin–orbit coupling. Photonics Research, 2023, 11, 610.	7.0	4
961	Maximization of a frequency splitting on continuous exceptional points in asymmetric optical microdisks. Optics Express, 2023, 31, 12634.	3.4	1

#	Article	IF	Citations
962	Creating large Fock states and massively squeezed states in optics using systems with nonlinear bound states in the continuum. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	7
963	Electrical circuit realization of topological switching for the non-Hermitian skin effect. Physical Review B, 2023, 107, .	3.2	13
964	Spectral sensitivity near exceptional points as a resource for hardware encryption. Nature Communications, 2023, 14 , .	12.8	11
965	Equations of motion governing the dynamics of the exceptional points of parameterically dependent nonhermitian Hamiltonians. Journal of Physics A: Mathematical and Theoretical, 2023, 56, 145201.	2.1	0
966	Subthreshold phonon generation in an optomechanical system with an exceptional point. Optics Letters, 2023, 48, 1822.	3.3	4
967	Exceptional points as signatures of dynamical magnetic phase transitions. Physical Review B, 2023, 107, .	3.2	5
968	Exceptional-point sensing with a quantum interferometer. New Journal of Physics, 2023, 25, 033018.	2.9	0
969	Terahertz Plasmonic Sensor based on bulk Dirac Semimetals. Optical and Quantum Electronics, 2023, 55, .	3.3	2
970	Continuum of Bound States in a Non-Hermitian Model. Physical Review Letters, 2023, 130, .	7.8	5
971	Analysis of Dirac exceptional points and their isospectral Hermitian counterparts. Physical Review B, 2023, 107, .	3.2	2
972	Enhancement of Quantum Heat Engine by Encircling a Liouvillian Exceptional Point. Physical Review Letters, 2023, 130, .	7.8	12
973	Dissipative Pairing Interactions: Quantum Instabilities, Topological Light, and Volume-Law Entanglement. Physical Review Letters, 2023, 130, .	7.8	4
974	Bulk Bogoliubov Fermi arcs in non-Hermitian superconducting systems. Physical Review B, 2023, 107, .	3.2	2
975	Protein Concentration Sensor Based on Exceptional Points in Whispering-gallery Microdisks. Journal of Physics: Conference Series, 2023, 2464, 012029.	0.4	0
976	Multiple phase transitions and anomalous non-Hermitian skin effect. Physical Review B, 2023, 107, .	3.2	2
977	Tunable optical-gain-induced chaotic dynamics in a hidden <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT</mml:mi></mml:math> -symmetric optomechanical system. Physical Review A, 2023, 107	2.5	2
978	Unidirectional propagation of single photons realized by a scatterer coupled to whispering-gallery-mode microresonators. Physical Review A, 2023, 107, .	2.5	0
979	A Principle of Nonâ∈Hermitian Wave Modulators by Indefinitely Small Physical Controls. Laser and Photonics Reviews, 2023, 17, .	8.7	1

#	Article	IF	Citations
980	Manipulating the non-Hermitian skin effect in optical ring resonators. Physical Review B, 2023, 107, .	3.2	5
981	Analytic theory of coupled-cavity traveling wave tubes. Journal of Mathematical Physics, 2023, 64, 042705.	1.1	0
982	Non-Hermitian chiral degeneracy of gated graphene metasurfaces. Light: Science and Applications, 2023, 12, .	16.6	17
983	Exceptional degeneracies in non-Hermitian Rashba semiconductors. Journal of Physics Condensed Matter, 2023, 35, 254002.	1.8	2
984	High performance extra-ordinary optical transmission based self-referenced plasmonic metagrating sensor in the NIR communication band. Physica Scripta, 2023, 98, 055515.	2.5	0
985	Stable Packaging Method of Ultrahigh-Q Microcavity General Devices. , 2022, , .		1
986	Robustness of Ultrahigh-Q Microcavity General Packaged Devices. , 2022, , .		0
987	Emergent conservation in the Floquet dynamics of integrable non-Hermitian models. Physical Review B, 2023, 107, .	3.2	3
988	The effect of thermal photons on exceptional points in coupled resonators. Scientific Reports, 2023, 13, .	3.3	3
989	Exceptional Non-Abelian Topology in Multiband Non-Hermitian Systems. Physical Review Letters, 2023, 130, .	7.8	13
990	On-chip integrated exceptional surface microlaser. Science Advances, 2023, 9, .	10.3	8
991	Entanglement Phase Transition Induced by the Non-Hermitian Skin Effect. Physical Review X, 2023, 13, .	8.9	29
992	Non-Hermitian photonic lattices: tutorial. Journal of the Optical Society of America B: Optical Physics, 2023, 40, 1443.	2.1	11
993	Enhanced eigenvector sensitivity and algebraic classification of sublattice-symmetric exceptional points. Physical Review B, 2023, 107, .	3.2	4
994	Parity-time symmetry breaking optical nanocircuit. Optics Express, 2023, 31, 14986.	3.4	1
995	Exceptional points in cylindrical elastic media with radiation loss. Physical Review B, 2023, 107, .	3.2	1
997	Electrical addressing of exceptional points in compact plasmonic structures. Nanophotonics, 2023, 12, 2029-2039.	6.0	3
998	Gain-compensated cavities for the dynamic control of light-matter interactions. Physical Review A, 2023, 107, .	2.5	1

