Spinels: Controlled Preparation, Oxygen Reduction/Evo Beyond

Chemical Reviews 117, 10121-10211

DOI: 10.1021/acs.chemrev.7b00051

Citation Report

#	Article	IF	CITATIONS
2	Synthesis of Nitrogen-Doped Porous Carbon Spheres with Improved Porosity toward the Electrocatalytic Oxygen Reduction. ACS Sustainable Chemistry and Engineering, 2017, 5, 11105-11116.	3.2	61
3	Adjusting the catalytic properties of cobalt ferrite nanoparticles by pulsed laser fragmentation in water with defined energy dose. Scientific Reports, 2017, 7, 13161.	1.6	54
4	Spinels: Controlled Preparation, Oxygen Reduction/Evolution Reaction Application, and Beyond. Chemical Reviews, 2017, 117, 10121-10211.	23.0	1,157
5	Electrospun Thin-Walled CuCo ₂ O ₄ @C Nanotubes as Bifunctional Oxygen Electrocatalysts for Rechargeable Zn–Air Batteries. Nano Letters, 2017, 17, 7989-7994.	4.5	199
6	Rational Bottom-Up Engineering of Electrocatalysts by Atomic Layer Deposition: A Case Study of Fe _{<i>x</i>} Co _{1–<i>x</i>} S _{<i>y</i>} Based Catalysts for Electrochemical Hydrogen Evolution. ACS Energy Letters, 2017, 2, 2778-2785.	8.8	61
7	Nanocarbonâ€Based Electrocatalysts for Rechargeable Aqueous Li/Znâ€Air Batteries. ChemElectroChem, 2018, 5, 1745-1763.	1.7	34
8	A structurally versatile nickel phosphite acting as a robust bifunctional electrocatalyst for overall water splitting. Energy and Environmental Science, 2018, 11, 1287-1298.	15.6	205
9	Well-Tuned Surface Oxygen Chemistry of Cation Off-Stoichiometric Spinel Oxides for Highly Selective and Sensitive Formaldehyde Detection. Chemistry of Materials, 2018, 30, 2018-2027.	3.2	64
10	Bifunctional electrocatalysts of MOF-derived Co–N/C on bamboo-like MnO nanowires for high-performance liquid- and solid-state Zn–air batteries. Journal of Materials Chemistry A, 2018, 6, 9716-9722.	5.2	167
11	Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nature Communications, 2018, 9, 1656.	5.8	1,162
12	Transition-metal-oxide-based catalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 8194-8209.	5.2	259
13	Enhancement of Oxygen Transfer by Design Nickel Foam Electrode for Zincâ^'Air Battery. Journal of the Electrochemical Society, 2018, 165, A809-A818.	1.3	41
14	Atomic-Level Co ₃ O ₄ Layer Stabilized by Metallic Cobalt Nanoparticles: A Highly Active and Stable Electrocatalyst for Oxygen Reduction. ACS Applied Materials & Interfaces, 2018, 10, 7052-7060.	4.0	45
15	Band engineering of multicomponent semiconductors: a general theoretical model on the anion group. Energy and Environmental Science, 2018, 11, 692-701.	15.6	14
16	Cation, magnetic, and charge ordering in MnFe ₃ O ₅ . Journal of Materials Chemistry C, 2018, 6, 3271-3275.	2.7	14
17	Grapheneâ€Based Nanomaterials for Sodiumâ€lon Batteries. Advanced Energy Materials, 2018, 8, 1702469.	10.2	170
18	The effect of ZIF-8 on the phase structure and morphology of bead-like CuMn 2 O 4 /ZnO photocatalystic electrospun nanofibers. Materials Letters, 2018, 216, 199-202.	1.3	23
19	Advanced Architectures and Relatives of Air Electrodes in Zn–Air Batteries. Advanced Science, 2018, 5, 1700691.	5.6	645

#	Article	IF	CITATIONS
20	Facile Synthesis of Mesoporous and Thin-Walled Ni–Co Sulfide Nanotubes as Efficient Electrocatalysts for Oxygen Evolution Reaction. ACS Applied Energy Materials, 2018, 1, 495-502.	2.5	28
21	Carbon Nanosheets Containing Discrete Co-N _{<i>x</i>} -B _{<i>y</i>} -C Active Sites for Efficient Oxygen Electrocatalysis and Rechargeable Zn–Air Batteries. ACS Nano, 2018, 12, 1894-1901.	7.3	419
22	Alcohol Solvent Effects in the Synthesis of Co3O4 Metal-Oxide Nanoparticles: Disproof of a Surface-Ligand Thermodynamic Effect en Route to Alternative Kinetic and Thermodynamic Explanations. Inorganic Chemistry, 2018, 57, 1517-1526.	1.9	7
23	Enhancing the Oxygen Electroreduction Activity through Electron Tunnelling: CoO _{<i>x</i>} Ultrathin Films on Pd(100). ACS Catalysis, 2018, 8, 2343-2352.	5.5	32
24	ssDNA-tailorable oxidase-mimicking activity of spinel MnCo2O4 for sensitive biomolecular detection in food sample. Sensors and Actuators B: Chemical, 2018, 269, 79-87.	4.0	75
25	Cation exchange synthesis of Ni _x Co _(3â[^]x) O ₄ ((i>x = 1.25) nanoparticles on aminated carbon nanotubes with high catalytic bifunctionality for the oxygen reduction/evolution reaction toward efficient Zn–air batteries. Journal of Materials Chemistry A, 2018, 6. 9517-9527.	5.2	65
26	Enhancement of the performance in Li-O2 cells of a NiCo2O4 based porous positive electrode by Cr(III) doping. Materials Letters, 2018, 224, 113-117.	1.3	8
27	Bifunctional Electrocatalysts for Overall Water Splitting from an Iron/Nickelâ€Based Bimetallic Metal–Organic Framework/Dicyandiamide Composite. Angewandte Chemie, 2018, 130, 9059-9064.	1.6	81
28	Bifunctional Electrocatalysts for Overall Water Splitting from an Iron/Nickelâ€Based Bimetallic Metal–Organic Framework/Dicyandiamide Composite. Angewandte Chemie - International Edition, 2018, 57, 8921-8926.	7.2	291
29	High-performance rechargeable aqueous Zn-ion batteries with a poly(benzoquinonyl sulfide) cathode. Inorganic Chemistry Frontiers, 2018, 5, 1391-1396.	3.0	173
30	Recent Advances in Magneticâ€Nanomaterialâ€Based Mechanotransduction for Cell Fate Regulation. Advanced Materials, 2018, 30, e1705673.	11.1	57
31	Design strategies for non-precious metal oxide electrocatalysts for oxygen evolution reactions. Current Opinion in Electrochemistry, 2018, 10, 16-23.	2.5	35
32	Insights into the durability of Co–Fe spinel oxygen evolution electrocatalysts <i>via operando</i> studies of the catalyst structure. Journal of Materials Chemistry A, 2018, 6, 7034-7041.	5.2	47
33	Electrochemical assessment of Ca3Co4O9 nanofibres obtained by Solution Blow Spinning. Materials Letters, 2018, 221, 81-84.	1.3	23
34	Emerging Two-Dimensional Nanomaterials for Electrocatalysis. Chemical Reviews, 2018, 118, 6337-6408.	23.0	1,552
35	Rapid low-temperature synthesis of perovskite/carbon nanocomposites as superior electrocatalysts for oxygen reduction in Zn-air batteries. Nano Research, 2018, 11, 3282-3293.	5.8	44
36	Engineering the Surface Structure of Binary/Ternary Ferrite Nanoparticles as Highâ€Performance Electrocatalysts for the Oxygen Evolution Reaction. ChemCatChem, 2018, 10, 1075-1083.	1.8	19
37	Electronic Tuning of Co, Niâ€Based Nanostructured (Hydr)oxides for Aqueous Electrocatalysis. Advanced Functional Materials, 2018, 28, 1804886.	7.8	87

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
38	Spin state engineered Zn _x Co _{3â^'x} O ₄ as an efficient oxygen evolution electrocatalyst. Physical Chemistry Chemical Physics, 2018, 20, 29452-29461.	1.3	29
39	Self-assembled Mn ₃ O ₄ nano-clusters over carbon nanotube threads with enhanced supercapacitor performance. New Journal of Chemistry, 2018, 42, 19608-19614.	1.4	29
40	Copper in Natural Oxide Spinels: The New Mineral Thermaerogenite CuAl2O4, Cuprospinel and Cu-Enriched Varieties of Other Spinel-Group Members from Fumaroles of the Tolbachik Volcano, Kamchatka, Russia. Minerals (Basel, Switzerland), 2018, 8, 498.	0.8	16
41	Synergistic Electro-Catalysis of Pd/PdO Nanoparticles and Cr(III)-Doped NiCo ₂ O ₄ Nanofibers in Aprotic Li-O ₂ Batteries. Journal of the Electrochemical Society, 2018, 165, A3605-A3612.	1.3	6
42	Multifunctional Ferrite Nanoparticles: From Current Trends Toward the Future. , 2018, , 59-116.		34
43	Flexible and Tailorable Naâ^'CO ₂ Batteries Based on an All‣olid‣tate Polymer Electrolyte. ChemElectroChem, 2018, 5, 3628-3632.	1.7	42
44	Relationships Between Crystal, Internal Microstructures, and Physicochemical Properties of Copper–Zinc–Iron Multinary Spinel Hierarchical Nano-microspheres. ACS Applied Materials & Interfaces, 2018, 10, 35919-35931.	4.0	18
45	One-step construction of porous mixed spinel-type MnCoxO4/NCNT as an efficient bi-functional oxygen electrocatalyst. International Journal of Hydrogen Energy, 2018, 43, 19451-19459.	3.8	11
46	Non-Noble Metal Electrocatalysts for the Oxygen Reduction Reaction in Fuel Cells. , 2018, , 235-262.		1
47	Controlled Synthesis of Co3O4 Electrocatalysts with Different Morphologies and Their Application for Oxygen Evolution Reaction. International Journal of Electrochemical Science, 2018, 13, 3843-3854.	0.5	36
48	Understanding the Origin of Magnetic Field Dependent Specific Capacitance in Mn ₃ O ₄ Nanoparticle Based Supercapacitors. Journal of the Electrochemical Society, 2018, 165, A3230-A3239.	1.3	24
49	Design of a Three-Dimensional Interconnected Hierarchical Micro–Mesoporous Structure of Graphene as Support Material for Spinel NiCo ₂ O ₄ Electrocatalysts toward Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2018, 122, 27469-27476.	1.5	51
50	Nickelâ€Based Bicarbonates as Bifunctional Catalysts for Oxygen Evolution and Reduction Reaction in Alkaline Media. Chemistry - A European Journal, 2018, 24, 17665-17671.	1.7	15
51	Cobaltâ€Based Metal–Organic Framework Nanoarrays as Bifunctional Oxygen Electrocatalysts for Rechargeable Znâ€Air Batteries. Chemistry - A European Journal, 2018, 24, 18413-18418.	1.7	60
52	Needle grass array of nanostructured nickel cobalt sulfide electrode for clean energy generation. Surface and Coatings Technology, 2018, 354, 306-312.	2.2	26
53	Emerging Materials in Heterogeneous Electrocatalysis Involving Oxygen for Energy Harvesting. ACS Applied Materials & Interfaces, 2018, 10, 33737-33767.	4.0	52
54	Structural engineering of transition metal-based nanostructured electrocatalysts for efficient water splitting. Frontiers of Chemical Science and Engineering, 2018, 12, 838-854.	2.3	40
55	X-ray emission spectroscopy: an effective route to extract site occupation of cations. Physical Chemistry Chemical Physics, 2018, 20, 28990-29000.	1.3	16

#	Article	IF	CITATIONS
56	Stabilizing Co 4+ Ions in Ultrathin Cobalt Oxide Nanosheets for Efficient Oxygen Evolution Reaction. ChemCatChem, 2018, 10, 4888-4893.	1.8	6
57	A Layered–Tunnel Intergrowth Structure for Highâ€Performance Sodiumâ€Ion Oxide Cathode. Advanced Energy Materials, 2018, 8, 1800492.	10.2	116
58	Graphene-wrapped nitrogen-doped hollow carbon spheres for high-activity oxygen electroreduction. Materials Chemistry Frontiers, 2018, 2, 1489-1497.	3.2	19
59	Nickel Cobalt Thiospinel Nanoparticles as Hydrodesulfurization Catalysts: Importance of Cation Position, Structural Stability, and Sulfur Vacancy. ACS Applied Materials & Interfaces, 2018, 10, 19673-19681.	4.0	17
60	FeNi Cubic Cage@N-Doped Carbon Coupled with N-Doped Graphene toward Efficient Electrochemical Water Oxidation. ACS Sustainable Chemistry and Engineering, 2018, 6, 8266-8273.	3.2	68
61	Fe-Containing Magnesium Aluminate Support for Stability and Carbon Control during Methane Reforming. ACS Catalysis, 2018, 8, 5983-5995.	5.5	66
62	Spinel photocatalysts for environmental remediation, hydrogen generation, CO ₂ reduction and photoelectrochemical water splitting. Journal of Materials Chemistry A, 2018, 6, 11078-11104.	5.2	176
63	Mesoporous Hollow Nitrogen-Doped Carbon Nanospheres with Embedded MnFe ₂ O ₄ /Fe Hybrid Nanoparticles as Efficient Bifunctional Oxygen Electrocatalysts in Alkaline Media. ACS Applied Materials & Interfaces, 2018, 10, 20440-20447.	4.0	73
64	Spinel MnCo ₂ O ₄ Nanoparticles Supported on Threeâ€Dimensional Graphene with Enhanced Mass Transfer as an Efficient Electrocatalyst for the Oxygen Reduction Reaction. ChemSusChem, 2018, 11, 2730-2736.	3.6	86
65	A 3D electrode of core@shell branched nanowire TiN@Ni0.27Co2.73O4 arrays for enhanced oxygen evolution reaction. Applied Materials Today, 2018, 12, 276-282.	2.3	9
66	One-step mild synthesis of Mn-based spinel MnIICrIII2O4/MnIIMnIII2O4/C and Co-based spinel CoCr2O4/C nanoparticles as battery-type electrodes for high-performance supercapacitor application. Electrochimica Acta, 2018, 283, 197-211.	2.6	29
67	Mn ₃ O ₄ Quantum Dots Supported on Nitrogen-Doped Partially Exfoliated Multiwall Carbon Nanotubes as Oxygen Reduction Electrocatalysts for High-Performance Zn–Air Batteries. ACS Applied Materials & Interfaces, 2018, 10, 23900-23909.	4.0	55
68	Novel Nanomaterials as Electrocatalysts for Fuel Cells. , 2018, , 169-204.		5
69	Rapid inkjet printing of high catalytic activity Co3O4/N-rGO layers for oxygen reduction reaction. Applied Catalysis A: General, 2018, 563, 9-17.	2.2	17
70	Improving Electrocatalysts for Oxygen Evolution Using Ni _{<i>x</i>} Fe _{3–<i>x</i>} O ₄ /Ni Hybrid Nanostructures Formed by Solvothermal Synthesis. ACS Energy Letters, 2018, 3, 1698-1707.	8.8	132
71	Ternary PtVCo dendrites for the hydrogen evolution reaction, oxygen evolution reaction, overall water splitting and rechargeable Zn–air batteries. Inorganic Chemistry Frontiers, 2018, 5, 2425-2431.	3.0	23
72	Fabrication of perovskite-based porous nanotubes as efficient bifunctional catalyst and application in hybrid lithium–oxygen batteries. Journal of Materials Chemistry A, 2018, 6, 16943-16949.	5.2	23
73	<i>Operando</i> X-ray spectroscopic tracking of self-reconstruction for anchored nanoparticles as high-performance electrocatalysts towards oxygen evolution. Energy and Environmental Science, 2018, 11, 2945-2953.	15.6	157

#	Article	IF	CITATIONS
74	Fine Tuning the Heterostructured Interfaces by Topological Transformation of Layered Double Hydroxide Nanosheets. Industrial & Engineering Chemistry Research, 2018, 57, 10411-10420.	1.8	51
75	Accelerated active phase transformation of NiO powered by Pt single atoms for enhanced oxygen evolution reaction. Chemical Science, 2018, 9, 6803-6812.	3.7	96
76	Spent alkaline battery-derived manganese oxides as efficient oxygen electrocatalysts for Zn–air batteries. Inorganic Chemistry Frontiers, 2018, 5, 2167-2173.	3.0	29
77	Oxygen vacancy-originated highly active electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 15102-15109.	5.2	67
78	Transition metal oxide-based oxygen reduction reaction electrocatalysts for energy conversion systems with aqueous electrolytes. Journal of Materials Chemistry A, 2018, 6, 10595-10626.	5.2	162
79	Core/shell design of efficient electrocatalysts based on NiCo ₂ O ₄ nanowires and NiMn LDH nanosheets for rechargeable zinc–air batteries. Journal of Materials Chemistry A, 2018, 6, 10243-10252.	5.2	158
80	Rational design and synthesis of highly oriented copper–zinc ferrite QDs/titania NAE nano-heterojunction composites with novel photoelectrochemical and photoelectrocatalytic behaviors. Dalton Transactions, 2018, 47, 12769-12782.	1.6	18
81	Nanocomposites CoPt-x/Diatomite-C as oxygen reversible electrocatalysts for zinc-air batteries: Diatomite boosted the catalytic activity and durability. Electrochimica Acta, 2018, 284, 119-127.	2.6	25
82	Tailoring the nano heterointerface of hematite/magnetite on hierarchical nitrogen-doped carbon nanocages for superb oxygen reduction. Journal of Materials Chemistry A, 2018, 6, 21313-21319.	5.2	34
83	Integrated Mesoporous PtPd Film/Ni Foam: An Efficient Binder-Free Cathode for Zn–Air Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 12367-12374.	3.2	20
84	Metal–Air Batteries: From Static to Flow System. Advanced Energy Materials, 2018, 8, 1801396.	10.2	156
85	Structure evolution of h.c.p./c.c.p. metal oxide interfaces in solid-state reactions. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, 466-480.	0.0	5
86	Mechanism and activity of CO oxidation on (001) and (110) surfaces of spinel Co3O4, NiCo2O4 and NiFe2O4: A DFT + U study. Surface Science, 2018, 677, 278-283.	0.8	18
87	Synergistic Supports Beyond Carbon Black for Polymer Electrolyte Fuel Cell Anodes. ChemCatChem, 2018, 10, 4497-4508.	1.8	5
88	NiFeOx as a Bifunctional Electrocatalyst for Oxygen Reduction (OR) and Evolution (OE) Reaction in Alkaline Media. Catalysts, 2018, 8, 328.	1.6	25
89	Superaerophobic P-doped Ni(OH) ₂ /NiMoO ₄ hierarchical nanosheet arrays grown on Ni foam for electrocatalytic overall water splitting. Dalton Transactions, 2018, 47, 8787-8793.	1.6	64
90	Multifunctional mixed valence N-doped CNT@MFe ₂ O ₄ hybrid nanomaterials: from engineered one-pot coprecipitation to application in energy storage paper supercapacitors. Nanoscale, 2018, 10, 12820-12840.	2.8	26
91	Multifunctional nanostructured electrocatalysts for energy conversion and storage: current status and perspectives. Nanoscale, 2018, 10, 11241-11280.	2.8	258