#	ARTICLE	IF	CITATIONS
999	Realizing strong photon blockade at exceptional points in the weak coupling regime. Frontiers in Physics, $0,11,.$	2.1	0
1000	Microfiber optomechanical torsion sensor. Frontiers in Physics, 0, 11, .	2.1	0
1001	Enhanced Biomolecule Concentration Sensing by Using Exceptional Points in a Microtube Cavity With Multiple Layers. IEEE Sensors Journal, 2023, 23, 11662-11671.	4.7	1
1002	Active whispering-gallery microclock in pulsed-operation mode. Physical Review A, 2023, 107, .	2.5	1
1003	Photon blockade in non-Hermitian optomechanical systems with nonreciprocal couplings. Physical Review A, 2023, 107, .	2.5	2
1004	Laser-ablated photonic microcavities for exciton and electron transport manipulation in organic dyes. Optics and Laser Technology, 2023, 164, 109476.	4.6	O
1005	Detecting nanoparticles by "listening― Frontiers of Physics, 2023, 18, .	5.0	1
1006	Optomechanical entanglement affected by exceptional point in a WGM resonator system. Optics Express, 2023, 31, 19382.	3.4	2
1007	Exceptional point based lattice gyroscopes. Optical Materials Express, 2023, 13, 1547.	3.0	1
1008	Generating high-order exceptional points in coupled electronic oscillators using complex synthetic gauge fields. Physical Review A, 2023, 107, .	2.5	0
1009	Non-Hermitian optics and photonics: from classical to quantum. Advances in Optics and Photonics, 2023, 15, 442.	25.5	16
1010	Dynamics and asymmetric behavior of loss-induced bound states in the continuum in momentum space. Physical Review B, 2023, 107, .	3.2	3
1011	Nonâ€Hermitian Topolectrical Circuit Sensor with High Sensitivity. Advanced Science, 2023, 10, .	11.2	9
1012	Fate of magnetic impurity induced states in a non-Hermitian <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>s</mml:mi></mml:math> -wave superconductor. Physical Review B, 2023, 107, .	3.2	0
1013	Study of the Sensitivity of High-Order Non-Hermitian System. Applied Physics, 2023, 13, 195-201.	0.0	0
1014	<mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT</mml:mi></mml:math> -Symmetric Feedback Induced Linewidth Narrowing. Physical Review Letters, 2023, 130, .	7.8	4
1015	Subwavelength control of light transport at the exceptional point by non-Hermitian metagratings. Science Advances, 2023, 9, .	10.3	12
1016	Stable directional amplification in one-dimensional non-Hermitian single-band systems. Physical Review A, 2023, 107, .	2.5	1

#	Article	IF	Citations
1017	The <i>infinity-loop microresonator </i> : A new integrated photonic structure working on an exceptional surface. APL Photonics, 2023, 8, .	5 . 7	1
1018	Anomalous Hall effect from a non-Hermitian viewpoint. Physical Review B, 2023, 107, .	3.2	1
1019	Recent progress of in-fiber WGM microsphere resonator. Frontiers of Optoelectronics, 2023, 16, .	3.7	4
1020	Nanostructured surface plasmon resonance sensors: Toward narrow linewidths. Heliyon, 2023, 9, e16598.	3.2	6
1021	Noise canceled graphene-microcavity fiber laser sensor for ultrasensitive gas detection. Photonics Research, 2023, 11, A1.	7.0	6
1022	Stochastic Exceptional Points for Noise-Assisted Sensing. Physical Review Letters, 2023, 130, .	7.8	9
1023	Graph theory approach to exceptional points in wave scattering. Journal of Physics A: Mathematical and Theoretical, 2023, 56, 275201.	2.1	2
1024	Sensor Sensitivity Based on Exceptional Points Engineered via Synthetic Magnetism. Physical Review Applied, 2023, 19, .	3.8	2
1025	Recent Progress on Plasmonic and Dielectric Chiral Metasurfaces: Fundamentals, Design Strategies, and Implementation. Advanced Optical Materials, 2023, 11, .	7.3	14
1026	High-order spectral singularity. Physical Review A, 2023, 107, .	2.5	5
1027	Chirality Induced Nonreciprocity in a Nonlinear Optical Microresonator. Laser and Photonics Reviews, 2023, 17, .	8.7	3
1028	Asymmetric Switching of Edge Modes by Dynamically Encircling Multiple Exceptional Points. Physical Review Applied, 2023, 19, .	3.8	2
1029	Non-Hermitian Anharmonicity Induces Single-Photon Emission. Physical Review Letters, 2023, 130, .	7.8	1
1030	微纳激å‰ä⅓感:原ç†ä¸Žåº"甓. Scientia Sinica: Physica, Mechanica Et Astronomica, 2023, , .	0.4	O
1031	Non-Hermitian Chiral Heat Transport. Physical Review Letters, 2023, 130, .	7.8	7
1032	Observation of Exceptional Points in Thermal Atomic Ensembles. Physical Review Letters, 2023, 130, .	7.8	8
1033	Nonlinear Exceptional Points with a Complete Basis in Dynamics. Physical Review Letters, 2023, 130, .	7.8	2
1034	Exceptional points and non-Hermitian photonics at the nanoscale. Nature Nanotechnology, 2023, 18, 706-720.	31.5	35

#	ARTICLE	IF	CITATIONS
1035	Edge states in coupled non-Hermitian resonators. Optics Letters, 2023, 48, 2869.	3.3	0
1036	Extreme Wave Manipulation via Non-Hermitian Metagratings on Degenerated States. Physical Review Applied, 2023, 19, .	3.8	3
1037	All-dielectric apodized photonic crystals: A nondissipative pseudo-Hermitian system hosting multiple exceptional points. Physical Review A, 2023, 107, .	2.5	0
1038	Realization of spinning mode with maximum chirality in photonic-crystal defect cavity at exceptional point. Optica, 2023, 10, 732.	9.3	4
1039	Highly sensitive gas optical sensing in a multicavity based quasi-parity-time-symmetric structure. Results in Optics, 2023, 12, 100446.	2.0	0
1040	Coherent Perfect Absorption Sensing Based on Exceptional Points. Applied Physics, 2023, 13, 183-189.	0.0	0
1041	Dynamical approach to shortcuts to adiabaticity for general two-level non-Hermitian systems. Europhysics Letters, 2023, 142, 58001.	2.0	1
1042	Topological Metamaterials. Chemical Reviews, 2023, 123, 7585-7654.	47.7	19
1043	Single-photon router utilizing whispering-gallery resonator coupled with atoms. European Physical Journal Plus, 2023, 138, .	2.6	0
1044	Loss-induced Purcell enhancement in PT-broken whispering gallery microcavities. Optics Letters, 2023, 48, 4069.	3.3	0
1045	Gaussian eigenstate pinning in non-Hermitian quantum mechanics. Physical Review A, 2023, 107, .	2.5	0
1046	Nonreciprocal topological mode conversion by encircling an exceptional point in dynamic waveguides. Optics Letters, 2023, 48, 4089.	3.3	1
1047	Requisites on material viscoelasticity for exceptional points in passive dynamical systems. JPhys Materials, 2023, 6, 035011.	4.2	1
1048	Topological non-Hermitian skin effect. Frontiers of Physics, 2023, 18, .	5.0	46
1049	Synergetic positivity of loss and noise in nonlinear non-Hermitian resonators. Science Advances, 2023, 9, .	10.3	2
1050	Shape-tailored whispering gallery microcavity lasers designed by transformation optics. Photonics Research, 2023, 11, A35.	7.0	2
1051	Chiral state transfer under dephasing. Physical Review A, 2023, 108, .	2.5	0
1052	Natural exceptional points in the excitation spectrum of a light–matter system. Optica, 2023, 10, 1111.	9.3	2

#	Article	IF	CITATIONS
1053	Loss Difference Induced Localization in a Non-Hermitian Honeycomb Photonic Lattice. Physical Review Letters, 2023, 131, .	7.8	1
1054	Unidirectional Perfect Reflection and Radiation in Double-Lattice Photonic Crystals. Physical Review Applied, 2023, 20, .	3.8	1
1055	Symmetry-protected topological exceptional chains in non-Hermitian crystals. Communications Physics, 2023, 6, .	5. 3	8
1056	Microwave Plasmonic Exceptional Points for Enhanced Sensing. Laser and Photonics Reviews, 2023, 17,	8.7	3
1057	Stable molecular state under dissipative spin-orbit coupling. Physical Review A, 2023, 108, .	2.5	0
1058	Petermann factors and phase rigidities near exceptional points. Physical Review Research, 2023, 5, .	3.6	3
1059	Universal state conversion in discrete and slowly varying non-Hermitian cyclic systems: An analytic proof and exactly solvable examples. Physical Review Research, 2023, 5, .	3.6	0
1060	Supersymmetry Laser Arrays with Highâ€Order Exceptional Point. Advanced Photonics Research, 2023, 4,	3.6	1
1061	Absorption-induced transmission in plasma microphotonics. Nature Communications, 2023, 14, .	12.8	1
1062	Optically 3D $\hat{l}\frac{1}{4}$ -printed directional-emission WGM microlasers for on-chip integrated sensing. , 2023, , .		O
1063	Non-Reciprocity-Based Integrated Biosensing In PT Symmetric Coupled Resonators. , 2023, , .		0
1064	Higher-order exceptional points in waveguide-coupled microcavities: perturbation induced frequency splitting and mode patterns. Photonics Research, 2023, 11, A54.	7.0	3
1065	Higher-order exceptional points using lossfree negative-index materials. Physica Scripta, 2023, 98, 095511.	2.5	0
1066	Optical Frequency Comb-Based Aerostatic Micro Pressure Sensor Aided by Machine Learning. IEEE Sensors Journal, 2023, 23, 21078-21083.	4.7	0
1067	Multi-target detection and sizing of single nanoparticles using an optical star polygon microcavity. Optics Express, 2023, 31, 29051.	3.4	0
1068	Exceptional Sensing and Transport. Physics Magazine, 0, 16, .	0.1	0
1069	Functionalizing nanophotonic structures with 2D van der Waals materials. Nanoscale Horizons, 2023, 8, 1345-1365.	8.0	6
1070	Formation of exceptional points in pseudo-Hermitian systems. Physical Review A, 2023, 108, .	2.5	3