#	Article	IF	CITATIONS
92	Construction of hierarchical FeP/Ni ₂ P hollow nanospindles for efficient oxygen evolution. Journal of Materials Chemistry A, 2018, 6, 14103-14111.	5.2	109
93	Selfâ€Assembly of Threeâ€Dimensional Zincâ€Doped NiCo ₂ O ₄ as Efficient Electrocatalysts for Oxygen Evolution Reaction. Chemistry - A European Journal, 2018, 24, 13002-13008.	1.7	51
94	Asymmetric Supercapacitors Assembled by Dual Spinel Ferrites@Graphene Nanocomposites as Electrodes. ACS Applied Energy Materials, 2018, 1, 3206-3215.	2.5	44
95	Layered Metal–Organic Framework-Derived Metal Oxide/Carbon Nanosheet Arrays for Catalyzing the Oxygen Evolution Reaction. ACS Energy Letters, 2018, 3, 1655-1661.	8.8	176
96	Oxygen reduction reaction on gold in alkaline solutions – The inner or outer sphere mechanisms in the light of recent achievements. Current Opinion in Electrochemistry, 2019, 14, 180-185.	2.5	23
97	Nature of Active Sites and an Oxygen-Assisted Reaction Mechanism for Mercury Capture by Spinel-Type CuMn ₂ O ₄ Sorbents. Energy & Fuels, 2019, 33, 8920-8926.	2.5	15
98	In-situ generated Mn3O4-reduced graphene oxide nanocomposite for oxygen reduction reaction and isolated reduced graphene oxide for supercapacitor applications. Carbon, 2019, 154, 285-291.	5.4	38
99	All solid-state lithium–oxygen batteries with MOF-derived nickel cobaltate nanoflake arrays as high-performance oxygen cathodes. Chemical Communications, 2019, 55, 10689-10692.	2.2	16
100	Single Nickel Atoms on Nitrogenâ€Doped Graphene Enabling Enhanced Kinetics of Lithium–Sulfur Batteries. Advanced Materials, 2019, 31, e1903955.	11.1	447
101	Spatially-controlled porous nanoflake arrays derived from MOFs: An efficiently long-life oxygen electrode. Nano Research, 2019, 12, 2528-2534.	5.8	16
102	Metal-Containing Ceramic Composite with in Situ Grown Carbon Nanotube as a Cathode Catalyst for Anion Exchange Membrane Fuel Cell and Rechargeable Zinc–Air Battery. ACS Applied Energy Materials, 2019, 2, 6078-6086.	2.5	18
103	Construction of mass-transfer channel in air electrode with bifunctional catalyst for rechargeable zinc-air battery. Electrochimica Acta, 2019, 320, 134564.	2.6	41
104	Nanostructured Fe-Ni Sulfide: A Multifunctional Material for Energy Generation and Storage. Catalysts, 2019, 9, 597.	1.6	21
105	Structure-controlled synthesis of one-dimensional PdCu nanoscatalysts via a seed-mediated approach for oxygen reduction reaction. Applied Surface Science, 2019, 493, 139-145.	3.1	10
106	Nanowires assembled from iron manganite nanoparticles: Synthesis, characterization, and investigation of electrocatalytic properties for water oxidation reaction. Journal of Materials Research, 2019, 34, 3231-3239.	1.2	7
107	Structure, magnetic behavior and OER activity of CoFe2O4 powders obtained using agar-agar from red seaweed (Rhodophyta). Materials Chemistry and Physics, 2019, 237, 121847.	2.0	42
108	Preparation and photoluminescence of NiFe2O4 nanoparticles. Journal of Materials Science: Materials in Electronics, 2019, 30, 15379-15387.	1.1	15
109	Precipitates shape up. Nature Chemistry, 2019, 11, 685-686.	6.6	5

#	ARTICLE	IF	CITATIONS
110	Studies on some spinel oxides based electrocatalysts for oxygen evolution and capacitive applications. Electrochimica Acta, 2019, 320, 134584.	2.6	27
111	Mn-doped atomic SnO ₂ layers for highly efficient CO ₂ electrochemical reduction. Journal of Materials Chemistry A, 2019, 7, 19651-19656.	5.2	63
112	Solution Combustion Synthesis as a Novel Route to Preparation of Catalysts. International Journal of Self-Propagating High-Temperature Synthesis, 2019, 28, 77-109.	0.2	19
113	Hierarchical nickel cobalt oxide spinel microspheres catalyze mineralization of humic substances during wet air oxidation at atmospheric pressure. Applied Catalysis B: Environmental, 2019, 256, 117858.	10.8	28
114	Electrocatalytic evaluation of Co3O4 and NiCo2O4 rosettes-like hierarchical spinel as bifunctional materials for oxygen evolution (OER) and reduction (ORR) reactions in alkaline media. Journal of Electroanalytical Chemistry, 2019, 847, 113190.	1.9	85
115	Photoinduced Oxygen Reduction Reaction Boosts the Output Voltage of a Zinc–Air Battery. Angewandte Chemie - International Edition, 2019, 58, 12460-12464.	7.2	102
116	A review of transition metalâ€based bifunctional oxygen electrocatalysts. Journal of the Chinese Chemical Society, 2019, 66, 829-865.	0.8	82
117	Chromium substituted iron oxide nanowires as affordable electrocatalysts for oxygen evolution reaction. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	11
118	Density Functional Theory Study on the Reaction Mechanism of Spinel CoFe ₂ O ₄ with CO during Chemical-Looping Combustion. Journal of Physical Chemistry C, 2019, 123, 17335-17342.	1.5	27
119	Photoinduced Oxygen Reduction Reaction Boosts the Output Voltage of a Zinc–Air Battery. Angewandte Chemie, 2019, 131, 12590-12594.	1.6	33
120	Facile synthesis of ternary spinel Co–Mn–Ni nanorods as efficient bi-functional oxygen catalysts for rechargeable zinc-air batteries. Journal of Power Sources, 2019, 435, 226761.	4.0	42
121	Template-free Synthesis of Stable Cobalt Manganese Spinel Hollow Nanostructured Catalysts for Highly Water-Resistant CO Oxidation. IScience, 2019, 21, 19-30.	1.9	11
122	Two cobalt(II) coordination polymers based on 5-i-butoxyisophthalate and dipyridyl: Syntheses, structures and efficient oxygen evolution reaction. Journal of Solid State Chemistry, 2019, 278, 120913.	1.4	26
123	Partial Sulfurization of a 2D MOF Array for Highly Efficient Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2019, 11, 41595-41601.	4.0	91
124	Structure Analysis of Nanocomposite ZnO:Fe2O3 based Mineral Yarosite as Fe2O3 Source and its Application Probability. Materials Today: Proceedings, 2019, 13, 36-40.	0.9	4
125	A low temperature solid state reaction to produce hollow MnxFe3-xO4 nanoparticles as anode for lithium-ion batteries. Nano Energy, 2019, 66, 104199.	8.2	21
126	Solid-State Gelation for Nanostructured Perovskite Oxide Aerogels. Chemistry of Materials, 2019, 31, 9422-9429.	3.2	17
127	On-site generated metal organic framework-deriving core/shell ZnCo ₂ O ₄ /ZnO nanoarray for better water oxidation. Nanotechnology, 2019, 30, 495405.	1.3	8

	Сітатіс	on Report	
#	Article	IF	CITATIONS
128	Advances in Spectroscopy: Molecules to Materials. Springer Proceedings in Physics, 2019, , .	0.1	4
129	Fluorine-Anion-Modulated Electron Structure of Nickel Sulfide Nanosheet Arrays for Alkaline Hydrogen Evolution. ACS Energy Letters, 2019, 4, 2905-2912.	8.8	159
130	Spinel/Lithiumâ€Rich Manganese Oxide Hybrid Nanofibers as Cathode Materials for Rechargeable Lithiumâ€ l on Batteries. Small Methods, 2019, 3, 1900350.	4.6	44
131	Bifunctional electrocatalysts for rechargeable Zn-air batteries. Chinese Journal of Catalysis, 2019, 40, 1298-1310.	6.9	111
132	Nickle and Cobalt Spinel Catalyzing Wet Air Oxidation of Refractory Pollutants under Mild Condition. IOP Conference Series: Earth and Environmental Science, 2019, 295, 012057.	0.2	0
133	Trinuclear Ni(ii) oriented highly dense packing and π-conjugation degree of metal–organic frameworks for efficient water oxidation. CrystEngComm, 2019, 21, 5862-5866.	1.3	23
134	Mesoporous Nanocast Electrocatalysts for Oxygen Reduction and Oxygen Evolution Reactions. Inorganics, 2019, 7, 98.	1.2	17
135	2H and 2H/1T-Transition Metal Dichalcogenide Films Prepared via Powderless Gas Deposition for the Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 16440-16449.	3.2	10
136	Electronic structure and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi>-type conduction mechanism of spinel cobaltite oxide thin films. Physical Review B, 2019, 100, .</mml:math 	1.1	54
137	Improving the oxygen evolution activity of Co ₃ O ₄ by introducing Ce species derived from Ce-substituted ZIF-67. Sustainable Energy and Fuels, 2019, 3, 3201-3207.	2.5	35
138	Controllable synthesis of NixCo3â^'xO4-rGO with enhanced oxygen reduction/evolution activity. Journal of Materials Science: Materials in Electronics, 2019, 30, 18424-18431.	1.1	4
139	An efficient CoOx-SnOx(Sb doped)/Ti electrocatalyst for the oxygen evolution reaction. Applied Surface Science, 2019, 495, 143596.	3.1	14
140	Preparative History vs Driving Force in Water Oxidation Catalysis: Parameter Space Studies of Cobalt Spinels. ACS Omega, 2019, 4, 15444-15456.	1.6	9
141	Exploring the Conversion Mechanisms of Toluene as a Biomass Tar Model Compound on NiFe ₂ O ₄ Oxygen Carrier. ACS Sustainable Chemistry and Engineering, 2019, 7, 16539-16548.	3.2	46
142	High energy-power Zn-ion hybrid supercapacitors enabled by layered B/N co-doped carbon cathode. Nano Energy, 2019, 66, 104132.	8.2	344
143	Monolayer Nitrides Doped with Transition Metals as Efficient Catalysts for Water Oxidation: The Singular Role of Nickel. Journal of Physical Chemistry C, 2019, 123, 26289-26298.	1.5	12
144	Electrochemical Carbon Dioxide Splitting. ChemElectroChem, 2019, 6, 1587-1604.	1.7	22
145	Zinc Based Spinel Oxides for Energy Conversion and Storage Applications. , 2019, , 31-48.		0

#	Article	IF	CITATIONS
146	Structure-design and synthesis of Nickel-Cobalt-Sulfur arrays on nickel foam for efficient hydrogen evolution. Journal of Alloys and Compounds, 2019, 785, 468-474.	2.8	25
147	<i>In situ</i> growth of metallic Ag ⁰ intercalated CoAl layered double hydroxides as efficient electrocatalysts for the oxygen reduction reaction in alkaline solutions. Dalton Transactions, 2019, 48, 1084-1094.	1.6	30
148	Structure–redox reactivity relationships in Co _{1â^'x} Zn _x Fe ₂ O ₄ : the role of stoichiometry. New Journal of Chemistry, 2019, 43, 3038-3049.	1.4	46
149	One-step construction of core/shell nanoarrays with a holey shell and exposed interfaces for overall water splitting. Journal of Materials Chemistry A, 2019, 7, 1196-1205.	5.2	42
150	Porous Cu-Mn-O catalysts fabricated by spray pyrolysis method for efficient CO oxidation. Results in Physics, 2019, 12, 1893-1900.	2.0	20
151	First-principles study of the structural and electronic properties of the clean and O-deficient ZnAl2O4(111) surfaces. Surface Science, 2019, 682, 75-83.	0.8	4
152	Mastering Surface Reconstruction of Metastable Spinel Oxides for Better Water Oxidation. Advanced Materials, 2019, 31, e1807898.	11.1	215
153	Direct Electrolysis of CO ₂ in a Symmetrical Solid Oxide Electrolysis Cell with Spinel MnCo ₂ O ₄ as Electrode. ChemElectroChem, 2019, 6, 1359-1364.	1.7	19
154	Kinetics and mechanisms of catalytic water oxidation. Dalton Transactions, 2019, 48, 779-798.	1.6	42
155	Cytocompatible, Injectable, and Electroconductive Soft Adhesives with Hybrid Covalent/Noncovalent Dynamic Network. Advanced Science, 2019, 6, 1802077.	5.6	84
156	Superior Oxygen Evolution Reaction Performance of Co ₃ O ₄ /NiCo ₂ O ₄ /Ni Foam Composite with Hierarchical Structure. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	7
157	Revealing the Highly Catalytic Performance of Spinel CoMn ₂ O ₄ for Toluene Oxidation: Involvement and Replenishment of Oxygen Species Using In Situ Designed-TP Techniques. ACS Catalysis, 2019, 9, 6698-6710.	5.5	313
158	Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chemical Society Reviews, 2019, 48, 4178-4280.	18.7	810
159	Hollow petal-like Co3O4 nanoflakes as bifunctional electrocatalysts through template-free protocol and structural controlled kinetics in gas evolution. Electrochimica Acta, 2019, 318, 949-956.	2.6	18
160	Catalytic conversion of carbon monoxide into carbon dioxide over spinel catalysts: An overview. Materials Science for Energy Technologies, 2019, 2, 575-588.	1.0	41
161	Oxygen Reduction Reaction Activity of Mesostructured Cobaltâ€Based Metal Oxides Studied with the Cavityâ€Microelectrode Technique. ChemElectroChem, 2019, 6, 3460-3467.	1.7	14
162	Simple synthesis, structural and optical properties of cobalt ferrite nanoparticles. European Physical Journal Plus, 2019, 134, 1.	1.2	35
163	Trace Amount CoFe ₂ O ₄ Anchored on a TiO ₂ Photocatalyst Efficiently Catalyzing O ₂ Reduction and Phenol Oxidation. Langmuir, 2019, 35, 9334-9342.	1.6	17

#	Article	IF	CITATIONS
164	Exploration of Reaction Mechanisms on Hydrogen Production through Chemical Looping Steam Reforming Using NiFe ₂ O ₄ Oxygen Carrier. ACS Sustainable Chemistry and Engineering, 2019, 7, 11621-11632.	3.2	68
165	Hierarchical nanotubes constructed from CoSe2 nanorods with an oxygen-rich surface for an efficient oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 15073-15078.	5.2	47
166	Small sized Fe–Co sulfide nanoclusters anchored on carbon for oxygen evolution. Journal of Materials Chemistry A, 2019, 7, 15851-15861.	5.2	87
167	Recent Progress on Catalysts for the Positive Electrode of Aprotic Lithium-Oxygen Batteries â€. Inorganics, 2019, 7, 69.	1.2	8
168	Ca _{1â^'x} Sr _x RuO ₃ perovskite at the metal–insulator boundary as a highly active oxygen evolution catalyst. Journal of Materials Chemistry A, 2019, 7, 15387-15394.	5.2	32
169	Mixed valence CoCuMnOx spinel nanoparticles by sacrificial template method with enhanced ORR performance. Applied Surface Science, 2019, 487, 1145-1151.	3.1	75
170	Structure, morphology and magnetic properties of flowerlike γ-Fe2O3@NiO core/shell nanocomposites synthesized from different precursor concentrations. Materials Research Bulletin, 2019, 118, 110495.	2.7	1
171	Promoted synergy in core-branch CoP@NiFe–OH nanohybrids for efficient electrochemical-/ photovoltage-driven overall water splitting. Nano Energy, 2019, 63, 103821.	8.2	82
172	Ultrathin nickel-cobalt inorganic-organic hydroxide hybrid nanobelts as highly efficient electrocatalysts for oxygen evolution reaction. Electrochimica Acta, 2019, 318, 966-976.	2.6	17
173	Rational design of multifunctional air electrodes for rechargeable Zn–Air batteries: Recent progress and future perspectives. Energy Storage Materials, 2019, 21, 253-286.	9.5	171
174	MXene Boosted CoNi-ZIF-67 as Highly Efficient Electrocatalysts for Oxygen Evolution. Nanomaterials, 2019, 9, 775.	1.9	85
175	Green synthesis of zinc doped cobalt ferrite nanoparticles: Structural, optical, photocatalytic and antibacterial studies. Nano Structures Nano Objects, 2019, 19, 100322.	1.9	98
176	Recent Studies on Bifunctional Perovskite Electrocatalysts in Oxygen Evolution, Oxygen Reduction, and Hydrogen Evolution Reactions under Alkaline Electrolyte. Israel Journal of Chemistry, 2019, 59, 708-719.	1.0	12
177	<i>In situ</i> Surface Chemistry Engineering of Cobalt-Sulfide Nanosheets for Improved Oxygen Evolution Activity. ACS Applied Energy Materials, 2019, 2, 4439-4449.	2.5	49
178	Encapsulated spinel CuXCo3-XO4 in carbon nanotubes as efficient and stable oxygen electrocatalysts. International Journal of Hydrogen Energy, 2019, 44, 11421-11430.	3.8	33
179	Low-Cost Rapid Template-Free Synthesis of Nanoscale Zinc Spinels for Energy Storage and Electrocatalytic Applications. ACS Applied Energy Materials, 2019, 2, 3211-3219.	2.5	17
180	Sauerstoffentwicklungsreaktion an Kohlenstoffkanten: AktivitÃæentwicklung und Strukturâ€Eigenschaftsâ€Beziehungen, untersucht anhand polyzyklischer aromatischer Kohlenwasserstoffe. Angewandte Chemie, 2019, 131, 9010-9014.	1.6	3
181	Component synergy and armor protection induced superior catalytic activity and stability of ultrathin Co-Fe spinel nanosheets confined in mesoporous silica shells for ammonia decomposition reaction. Applied Catalysis B: Environmental, 2019, 253, 121-130.	10.8	32

#	Article	IF	CITATIONS
182	Suppressing Manganese Dissolution via Exposing Stable {111} Facets for Highâ€Performance Lithiumâ€lon Oxide Cathode. Advanced Science, 2019, 6, 1801908.	5.6	41
183	Efficient Oxygen Evolution Catalysis Triggered by Nickel Phosphide Nanoparticles Compositing with Reduced Graphene Oxide with Controlled Architecture. ACS Sustainable Chemistry and Engineering, 2019, 7, 9566-9573.	3.2	34
184	Oxygen Evolution Reaction at Carbon Edge Sites: Investigation of Activity Evolution and Structure–Function Relationships with Polycyclic Aromatic Hydrocarbons. Angewandte Chemie - International Edition, 2019, 58, 8917-8921.	7.2	42
185	Single Atoms on Graphene for Energy Storage and Conversion. Small Methods, 2019, 3, 1800443.	4.6	64
186	Single phase of spinel Co ₂ RhO ₄ nanotubes with remarkably enhanced catalytic performance for the oxygen evolution reaction. Nanoscale, 2019, 11, 9287-9295.	2.8	23
187	Studies on structural and optical properties of nano ZnFe2O4 and ZnFe2O4-TiO2 composite synthesized by co-precipitation route. Materials Chemistry and Physics, 2019, 230, 107-113.	2.0	51
188	Geometric Occupancy and Oxidation State Requirements of Cations in Cobalt Oxides for Oxygen Reduction Reaction. ACS Applied Materials & amp; Interfaces, 2019, 11, 12525-12534.	4.0	43
189	Reversible Oxygen Redox Chemistry in Aqueous Zincâ€lon Batteries. Angewandte Chemie - International Edition, 2019, 58, 7062-7067.	7.2	321
190	Application of Heterogeneous Catalytic Ozonation for Refractory Organics in Wastewater. Catalysts, 2019, 9, 241.	1.6	88
191	A highly efficient cathode catalyst Î ³ -MnO2@CNT composite for sodium-air batteries. Science China Chemistry, 2019, 62, 727-731.	4.2	3
192	Microwave-assisted facile synthesis of cobalt iron oxide nanocomposites for oxygen production using alkaline anion exchange membrane water electrolysis. International Journal of Hydrogen Energy, 2019, 44, 10174-10181.	3.8	24
193	Nickel based oxide film formed in molten salts for efficient electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2019, 7, 10514-10522.	5.2	44
194	Reversible Oxygen Redox Chemistry in Aqueous Zincâ€lon Batteries. Angewandte Chemie, 2019, 131, 7136-7141.	1.6	33
195	Hollow Nanocages of NixCo1â^'xSe for Efficient Zinc–Air Batteries and Overall Water Splitting. Nano-Micro Letters, 2019, 11, 28.	14.4	63
196	Nanocrystalline Transition-Metal Gallium Oxide Spinels from Acetylacetonate Precursors via Solvothermal Synthesis. Materials, 2019, 12, 838.	1.3	4
197	Identifying the Activation of Bimetallic Sites in NiCo ₂ S ₄ @gâ€C ₃ N ₄ â€CNT Hybrid Electrocatalysts for Synergistic Oxygen Reduction and Evolution. Advanced Materials, 2019, 31, e1808281.	11.1	315
198	Catalytic Properties of Selected Transition Metal Oxides—Computational Studies. Challenges and Advances in Computational Chemistry and Physics, 2019, , 345-408.	0.6	2
199	Interfacial nickel nitride/sulfide as a bifunctional electrode for highly efficient overall water/seawater electrolysis. Journal of Materials Chemistry A, 2019, 7, 8117-8121.	5.2	150