#	Article	IF	CITATIONS
1071	Correlations at higher-order exceptional points in non-Hermitian models. Physical Review B, 2023, 108, .	3.2	0
1072	Electrical circuit simulation of non-Hermitian lattice models. Wuli Xuebao/Acta Physica Sinica, 2023, 72, 200301.	0.5	O
1073	Topological superconductivity enhanced by exceptional points. Physical Review B, 2023, 108, .	3.2	2
1074	Spontaneous Synchronization and Exceptional Points in Breather Complexes. Physical Review Applied, 2023, 20, .	3.8	2
1075	Two-dimensional materials for wireless power transfer. , 2023, 1, 100022.		3
1076	Exceptional point in self-consistent Markovian master equations. Physical Review A, 2023, 108, .	2.5	O
1077	Optimizing mixing in the Rudner-Levitov lattice. Journal of the Optical Society of America B: Optical Physics, O, , .	2.1	0
1078	On-chip single-photon chirality encircling exceptional points. , 2023, 2, 100066.		2
1080	Nonreciprocal Fano resonance enhanced unidirectional scattering by subwavelength magnetic meta-atoms. Results in Physics, 2023, 52, 106905.	4.1	2
1081	Scattering exceptional point in the visible. Light: Science and Applications, 2023, 12, .	16.6	1
1082	Label-free optical biosensing: going beyond the limits. Chemical Society Reviews, 2023, 52, 6554-6585.	38.1	6
1083	Optical differential operation near exceptional points. Optics and Laser Technology, 2024, 169, 109982.	4.6	1
1084	Single-particle photoacoustic vibrational spectroscopy using optical microresonators. Nature Photonics, 2023, 17, 951-956.	31.4	14
1085	A whispering-gallery scanning microprobe for Raman spectroscopy and imaging. Light: Science and Applications, 2023, 12, .	16.6	3
1086	Effect of quantum jumps on non-Hermitian systems. Physical Review A, 2023, 108, .	2.5	3
1087	埪ªŽéžåŽ"密æ‹"æ‰'æ•̂媔的æ—线ä¼èƒ½ä¸Žä¼æ"Ÿç"ç©¶. Guangxue Xuebao/Acta Optica Sinica, 2023, 4	-3, 11£ 2301	Πο
1088	Anti-parity-time symmetry hidden in a damping linear resonator. Science China: Physics, Mechanics and Astronomy, 2023, 66, .	5.1	3
1089	Tutorial: Nonlinear magnonics. Journal of Applied Physics, 2023, 134, .	2.5	6

#	ARTICLE	IF	CITATIONS
1090	Noise resilient exceptional-point voltmeters enabled by oscillation quenching phenomena. Nature Communications, 2023, 14, .	12.8	4
1091	Engineering bound states in continuum via a nonlinearity-induced extra dimension. Physical Review Research, 2023, 5, .	3.6	0
1092	Non-Hermitian Floquet Topological Matterâ€"A Review. Entropy, 2023, 25, 1401.	2.2	9
1094	Extracting the quantum geometric tensor of an optical Raman lattice by Bloch-state tomography. Physical Review Research, 2023, 5, .	3.6	2
1095	Exceptional-point-enhanced coupled microcavities for ultrasensitive particle sensing. Physical Review A, 2023, 108, .	2.5	0
1096	Regulation of Non-Hermiticity in Spiral Microring Add-Drop Filters. , 2023, , .		0
1097	Topological edge states in one-dimensional non-Hermitian Su-Schrieffer-Heeger systems of finite lattice size: Analytical solutions and exceptional points. Physical Review B, 2023, 108, .	3.2	1
1098	Quantum parameter estimation of non-Hermitian systems with optimal measurements. Physical Review A, 2023, 108, .	2.5	2
1099	Nonlinear dynamics near exceptional points of synthetic antiferromagnetic spin-torque oscillators. Physical Review B, 2023, 108, .	3.2	1
1100	Analytical investigation of unidirectional reflectionless phenomenon near the exceptional points in graphene plasmonic system. Optics Express, 2023, 31, 30458.	3.4	1
1101	Experimental simulation of symmetry-protected higher-order exceptional points with single photons. Science Advances, 2023, 9, .	10.3	4
1102	Mie scatterers bring a resonator to an exceptional point. Light: Science and Applications, 2023, 12, .	16.6	O
1103	Spectral Control of Coupled InP Nanolasers Around Exceptional Points Through Selective Excitation. , 2023, , .		0
1104	Detection of per- and polyfluoroalkyl water contaminants with multiplexed 4D microcavities sensor. Photonics Research, 0, , .	7.0	1
1105	Optical sorting by trajectory tracking with high sensitivity near the exceptional points. New Journal of Physics, 2023, 25, 093048.	2.9	0
1106	Emergent non-Hermitian physics in a generalized Lotka-Volterra model. Physical Review B, 2023, 108, .	3.2	O
1107	Moving along an exceptional surface towards a higher-order exceptional point. Physical Review A, 2023, 108, .	2.5	1
1108	The exceptional point of PT-symmetry metasurface: Topological phase studies and highly sensitive refractive index sensing applications. Journal of Applied Physics, 2023, 134, .	2.5	1