#	Article	IF	CITATIONS
200	Materials Design of Solar Cell Absorbers Beyond Perovskites and Conventional Semiconductors via Combining Tetrahedral and Octahedral Coordination. Advanced Materials, 2019, 31, e1806593.	11.1	48
201	Interfacial Electronic Structure Modulation of NiTe Nanoarrays with NiS Nanodots Facilitates Electrocatalytic Oxygen Evolution. Advanced Materials, 2019, 31, e1900430.	11.1	298
202	Synergistic Mn-Co catalyst outperforms Pt on high-rate oxygen reduction for alkaline polymer electrolyte fuel cells. Nature Communications, 2019, 10, 1506.	5.8	212
203	The effect of Fe-doping on the electronic, optical and magnetic properties of ZnAl2O4; a first-principles study. Computational Condensed Matter, 2019, 20, e00387.	0.9	22
204	Palladium nanoparticles supported by metal-organic frameworks derived FeNi3Cx nanorods as efficient oxygen reversible catalysts for rechargeable Zn-Air batteries. Electrochimica Acta, 2019, 307, 403-413.	2.6	21
205	Amino acids-clay interaction at the nano-atomic scale: The l-alanine-chlorite system. Applied Clay Science, 2019, 172, 28-39.	2.6	13
206	Green synthesis of zinc ferrite nanoparticles in Limonia acidissima juice: Characterization and their application as photocatalytic and antibacterial activities. Microchemical Journal, 2019, 146, 1227-1235.	2.3	135
207	Layerâ€Based Heterostructured Cathodes for Lithiumâ€ŀon and Sodiumâ€ŀon Batteries. Advanced Functional Materials, 2019, 29, 1808522.	7.8	82
208	A 2D NiFe Bimetallic Metal–Organic Frameworks for Efficient Oxygen Evolution Electrocatalysis. Energy and Environmental Materials, 2019, 2, 18-21.	7.3	56
209	Fe3C/Fe2O3 heterostructure embedded in N-doped graphene as a bifunctional catalyst for quasi-solid-state zinc–air batteries. Carbon, 2019, 146, 763-771.	5.4	76
210	Electrodeposited Nanostructured CoFe2O4 for Overall Water Splitting and Supercapacitor Applications. Catalysts, 2019, 9, 176.	1.6	65
211	Element-Specific Restructuring of Anion- and Cation-Substituted Cobalt Phosphide Nanoparticles under Electrochemical Water-Splitting Conditions. ACS Catalysis, 2019, 9, 2956-2961.	5.5	107
212	A Strategy for Increasing the Efficiency of the Oxygen Reduction Reaction in Mn-Doped Cobalt Ferrites. Journal of the American Chemical Society, 2019, 141, 4412-4421.	6.6	90
213	Syntheses, structures, magnetism and electrocatalytic oxygen evolution for four cobalt, manganese and copper complexes with dinuclear, 1D and 3D structures. Dalton Transactions, 2019, 48, 3467-3475.	1.6	8
214	Carbon Nanotubeâ€Based Nonâ€Precious Metal Electrode Catalysts for Fuel Cells, Water Splitting and Zincâ€Air Batteries. ChemCatChem, 2019, 11, 5929-5944.	1.8	32
215	Improved Performance of BiVO ₄ via Surface-Deposited Magnetic CuFe ₂ O ₄ for Phenol Oxidation and O ₂ Reduction and Evolution under Visible Light. ACS Applied Materials & Interfaces, 2019, 11, 45776-45784.	4.0	24
216	Defectsâ€Induced Inâ€Plane Heterophase in Cobalt Oxide Nanosheets for Oxygen Evolution Reaction. Small, 2019, 15, e1904903.	5.2	69
217	Effect of the Agglomeration Control of the Carbon and (Ca _{0.5} ,Sr _{0.5})RuO ₃ Bi-functional Catalyst for Oxygen Evolution and Oxygen Reduction Reactions Particles on the Catalytic Activity. Journal of the Society of Powder Technology. Japan. 2019. 56. 382-388.	0.0	1

#	Article	IF	CITATIONS
218	Cobalt-Based Nitride-Core Oxide-Shell Oxygen Reduction Electrocatalysts. Journal of the American Chemical Society, 2019, 141, 19241-19245.	6.6	154
219	Surface dual-oxidation induced metallic copper doping into NiFe electrodes for electrocatalytic water oxidation. Journal of Materials Chemistry A, 2019, 7, 22889-22897.	5.2	26
220	Spinel oxide nanoparticles embedded in nitrogen-doped carbon nanofibers as a robust and self-standing bifunctional oxygen cathode for Zn–air batteries. Journal of Materials Chemistry A, 2019, 7, 24868-24876.	5.2	76
221	Octahedral spinel electrocatalysts for alkaline fuel cells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24425-24432.	3.3	60
222	Hierarchical nanowire and nanoplate-assembled NiCo2O4–NiO biphasic microspheres as effective electrocatalysts for oxygen evolution reaction. Materials Today Chemistry, 2019, 14, 100215.	1.7	5
223	Co ₃ O ₄ nanoparticles supported on N-doped electrospinning carbon nanofibers as an efficient and bifunctional oxygen electrocatalyst for rechargeable Zn–air batteries. Inorganic Chemistry Frontiers, 2019, 6, 3554-3561.	3.0	29
224	Effect of metal ion substitution on electrochemical properties of cobalt oxide. Journal of Alloys and Compounds, 2019, 771, 951-959.	2.8	51
225	Heterometallic Cu/Co and Cu/Mn oxalate complexes as single-source precursors for spinel-type oxides. Journal of Solid State Chemistry, 2019, 270, 563-568.	1.4	2
226	A highly efficient electrocatalyst for oxygen reduction reaction: Three-dimensionally ordered macroporous perovskite LaMnO3. Journal of Power Sources, 2019, 412, 701-709.	4.0	53
227	Epitaxial growth of oriented prussian blue analogue derived well-aligned CoFe2O4 thin film for efficient oxygen evolution reaction. Applied Catalysis B: Environmental, 2019, 245, 1-9.	10.8	128
228	Manipulating the assembled structure of atomically thin CoSe2 nanomaterials for enhanced water oxidation catalysis. Nano Energy, 2019, 57, 371-378.	8.2	23
229	Oxygen reduction reaction on La0.8Sr0.2CoxFe1-xO3-δ perovskite/carbon black electrocatalysts in alkaline medium. Applied Catalysis B: Environmental, 2019, 244, 225-232.	10.8	77
230	Enhanced Water Splitting Electrocatalysis over MnCo ₂ O ₄ via Introduction of Suitable Ce Content. ACS Sustainable Chemistry and Engineering, 2019, 7, 1169-1177.	3.2	70
231	Hollowâ€6tructured Metal Oxides as Oxygenâ€Related Catalysts. Advanced Materials, 2019, 31, e1801430.	11.1	99
232	Unfolding BOB Bonds for an Enhanced ORR Performance in ABO ₃ â€Type Perovskites. Small, 2019, 15, e1803513.	5.2	67
233	Metal-defected spinel MnxCo3-xO4 with octahedral Mn-enriched surface for highly efficient oxygen reduction reaction. Applied Catalysis B: Environmental, 2019, 244, 536-545.	10.8	140
234	Co–Fe Bimetal Phosphate Composite Loaded on Reduced Graphene Oxide for Oxygen Evolution. Nano, 2019, 14, 1950003.	0.5	8
235	Cobalt/Molybdenum Phosphide and Oxide Heterostructures Encapsulated in N-Doped Carbon Nanocomposite for Overall Water Splitting in Alkaline Media. ACS Applied Materials & Interfaces, 2019, 11, 6890-6899.	4.0	91

#	Article	IF	CITATIONS
236	Magnesium substituted cobalt spinel nanostructures for electrocatalytic water oxidation. Journal of Applied Electrochemistry, 2019, 49, 315-325.	1.5	16
237	Effective Fabrication and Electrochemical Oxygen Evolution Reaction Activity of Gold Multipod Nanoparticle Core–Cobalt Sulfide Shell Nanohybrids. ACS Applied Nano Materials, 2019, 2, 678-688.	2.4	16
238	Recent Progress in Decoupled H ₂ and O ₂ Production from Electrolytic Water Splitting. ChemElectroChem, 2019, 6, 2157-2166.	1.7	49
239	Encoding Metal–Cation Arrangements in Metal–Organic Frameworks for Programming the Composition of Electrocatalytically Active Multimetal Oxides. Journal of the American Chemical Society, 2019, 141, 1766-1774.	6.6	32
240	1D hollow MFe2O4 (M = Cu, Co, Ni) fibers by Solution Blow Spinning for oxygen evolution reaction. Journal of Colloid and Interface Science, 2019, 540, 59-65.	5.0	99
241	Porous V2O5 nanofibers as cathode materials for rechargeable aqueous zinc-ion batteries. Journal of Energy Chemistry, 2019, 38, 20-25.	7.1	225
242	Boosting the Electrocatalytic Water Oxidation Performance of CoFe ₂ O ₄ Nanoparticles by Surface Defect Engineering. ACS Applied Materials & Interfaces, 2019, 11, 3978-3983.	4.0	76
243	Helical cobalt borophosphates to master durable overall water-splitting. Energy and Environmental Science, 2019, 12, 988-999.	15.6	179
244	Structural and photocatalytic properties of Mg2SnO4 spinel obtained by modified Pechini method. Materials Letters, 2019, 236, 320-323.	1.3	11
245	Stability and Catalytic Performance of Reconstructed Fe ₃ O ₄ (001) and Fe ₃ O ₄ (110) Surfaces during Oxygen Evolution Reaction. Journal of Physical Chemistry C, 2019, 123, 8304-8311.	1.5	30
246	Nonâ€3d Metal Modulation of a Cobalt Imidazolate Framework for Excellent Electrocatalytic Oxygen Evolution in Neutral Media. Angewandte Chemie - International Edition, 2019, 58, 139-143.	7.2	113
247	Nonâ€3d Metal Modulation of a Cobalt Imidazolate Framework for Excellent Electrocatalytic Oxygen Evolution in Neutral Media. Angewandte Chemie, 2019, 131, 145-149.	1.6	18
248	Mechanism and kinetics of catalytic ozonation for elimination of organic compounds with spinel-type CuAl2O4 and its precursor. Science of the Total Environment, 2019, 651, 2585-2596.	3.9	82
249	Hydrothermal Approach to Spinel-Type 2D Metal Oxide Nanosheets. Inorganic Chemistry, 2019, 58, 549-556.	1.9	23
250	Defect engineering on electrocatalysts for gas-evolving reactions. Dalton Transactions, 2019, 48, 15-20.	1.6	48
251	Challenges and recent progress in the design of advanced electrode materials for rechargeable Mg batteries. Energy Storage Materials, 2019, 20, 118-138.	9.5	104
252	Magnetic Nanomaterials for Advanced Regenerative Medicine: The Promise and Challenges. Advanced Materials, 2019, 31, e1804922.	11.1	55
253	Fully integrated hierarchical double-shelled Co ₉ S ₈ @CNT nanostructures with unprecedented performance for Li–S batteries. Nanoscale Horizons, 2019, 4, 182-189.	4.1	62

#	Article	IF	CITATIONS
254	Fe/Co/Ni mixed oxide nanoparticles supported on oxidized multi-walled carbon nanotubes as electrocatalysts for the oxygen reduction and the oxygen evolution reactions in alkaline media. Catalysis Today, 2020, 357, 259-268.	2.2	53
255	Oxygen reduction reaction activity of Pd-based bimetallic electrocatalysts in alkaline medium. Catalysis Today, 2020, 355, 685-697.	2.2	30
256	Self‣upported Transitionâ€Metalâ€Based Electrocatalysts for Hydrogen and Oxygen Evolution. Advanced Materials, 2020, 32, e1806326.	11.1	986
257	α-MnO2 nanorods supported on three dimensional graphene as high activity and durability cathode electrocatalysts for magnesium-air fuel cells. Catalysis Today, 2020, 355, 304-310.	2.2	32
258	Atomically Precise Noble Metal Nanoclusters as Efficient Catalysts: A Bridge between Structure and Properties. Chemical Reviews, 2020, 120, 526-622.	23.0	849
259	The influence of thermal treatment on electrocatalytic properties of Mn-Co nanofilms on nickel foam toward oxygen evolution reaction activity. Materials Letters, 2020, 258, 126759.	1.3	2
260	Nanomaterials Developed for Removing Air Pollutants. , 2020, , 203-247.		1
261	Observation of three magnetic states in spinel MnFe2O4 single crystals. Journal of Magnetism and Magnetic Materials, 2020, 497, 165955.	1.0	5
262	Multifunctional Transition Metalâ€Based Phosphides in Energyâ€Related Electrocatalysis. Advanced Energy Materials, 2020, 10, 1902104.	10.2	322
263	Hierarchically porous N-doped carbon derived from biomass as oxygen reduction electrocatalyst for high-performance Al–air battery. Journal of Energy Chemistry, 2020, 45, 119-125.	7.1	59
264	N, S-codoped graphene loaded Ni-Co bimetal sulfides for enhanced oxygen evolution activity. Applied Surface Science, 2020, 503, 144146.	3.1	41
265	Role of doped nitrogen and sulphur in cobalt/cobalt-zirconium nanoferrites synthesized by facile methods. Ceramics International, 2020, 46, 4423-4434.	2.3	8
266	Defect structure and transport properties of (Co,Cr,Fe,Mn,Ni)3O4 spinel-structured high entropy oxide. Journal of the European Ceramic Society, 2020, 40, 835-839.	2.8	71
267	Stabilization of nanosized MgFe2O4 nanoparticles in phenylene-bridged KIT-6-type ordered mesoporous organosilica (PMO). Microporous and Mesoporous Materials, 2020, 293, 109783.	2.2	5
268	P-type spinel ZnCo2O4 thin films prepared using sol-gel process. Applied Surface Science, 2020, 505, 144460.	3.1	22
269	Nitride Spinel: An Ultraincompressible Highâ€Pressure Form of BeP2N4. Angewandte Chemie, 2020, 132, 2752-2756.	1.6	5
270	Nitride Spinel: An Ultraincompressible Highâ€Pressure Form of BeP2N4. Angewandte Chemie - International Edition, 2020, 59, 2730-2734.	7.2	13
271	Optimal Geometrical Configuration of Cobalt Cations in Spinel Oxides to Promote Oxygen Evolution Reaction. Angewandte Chemie, 2020, 132, 4766-4772.	1.6	37

#	Article	IF	CITATIONS
272	Two-dimensional Spinel Structured Co-based Materials for High Performance Supercapacitors: A Critical Review. Chemical Engineering Journal, 2020, 387, 124081.	6.6	232
273	Hierarchically porous BiOCl@NiCo ₂ O ₄ nanoplates as low-cost and highly efficient catalysts for the discoloration of organic contaminants in aqueous media. New Journal of Chemistry, 2020, 44, 258-264.	1.4	12
274	Co single-atoms on ultrathin N-doped porous carbon <i>via</i> a biomass complexation strategy for high performance metal–air batteries. Journal of Materials Chemistry A, 2020, 8, 2131-2139.	5.2	68
275	Enhanced Chemisorption and Catalytic Effects toward Polysulfides by Modulating Hollow Nanoarchitectures for Longâ€Life Lithium–Sulfur Batteries. Small, 2020, 16, e1906114.	5.2	48
276	Improved chemical water oxidation with Zn in the tetrahedral site of spinel-type ZnCo2O4 nanostructure. Materials Today Chemistry, 2020, 15, 100226.	1.7	19
277	Self-Template Synthesis of Atomically Dispersed Fe/N-Codoped Nanocarbon as Efficient Bifunctional Alkaline Oxygen Electrocatalyst. ACS Applied Energy Materials, 2020, 3, 625-634.	2.5	19
278	Hollow Cobalt Sulfide Nanoparticles: A Robust and Low-Cost pH-Universal Oxygen Evolution Electrocatalyst. ACS Applied Energy Materials, 2020, 3, 977-986.	2.5	36
279	Optimal Geometrical Configuration of Cobalt Cations in Spinel Oxides to Promote Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2020, 59, 4736-4742.	7.2	134
280	Gold nanodots-decorated nickel hydroxide nanoflowers for enhanced electrochemical oxygen evolution activity. Journal of Industrial and Engineering Chemistry, 2020, 82, 359-366.	2.9	9
281	Ultrafast construction of interfacial sites by wet chemical etching to enhance electrocatalytic oxygen evolution. Nano Energy, 2020, 69, 104367.	8.2	58
282	Amorphous Intermediate Derivative from ZIFâ€67 and Its Outstanding Electrocatalytic Activity. Small, 2020, 16, e1904252.	5.2	120
283	Hydrolysis assisted in-situ growth of 3D hierarchical FeS/NiS/nickel foam electrode for overall water splitting. Electrochimica Acta, 2020, 332, 135534.	2.6	44
284	Solid oxide fuel and electrolysis cells. , 2020, , 387-547.		7
285	Photocatalytic degradation of cefoxitin sodium antibiotic using novel BN/CdAl2O4 composite. Journal of Cleaner Production, 2020, 246, 119076.	4.6	59
286	NiCo2S4 spheres grown on N,S co-doped rGO with high sulfur vacancies as superior oxygen bifunctional electrocatalysts. Electrochimica Acta, 2020, 331, 135356.	2.6	36
287	Experimental and DFT studies of the role of H2S in Hg0 removal from syngas over CuMn2O4 sorbent. Chemical Engineering Journal, 2020, 391, 123616.	6.6	39
288	Micelle-template synthesis of a 3D porous FeNi alloy and nitrogen-codoped carbon material as a bifunctional oxygen electrocatalyst. Electrochimica Acta, 2020, 331, 135375.	2.6	28
289	AMn2O4 (A=Cu, Ni and Zn) sorbents coupling high adsorption and regeneration performance for elemental mercury removal from syngas. Journal of Hazardous Materials, 2020, 388, 121738.	6.5	102

#ARTICLEIFCITATIONS290Enhanced degradation of triclosan by cobalt manganese spinel-type oxide activated
intermediates identification. Science of the Total Environment, 2020, 711, 134715.3.9126291Progress and Challenges Toward the Rational Design of Oxygen Electrocatalysts Based on a
bescriptor Approach. Advanced Science, 2020, 71901614.5.6133

CITATION REPORT

Proteic sol-gel synthesis, structure and battery-type behavior of Fe-based spinels (MFe2O4, $M\hat{A}=\hat{A}Cu$, Co,) Tj ETQq0.00 rgBT (Overlock 1

293	Semiconducting and photoelectrochemical properties of the ilmenite CoTiO3 prepared by wet method and its application for O2 evolution under visible light. Journal of Solid State Electrochemistry, 2020, 24, 357-364.	1.2	11
294	Facile Route of Pâ€doped Defectâ€rich Manganeseâ€cobalt Oxide Spinel with Enhanced Oxygen Evolution Reaction Performance. ChemNanoMat, 2020, 6, 1812-1818.	1.5	8
295	Heterostructure and Oxygen Vacancies Promote NiFe ₂ O ₄ /Ni ₃ S ₄ toward Oxygen Evolution Reaction and Znâ€Air Batteries. Chemistry - an Asian Journal, 2020, 15, 3568-3574.	1.7	22
296	Binder-Free Heterostructured NiFe ₂ O ₄ /NiFe LDH Nanosheet Composite Electrocatalysts for Oxygen Evolution Reactions. ACS Applied Energy Materials, 2020, 3, 10831-10840.	2.5	51
297	Photocatalytic degradation of dyes by cobalt ferrite nanoparticles synthesized by sol-gel method. AIP Conference Proceedings, 2020, , .	0.3	8
298	Cobalt-doped Mn3O4 nanocrystals embedded in graphene nanosheets as a high-performance bifunctional oxygen electrocatalyst for rechargeable Zn–Air batteries. Green Energy and Environment, 2020, 5, 499-505.	4.7	59
299	Electrocatalytic water oxidation reaction promoted by cobalt-Prussian blue and its thermal decomposition product under mild conditions. Dalton Transactions, 2020, 49, 16488-16497.	1.6	13
300	Investigation of Synergistic Effects between Co and Fe in Co3-xFexO4 Spinel Catalysts for the Liquid-Phase Oxidation of Aromatic Alcohols and Styrene. Molecular Catalysis, 2020, 498, 111251.	1.0	13
301	Rational Design of Semiconductorâ€Based Chemiresistors and their Libraries for Nextâ€Generation Artificial Olfaction. Advanced Materials, 2020, 32, e2002075.	11.1	215
302	Oxygen Reduction Reaction Catalytic Activities of Pure Ni-Based Perovskite-Related Structure Oxides. Chemistry of Materials, 2020, 32, 8694-8699.	3.2	14
303	Seeded-growth preparation of high-performance Ni/MgAl ₂ O ₄ catalysts for tar steam reforming. New Journal of Chemistry, 2020, 44, 13692-13700.	1.4	11
304	Multicomponent Spinel Metal Oxide Nanocomposites as High-Performance Bifunctional Catalysts in Zn–Air Batteries. ACS Applied Energy Materials, 2020, 3, 7710-7718.	2.5	22
305	Rational design of spinel CoMn2O4 with Co-enriched surface as high-activity catalysts for NH3-SCO reaction. Applied Surface Science, 2020, 529, 147044.	3.1	32
306	Facile synthesis of CuCo spinel composite oxides for toluene oxidation in air. Ceramics International, 2020, 46, 21542-21550.	2.3	21
307	Bimetallic organic framework-derived rich pyridinic N-doped carbon nanotubes as oxygen catalysts for rechargeable Zn-air batteries. Journal of Power Sources, 2020, 472, 228470.	4.0	31

#	Article	IF	Citations
" 308	A new eight-cation inverse high entropy spinel with large configurational entropy in both tetrahedral and octahedral sites: Synthesis and cation distribution by X-ray absorption spectroscopy. Scripta Materialia, 2020, 188, 26-31.	2.6	46
309	Scripta Materialia, 2020, 188, 26-31. Biomimetic Mesoporous Cobalt Ferrite/Carbon Nanoflake Helices for Freestanding Lithiumâ€lon Battery Anodes. ChemistrySelect, 2020, 5, 8207-8217.	0.7	9
310	Ferrites for electrocatalytic water splitting applications. , 2020, , 123-145.		2
311	Three-Dimensional-Order Macroporous AB ₂ O ₄ Spinels (A, B =Co and Mn) as Electrodes in Zn–Air Batteries. ACS Applied Materials & Interfaces, 2020, 12, 53760-53773.	4.0	52
312	Rational design of spinel oxides as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. Chemical Physics Reviews, 2020, 1, .	2.6	28
313	Inception of Co ₃ O ₄ as Microstructural Support to Promote Alkaline Oxygen Evolution Reaction for Co _{0.85} Se/Co ₉ Se ₈ Network. Inorganic Chemistry, 2020, 59, 17326-17339.	1.9	22
314	Engineering efficient bifunctional electrocatalysts for rechargeable zinc–air batteries by confining Fe–Co–Ni nanoalloys in nitrogen-doped carbon nanotube@nanosheet frameworks. Journal of Materials Chemistry A, 2020, 8, 25919-25930.	5.2	58
315	Hydrothermal Synthesis of Euhedral Co ₃ O ₄ Nanocrystals via Nutrient-Assisted Topotactic Transformation of the Layered Co(OH) ₂ Precursor under Anoxic Conditions: Insights into Intricate Routes Leading to Spinel Phase Development and Shape	1.4	9
316	Perfection. Crystal Growth and Design. 2020. 20. 7771-7787. The individual role of active sites in bimetallic oxygen evolution reaction catalysts. Dalton Transactions, 2020, 49, 17505-17510.	1.6	13
317	Tuning the Langasite, La ₃ SbZn ₃ Si ₂ O ₁₄ , towards white light emission: synthesis, structure, SHG and photoluminescence studies. Dalton Transactions, 2020, 49, 17649-17657.	1.6	7
318	Copper-Containing Mixed Metal Oxides (Al, Fe, Mn) for Application in Three-Way Catalysis. Catalysts, 2020, 10, 1344.	1.6	16
319	Current trends in spinel based modified polymer composite materials for electromagnetic shielding. Materials Today Chemistry, 2020, 17, 100346.	1.7	16
320	In Situ Activation of Anodized Ni–Fe Alloys for the Oxygen Evolution Reaction in Alkaline Media. ACS Applied Energy Materials, 2020, 3, 12316-12326.	2.5	23
321	Co ₃ O ₄ -Catalyzed LiOH Chemistry in Li–O ₂ Batteries. ACS Energy Letters, 2020, 5, 3681-3691.	8.8	37
322	Metal–Metal Interactions of Ternary Spinel for Efficient NH ₃ Selective Catalytic Reduction of NO _{<i>x</i>} at a Low Temperature. Energy & Fuels, 2020, 34, 15424-15432.	2.5	13
323	Electrochemical Stability of the Reconstructed Fe ₃ O ₄ (001) Surface. Angewandte Chemie, 2020, 132, 22088-22092.	1.6	0
324	Mixed zinc–cobalt oxide coatings for photocatalytic applications. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	2
325	Carbon-supported cobalt (III) complex for direct reduction of oxygen in alkaline medium. International Journal of Hydrogen Energy, 2020, 45, 24738-24748.	3.8	4

#	Article	IF	CITATIONS
326	Electrochemical Stability of the Reconstructed Fe ₃ O ₄ (001) Surface. Angewandte Chemie - International Edition, 2020, 59, 21904-21908.	7.2	22
327	Rational design of sustainable transition metal-based bifunctional electrocatalysts for oxygen reduction and evolution reactions. Sustainable Materials and Technologies, 2020, 25, e00204.	1.7	17
328	Inducing Superparamagnetism and High Magnetization in Nickel Cobaltite (Ni _{<i>x</i>} Co _{3–<i>x</i>} O ₄) Spinel Nanoparticles by Controlling Ni Mole Fraction and Cation Distribution. Journal of Physical Chemistry C, 2020, 124, 18264-18274.	1.5	7
329	Facile synthesis of tortoise shell-like porous NiCo2O4 nanoplate with promising triethylamine gas sensing properties. Sensors and Actuators B: Chemical, 2020, 323, 128663.	4.0	34
330	Breaking the scaling relationship <i>via</i> dual metal doping in a cobalt spinel for the OER: a computational prediction. Physical Chemistry Chemical Physics, 2020, 22, 18672-18680.	1.3	5
331	Solution combustion synthesis, characterization, magnetic, and dielectric properties of CoFe ₂ O ₄ and Co _{0.5} M _{0.5} Fe ₂ O ₄ (M = Mn, Ni, and Zn). Physical Chemistry Chemical Physics, 2020, 22, 20087-20106.	1.3	30
332	Cu(Mn _{0.748} Ni _{0.252}) ₂ O ₄ /SiO ₂ Nanoparticle Layers for Wide-Angle Spectral Selectivity and High Thermal Stability. ACS Applied Nano Materials, 2020, 3, 7869-7878.	2.4	6
334	Nano spinel CoFe2O4 deposited diatomite catalytic separation membrane for efficiently cleaning wastewater. Journal of Membrane Science, 2020, 615, 118559.	4.1	18
335	Photoactivity of magnesium aluminate under solar irradiation for treatment of wastewater contaminated by methylene blue: Effect of self-combustion factors on spinel characteristics. Solar Energy Materials and Solar Cells, 2020, 218, 110773.	3.0	6
336	Recent advances in Ni-rich layered oxide particle materials for lithium-ion batteries. Particuology, 2020, 53, 1-11.	2.0	60
337	Electrospun Inorganic Nanofibers for Oxygen Electrocatalysis: Design, Fabrication, and Progress. Advanced Energy Materials, 2020, 10, 1902115.	10.2	111
338	Room-Temperature Flexible Quasi-Solid-State Rechargeable Na–O ₂ Batteries. ACS Central Science, 2020, 6, 1955-1963.	5.3	25
339	<i>In situ</i> X-ray diffraction and X-ray absorption spectroscopy of electrocatalysts for energy conversion reactions. Journal of Materials Chemistry A, 2020, 8, 19079-19112.	5.2	98
340	Interplay Between Cation Distribution and Magnetic Properties in MgM0.5Mn1.5O4 (M = Al, Ga) and Al1.5Mn1.5O4 Spinels. Journal of Superconductivity and Novel Magnetism, 2020, 33, 3753-3764.	0.8	1
341	Spinel of Nickel-Cobalt Oxide with Rod-Like Architecture as Electrocatalyst for Oxygen Evolution Reaction. Materials, 2020, 13, 3918.	1.3	10
342	Manganeseâ€Ðoped Hollow Layered Double (Ni, Co) Hydroxide Microcuboids as an Efficient Electrocatalyst for the Oxygen Evolution Reaction. ChemElectroChem, 2020, 7, 3852-3858.	1.7	25
343	Hierarchically Structured Spherulitic Cobalt Hydroxide Carbonate as a Precursor to Ordered Nanostructures of Electrocatalytically Active Co ₃ O ₄ . Crystal Growth and Design, 2020, 20, 6407-6420.	1.4	6
344	Sequential Electrodeposition of Bifunctional Catalytically Active Structures in MoO ₃ /Ni–NiO Composite Electrocatalysts for Selective Hydrogen and Oxygen Evolution. Advanced Materials, 2020, 32, e2003414.	11.1	206

#	Article	IF	CITATIONS
345	Are Radicals Formed During Anion-Exchange Membrane Fuel Cell Operation?. Journal of Physical Chemistry Letters, 2020, 11, 7630-7636.	2.1	57
346	Theoretical Study of Polar Spinel Surfaces: Effect of Termination and Cation Inversion on Structure and Stability. Journal of Physical Chemistry C, 2020, 124, 28520-28530.	1.5	8
347	Prediction of structure and cation ordering in an ordered normal-inverse double spinel. Communications Materials, 2020, 1, .	2.9	46
348	Ferromagnetic phase of the spinel compound <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>MgV</mml:mi><mml:r mathvariant="normal">O<mml:mn>4</mml:mn></mml:r </mml:msub></mml:mrow> and its spintronics properties. Physical Review B. 2020. 102</mml:math 	nn>21.1	nl:mn>
349	3 <i>d</i> -Metal Oxide Nanostructures for Oxygen Electrocatalysis. ACS Symposium Series, 2020, , 353-372.	0.5	0
350	Defect-Engineered MoO ₂ Nanostructures as an Efficient Electrocatalyst for Oxygen Evolution Reaction. ACS Applied Energy Materials, 2020, 3, 5208-5218.	2.5	54
351	Rational Design of Spinel Oxide Nanocomposites with Tailored Electrochemical Oxygen Evolution and Reduction Reactions for ZincAir Batteries. Applied Sciences (Switzerland), 2020, 10, 3165.	1.3	35
352	Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chemical Society Reviews, 2020, 49, 3565-3604.	18.7	617
353	Microstructural control of Co3O4 nanoboxes for enhanced oxygen evolution in alkaline media. Journal of Alloys and Compounds, 2020, 835, 155290.	2.8	7
354	Engineering nanostructured spinel ferrites by co-substitution for total water electrolysis by preferential exposure of metal cations on the surface. Sustainable Energy and Fuels, 2020, 4, 3915-3925.	2.5	5
355	Znâ€Based Oxides Anchored to Nitrogenâ€Doped Carbon Nanotubes as Efficient Bifunctional Catalysts for Znâ€Air Batteries. ChemElectroChem, 2020, 7, 2283-2296.	1.7	10
356	Three-dimensional porous cobalt ferrite and carbon nanorod hybrid network as highly efficient electrocatalyst for oxygen evolution reaction. Journal of Materials Science, 2020, 55, 11489-11500.	1.7	12
357	Mechanism of Cu dopant in transition metal oxide Mn1.56Co(0.96-)Ni0.48Cu O4+δ (0Ââ‰ Â xÂâ‰ Â 0.2) thin film: Thin Solid Films, 2020, 701, 137935.	⁵ 0.8	1
358	A Zeolitic″midazole Frameworksâ€Derived Interconnected Macroporous Carbon Matrix for Efficient Oxygen Electrocatalysis in Rechargeable Zinc–Air Batteries. Advanced Materials, 2020, 32, e2002170.	11.1	240
359	Multifunctional Activeâ€Centerâ€Transferable Platinum/Lithium Cobalt Oxide Heterostructured Electrocatalysts towards Superior Water Splitting. Angewandte Chemie, 2020, 132, 14641-14648.	1.6	17
360	Multifunctional Activeâ€Centerâ€Transferable Platinum/Lithium Cobalt Oxide Heterostructured Electrocatalysts towards Superior Water Splitting. Angewandte Chemie - International Edition, 2020, 59, 14533-14540.	7.2	152
361	Hierarchical hollow manganese-magnesium-aluminum ternary metal oxide for fluoride elimination. Environmental Research, 2020, 188, 109735.	3.7	49
363	Boosting oxygen evolution reaction performance by nickel substituted cobalt-iron oxide nanoparticles embedded over reduced graphene oxide. Materials Chemistry and Physics, 2020, 252, 123238.	2.0	10

#	Article	IF	CITATIONS
364	Self-reconstruction strategy to synthesis of Ni/Co-OOH nanoflowers decorated with N, S co-doped carbon for high-performance energy storage. Chemical Engineering Journal, 2020, 396, 125323.	6.6	40
365	Nanocast Mixed Ni–Co–Mn Oxides with Controlled Surface and Pore Structure for Electrochemical Oxygen Evolution Reaction. ACS Applied Energy Materials, 2020, 3, 5597-5609.	2.5	20
366	Defect Engineering in Pd/NiCo ₂ O _{4–<i>x</i>/i>} for Selective Hydrogenation of α,β-Unsaturated Carbonyl Compounds under Ambient Conditions. ACS Sustainable Chemistry and Engineering, 2020, 8, 7851-7859.	3.2	29
367	Polyaniline engineering defect-induced nitrogen doped carbon-supported Co3O4 hybrid composite as a high-efficiency electrocatalyst for oxygen evolution reaction. Applied Surface Science, 2020, 526, 146626.	3.1	36
368	Ultrathin 2D nanosheet based 3D hierarchical hollow polyhedral CoM/C (MÂ=ÂNi, Cu, Mn) phosphide nanocages as superior electrocatalysts toward oxygen evolution reaction. Chemical Engineering Journal, 2020, 398, 125467.	6.6	27
369	Fabrication of Co/Pr co-doped Ti/PbO2 anode for efficiently electrocatalytic degradation of β-naphthoxyacetic acid. Chemosphere, 2020, 256, 127139.	4.2	49
370	A-Site Cation-Ordering Layered Perovskite EuBa _{0.5} Sr _{0.5} Co _{2–<i>x</i>} Fe _{<i>x</i>} O _{5+Î} as Highly Active and Durable Electrocatalysts for Oxygen Evolution Reaction. ACS Omega, 2020, 5, 12501-12515.	1.6	13
371	Introduction of photo electrochemical water-oxidation mechanism into hybrid lithium–oxygen batteries. Energy Storage Materials, 2020, 31, 11-19.	9.5	32
372	The favourable synergistic operation of photocatalysis and catalytic oxygen reduction reaction by a novel heterogeneous CoFe2O4-TiO2 nanocomposite. Applied Surface Science, 2020, 516, 146142.	3.1	35
373	Evaluation of electrochemical properties for water splitting by NiO nano-cubes synthesized using Olea ferruginea Royle. Sustainable Energy Technologies and Assessments, 2020, 40, 100753.	1.7	16
374	The design of zinc-substituted cobalt (pyro)phosphates as efficient bifunctional electrocatalysts for zinc–air batteries. Chemical Communications, 2020, 56, 8400-8403.	2.2	6
375	Covalency competition dominates the water oxidation structure–activity relationship on spinel oxides. Nature Catalysis, 2020, 3, 554-563.	16.1	284
376	Low-temperature synthesis of ultrasmall spinel Mn Co3-O4 nanoparticles for efficient oxygen reduction. Chinese Journal of Catalysis, 2020, 41, 1818-1825.	6.9	14
377	Research advances on cobalt-free cathodes for Li-ion batteries - The high voltage LiMn1.5Ni0.5O4 as an example. Journal of Power Sources, 2020, 467, 228318.	4.0	42
378	Boosting the Oxygen Evolution Electrocatalysis Performance of Iron Phosphide via Architectural Design and Electronic Modulation. ACS Sustainable Chemistry and Engineering, 2020, 8, 9206-9216.	3.2	15
379	Advanced framework-modified POM@ZIF-67 nanocomposites as enhanced oxygen evolution reaction electrocatalysts. Journal of Materials Chemistry A, 2020, 8, 13509-13521.	5.2	78
380	Rational design of marigold-shaped composite Ni ₃ V ₂ O ₈ flowers: a promising catalyst for the oxygen evolution reaction. New Journal of Chemistry, 2020, 44, 12256-12265.	1.4	35
381	Metal–Organic Framework-Derived NiS/Fe ₃ O ₄ Heterostructure-Decorated Carbon Nanotubes as Highly Efficient and Durable Electrocatalysts for Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2020, 12, 31552-31563.	4.0	78