#	Article	IF	CITATIONS
1109	Light-driven PT symmetry in colloids with gain and loss nanoparticles. Journal of the Optical Society of America B: Optical Physics, 2023, 40, 2618.	2.1	0
1110	Speeding Up Entanglement Generation by Proximity to Higher-Order Exceptional Points. Physical Review Letters, 2023, 131, .	7.8	3
1111	Order-Invariant Two-Photon Quantum Correlations in PT-Symmetric Interferometers. ACS Photonics, 2023, 10, 3451-3457.	6.6	0
1112	Modeling of a fiber Fabry-Pérot sensor in the broken PT-symmetric region. , 2023, 2, 2122.		0
1113	Observation of the geometry-dependent skin effect and dynamical degeneracy splitting. Science Bulletin, 2023, 68, 2330-2335.	9.0	3
1114	Unavoidability of nonclassicality loss in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT</mml:mi></mml:math> -symmetric systems. Physical Review A, 2023, 108, .	2.5	0
1115	Deep learning enabled topological design of exceptional points for multi-optical-parameter control. Communications Physics, 2023, 6, .	5. 3	1
1116	Experimental demonstration of splitting rules for exceptional points and their topological characterization. Physical Review B, 2023, 108, .	3.2	0
1117	Exceptional-point-enhanced sensing in an all-fiber bending sensor. Opto-Electronic Advances, 2023, 6, 230019-230019.	13.3	0
1118	Anti-PT-symmetric optical gyroscope at the transmission peak degeneracy with enhanced signal-to-noise ratio. Journal of Lightwave Technology, 2023, , 1-9.	4.6	2
1119	Single-lossy-nanoparticle sensor with a dissipatively coupled photonic molecule. Physical Review A, 2023, 108, .	2.5	0
1120	Non-Hermitian physics of levitated nanoparticle array. Physical Review Research, 2023, 5, .	3.6	0
1121	Development of high-reflectivity polymer/air-Bragg micromirror structures for nanophotonic applications. Journal of Applied Physics, 2023, 134, .	2.5	0
1122	Bloch oscillations in anti-PT-symmetric electrical circuit resonators. Physica Scripta, 2023, 98, 115509.	2.5	0
1123	Non-Hermitian Stark many-body localization. Physical Review A, 2023, 108, .	2.5	2
1124	External excitation enabled chirality reversal of exceptional points in an effective anti-PT-symmetric non-Hermitian system. Applied Physics Letters, 2023, 123, .	3.3	2
1125	Enhanced parameter estimation by measurement of non-Hermitian operators. AAPPS Bulletin, 2023, 33, .	6.1	1
1126	Instantaneous dynamics and localization near exceptional point in breathing solitons. Applied Physics Letters, 2023, 123, .	3.3	2

#	Article	IF	CITATIONS
1127	Pseudo-Hermiticity protects the energy-difference conservation in the scattering. Physical Review Research, 2023, 5, .	3.6	3
1128	Photonic crystal defect mode with maximum chirality at exceptional point., 2023,,.		0
1129	Tunable unidirectional reflectionless propagation in non-hermitian graphene-based metasurface. Physica Scripta, 2023, 98, 115537.	2.5	1
1130	Periodic photon-magnon blockade in an optomagnonic system with chiral exceptional points. Physical Review B, 2023, 108, .	3.2	3
1131	Energy Transport Induced by Transition from Weak to Strong Coupling Regime Between Non-Hermitian Optical Systems. Journal of the Optical Society of America B: Optical Physics, 0, , .	2.1	0
1132	Dynamical transition between synchronization and antisynchronization with exceptional points. Physical Review A, 2023, 108, .	2.5	0
1133	Wavelength-Selective Single-Mode Laser by Joint Use of Parity-Time Symmetry and Vernier Effect in Symmetric and Asymmetric Coupled Microrings. Journal of Lightwave Technology, 2024, 42, 1545-1555.	4.6	0
1134	Local chirality at exceptional points in optical whispering-gallery microcavities. Physical Review A, 2023, 108, .	2.5	2
1135	Parity-time-symmetric microcavity for gas concentration detection., 2023,,.		0
1136	Fractal nodal band structures. Physical Review Research, 2023, 5, .	3.6	0
1137	Enhanced Sensing Mechanism Based on Shifting an Exceptional Point. Research, 2023, 6, .	5.7	1
1138	Normal mode analysis in multi-coupled non-Hermitian optical nanocavities. Scientific Reports, 2023, 13,	3.3	0
1139	Radiation-Induced Non-Hermitian System. , 2023, , .		0
1140	Frequency tunable coherent perfect absorption and lasing in radio-frequency system for ultrahigh-sensitive sensing. Applied Physics Letters, 2023, 123, .	3.3	1
1141	Multiple exceptional points and phase transitions of a one-dimensional PT-symmetric Lieb photonic lattice. Applied Physics Letters, 2023, 123, .	3.3	1
1142	The sensitivity of PT-symmetric LC wireless sensors around an exceptional point. Applied Physics Letters, 2023, 123, .	3.3	1
1143	Fundamental Sensitivity Limits for Non-Hermitian Quantum Sensors. Physical Review Letters, 2023, 131, .	7.8	1
1144	Anti- <mml:math altimg="si14.svg" display="inline" id="d1e368" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT</mml:mi></mml:math> transformations and complex non-Hermitian <mml:math altimg="si14.svg" display="inline" id="d1e373" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT</mml:mi></mml:math> -symmetric	2.8	O

#	Article	IF	CITATIONS
1145	Super Quasibound State in the Continuum. Physical Review Applied, 2023, 20, .	3.8	3
1146	Parity-Time Symmetric Holographic Principle. Entropy, 2023, 25, 1523.	2.2	0
1147	Topological spin textures in electronic non-Hermitian systems. Science Bulletin, 2023, , .	9.0	0
1148	Transient Lossâ€Induced Nonâ€Hermitian Degeneracies for Ultrafast Terahertz Metadevices. Advanced Science, 2023, 10, .	11.2	2
1149	Refractive index sensing near exceptional point of a system of triple microcavity. Sensors and Actuators A: Physical, 2023, 364, 114786.	4.1	1
1150	Dirac points embedded in the continuum. Physical Review B, 2023, 108, .	3.2	1
1151	Direct observation of exceptional points in photonic crystal by cross-polarization imaging in momentum space. Applied Physics Letters, 2023, 123, .	3.3	3
1152	Exceptional points for crack detection in non-Hermitian beams. Journal of Sound and Vibration, 2024, 572, 118162.	3.9	1
1153	Observing parity-time symmetry breaking in a Josephson parametric amplifier. Physical Review Research, 2023, 5, .	3.6	0
1154	Multipartite entanglement generation with high-order non-Hermitian exceptional points from dressing-controlled atomic nonlinearity. Optics Express, 2023, 31, 41160.	3.4	0
1155	Characterizing exceptional points using neural networks. Europhysics Letters, 2023, 144, 36002.	2.0	1
1156	Experimental realization of exceptional surfaces enhanced displacement sensing with robustness. Applied Physics Letters, 2023, 123, .	3.3	0
1157	Phase transitions in the tetramerized Su–Schrieffer–Heeger chain differentiated by disordered non-Hermitian imaginary potentials. Chinese Journal of Physics, 2024, 88, 510-523.	3.9	0
1158	Exceptional Points in a Non-Markovian Anti-Parity-Time Symmetric System. Photonics, 2023, 10, 1299.	2.0	0
1159	Highly Efficient Transfer of Quantum State and Robust Generation of Entanglement State Around Exceptional Lines. Laser and Photonics Reviews, 0, , .	8.7	1
1160	Multiparameter Estimation Perspective on Non-Hermitian Singularity-Enhanced Sensing. Physical Review Letters, 2023, 131, .	7.8	1
1161	Nontrivial worldline winding in non-Hermitian quantum systems. Physical Review B, 2023, 108, .	3.2	1
1162	Nonlinear laser dynamics of a non-orthogonal chiral pair. Applied Physics Letters, 2023, 123, .	3.3	1

#	Article	IF	CITATIONS
1163	Exceptional Point in a Microwave Plasmonic Dipole Resonator for Subâ€Microliter Solution Sensing. Advanced Functional Materials, 0, , .	14.9	0
1164	Ultra-Stable Control Near the EP in Non-Hermitian Systems and High-Precision Angular Rate Sensing Applications. Optics Express, 0, , .	3.4	0
1165	A Universal Platform for Exceptional-Point Enhanced Optical Sensing. , 2023, , .		0
1166	Higher-order singularities in phase-tracked electromechanical oscillators. Nature Communications, 2023, 14, .	12.8	1
1167	Determination of Enantiomeric Excess by Optofluidic Microlaser near Exceptional Point. Advanced Science, 2024, 11, .	11.2	0
1168	An ultralow crosstalk and broadband subwavelength grating-assisted chiral mode converter by encircling exceptional points. Applied Physics Letters, 2023, 123, .	3.3	0
1169	Quasi-APT-symmetric single-resonator micro-optical gyroscope with Kerr nonlinearity. Chinese Physics B, 0 , , .	1.4	0
1170	Nonâ€Hermitian Topological Phononic Metamaterials. Advanced Materials, 0, , .	21.0	0
1171	Non-Hermitian landscape of autoionization. Physical Review A, 2023, 108, .	2.5	0
1172	Achieving chirality and unidirectional emission in optical microcavity via external perturbations. Optics and Laser Technology, 2024, 171, 110464.	4.6	0
1173	Quantum dynamics of non-Hermitian many-body Landau-Zener systems. Physical Review A, 2023, 108, .	2.5	0
1174	Parityâ€Time Symmetry in Magnetic Materials and Devices. Advanced Electronic Materials, 2024, 10, .	5.1	0
1175	Anomalous non-Hermitian skin effect: topological inequivalence of skin modes versus point gap. Communications Physics, 2023, 6, .	5.3	0
1176	1D Photonic Topological Insulators Composed of Split Ring Resonators: A Mini Review. , 0, , .		0
1177	Chaos control and exceptional point engineering via dissipative optomechanical coupling. Physica Scripta, 0, , .	2.5	0
1178	Exceptional Entanglement Phenomena: Non-Hermiticity Meeting Nonclassicality. Physical Review Letters, 2023, 131, .	7.8	2
1179	Complex semiclassical theory for non-Hermitian quantum systems. Physical Review B, 2024, 109, .	3.2	0
1180	Bianisotropic exceptional points in an isolated dielectric nanoparticle. Physical Review Research, 2024, 6, .	3.6	0