#	Article	IF	CITATIONS
382	A high-performance bimetallic cobalt iron oxide catalyst for the oxygen evolution reaction. CrystEngComm, 2020, 22, 4317-4323.	1.3	20
383	Hollow Porous MnFe ₂ O ₄ Sphere Grown on Elmâ€Moneyâ€Derived Biochar towards Energyâ€Saving Full Water Electrolysis. Chemistry - A European Journal, 2020, 26, 14397-14404.	1.7	9
384	Microwave-Hydrothermal Tuning of Spinel-Type Co3O4 Water Oxidation Catalysts. Frontiers in Chemistry, 2020, 8, 473.	1.8	8
385	FeNiMo trimetallic nanoparticles encapsulated in carbon cages as efficient hydrogen evolution reaction electrocatalysts. Materials Advances, 2020, 1, 54-60.	2.6	16
386	Facile synthesis of Fe–Ni bimetallic N-doped carbon framework for efficient electrochemical hydrogen evolution reaction. Materials Today Energy, 2020, 16, 100387.	2.5	26
387	A green approach for enhancing the electrocatalytic activity and stability of NiFe2O4/CB nanospheres towards hydrogen production. Renewable Energy, 2020, 154, 704-714.	4.3	25
388	Facile Synthesis of an Efficient Ni–Fe–Co Based Oxygen Evolution Reaction Electrocatalyst. Journal of the Electrochemical Society, 2020, 167, 046507.	1.3	26
389	Self-assembled RuO2@IrOx core-shell nanocomposite as high efficient anode catalyst for PEM water electrolyzer. Applied Surface Science, 2020, 514, 145943.	3.1	37
390	Yolk-shell Fe@FeNx nanoparticles decorated N-doped mesoporous carbon as highly active electrocatalyst for oxygen reduction reactions. Journal of Alloys and Compounds, 2020, 829, 154558.	2.8	24
391	p-Type Ultrawide-Band-Gap Spinel ZnGa ₂ O ₄ : New Perspectives for Energy Electronics. Crystal Growth and Design, 2020, 20, 2535-2546.	1.4	68
392	Insight into electrochemical performance of porous FexSiy intermetallic anode for zinc electrowinning. Materials and Design, 2020, 191, 108645.	3.3	11
393	Graphene oxide induced assembly and crumpling of Co3O4 nanoplates. Nanotechnology, 2020, 31, 305601.	1.3	3
394	One-dimensional hierarchical nanostructures of NiCo ₂ O ₄ , NiCo ₂ S ₄ and NiCo ₂ Se ₄ with superior electrocatalytic activities toward efficient oxygen evolution reaction. Nanotechnology, 2020, 31, 295405.	1.3	22
395	Coulometric Titration of Active Sites at Mesostructured Cobalt Oxide Spinel by Surface Interrogation Mode of Scanning Electrochemical Microscopy. Journal of Physical Chemistry C, 2020, 124, 7737-7748.	1.5	9
396	MOF-derived ZnCo ₂ O ₄ porous micro-rice with enhanced electro-catalytic activity for the oxygen evolution reaction and glucose oxidation. RSC Advances, 2020, 10, 9063-9069.	1.7	34
397	Expanding the tunability and applicability of exchange-coupled/decoupled magnetic nanocomposites. Materials Chemistry Frontiers, 2020, 4, 1222-1230.	3.2	11
398	Photoâ€excited Oxygen Reduction and Oxygen Evolution Reactions Enable a Highâ€Performance Zn–Air Battery. Angewandte Chemie - International Edition, 2020, 59, 18140-18144.	7.2	105
399	NiCo2O4 spinel for efficient toluene oxidation: The effect of crystal plane and solvent. Chemosphere, 2020, 259, 127427.	4.2	33

#	Article	IF	CITATIONS
400	Photoâ€excited Oxygen Reduction and Oxygen Evolution Reactions Enable a Highâ€Performance Zn–Air Battery. Angewandte Chemie, 2020, 132, 18297-18301.	1.6	30
401	Novel Twoâ€Dimensional Porous Materials for Electrochemical Energy Storage: A Minireview. Chemical Record, 2020, 20, 922-935.	2.9	14
402	Metal-organic framework-derived heterostructured ZnCo2O4@FeOOH hollow polyhedrons for oxygen evolution reaction. Journal of Alloys and Compounds, 2020, 832, 155067.	2.8	16
403	Preparation and characterisation of iron substituted Mn1.7Cu1.3-xFexO4 spinel oxides (x = 0, 0.1, 0.3,) Tj ETQq1	1 0.78431 2.8	.4.rgBT /Ov
404	Hierarchical microspheres of Co2CrO4 nanoplates for electrocatalytic water oxidation. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	3
405	Alkali metal-incorporated spinel oxide nanofibers enable high performance detection of formaldehyde at ppb level. Journal of Hazardous Materials, 2020, 400, 123301.	6.5	33
406	Versatile Synthesis of Ultrafine Ternary Spinel Oxides/Carbon Nanohybrids toward the Oxygen Reduction Reaction. Energy & Fuels, 2020, 34, 9069-9075.	2.5	7
407	Spinel-type ternary multimetal hybrid oxides with porous hierarchical structure grown on Ni foam as large-current-density water oxidation electrocatalyst. Journal of Alloys and Compounds, 2020, 838, 155662.	2.8	13
408	FeNi Alloy Nanoparticles Encapsulated in Carbon Shells Supported on Nâ€Doped Graphene‣ike Carbon as Efficient and Stable Bifunctional Oxygen Electrocatalysts. Chemistry - A European Journal, 2020, 26, 2890-2896.	1.7	27
409	Well-defined Co–Pt–OH as "electronic pump―on Co-LDH nanocages for enhanced oxygen evolution reaction. Applied Catalysis B: Environmental, 2020, 269, 118782.	10.8	38
410	Unravelling lewis acidic and reductive characters of normal and inverse nickel-cobalt thiospinels in directing catalytic H2O2 cleavage. Journal of Hazardous Materials, 2020, 392, 122347.	6.5	19
411	N, S-codoped graphene supports for Ag-MnFe2O4 nanoparticles with improved performance for oxygen reduction and oxygen evolution reactions. Journal of Electroanalytical Chemistry, 2020, 860, 113930.	1.9	10
412	Tolerance Factor and Phase Stability of the Normal Spinel Structure. Crystal Growth and Design, 2020, 20, 2014-2018.	1.4	24
413	Copper Cobalt Selenide as a High-Efficiency Bifunctional Electrocatalyst for Overall Water Splitting: Combined Experimental and Theoretical Study. ACS Applied Energy Materials, 2020, 3, 3092-3103.	2.5	60
414	FeNi ₃ –Fe ₃ O ₄ Heterogeneous Nanoparticles Anchored on 2D MOF Nanosheets/1D CNT Matrix as Highly Efficient Bifunctional Electrocatalysts for Water Splitting. ACS Sustainable Chemistry and Engineering, 2020, 8, 3820-3831.	3.2	80
415	Electrochemical effects of pH value on the corrosion inhibition and microstructure of cerium doped trivalent chromium conversion coating on Zn. Corrosion Science, 2020, 167, 108538.	3.0	10
416	Investigation of Transition Metal-Based (Mn, Co, Ni, Fe) Trimetallic Oxide Nanoparticles on N-doped Carbon Nanotubes as Bifunctional Catalysts for Zn-Air Batteries. Journal of the Electrochemical Society, 2020, 167, 040503.	1.3	16
417	Nickel Foamâ€Supported Amorphous FeCo(Mn)â^O Nanoclusters with Abundant Oxygen Vacancies through Selective Dealloying for Efficient Electrocatalytic Oxygen Evolution. ChemElectroChem, 2020, 7, 684-690.	1.7	10

#	Article	IF	CITATIONS
418	Flower-like NiCo2O4–CN as efficient bifunctional electrocatalyst for Zn-Air battery. Electrochimica Acta, 2020, 341, 135997.	2.6	57
419	Three-Dimensional and In Situ-Activated Spinel Oxide Nanoporous Clusters Derived from Stainless Steel for Efficient and Durable Water Oxidation. ACS Applied Materials & Interfaces, 2020, 12, 13971-13981.	4.0	21
420	Nonâ€Nobleâ€Metalâ€Based Electrocatalysts toward the Oxygen Evolution Reaction. Advanced Functional Materials, 2020, 30, 1910274.	7.8	760
421	Synthesis of rod-type Co2.4Mn0.6O4 via oxalate precipitation for water splitting catalysts. Applied Surface Science, 2020, 510, 145390.	3.1	12
422	One-step electrodeposition of Ni _x Fe _{3â^'x} O ₄ /Ni hybrid nanosheet arrays as highly active and robust electrocatalysts for the oxygen evolution reaction. Green Chemistry, 2020, 22, 1710-1719.	4.6	33
423	Synergistic enhancement in the sensing performance of a mixed-potential NH3 sensor using SnO2@CuFe2O4 sensing electrode. Sensors and Actuators B: Chemical, 2020, 308, 127748.	4.0	40
424	AgO-decorated multi-dimensional chrysanthemum-like NiCo ₂ O ₄ mounted on nickel foam as a highly efficient and stable electrocatalyst for the oxygen evolution reaction. Nanoscale, 2020, 12, 7180-7187.	2.8	21
425	Hollow and Hierarchical Cobalt–Metal Organic Framework@CoCr ₂ O ₄ Microplate Array as a Batteryâ€Type Electrode for Highâ€Performance Hybrid Supercapacitors. ChemElectroChem, 2020, 7, 437-444.	1.7	17
426	Regenerable CoxMn3â ``xO4 spinel sorbents for elemental mercury removal from syngas: Experimental and DFT studies. Fuel, 2020, 266, 117105.	3.4	28
427	MnxCo3-xO4 spinel oxides as efficient oxygen evolution reaction catalysts in alkaline media. International Journal of Hydrogen Energy, 2020, 45, 14867-14879.	3.8	35
428	The ultrasonication boosts the surface properties of CoFe2O4/C nanoparticles towards ORR in alkaline media. Applied Surface Science, 2020, 516, 146105.	3.1	19
429	Micro analytical and magnetic characterization of aluminum-iron spinel (FeAl2O4) synthesized by combustion reaction. Ceramics International, 2020, 46, 19052-19061.	2.3	6
430	3D Composite Nickel-Cobalt Oxides on Sintered Metal Fiber Mesh for Electrocatalytic and Pseudocapacitive Applications. Journal of Electronic Materials, 2020, 49, 3708-3719.	1.0	3
431	Hierarchical Ti ₃ C ₂ @TiO ₂ MXene hybrids with tunable interlayer distance for highly durable lithium-ion batteries. Nanoscale, 2020, 12, 10369-10379.	2.8	60
432	An advanced three-dimensionally ordered macroporous NiCo ₂ O ₄ spinel as a bifunctional electrocatalyst for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2020, 8, 8554-8565.	5.2	50
433	Recent Advances in Nonâ€Noble Bifunctional Oxygen Electrocatalysts toward Largeâ€Scale Production. Advanced Functional Materials, 2020, 30, 2000503.	7.8	226
434	One-step In-situ Synthesis of Vacancy-rich CoFe2O4@Defective Graphene Hybrids as Bifunctional Oxygen Electrocatalysts for Rechargeable Zn-Air Batteries. Chemical Research in Chinese Universities, 2020, 36, 479-487.	1.3	20
435	Grain growth correlated complex impedance spectroscopy, modulus spectroscopy and carrier hopping mechanism in MnCo2O4: Influence of sintering temperature. Materials Chemistry and Physics, 2020, 251, 123095.	2.0	18

#	Article	IF	CITATIONS
436	Experimental and Theoretical Insights into the Effect of Syngas Components on Hg ⁰ Removal over CoMn ₂ O ₄ Sorbent. Industrial & Engineering Chemistry Research, 2020, 59, 8078-8085.	1.8	22
437	Recent trends in alkaline hydrogen evolution using nonprecious multi-metallic electrocatalysts. Current Opinion in Green and Sustainable Chemistry, 2020, 25, 100342.	3.2	7
438	One-dimensional Mn3O4/NiCo2S4 nanocomposites as high-performance bifunctional electrocatalyst for rechargeable liquid/flexible Zn-air batteries. Journal of Power Sources, 2020, 462, 228162.	4.0	24
439	The roles of oxygen vacancies in electrocatalytic oxygen evolution reaction. Nano Energy, 2020, 73, 104761.	8.2	465
440	Fabrication of electrospun Co3O4/CuO p-p heterojunctions nanotubes functionalized with HFIP for detecting chemical nerve agent under visible light irradiation. Sensors and Actuators B: Chemical, 2020, 314, 128076.	4.0	34
441	Electrodeposition of (hydro)oxides for an oxygen evolution electrode. Chemical Science, 2020, 11, 10614-10625.	3.7	117
442	Pt/CoFe2O4-C hollow ball as efficient bifunctional electrocatalyst for Zn-air batteries. Catalysis Today, 2021, 368, 204-210.	2.2	7
443	Recent advances in spinel-type electrocatalysts for bifunctional oxygen reduction and oxygen evolution reactions. Journal of Energy Chemistry, 2021, 53, 290-302.	7.1	154
444	Charge-distribution modulation of copper ferrite spinel-type catalysts for highly efficient Hg0 oxidation. Journal of Hazardous Materials, 2021, 402, 123576.	6.5	49
445	Spinel CoFe2O4 /carbon nanotube composites as efficient bifunctional electrocatalysts for oxygen reduction and oxygen evolution reaction. Ceramics International, 2021, 47, 1602-1608.	2.3	19
446	Cu1â^'xMgxAl3 spinel solid solution as a sustained release catalyst: One-pot green synthesis and catalytic performance in methanol steam reforming. Fuel, 2021, 284, 119041.	3.4	18
447	Monolithic SiC-foam supported Ni-La2O3 composites for dry reforming of methane with enhanced carbon resistance. Fuel Processing Technology, 2021, 212, 106627.	3.7	33
448	Enhanced gas sensing properties for formaldehyde based on ZnO/Zn2SnO4 composites from one-step hydrothermal synthesis. Journal of Alloys and Compounds, 2021, 850, 156606.	2.8	45
449	Design and fabrication of spinel nanocomposites derived from perovskite hydroxides as gas sensing layer for volatile organic compounds detection. Sensors and Actuators B: Chemical, 2021, 329, 129076.	4.0	18
450	Nanocarbon-based metal-free and non-precious metal bifunctional electrocatalysts for oxygen reduction and oxygen evolution reactions. Journal of Energy Chemistry, 2021, 58, 610-628.	7.1	30
451	Accelerated discovery of stable spinels in energy systems via machine learning. Nano Energy, 2021, 81, 105665.	8.2	30
452	Defect Electrocatalysts and Alkaline Electrolyte Membranes in Solid‣tate Zinc–Air Batteries: Recent Advances, Challenges, and Future Perspectives. Small Methods, 2021, 5, e2000868.	4.6	42
453	Non-metallic electronic regulation in CuCo oxy-/thio-spinel as advanced oxygen evolution electrocatalysts. Science China Chemistry, 2021, 64, 101-108.	4.2	21

#	Article	IF	CITATIONS
454	Spinel nano-ferrites as low-cost (photo)electrocatalysts with unique electronic properties in solar energy conversion systems. International Journal of Hydrogen Energy, 2021, 46, 3510-3529.	3.8	20
455	Spinel CuxCo1â^'xMn2O4 electrode for effectively cleaning organic wastewater via electrocatalytic oxidation. Separation and Purification Technology, 2021, 258, 118024.	3.9	23
456	Spinel nano-ferrites for aqueous supercapacitors; linking abundant resources and low-cost processes for sustainable energy storage. Journal of Energy Storage, 2021, 33, 102097.	3.9	52
457	Well-dispersed ultrafine CoFe nanoalloy decorated N-doped hollow carbon microspheres for rechargeable/flexible Zn-air batteries. Chemical Engineering Journal, 2021, 407, 127961.	6.6	75
458	Recent advances in the field of carbon-based cathode electrocatalysts for Zn–air batteries. Materials Advances, 2021, 2, 96-114.	2.6	32
459	Recent Tactics and Advances in the Application of Metal Sulfides as Highâ€Performance Anode Materials for Rechargeable Sodiumâ€Ion Batteries. Advanced Functional Materials, 2021, 31, 2006761.	7.8	89
460	Cytosine-Co assemblies derived CoNx rich Co-NCNT as efficient tri-functional electrocatalyst. Journal of Colloid and Interface Science, 2021, 585, 276-286.	5.0	11
461	Co/Sm-modified Ti/PbO2 anode for atrazine degradation: Effective electrocatalytic performance and degradation mechanism. Chemosphere, 2021, 268, 128799.	4.2	41
462	Co-Cr mixed spinel oxide nanodots anchored on nitrogen-doped carbon nanotubes as catalytic electrode for hydrogen peroxide sensing. Journal of Colloid and Interface Science, 2021, 585, 605-613.	5.0	24
463	Reconstructed Water Oxidation Electrocatalysts: The Impact of Surface Dynamics on Intrinsic Activities. Advanced Functional Materials, 2021, 31, 2008190.	7.8	161
464	An efficient heterogeneous catalyst of FeCo2O4/g-C3N4 composite for catalytic peroxymonosulfate oxidation of organic pollutants under visible light. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125725.	2.3	22
465	Amino functionalized carbon nanotubes supported CoNi@CoO–NiO core/shell nanoparticles as highly efficient bifunctional catalyst for rechargeable Zn-air batteries. International Journal of Hydrogen Energy, 2021, 46, 374-388.	3.8	28
466	Towards the development of the emerging process of CO ₂ heterogenous hydrogenation into high-value unsaturated heavy hydrocarbons. Chemical Society Reviews, 2021, 50, 10764-10805.	18.7	161
467	Tuning the intrinsic catalytic activities of oxygen-evolution catalysts by doping: a comprehensive review. Journal of Materials Chemistry A, 2021, 9, 20131-20163.	5.2	110
468	Plasma-assisted defect engineering of N-doped NiCo ₂ O ₄ for efficient oxygen reduction. Physical Chemistry Chemical Physics, 2021, 23, 6591-6599.	1.3	22
469	Preparation of <i>α</i> -MnO ₂ Nanorods/Porous Carbon Cathode for Aqueous Zinc-ion Batteries. Acta Chimica Sinica, 2021, 79, 200.	0.5	14
470	Feasible strategies to promote the sensing performances of spinel MCo ₂ O ₄ (M) Tj ETQq 2021, 9, 7852-7887.	0 0 0 rgB 2.7	T /Overlock 43
471	Structural transformation between rutile and spinel crystal lattices in Ru–Co binary oxide nanotubes: enhanced electron transfer kinetics for the oxygen evolution reaction. Nanoscale, 2021, 13, 13776-13785.	2.8	9

#	Article	IF	CITATIONS
472	Bimetallic cyclic redox couple in dimanganese copper oxide supported by nickel borate for boosted alkaline electrocatalytic oxygen evolution reaction. Sustainable Energy and Fuels, 2021, 5, 2517-2527.	2.5	5
473	Combustion synthesis of mesoporous CoAl2O4 for peroxymonosulfate activation to degrade organic pollutants. Chinese Chemical Letters, 2021, 32, 2828-2832.	4.8	24
474	Significantly boosted oxygen electrocatalysis with cooperation between cobalt and iron porphyrins. Dalton Transactions, 2021, 50, 5120-5123.	1.6	10
475	Pyrolysis-free polymer-based oxygen electrocatalysts. Energy and Environmental Science, 2021, 14, 2789-2808.	15.6	55
476	Growth kinetic control over MgFe ₂ O ₄ to tune Fe occupancy and metal–support interactions for optimum catalytic performance. CrystEngComm, 2021, 23, 2538-2546.	1.3	1
477	Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction. Chemical Society Reviews, 2021, 50, 8428-8469.	18.7	452
478	A CuMn ₂ O ₄ spinel oxide as a superior catalyst for the aerobic oxidation of 5-hydroxymethylfurfural toward 2,5-furandicarboxylic acid in aqueous solvent. Catalysis Science and Technology, 2021, 11, 1497-1509.	2.1	33
479	Controllable generation of ZnO/ZnCo ₂ O ₄ arising from bimetal–organic frameworks for electrochemical detection of naphthol isomers. Analyst, The, 2021, 146, 3352-3360.	1.7	3
481	The electronic structure of transition metal oxides for oxygen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 19465-19488.	5.2	90
482	<i>Operando</i> Methods in Electrocatalysis. ACS Catalysis, 2021, 11, 1136-1178.	5.5	131
483	Factors determining surface oxygen vacancy formation energy in ternary spinel structure oxides with zinc. Physical Chemistry Chemical Physics, 2021, 23, 23768-23777.	1.3	12
484	Solventless synthesis of nanospinel Ni _{1â[°]<i>x</i>} Co _{<i>x</i>} Fe ₂ O ₄ (0 ≤i>x ≤) solid solutions for efficient electrochemical water splitting and supercapacitance. RSC Advances, 2021, 11, 31002-31014.	1.7	17
485	Zinc diffusion affects the chemical stability of the borosilicate glass and AISI 304 interface. Materials Characterization, 2021, 171, 110792.	1.9	3
486	A GGA + U investigation into the effects of cations on the electromagnetic properties of transition metal spinels. RSC Advances, 2021, 11, 21851-21856.	1.7	8
487	Construction of self-supporting, hierarchically structured caterpillar-like NiCo ₂ S ₄ arrays as an efficient trifunctional electrocatalyst for water and urea electrolysis. Nanoscale, 2021, 13, 1680-1688.	2.8	63
488	The Electrochemical Tuning of Transition Metal-Based Materials for Electrocatalysis. Electrochemical Energy Reviews, 2021, 4, 146-168.	13.1	30
489	Layered double hydroxide derived bimetallic nickel–iron selenide as an active electrocatalyst for nitrogen fixation under ambient conditions. Inorganic Chemistry Frontiers, 2021, 8, 1762-1770.	3.0	41
490	Selectivity of Mixed Iron-Cobalt Spinels Deposited on a N,S-Doped Mesoporous Carbon Support in the Oxygen Reduction Reaction in Alkaline Media. Materials, 2021, 14, 820.	1.3	16

ARTICLE IF CITATIONS Dandelion-type Mn-promoted Co3O4/CNTs composite as an efficient bifunctional electrocatalyst for 491 1.2 8 rechargeable zincâ€"air batteries. Ionics, 2021, 27, 1619-1632. Enhanced performance of carbon-coated manganese catalysts derived from metal-organic framework 2.2 for rechargeable zinc-air batteries. Surface and Coatings Technology, 2021, 408, 126786. Dynamic Oxygen Storage Capacity of Ceria-Zirconia and Mn_{0.5}Fe_{2.5}O₄ Spinel: Experiments and Modeling. Industrial & amp; 493 1.8 6 Engineering Chemistry Research, 2021, 60, 6465-6482. Efficient Oxygen Evolution Electrocatalysis on CaFe₂O₄ and Its Reaction 494 Mechanism. ACS Applied Energy Materials, 2021, 4, 3057-3066. Coâ€"Al Spinel as an Efficient Support for Co-Based Fischerâ€"Tropsch Catalyst: The Effect of 495 7 1.8 Metal–Support Interaction. Industrial & amp; Engineering Chemistry Research, 2021, 60, 2849-2860. Mechanochemical Synthesis of Catalytic Materials. Chemistry - A European Journal, 2021, 27, 6819-6847. 1.7 130 Nanocoral CuCo2S4 thiospinels: Oxygen evolution reaction via redox interaction of metal ions. 497 2.6 13 Electrochimica Acta, 2021, 370, 137701. <i>Operando</i> unraveling photothermal-promoted dynamic active-sites generation in NiFe ₂ O ₄ for markedly enhanced oxygen evolution. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, . 498 3.3 Pushâ€Pull Electronic Effects in Surfaceâ€Active Sites Enhance Electrocatalytic Oxygen Evolution on 499 3.6 10 Transition Metal Oxides. ChemSusChem, 2021, 14, 1595-1601. Hollow Porous Bowl-like Nitrogen-Doped Cobalt/Carbon Nanocomposites with Enhanced 3.2 139 Electromagnetic Wave Absorption. Chemistry of Materials, 2021, 33, 1789-1798. Evolution of Singlet Oxygen by Activating Peroxydisulfate and Peroxymonosulfate: A Review. 501 1.2 67 International Journal of Environmental Research and Public Health, 2021, 18, 3344. Recent advances in waste water treatment through transition metal sulfides-based advanced 5.3 163 oxidation processes. Water Research, 2021, 192, 116850. Recent Advances on Nonprecious-Metal-Based Bifunctional Oxygen Electrocatalysts for Zincâ€"Air 503 2.5 48 Batteries. Energy & amp; Fuels, 2021, 35, 6380-6401. Engineering Crystallinity and Oxygen Vacancies of Co(II) Oxide Nanosheets for High Performance and Robust Rechargeable Zn–Air Batteries. Advanced Functional Materials, 2021, 31, 2101239. 504 Structural Engineering of Covalent Organic Frameworks for Rechargeable Batteries. Advanced 505 10.2 61 Energy Materials, 2021, 11, 2003054. Interfacing spinel NiCo2O4 and NiCo alloy derived N-doped carbon nanotubes for enhanced oxygen 506 106 electrocatalysis. Chemical Engineering Journal, 2021, 408, 127814. Functionalization of <scp> Mn ₂ O ₃ </scp> / <scp>PdO</scp> / 507 <scp>ZnO</scp> electrocatalyst using organic template with accentuated electrochemical potential 2.211 toward water splitting. International Journal of Energy Research, 2022, 46, 452-463. SiO2/NiFe2O4 nanocomposites: Synthesis, characterization and their catalytic activity for 4-nitroaniline reduction. Materials Chemistry and Physics, 2021, 261, 124243.

#	Article	IF	Citations
509	Aromaticity/Antiaromaticity Effect on Activity of Transition Metal Macrocyclic Complexes towards Electrocatalytic Oxygen Reduction. ChemSusChem, 2021, 14, 1835-1839.	3.6	10
510	Oneâ€Pot Synthesis of Hantzsch 1,4â€Dihydropyridines by a Series of Iron Oxide Nanoparticles: Putative Synthetic TRPV6 Calcium Channel Blockers. ChemistrySelect, 2021, 6, 2360-2365.	0.7	12
511	Short-Range Ordered Iridium Single Atoms Integrated into Cobalt Oxide Spinel Structure for Highly Efficient Electrocatalytic Water Oxidation. Journal of the American Chemical Society, 2021, 143, 5201-5211.	6.6	287
512	Synthesis, Electronic Structure, and Electrochemical Properties of the Cubic Mg2MnO4 Spinel with Porous-Spongy Structure. Nanomaterials, 2021, 11, 1122.	1.9	11
513	Magnetic Texture in Insulating Single Crystal High Entropy Oxide Spinel Films. ACS Applied Materials & Interfaces, 2021, 13, 17971-17977.	4.0	24
514	Strongly stabilized integrated bimetallic oxide of Fe2O3-MoO3 Nano-crystal entrapped N-doped graphene as a superior oxygen reduction reaction electrocatalyst. Chemical Engineering Journal, 2021, 410, 128358.	6.6	47
515	pHâ€Dependent Aqueous Solutionâ€Grown Highly Nanocrystalline Nickel Cobalt Sulfides (NiCo 2 S 4). Bulletin of the Korean Chemical Society, 2021, 42, 889.	1.0	1
516	2021 Roadmap: electrocatalysts for green catalytic processes. JPhys Materials, 2021, 4, 022004.	1.8	57
517	Molecular Precursor Route to CuCo ₂ S ₄ Nanosheets: A High-Performance Pre-Catalyst for Oxygen Evolution and Its Application in Zn–Air Batteries. Inorganic Chemistry, 2021, 60, 6721-6730.	1.9	22
518	Statistical Multiobjective Optimization of Thiospinel CoNi ₂ S ₄ Nanocrystal Synthesis <i>via</i> Design of Experiments. ACS Nano, 2021, 15, 9422-9433.	7.3	18
519	Modulating the potential-determining step in oxygen evolution reaction by regulating the cobalt valence in NiCo2O4 via Ru substitution. Applied Surface Science, 2021, 544, 148897.	3.1	9
520	Surface evolution of electrocatalysts in energy conversion reactions. Nano Energy, 2021, 82, 105745.	8.2	36
521	A sensitive thick film as a candidate for ethanol gas sensor from Jarosite-based minerals. Journal of Physics: Conference Series, 2021, 1869, 012194.	0.3	0
522	Spin State Tuning of the Octahedral Sites in Ni–Co-Based Spinel toward Highly Efficient Urea Oxidation Reaction. Journal of Physical Chemistry C, 2021, 125, 9190-9199.	1.5	25
523	Multidimensional Nonstoichiometric Electrode Materials for Electrochemical Energy Conversion and Storage. Advanced Energy Materials, 2022, 12, 2100640.	10.2	25
524	Improved oxygen evolution reaction performance with addition of Fe to form FeyCux-yCo3-xO4 and FeyNix-yCo3-xO4 (xÂ=Â0.5, 1 and yÂ=Â0.1, 0.15) spinel oxides. Electrochimica Acta, 2021, 378, 138116.	2.6	7
525	A Li-substituted hydrostable layered oxide cathode material with oriented stacking nanoplate structure for high-performance sodium-ion battery. Chemical Engineering Journal, 2021, 412, 128719.	6.6	24
526	Manganese dioxides for oxygen electrocatalysis in energy conversion and storage systems over full pH range. Journal of Power Sources, 2021, 494, 229779.	4.0	37

#	Article	IF	CITATIONS
527	Energy storage in metal cobaltite electrodes: Opportunities & challenges in magnesium cobalt oxide. Renewable and Sustainable Energy Reviews, 2021, 141, 110798.	8.2	51
528	Interface-Promoted Direct Oxidation of <i>p</i> -Arsanilic Acid and Removal of Total Arsenic by the Coupling of Peroxymonosulfate and Mn-Fe-Mixed Oxide. Environmental Science & Technology, 2021, 55, 7063-7071.	4.6	42
529	Engineering Co Vacancies for Tuning Electrical Properties of p-Type Semiconducting Co ₃ O ₄ Films. ACS Applied Materials & Interfaces, 2021, 13, 26621-26629.	4.0	10
530	Structure and Reactivity of Pristine and Reduced Spinel CoFe2O4 (001)/(100) Surfaces. Journal of Physical Chemistry C, 2021, 125, 9774-9781.	1.5	8
531	Modifying redox properties and local bonding of Co3O4 by CeO2 enhances oxygen evolution catalysis in acid. Nature Communications, 2021, 12, 3036.	5.8	262
532	Relationship between Mn Oxidation State Changes and Oxygen Reduction Activity in (La,Ca)MnO ₃ as Probed by <i>In Situ</i> XAS and XES. ACS Catalysis, 2021, 11, 6431-6439.	5.5	27
533	Oxygen-evolving catalytic atoms on metal carbides. Nature Materials, 2021, 20, 1240-1247.	13.3	235
534	Facile sol-gel method derived Au nanoparticles decoration nickel ferrites thin films: Effect on optical and magnetic properties. Materials Chemistry and Physics, 2021, 265, 124480.	2.0	4
535	Optoelectronic and thermoelectrical and mechanical properties of CdLu2X4 (X = S, Se) using first-principles calculations for energy harvesting applications. Materials Science in Semiconductor Processing, 2021, 127, 105695.	1.9	9
536	Synthesis and magnetism of MoCo2O4 spinel thin films. Thin Solid Films, 2021, 728, 138696.	0.8	3
537	Sunlight-induced photocatalytic degradation of organic pollutants by biosynthesized hetrometallic oxides nanoparticles. Environmental Science and Pollution Research, 2021, 28, 61760-61780.	2.7	33
538	Tailoring Lewis acidic metals and SO42â^' functionalities on bimetallic Mn-Fe oxo-spinels to exploit supported SO4â^' in aqueous pollutant fragmentation. Chemical Engineering Journal, 2021, 413, 127550.	6.6	13
539	In Situ Hydrogen Activation Inspiring Efficient One-Pot Hydrogenation of Halogenated Nitrobenzenes over Ni–Co-Based Composites. Industrial & Engineering Chemistry Research, 2021, 60, 8312-8323.	1.8	10
540	Nitrogen and Oxygen Functionalization of Multiâ€Walled Carbon Nanotubes for Tuning the Bifunctional Oxygen Reduction/Oxygen Evolution Performance of Supported FeCo Oxide Nanoparticles. ChemElectroChem, 2021, 8, 2803-2816.	1.7	13
541	Controlled synthesis of CeOx-NiCo2O4 nanocomposite with 3D umbrella-shaped hierarchical structure: A sharp-tip enhanced electrocatalyst for efficient oxygen evolution reaction over a broad pH region. Electrochimica Acta, 2021, 382, 138345.	2.6	7
542	Relationship between the female attendance pattern and pup growth rate in the South American sea lion (Carnivora). Scientia Marina, 2021, 85, 81-90.	0.3	2
543	Experimental and theoretical insights into the mechanism of spinel CoFe2O4 reduction in CO chemical looping combustion. Fuel, 2021, 293, 120473.	3.4	14
544	Surface Structures of Mn ₃ O ₄ and the Partition of Oxidation States of Mn. Journal of Physical Chemistry Letters, 2021, 12, 5675-5681.	2.1	9

		CHAHON KI		
#	Article		IF	CITATIONS
545	Nano-Biomaterials for Retinal Regeneration. Nanomaterials, 2021, 11, 1880.		1.9	9
546	Ga-Doped MgAl ₂ O ₄ Spinel as an Efficient Catalyst for Ethane Dehydrogenation to Ethylene Assisted by CO ₂ . Industrial & Engineeri Research, 2021, 60, 11707-11714.	e ing Chemistry	1.8	16
547	Water oxidation with transition metal catalysts with non-innocent ligands and its mech Coordination Chemistry Reviews, 2021, 439, 213911.	nanisms.	9.5	27
548	Molecular metal nanoclusters for ORR, HER and OER: Achievements, opportunities and International Journal of Hydrogen Energy, 2021, 46, 25771-25781.	challenges.	3.8	56
549	Insight into the effect of manganese substitution on mesoporous hollow spinel cobalt c catalytic oxidation of toluene. Journal of Colloid and Interface Science, 2021, 594, 713-	oxides for 726.	5.0	70
550	Morphology and Oxygen Defects Mediated Improved Pseudocapacitive Li ^{+Conversion-Based Lithium Iron Oxide. Energy & Fuels, 2021, 35, 12637-12652.}	> Storage of	2.5	6
551	Noble-Metal-Free Multicomponent Nanointegration for Sustainable Energy Conversion. Reviews, 2021, 121, 10271-10366.	Chemical	23.0	156
552	Constructing Active Sites from Atomicâ€Scale Geometrical Engineering in Spinel Oxide for Efficient and Robust Oxygen Evolution Reaction Electrocatalysts. Advanced Science e2101653.	Solid Solutions , 2021, 8,	5.6	31
553	Advanced noble-metal-free bifunctional electrocatalysts for metal-air batteries. Journal o Materiomics, 2022, 8, 454-474.	of	2.8	16
554	Review of recent progress on THz spectroscopy of quantum materials: superconductor and topological materials. European Physical Journal: Special Topics, 2021, 230, 4113-4	s, magnetic 139.	1.2	9
555	Mesoporous Feâ€N x â€C Subâ€Microspheres for Highly Efficient Electrocatalytic Oxyg Reaction. ChemCatChem, 2021, 13, 4047-4054.	en Reduction	1.8	5
556	Preparation of Flower-like CuFe ₂ O ₄ by a Self-Templating Met High-Efficient Activation of Peroxymonosulfate To Degrade Carbamazepine. Industrial & Engineering Chemistry Research, 2021, 60, 11045-11055.	thod for &	1.8	21
557	Starch as a Sustainable Fuel for Solution Combustion Synthesis: Nanomaterials for Ene Environmental Applications. Current Nanoscience, 2021, 17, 505-524.	rgy and	0.7	3
558	Synthesis of Co4S3/Co9S8 nanosheets and comparison study toward the OER properti different metal ion doping. Chinese Chemical Letters, 2022, 33, 1395-1402.	ies induced by	4.8	25
559	Carbon-Based Composites as Electrocatalysts for Oxygen Evolution Reaction in Alkaline Materials, 2021, 14, 4984.	e Media.	1.3	23
560	Solvothermal Etching-Assisted Phase and Morphology Tailoring in Highly Porous CuFe ₂ O ₄ Nanoflake Photocathodes for Solar Water Splitting Fuels, 2021, 35, 14087-14100.	g. Energy &	2.5	21
561	Formation of Interface Layers between Corundumâ€Based Refractory Ceramics with Ca and Molten 42CrMo4 Steel. Advanced Engineering Materials, 0, , 2100690.	arbon Additions	1.6	0
562	Tuning the Interfacial Properties of Spinels to Improve the Antimony Adsorption Ability. 2021, 37, 9973-9981.	. Langmuir,	1.6	1

#	Article	IF	CITATIONS
563	Hollow and porous NiCo2O4 nanospheres for enhanced methanol oxidation reaction and oxygen reduction reaction by oxygen vacancies engineering. Applied Catalysis B: Environmental, 2021, 291, 120065.	10.8	114
564	Entropy-driven chemistry reveals highly stable denary MgAl2O4-type catalysts. Chem Catalysis, 2021, 1, 648-662.	2.9	31
565	SiC-foam structured Ni-based catalyst derived from perovskites for methane value-added application: Enhanced resistance to Ni sintering and stability. Molecular Catalysis, 2021, 513, 111831.	1.0	1
566	Co-Heteroatom-Based MOFs for Bifunctional Electrocatalysts for Oxygen and Hydrogen Evolution Reactions. Inorganic Chemistry, 2021, 60, 13434-13439.	1.9	6
567	Electro catalytic oxidation reactions for harvesting alternative energy over non noble metal oxides: Are we a step closer to sustainable energy solution?. Advanced Powder Technology, 2021, 32, 2663-2689.	2.0	21
568	Optical, Dielectric, and Magnetoelectric Properties of Ferroelectric and Antiferroelectric Lacunar Spinels. Physica Status Solidi (B): Basic Research, 0, , 2100160.	0.7	9
569	Spinel ferrites (MFe2O4): Synthesis, improvement and catalytic application in environment and energy field. Advances in Colloid and Interface Science, 2021, 294, 102486.	7.0	159
570	Site-oriented design of spinel MgxNiMn2-xO4-Î′ as cathode material of intermediate-temperature direct ammonia solid oxide fuel cell. Journal of Power Sources, 2021, 503, 230020.	4.0	26
571	Mn-based spinels evolved from layered manganese dioxides at mild temperature for the robust flexible quasi-solid-state zinc-air batteries. Chemical Engineering Journal, 2021, 417, 129179.	6.6	20
572	Mn-Ni-Co-O Spinel Oxides towards Oxygen Reduction Reaction in Alkaline Medium: Mn0.5Ni0.5Co2O4/C Synergism and Cooperation. Catalysts, 2021, 11, 1059.	1.6	11
573	Properties of Ni0.5Zn0.5Fe2O4 nanoparticles with the spinel structure synthesized via cryo-chemical method. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	0
574	Stepwise Evolution of Photocatalytic Spinel-Structured (Co,Cr,Fe,Mn,Ni)3O4 High Entropy Oxides from First-Principles Calculations to Machine Learning. Crystals, 2021, 11, 1035.	1.0	11
575	Conversion of Co-Mn-Al hydrotalcites in highly active spinel-type catalysts for peroxide decomposition. Catalysis Today, 2022, 397-399, 365-374.	2.2	3
576	Quantitative kinetic analysis on oxygen reduction reaction: A perspective. Nano Materials Science, 2021, 3, 313-318.	3.9	64
577	Porous hollow nanorod structured chromium-substituted inverse spinel compound: An efficient oxygen evolution reaction catalyst. Journal of Industrial and Engineering Chemistry, 2021, 101, 178-185.	2.9	8
578	A hierarchical and branch-like NiCoS/NF material prepared by gradient electrodeposition method for oxygen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 36629-36639.	3.8	14
579	Compositionally Tuned Trimetallic Thiospinel Catalysts for Enhanced Electrosynthesis of Hydrogen Peroxide and Built-In Hydroxyl Radical Generation. ACS Catalysis, 2021, 11, 12643-12650.	5.5	23
580	A general review on the thiospinels and their energy applications. Materials Today Energy, 2021, 21, 100822.	2.5	9