#	Article	IF	CITATIONS
1181	Third-order exceptional line in a nitrogen-vacancy spin system. Nature Nanotechnology, 2024, 19, 160-165.	31.5	0
1182	High Sensitivity Nanoparticle Detection Enabled by Microresonators Operating at Exceptional Points. , 2023, , .		0
1183	Nanoparticle detection based on microcavity exceptional-point characteristics. Physical Review A, 2024, 109, .	2.5	1
1184	Observation of non-local impedance response in a passive electrical circuit. SciPost Physics, 2024, 16, .	4.9	0
1185	Non-orthogonal cavity modes near exceptional points in the far field. Communications Physics, 2024, 7, .	5. 3	0
1186	Localization Dynamics at the Exceptional Point of Non-Hermitian Creutz Ladder. Chinese Physics Letters, 2024, 41, 027201.	3.3	0
1187	Exceptional dynamics at exceptional points. Light: Science and Applications, 2024, 13, .	16.6	0
1188	Multi-format all-optical modulating of microsphere resonator operating in O-band. Optics and Laser Technology, 2024, 174, 110573.	4.6	0
1189	Enhanced Temperature Sensing by Multiâ€Mode Coupling in an Onâ€Chip Microcavity System. Laser and Photonics Reviews, 2024, 18, .	8.7	0
1190	Exceptional points enhance sensing in silicon micromechanical resonators. Microsystems and Nanoengineering, 2024, 10, .	7.0	0
1191	Exceptional points. , 2024, , 213-242.		0
1192	Electromagnetic effects in anti-Hermitian media with gain and loss. Physical Review Research, 2024, 6, .	3.6	0
1193	Giant Ultrafast All-Optical Modulation Based on Exceptional Points in Exciton–Polariton Perovskite Metasurfaces. ACS Nano, 2024, 18, 3447-3455.	14.6	0
1194	Four-wave mixing with anti-parity-time symmetry in hot 85Rb vapor. Applied Physics Letters, 2024, 124, .	3.3	0
1195	Dissipative coupling in a Bragg-grating-coupled single resonator with Fano resonance for anti-PT-symmetric gyroscopes. Optics Express, 2024, 32, 5932.	3.4	0
1196	Hilbert space fragmentation imposed real spectrum of non-Hermitian systems. Physical Review B, 2024, 109, .	3.2	1
1197	Dissipative quantum Fisher information for a general Liouvillian parametrized process. Physical Review A, 2024, 109, .	2.5	0
1198	Floquet parity-time symmetry in integrated photonics. Nature Communications, 2024, 15, .	12.8	O

#	Article	IF	Citations
1199	Coupled deformed microdisk cavities featuring non-Hermitian properties. Applied Physics Letters, 2024, 124, .	3.3	0
1200	Non-hermiticity in spintronics: oscillation death in coupled spintronic nano-oscillators through emerging exceptional points. Nature Communications, 2024, 15, .	12.8	O
1201	Electrically tunable topological phase transition in non-Hermitian optical MEMS metasurfaces. Science Advances, 2024, 10 , .	10.3	0
1202	Optofluidic passive parity-time-symmetric systems. Royal Society Open Science, 2024, 11, .	2.4	0
1203	Strong coupling of metamaterials with cavity photons: toward non-Hermitian optics. Nanophotonics, 2024, .	6.0	0
1204	Nonlocal Metasurface with Chiral Exceptional Points in the Telecom-Band. Nano Letters, 2024, 24, 2087-2093.	9.1	0
1205	Manipulating spectral topology and exceptional points by nonlinearity in non-Hermitian polariton systems. Physical Review Research, 2024, 6, .	3.6	0
1206	Non-Hermitian topological magnonics. Physics Reports, 2024, 1062, 1-86.	25.6	0
1207	Non-Hermitian metagrating for perfect absorption of elastic waves. Materials Horizons, 2024, 11, 1658-1667.	12.2	0
1208	Experimental realization of tunable exceptional points in a resonant non-Hermitian piezoelectrically coupled waveguide. Applied Physics Letters, 2024, 124, .	3.3	0
1209	Exceptional points in non-Hermitian systems: Applications and recent developments. Applied Physics Letters, 2024, 124, .	3.3	0
1210	Enhanced sensing resolution with microcavity mode oscillation generated by thermal-optic and photorefractive nonlinearity. Applied Physics Letters, 2024, 124, .	3.3	0
1211	Planar Bilayer PT-Symmetric Systems and Resonance Energy Transfer. Photonics, 2024, 11, 169.	2.0	0
1212	Optical Microcavities Empowered Biochemical Sensing: Status and Prospects. Advanced Devices & Instrumentation, 2024, 5, .	6.5	0
1213	Integrated microcavity electric field sensors using Pound-Drever-Hall detection. Nature Communications, 2024, 15, .	12.8	0
1214	Observation of Nonlinear Exceptional Points with a Complete Basis in Dynamics. Physical Review Letters, 2024, 132, .	7.8	0
1215	Deep-Subwavelength Detection Using Exceptional Point in an Asymmetric Plasmonic Dipole Resonator. , 2023, , .		0
1216	Phase-controlled robust quantum entanglement of remote mechanical oscillators. Physical Review A, 2024, 109, .	2.5	O