#	ARTICLE	IF	CITATIONS
581	A Comparison of Order-Disorder in Several Families of Cubic Oxides. Frontiers in Chemistry, 2021, 9, 719169.	1.8	5
582	Zn‒air battery operated with a 3DOM trimetallic spinel (Mn0.5Ni0.5Co2O4) as the oxygen electrode. Electrochimica Acta, 2021, 391, 138900.	2.6	26
583	Tunable cationic distribution and structure-related magnetic and optical properties by Cr3+ substitution for Zn2+ in nanocrystalline Ni-Zn ferrites. Results in Physics, 2021, 28, 104622.	2.0	20
584	In-situ growth of cobalt manganate spinel nanodots on carbon black toward high-performance zinc-air battery: Dual functions of 3-aminopropyltriethoxysilane. Journal of Colloid and Interface Science, 2022, 608, 386-395.	5.0	6
585	Constructing a Graphene-Encapsulated Amorphous/Crystalline Heterophase NiFe Alloy by Microwave Thermal Shock for Boosting the Oxygen Evolution Reaction. ACS Catalysis, 2021, 11, 12284-12292.	5.5	93
586	Unraveling Nanoscale Cobalt Oxide Catalysts for the Oxygen Evolution Reaction: Maximum Performance, Minimum Effort. Journal of the American Chemical Society, 2021, 143, 15022-15038.	6.6	44
587	On the complexity of spinels: Magnetic, electronic, and polar ground states. Physics Reports, 2021, 926, 1-86.	10.3	66
588	<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:mi>Ni</mml:mi>-induced semiconductor-to-metal transition in spinel nickel cobaltite thin films. Physical Review B, 2021. 104</mml:mrow></mml:msup></mml:math 	mrow> < mi	ml:mrow> <m< td=""></m<>
589	Structural Transformation of Heterogeneous Materials for Electrocatalytic Oxygen Evolution Reaction. Chemical Reviews, 2021, 121, 13174-13212.	23.0	262
590	Integration of Morphology and Electronic Structure Modulation on Atomic Ironâ€Nitrogen arbon Catalysts for Highly Efficient Oxygen Reduction. Advanced Functional Materials, 2022, 32, 2108345.	7.8	61
591	NiO-Coated CuCo ₂ O ₄ Nanoneedle Arrays on Carbon Cloth for Non-enzymatic Glucose Sensing. ACS Applied Nano Materials, 2021, 4, 9821-9830.	2.4	24
592	Facile preparation of porous hollow Co Mn3-O4 normal-reverse coexisted spinel for toluene oxidation. Journal of Alloys and Compounds, 2022, 892, 162185.	2.8	11
593	Phosphorus substitution into Co3S4 nanoneedle arrays for efficient hydrogen evolution catalysis. Journal of Materials Science and Technology, 2021, 89, 52-58.	5.6	9
594	Structural, morphological, optical and photoelectrochemical properties of ZnFe2O4 thin films grown via an electrodeposition method. Inorganic Chemistry Communication, 2021, 132, 108809.	1.8	15
595	Spontaneous Fenton-like dye degradation in clustered-petal di-manganese copper oxide by virtue of self-cyclic redox couple. Journal of Environmental Chemical Engineering, 2021, 9, 106094.	3.3	12
596	Fabrication of different rare earth incorporated ZnCo2O4 matrix via chemical-mechanical hybrid mechanism and study their charge carrier dynamics by Motts VRH model. Journal of Alloys and Compounds, 2021, 879, 160432.	2.8	12
597	Insight into photoelectrocatalytic mechanisms of bifunctional cobaltite hollow-nanofibers towards oxygen evolution and oxygen reduction reactions for high-energy zinc-air batteries. Electrochimica Acta, 2021, 392, 139022.	2.6	18
598	Fluorination-assisted preparation of self-supporting single-atom Fe-N-doped single-wall carbon nanotube film as bifunctional oxygen electrode for rechargeable Zn-Air batteries. Applied Catalysis B: Environmental, 2021, 294, 120239.	10.8	70

#	Article	IF	CITATIONS
599	Modulating electronic structure of metal-organic framework derived catalysts for electrochemical water oxidation. Coordination Chemistry Reviews, 2021, 447, 214144.	9.5	45
600	Highly efficient CoFe2O4 electrocatalysts prepared facilely by metal-organic decomposition process for the oxygen evolution reaction. Electrochimica Acta, 2021, 395, 139195.	2.6	15

601 First principle study of optoelectronic and thermoelectric properties of magnesium based MgX2O4 (X) Tj ETQq0 0 0 rgBT /Overlock 10 T

602	Effects of Co doping on the structure and physicochemical properties of hausmannite (Mn3O4) and its transformation during aging. Chemical Geology, 2021, 582, 120448.	1.4	9
603	Recent progress on transition metal oxides as advanced materials for energy conversion and storage. Energy Storage Materials, 2021, 42, 317-369.	9.5	113
604	Boosting oxygen evolution reaction by enhanced intrinsic activity in Ruddlesdenâ^'Popper iridate oxides. Chemical Engineering Journal, 2021, 423, 130185.	6.6	13
605	Ternary metal-based inverse spinel oxide NiCrFeO4 nanoparticles as a highly efficient oxygen evolution catalyst. Applied Surface Science, 2021, 566, 150653.	3.1	9
606	Biomass-derived precious metal-free porous carbon: Ca-N,P-doped carbon materials and its electrocatalytic properties. Journal of Alloys and Compounds, 2021, 883, 160726.	2.8	19
607	Fe3C/CoFe2O4 nanoparticles wrapped in one-dimensional MIL-53(Fe)-derived carbon nanofibers as efficient dual-function oxygen catalysts. Chemical Engineering Journal, 2021, 424, 130460.	6.6	46
608	Influence of Co doping on physiochemical properties of MnFe2O4/C nano compounds toward oxygen reduction reaction. Journal of Alloys and Compounds, 2021, 888, 161581.	2.8	12
609	Hierarchically constructed Ag nanowires shelled with ultrathin Co-LDH nanosheets for advanced oxygen evolution reaction. Applied Catalysis B: Environmental, 2021, 298, 120601.	10.8	67
610	Enhancing bifunctional electrodes of oxygen vacancy abundant ZnCo2O4 nanosheets for supercapacitor and oxygen evolution. Chemical Engineering Journal, 2021, 425, 130583.	6.6	70
611	Geometric structure distribution and oxidation state demand of cations in spinel NixFe1-xCo2O4 composite cathodes for solid oxide fuel cells. Chemical Engineering Journal, 2021, 425, 131822.	6.6	36
612	M-Dependent activity of MCo2O4 spinels for water splitting and H2 production on Zn0.5Cd0.5S under visible light. Applied Catalysis B: Environmental, 2021, 298, 120469.	10.8	30
613	Hollow nickel selenide nanospheres coated in carbon as water oxygen electrocatalysts. Materials Letters, 2021, 305, 130748.	1.3	2
614	Recent progress of electrospun porous carbon-based nanofibers for oxygen electrocatalysis. Materials Today Energy, 2021, 22, 100850.	2.5	18
615	Synergistic decomposition of H2S into H2 by Ni3S2 over ZrO2 support via a sulfur looping scheme with CO2 enabled carrier regeneration. Chemical Engineering Journal, 2021, 426, 131815.	6.6	13
616	Unexpected increasing Co valence state of an exsolved catalyst by Mo doping for enhanced oxygen evolution reaction. Chemical Engineering Journal, 2021, 425, 130681.	6.6	11

#	Article	IF	CITATIONS
617	Octahedron-shaped SnFe2O4 for boosting photocatalytic degradation and CO2 reduction. Journal of Alloys and Compounds, 2021, 889, 161737.	2.8	11
618	Studies on the synergistically improved reactivity of spinel NiFe2O4 oxygen carrier for chemical-looping combustion. Energy, 2022, 239, 122100.	4.5	24
619	Synthesis and electrocatalytic mechanism of ultrafine MFe ₂ O ₄ (M: Co, Ni, and) Tj ETQc and hydrogen evolution reaction performances. Journal of Materials Chemistry A, 2021, 9, 22277-22290.	0 0 0 rgB1 5.2	[Overlock] 26
620	Tailoring the surface in copper manganese oxide materials and enhanced redox nature by graphitic carbon nitride sheets with ultra-long life for electrochemical applications. Journal of Materials Chemistry A, 2021, 9, 21448-21460.	5.2	4
621	3D GBM-supported Transition Metal Oxide Nanocatalysts and Heteroatom-doped 3D Graphene Electrocatalysts for Potential Application in Fuel Cells. Chemistry in the Environment, 2021, , 139-178.	0.2	2
622	Transition metal nitrides for electrochemical energy applications. Chemical Society Reviews, 2021, 50, 1354-1390.	18.7	580
623	Non-carbon-supported single-atom site catalysts for electrocatalysis. Energy and Environmental Science, 2021, 14, 2809-2858.	15.6	198
624	Emerging dynamic structure of electrocatalysts unveiled by <i>in situ</i> X-ray diffraction/absorption spectroscopy. Energy and Environmental Science, 2021, 14, 1928-1958.	15.6	179
625	Photothermal effect enables markedly enhanced oxygen reduction and evolution activities for high-performance Zn–air batteries. Journal of Materials Chemistry A, 2021, 9, 19734-19740.	5.2	33
626	Boosting Electrocatalytic Oxygen Evolution by Cation Defect Modulation via Electrochemical Etching. CCS Chemistry, 2021, 3, 675-685.	4.6	63
627	Nanoengineered textiles: from advanced functional nanomaterials to groundbreaking high-performance clothing. , 2020, , 611-714.		11
628	Mini-review of perovskite oxides as oxygen electrocatalysts for rechargeable zinc–air batteries. Chemical Engineering Journal, 2020, 397, 125516.	6.6	121
629	Theoretical investigations of optoelectronic and thermoelectric properties of the XIn2O4 (X = Mg, Zn,) Tj ETQq0 (0 0 rgBT /C 1.9	Verlock 10
630	Understanding the origin of high oxygen evolution reaction activity in the high Sr-doped perovskite. Chinese Journal of Catalysis, 2020, 41, 592-597.	6.9	20
631	Surface Engineering of Three-Dimensional-like Hybrid AB ₂ O ₄ (AB = Zn, Co, and) Tj ETQ Electrocatalyst for Clioquinol Detection. ACS Applied Electronic Materials, 2021, 3, 362-372.	q0 0 0 rgB 2.0	T /Overlock 53
632	Electrocatalytic Oxidation of Glycerol to Formic Acid by CuCo ₂ O ₄ Spinel Oxide Nanostructure Catalysts. ACS Catalysis, 2020, 10, 6741-6752.	5.5	221
633	Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6000 hours. Nature Communications, 2018, 9, 2609.	5.8	389
634	NaV ₆ O ₁₅ microflowers as a stable cathode material for high-performance aqueous zinc-ion batteries. RSC Advances, 2020, 10, 6807-6813.	1.7	23

#	Article	IF	CITATIONS
635	Metal Doped-C3N4/Fe2O4: Efficient and Versatile Heterogenous Catalysts for Organic Transformations. Current Organic Chemistry, 2019, 23, 1284-1306.	0.9	2
636	Auto-Generation of Corrugated Nonpolar Stoichiometric Slab Models. Materials Transactions, 2020, 61, 78-87.	0.4	10
637	Atmosphere-sensitive photoluminescence of CoxFe3â^'xO4 metal oxide nanoparticles. RSC Advances, 2021, 11, 33905-33915.	1.7	1
638	Tetragonal CoMn ₂ O ₄ nanocrystals on electrospun carbon fibers as high-performance battery-type supercapacitor electrode materials. Dalton Transactions, 2021, 50, 15669-15678.	1.6	7
640	Boosting the comprehensive performance for a Co-free high-voltage system with a multi-component nitrile. New Journal of Chemistry, 2021, 45, 20681-20689.	1.4	4
641	Spinel/Post-spinel engineering on layered oxide cathodes for sodium-ion batteries. EScience, 2021, 1, 13-27.	25.0	194
642	Ordered LiGa5O8 loaded with redox capable Cu2+, Cr3+ ions to manifest interesting optical, magnetic, and catalytic properties. Journal of Materials Science, 2021, 56, 20111.	1.7	4
643	Electrolyte additives inhibit the surface reaction of aqueous sodium/zinc battery. Journal of Colloid and Interface Science, 2022, 608, 1481-1488.	5.0	12
644	Structural, opto-electronic, and transport properties of HgSc ₂ S ₄ and HgSc ₂ Se ₄ spinel compounds based on density functional theory. Physica Scripta, 2021, 96, 125715.	1.2	4
645	Addressing thermodynamic Instability of Zn anode: classical and recent advancements. Energy Storage Materials, 2022, 44, 206-230.	9.5	88
646	Tailoring Competitive Adsorption Sites by Oxygenâ€Vacancy on Cobalt Oxides to Enhance the Electrooxidation of Biomass. Advanced Materials, 2022, 34, e2107185.	11.1	162
647	Activation of Molecular O ₂ on CoFe ₂ O ₄ (001) Surfaces: An Embedded Cluster Study. Chemistry - A European Journal, 2021, 27, 17115-17126.	1.7	8
648	A comprehensive review on the recent developments in transition metal-based electrocatalysts for oxygen evolution reaction. Applied Surface Science Advances, 2021, 6, 100184.	2.9	66
649	Effect of Magnetic Ordering on Phonon Raman Spectra in Magnetic Systems. Springer Proceedings in Physics, 2019, , 289-299.	0.1	0
650	Rationalizing Surface Electronic Configuration of Ni–Fe LDO by Introducing Cationic Nickel Vacancies as Highly Efficient Electrocatalysts for Lithium–Oxygen Batteries. Small, 2021, 17, e2104349.	5.2	7
651	Structural Variations of Metal Oxideâ€Based Electrocatalysts for Oxygen Evolution Reaction. Small Methods, 2021, 5, e2100834.	4.6	42
652	Interfacial engineering coupling with tailored oxygen vacancies in Co2Mn2O4 spinel hollow nanofiber for catalytic phenol removal. Journal of Hazardous Materials, 2022, 424, 127647.	6.5	23
653	Tailored oxygen defect coupling composition engineering Co Mn2O4 spinel hollow nanofiber enables improved Bisphenol A catalytic degradation. Separation and Purification Technology, 2022, 282, 120051.	3.9	22

#	ARTICLE	IF	CITATIONS
654	Mercury/oxygen reaction mechanism over CuFe2O4 catalyst. Journal of Hazardous Materials, 2022, 424, 127556.	6.5	20
655	Bifunctional nanocatalysts for water splitting and its challenges. , 2020, , 59-95.		1
656	Formation mechanism of high-entropy spinel thin film and its mechanical and magnetic properties: Linking high-entropy alloy to high-entropy ceramic. Applied Surface Science, 2022, 576, 151719.	3.1	21
657	Synthesis of Anti-poisoning Spinel Mn–Co–C as Cathode Catalysts for Low-Temperature Anion Exchange Membrane Direct Ammonia Fuel Cells. ACS Applied Materials & Interfaces, 2021, 13, 53945-53954.	4.0	14
658	In Situ/Operando Insights into the Stability and Degradation Mechanisms of Heterogeneous Electrocatalysts. Small, 2022, 18, e2104205.	5.2	14
659	Facile Synthesis of Mesoporous Co3O4/CoO on rGO Nanocomposites as Highly Active and Stable Oxygen Bi-Functional Electrocatalysts. Journal of the Electrochemical Society, 2020, 167, 134509.	1.3	0
660	Recent developments of Co ₃ O ₄ -based materials as catalysts for the oxygen evolution reaction. Catalysis Science and Technology, 2022, 12, 436-461.	2.1	39
661	Recent advances in oxygen electrocatalysts based on tunable structural polymers. Materials Today Chemistry, 2022, 23, 100632.	1.7	24
662	Solar-driven photoelectron injection effect on MgCo2O4@WO3 core–shell heterostructure for efficient overall water splitting. Applied Surface Science, 2022, 578, 152049.	3.1	41
663	High performance ozone decomposition spinel (Mn,Co)3O4 catalyst accelerating the rate-determining step. Applied Catalysis B: Environmental, 2022, 303, 120927.	10.8	35
664	Atomic-scale intercalation of N-doped carbon into monolayered MoSe2-Mo2C heterojunction as a highly efficiency hydrogen evolution reaction catalyst. Journal of Electroanalytical Chemistry, 2022, 906, 115897.	1.9	4
665	Mn-doping tuned electron configuration and oxygen vacancies in NiO nanoparticles for stable electrocatalytic oxygen evolution reaction. Applied Surface Science, 2022, 577, 151952.	3.1	14
666	Recent progress and perspective of cobalt-based catalysts for water splitting: design and nanoarchitectonics. Materials Today Energy, 2022, 23, 100911.	2.5	28
667	An efficient electrocatalyst toward oxygen reduction reaction: State-of-the-art of hierarchical porous nanostructure of Mn3O4 supported on three-dimensional graphene. Journal of Electroanalytical Chemistry, 2021, , 115898.	1.9	2
668	Remarkable catalysis of spinel ferrite XFe2O4 (XÂ=ÂNi, Co, Mn, Cu, Zn) nanoparticles on the dehydrogenation properties of LiAlH4: An experimental and theoretical study. Journal of Materials Science and Technology, 2022, 111, 189-203.	5.6	18
669	Intervening Oxygen Enabled Magnetic Moment Modulation in Spinel Nanostructures. Journal of Physical Chemistry C, 2021, 125, 26688-26697.	1.5	3
670	Facilely synthesized honeycomb-like NiCo2O4 nanoflakes with an increased content of oxygen vacancies as an efficient cathode catalyst for Li-O2 batteries. Journal of Alloys and Compounds, 2022, 898, 162774.	2.8	10
671	Structural Insights into Multiâ€Metal Spinel Oxide Nanoparticles for Boosting Oxygen Reduction Electrocatalysis. Advanced Materials, 2022, 34, e2107868.	11.1	30

#	Article	IF	CITATIONS
672	Recent Advances in Spinel Ferrite-Based Thin Films: Synthesis, Performances, Applications, and Beyond. Frontiers in Materials, 2021, 8, .	1.2	20
673	Covalency Competition Induced Active Octahedral Sites in Spinel Cobaltites for Enhanced Pseudocapacitive Charge Storage. Advanced Energy Materials, 2022, 12, 2102053.	10.2	41
674	Soluble Complexes of Cobalt Oxide Fragments Bring the Unique CO ₂ Photoreduction Activity of a Bulk Material into the Flexible Domain of Molecular Science. Journal of the American Chemical Society, 2021, 143, 20769-20778.	6.6	30
675	Structural, Optical, and Catalytic Properties of MgCr2O4 Spinel-Type Nanostructures Synthesized by Sol–Gel Auto-Combustion Method. Catalysts, 2021, 11, 1476.	1.6	6
676	Weak Ferromagnetism in the FeCr2O4 Semiconductor Spinel with Half-Metallic Feature in the Ground State. Journal of Electronic Materials, 2022, 51, 822-830.	1.0	9
677	MgMn ₂ O ₄ Anode Materials for Lithium-Ion Batteries: Synthesis and Cationic Distribution Study. SSRN Electronic Journal, 0, , .	0.4	0
678	Fundamental understanding of electrocatalysis over layered double hydroxides from the aspects of crystal and electronic structures. Nanoscale, 2022, 14, 1107-1122.	2.8	6
679	Structural Changes of Spinel MCo ₂ O ₄ (M = Mn, Fe, Co, Ni, and Zn) Electrocatalysts during the Oxygen Evolution Reaction Investigated by In Situ X-ray Absorption Spectroscopy. ACS Applied Energy Materials, 2022, 5, 278-294.	2.5	41
680	ZnAl layered double hydroxide based catalysts (with Cu, Mn, Ti) used as noble metal-free three-way catalysts. Applied Clay Science, 2022, 217, 106390.	2.6	5
681	Synthesis of V-doped urchin-like NiCo2O4 with rich oxygen vacancies for electrocatalytic oxygen evolution reactions. Electrochimica Acta, 2022, 406, 139800.	2.6	25
682	Spinel CoMn2O4 hollow nanospheres for very wide linear and sensitive detection of hydrogen peroxide. Journal of Alloys and Compounds, 2022, 897, 163158.	2.8	15
683	Thermochemistry of nano-phased titanium dioxides relevant to energy application: A Review. Chemical Thermodynamics and Thermal Analysis, 2022, 5, 100033.	0.7	4
684	Dye sensitized solar cells go beyond using perovskite and spinel inorganic materials: A review. Renewable and Sustainable Energy Reviews, 2022, 157, 112047.	8.2	54
685	Bulk and surface dual modification of nickel-cobalt spinel with ruthenium toward highly efficient overall water splitting. Applied Catalysis B: Environmental, 2022, 305, 121081.	10.8	34
686	Boosting oxygen evolution over inverse spinel Fe-Co-Mn oxide nanocubes through electronic structure engineering. Chemical Engineering Journal, 2022, 433, 134446.	6.6	16
687	Fe-Doped (Ni,Mn)Co ₂ O ₄ Nanorod Arrays on Ni Foam as Highly Efficient Electrocatalyst for Oxygen Evolution Reaction in Alkaline and Neutral Conditions with Superb Long-Term Stability. SSRN Electronic Journal, 0, , .	0.4	0
688	The Reaction Characteristics and Mechanism of Pine Sawdust Chemical-Looping Gasification Based on CoFe ₂ O ₄ Oxygen Carrier. SSRN Electronic Journal, 0, , .	0.4	0
689	Understanding the Growth N-Fe ₃ C from Assembly of Carbon-Coated Iron Nanoparticles on rGO as Efficient Oxygen Reduction Electrocatalysts. SSRN Electronic Journal, 0, , .	0.4	0