#	Article	IF	CITATIONS
1217	Influence of the correlations in an active medium on the pump-induced exceptional points and strong coupling. Journal of the Optical Society of America B: Optical Physics, 2024, 41, 962.	2.1	0
1218	Hybridized magnonic materials for THz frequency applications. Applied Physics Letters, 2024, 124, .	3.3	0
1219	Stability via symmetry breaking in interacting driven systems. Physical Review B, 2024, 109, .	3.2	0
1220	Phase-controlled improvement of photon lifetime in coupled superconducting cavities. Physical Review Applied, 2024, 21, .	3.8	0
1221	Loss-induced chaos in a double-cavity optomechanical system. Physical Review A, 2024, 109, .	2.5	0
1222	Observation of continuum Landau modes in non-Hermitian electric circuits. Nature Communications, 2024, 15, .	12.8	0
1223	Non-Hermitian skin effect and nonreciprocity induced by dissipative couplings. Physical Review A, 2024, 109, .	2.5	0
1224	Coherentâ€Resonance Enhancement of Sensing at the Exceptional Points. Advanced Optical Materials, 2024, 12, .	7.3	0
1225	High-order exceptional points and novel light transmission spectra in <mml:math altimg="si1.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT</mml:mi></mml:math> symmetric ring resonator array. Physics Letters, Section A: General, Atomic and Solid State Physics, 2024, 503, 129413.	2.1	O
1226	Exceptional Entanglement and Quantum Sensing with a Parityâ€√imeâ€Symmetric Twoâ€Qubit System. Advanced Quantum Technologies, 0, , .	3.9	O
1227	Chiral transmission by an open evolution trajectory in a non-Hermitian system. Light: Science and Applications, 2024, 13, .	16.6	0
1228	Control of the Purcell effect via unexcited atoms and exceptional points. Physical Review Research, 2024, 6, .	3.6	0
1229	Modeâ€Interferenceâ€Induced Chiral Exceptional Points in Momentum Space. Laser and Photonics Reviews, 0, , .	8.7	0
1230	Correlated nonreciprocity around conjugate exceptional points. Physical Review A, 2024, 109, .	2.5	0
1231	Nonâ€Hermitian Broadside Coupled Split Ring Resonators with Directional Sensitivity. Advanced Optical Materials, 0, , .	7.3	0
1232	Transient cavity-cavity strong coupling at terahertz frequency on LiNbO ₃ chips. Optics Express, 2024, 32, 12763.	3.4	0
1233	Entanglement transitions in a periodically driven non-Hermitian Ising chain. Physical Review B, 2024, 109, .	3.2	0
1234	Exponentially Enhanced Non-Hermitian Cooling. Physical Review Letters, 2024, 132, .	7.8	0

#	Article	IF	CITATIONS
1235	On-Chip Fabrication-Tolerant Exceptional Points Based on Dual-Scatterer Engineering. Nano Letters, 2024, 24, 3906-3913.	9.1	0
1236	Dissolution of the non-Hermitian skin effect in one-dimensional lattices with linearly varying nonreciprocal hopping. Physical Review B, 2024, 109, .	3.2	O
1237	å‰å-¦å¥‡å¼,ç,1é™,,è¿ʻçš,,äº∰‰å振特性ç"ç©¶ï¼^特é,€ï¼‰. Laser and Optoelectronics Progress, 20	02 4,6 1,03	3266002.
1238	Extended exceptional points in projected non-Hermitian systems. New Journal of Physics, 2024, 26, 033040.	2.9	O
1239	Ultra-high-Q free-space coupling to microtoroid resonators. Light: Science and Applications, 2024, 13, .	16.6	0
1240	Exact analog of the Hatano-Nelson model in one-dimensional continuous nonreciprocal systems. Physical Review Research, 2024, 6, .	3.6	0
1241	Extended states isolated in the band gap in non-Hermitian electrical circuits. Physical Review Applied, 2024, 21, .	3.8	0
1242	Exceptional points unveiling quantum limit of fluorescence rates in non-Hermitian plexcitonic single-photon sources. , 2024, $1,\dots$		O