ARTICLE IF CITATIONS Spinel ferrite MFe2O4 (MÂ=ÂNi, Co, or Cu) nanoparticles prepared by a proteic sol-gel route for oxygen 690 2.0 17 evolution reaction. Advanced Powder Technology, 2022, 33, 103391. Oxygen Vacancyâ€Enriched Co₃O₄ as Efficient Coâ€catalyst for Pt Nanoparticles 1.7 towards Methanol Electrooxidation. ChemElectroChem, 2022, 9, . High-efficiency ammonia electrosynthesis via selective reduction of nitrate on ZnCo2O4 nanosheet 693 2.9 72 array. Materials Today Physics, 2022, 23, 100619. Transition metal chalcogenides-based electrocatalysts for ORR, OER, and HER. , 2022, , 83-111. 694 Oxides free nanomaterials for (photo)electrochemical water splitting., 2022, 369-408. 695 1 Deciphering the Precursor–Performance Relationship of Singleâ€Atom Iron Oxygen Electroreduction 5.2 Catalysts via Isomer Engineering. Small, 2022, 18, e2106122. In situ/operando analysis of surface reconstruction of transition metal-based oxygen evolution 697 2.8 29 electrocatalysts. Cell Reports Physical Science, 2022, 3, 100729. Comparison of Fe-enhanced oxygen evolution electrocatalysis in amorphous and crystalline nickel 698 15.6 37 oxides to evaluate the structural contribution. Energy and Environmental Science, 2022, 15, 610-620. Incorporation of Cu/Ni in Ordered Mesoporous Coâ€Based Spinels to Facilitate Oxygen Evolution and 699 9 3.6 Reduction Reactions in Alkaline Media and Aprotic Liâ^{*}O 2 Batteries. ChemSusChém, 2021, , . Activating the lattice oxygen oxidation mechanism in amorphous molybdenum cobalt oxide 5.2 24 nanosheets for water oxidation. Journal of Materials Chemistry A, 2022, 10, 3659-3666. CeO2 quantum dots embedded in 3D hierarchical porous foliaceous N-doped carbon as an efficient 701 oxygen reduction electrocatalyst for metal-air battery. Journal of Alloys and Compounds, 2022, 905, 2.8 5 164063. A light-activated TiO2@In2Se3@Ag3PO4 cathode for high-performance Zn-Air batteries. Chemical 6.6 Engineering Journal, 2022, 434, 134650. Modifying the 316L stainless steel surface by an electrodeposition technique: towards 703 high-performance electrodes for alkaline water electrolysis. Sustainable Energy and Fuels, 2022, 6, 2.5 6 1382-1397. Highly active postspinel-structured catalysts for oxygen evolution reaction. RSC Advances, 2022, 12, 5094-5104. 704 1.7 Construction of single-atom catalysts for electro-, photo- and photoelectro-catalytic applications: 705 8.3 34 State-of-the-art, opportunities, and challenges. Materials Today, 2022, 53, 217-237. Effects of morphology on the electrochemical performance of NiFe₂O₄nanoparticles with batteryâ€type behavior. International Journal of 1.1 Applied Ceramic Technology, 2022, 19, 2016-2028. Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies. Chemical 707 23.0 195 Reviews, 2022, 122, 6117-6321. Dielectric Loss Mechanism in Electromagnetic Wave Absorbing Materials. Advanced Science, 2022, 9, 708 e2105553.

ARTICLE IF CITATIONS Engineering of Cation Occupancy of CoFe₂O₄ Oxidation Catalysts by 709 1.8 12 Nanosecond, Singleâ€Pulse Laser Excitation in Water. ChemCatChem, 2022, 14, . The regulation mechanism of cationic substitution in morphology-controlled oxy-spinel for oxygen 3.1 evolution reaction. Journal of Catalysis, 2022, 407, 221-231. Tuning chemical and surface composition of nickel cobaltite-based nanocomposites through solvent 711 and its impact on electrocatalytic activity for oxygen evolution. Journal of Materials Science, 2022, 1.7 3 57, 5097-5117. Ambient Ammonia Synthesis via Electrochemical Reduction of Nitrate Enabled by 171 NiCo₂Ó₄ Nanowire Array. Small, 2022, 18, e2106961. High-efficiency ammonia electrosynthesis on self-supported Co2AlO4 nanoarray in neutral media by 713 71 6.6 selective reduction of nitrate. Chémical Engineering Journal, 2022, 435, 135104. Versatile deep eutectic solvent assisted synthesis of ZnB2O4 (BÂ=ÂAl, Co, Cr) spinels: The effect of B site variants for comparing the bifunctional electrochemical sensing application. Chemical Engineering Journal, 2022, 435, 134136. 714 37 6.6 Antibacterial activity of PANI coated CoFe2O4 nanocomposite for gram-positive and gram-negative 715 0.9 7 bacterial strains. Materials Today Communications, 2022, 31, 103229. Manipulating the electronic configuration of Fe–N₄sites by an electron-withdrawing/donating strategy with improved oxygen electroreduction performance. Materials Chemistry Frontiers, 2022, 6, 1209-1217. 3.2 10 Spinel-based catalysts for the biomass valorisation of platform molecules<i>via</i>oxidative and 717 4.6 14 reductive transformations. Green Chemistry, 2022, 24, 3574-3604. Enhanced oxygen evolution performance by the partial phase transformation of cobalt/nickel carbonate hydroxide nanosheet arrays in an Fe-containing alkaline electrolyte. Inorganic Chemistry Frontiers, 0, , . STRUCTURE, MAGNETIC, AND MAGNETOCALORIC PROPERTIES OF SUBMICRONIC YTTRIUM IRON GARNET 719 0.3 1 PARTICLES. Journal of Structural Chemistry, 2022, 63, 26-36. Engineering thiospinel-based hollow heterostructured nanoarrays for boosting electrocatalytic 3.0 oxygen evolution reaction. Inorganic Chemistry Frontiers, 2022, 9, 2403-2409. Understanding and controlling the formation of surface anion vacancies for catalytic applications. 721 2.12 Catalysis Science and Technology, 2022, 12, 2398-2410. A FeCo₂O₄ nanowire array enabled electrochemical nitrate conversion to ammonia. Chemical Communications, 2022, 58, 4480-4483. 2.2 34 Copper-Cobalt Oxides on FTO Substrate for Electrocatalytic and Pseudocapacitive Applications. 723 0 1.5 Electrocatalysis, 2022, 13, 317-327. Preparation and electrocatalytic properties of spinel oxide FeCo2O4., 2022, , . 724 Graphene oxide-derived single-atom catalysts for electrochemical energy conversion. Rare Metals, 725 3.6 37 2022, 41, 1703-1726. Integrated Catalytic Sites for Highly Efficient Electrochemical Oxidation of the Aldehyde and 74 Hydroxyl Groups in 5-Hydroxymethylfurfural. ACS Catalysis, 2022, 12, 4242-4251.

#	ARTICLE	IF	CITATIONS
728	Oxygen Reduction Electrocatalysis with Epitaxially Grown Spinel MnFe ₂ O ₄ and Fe ₃ O ₄ . ACS Catalysis, 2022, 12, 3577-3588.	5.5	16
730	Cation/Anion Dualâ€Vacancy Pair Modulated Atomicallyâ€Thin Se <i>_x</i> â€Co ₃ S ₄ Nanosheets with Extremely High Water Oxidation Performance in Ultralowâ€Concentration Alkaline Solutions. Small, 2022, 18, e2108097.	5.2	26
731	Co single atoms and nanoparticles dispersed on N-doped carbon nanotube as high-performance catalysts for Zn-air batteries. Rare Metals, 2022, 41, 2055-2062.	3.6	27
732	Template-based design hollow spheres spinel and reduce graphene oxide composite as a super stable cathode for aqueous Mg-ion battery. Materials Chemistry and Physics, 2022, 284, 126050.	2.0	7
733	The upgraded performance of the NiFe2O4 /C electrocatalyst using Co substitution for the oxygen reduction reaction in an alkaline solution. Journal of Physics and Chemistry of Solids, 2022, 165, 110644.	1.9	5
734	Effect of substrate-induced lattice strain on the electrochemical properties of pulsed laser deposited nickel oxide thin film. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 280, 115711.	1.7	12
735	Proton exchange membranes for high temperature proton exchange membrane fuel cells: Challenges and perspectives. Journal of Power Sources, 2022, 533, 231386.	4.0	99
736	A nanoflower composite catalyst in situ grown on conductive iron foam: Revealing the enhancement of OER activity by cooperating of amorphous Ni based nanosheets with spinel NiFe2O4. Applied Surface Science, 2022, 589, 152957.	3.1	29
737	Metal nanoparticles layer boosted resistive switching property in NiFe2O4-based memory devices. Journal of Alloys and Compounds, 2022, 908, 164569.	2.8	9
738	MgMn2O4 anode materials for Lithium-ion batteries: Synthesis and cationic distribution study. Vacuum, 2022, 201, 111075.	1.6	8
739	ZnFe2O4, a Green and High-Capacity Anode Material for Lithium-Ion Batteries: A Review. Applied Sciences (Switzerland), 2021, 11, 11713.	1.3	15
740	Parameters of Glycine–Nitrate Synthesis of NiCo2O4 Spinel. Russian Journal of Inorganic Chemistry, 2021, 66, 1895-1903.	0.3	2
741	Synergetic Chemistry and Interface Engineering of Hydrogel Electrolyte to Strengthen Durability of Solid‣tate Zn–Air Batteries. Small Methods, 2022, 6, e2101276.	4.6	41
742	Ruthenium-modified porous NiCo2O4 nanosheets boost overall water splitting in alkaline solution. Chinese Chemical Letters, 2022, 33, 4930-4935.	4.8	29
743	Mixed Spinel Ni–Co Oxides: An Efficient Bifunctional Oxygen Electrocatalyst for Sustainable Energy Application. ACS Applied Energy Materials, 2022, 5, 4421-4430.	2.5	12
744	2D materials modulating layered double hydroxides for electrocatalytic water splitting. Chinese Journal of Catalysis, 2022, 43, 1380-1398.	6.9	33
746	A Valenceâ€Engineered Selfâ€Cascading Antioxidant Nanozyme for the Therapy of Inflammatory Bowel Disease. Angewandte Chemie - International Edition, 2022, 61, .	7.2	63
747	Facile synthesis of multiphase cobalt–iron spinel with enriched oxygen vacancies as a bifunctional oxygen electrocatalyst. Physical Chemistry Chemical Physics, 2022, 24, 13839-13847.	1.3	7

#	Article	IF	CITATIONS
748	Zeolitic imidazolate framework 67 based metal oxides derivatives as electrocatalysts for oxygen evolution reaction. , 2022, , 471-495.		1
749	High Performance Poly(Carbazolyl Aryl Piperidinium) Anion Exchange Membranes for Alkaline Fuel Cells. SSRN Electronic Journal, 0, , .	0.4	0
750	Electrochemical preparation of nano/micron structure transition metal-based catalysts for the oxygen evolution reaction. Materials Horizons, 2022, 9, 1788-1824.	6.4	32
751	Electronic metal–support interaction constructed for preparing sinter-resistant nano-platinum catalyst with redox property. Dalton Transactions, 2022, 51, 7491-7502.	1.6	1
752	Specific Surface Area Characterization of Spinel Ferrite Nanostructure Based Compounds for Photocatalysis and Other Applications Using Extreme Learning Machine Method. Mathematical Problems in Engineering, 2022, 2022, 1-11.	0.6	5
753	Spinel nanoparticles characterization by inverting scanning magnetic microscope maps. Ceramics International, 2022, 48, 21690-21699.	2.3	2
754	Interfacial engineering of carbon-based materials for efficient electrocatalysis: Recent advances and future. EnergyChem, 2022, 4, 100074.	10.1	20
755	Water-Based Electrophoretic Deposition of Ternary Cobalt-Nickel-Iron Oxides on AISI304 Stainless Steel for Oxygen Evolution. Catalysts, 2022, 12, 490.	1.6	1
756	Density functional theory study of the copper phthalocyanine based metalâ^'organic frameworks as the highly active electrocatalysts for the oxygen reduction. International Journal of Hydrogen Energy, 2022, 47, 17611-17620.	3.8	1
757	Rhenium oxide/sulfide binary phase flakes decorated on nanofiber support for enhanced activation of electrochemical conversion reactions. Chemical Engineering Journal, 2022, 446, 136951.	6.6	8
758	A Valenceâ€Engineered Selfâ€Cascading Antioxidant Nanozyme for the Therapy of Inflammatory Bowel Disease. Angewandte Chemie, 2022, 134, .	1.6	7
759	Controllable preparation of hierarchical MnCo bimetallic photocatalyst and the effect of atomic ratio on its photocatalytic activity. Chemical Engineering Journal, 2022, , 136907.	6.6	3
760	Single-Phase Perovskite SrIrO ₃ Nanofibers as a Highly Efficient Electrocatalyst for a pH-Universal Oxygen Evolution Reaction. ACS Applied Energy Materials, 2022, 5, 6146-6154.	2.5	8
761	Electrochemical methods to discriminate technology and provenance of Apulian redâ€figured pottery. I. VIMP and SECM. Archaeometry, 2022, 64, 1325-1339.	0.6	1
762	Thermal stability of cobalt oxide thin films and its enhancement by cerium oxide. Applied Surface Science, 2022, 593, 153430.	3.1	3
763	High-entropy oxide (Fe0.2Zn0.2Co0.2Ni0.2Cu0.2)Fe2O4: An efficient and stable spinel-type electrocatalyst for H2O2 production in alkaline media. Journal of Alloys and Compounds, 2022, 913, 165148.	2.8	11
764	Defective MNiFeO (MÂ=ÂCu, Zn, Co, Mn) NRs derived from cation-exchanged Fe2Ni-MOFs for catalytic nitroarene hydrogenation. Journal of Colloid and Interface Science, 2022, 623, 63-76.	5.0	9
765	Fe2O3/spinel NiFe2O4 heterojunctions in-situ wrapped by one-dimensional porous carbon nanofibers for boosting oxygen evolution/reduction reactions. International Journal of Hydrogen Energy, 2022, 47, 21329-21343.	3.8	9

#	ARTICLE	IF	CITATIONS
766	Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chemical Society Reviews, 2022, 51, 4583-4762.	18.7	453
767	Intersite Charge Transfer Enhanced Oxygen Evolution Reactivity on A ₂ IrO ₃ (A=Li, Na, Cu) Delafossite Electrocatalysts. Journal of the Electrochemical Society, 2022, 169, 056523.	1.3	1
768	Nanocoral CuCoNiS4: Enhancement in the electrochemical capacitance by Ni incorporation in CuCo2S4. Journal of Energy Storage, 2022, 52, 104912.	3.9	0
769	Amn2o4 Spinels (a - Li, Mg, Mn, Cd) as Orr Catalysts: The Role of Mn Coordination and Oxidation State in the Catalytic Activity and Their Propensity to Degradation. SSRN Electronic Journal, 0, , .	0.4	0
770	High performance poly(carbazolyl aryl piperidinium) anion exchange membranes for alkaline fuel cells. Journal of Membrane Science, 2022, 657, 120676.	4.1	45
771	Systemically study of optoelectronic and transport properties of chalcopyrite HgAl2X4 (X= S, Se) compounds for solar cell device applications. Journal of Materials Research and Technology, 2022, 19, 1690-1698.	2.6	4
772	Ru–Co Pair Sites Catalyst Boosts the Energetics for the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	154
773	Nitrogenâ€Rich Carbonaceous Materials for Advanced Oxygen Electrocatalysis: Synthesis, Characterization, and Activity of Nitrogen Sites. Advanced Functional Materials, 2022, 32, .	7.8	59
774	Sub-3 nm CoO Nanoparticles with Oxygen Vacancy-Dependent Catalytic Activity for the Oxygen Reduction Reaction. ACS Applied Nano Materials, 2022, 5, 8214-8223.	2.4	8
775	Probing oxygen vacancy-induced mixed-valence states of nickel in LaNiO3 and their influence on electrocatalytic and magnetic properties. Materials Chemistry and Physics, 2022, 288, 126331.	2.0	12
776	Ruâ€Co Pair Sites Catalyst Boosts the Energetics for Oxygen Evolution Reaction. Angewandte Chemie, 0, , .	1.6	12
777	Ultrafast Preparation of Nonequilibrium FeNi Spinels by Magnetic Induction Heating for Unprecedented Oxygen Evolution Electrocatalysis. Research, 2022, 2022, .	2.8	7
778	Dimethyl Ether Oxidation over Copper Ferrite Catalysts. Catalysts, 2022, 12, 604.	1.6	3
779	Interaction mechanism between CO and H2S over CuFe2O4 oxygen carrier during chemical-looping combustion: A DFT study. Fuel, 2022, 324, 124720.	3.4	3
780	The oxygen electrode bifunctionality studies: La2FeNiO6 double perovskite nanoparticles. Journal of Alloys and Compounds, 2022, 918, 165492.	2.8	3
781	High-performance electrochemical nitrate reduction to ammonia under ambient conditions using NiFe ₂ O ₄ nanosheet arrays. Inorganic Chemistry Frontiers, 2022, 9, 3392-3397.	3.0	25
782	Constructing Hollow Nanocages of Co3o4-Comoo4 Heterostructure for Efficient Electrocatalytic Oxygen Evolution Reaction. SSRN Electronic Journal, 0, , .	0.4	0
783	CuCo ₂ S ₄ @B,N-Doped Reduced Graphene Oxide Hybrid as a Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions. ACS Omega, 2022, 7, 19183-19192.	1.6	12

#	Article	IF	CITATIONS
784	Nitrogen-deficient g-C3N4 compounded with NiCo2S4 (NiCo2S4@ND-CN) as a bifunctional electrocatalyst for boosting the activity of Li-O2 batteries. Catalysis Today, 2023, 409, 23-30.	2.2	9
785	MnTa ₂ N ₄ : A Ternary Nitride Spinel with a Strong Magnetic Frustration. Chemistry of Materials, 2022, 34, 6098-6107.	3.2	2
786	Solid-State Reaction Synthesis of Nanoscale Materials: Strategies and Applications. Chemical Reviews, 2022, 122, 12748-12863.	23.0	35
787	FeOCl Nanoparticles Loaded onto Oxygen-Enriched Carbon Nanotubes and Nickel-Foam-Based Cathodes for the Electro-Fenton Degradation of Pollutants, ACS Applied Nano Materials, 2022, 5, 12095-12106. Nucleation and growth kinetics of ZnAl (mmi:math	2.4	19
788	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.svg"> <mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub> O <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si4.svg"><mml:msub><mml:mrow /><mml:mn>4</mml:mn></mml:mrow </mml:msub> spinel in crystalline ZnO â€" amorphous Al<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.svg"><mml:msub><mml:mrow< td=""><td>2.6</td><td>4</td></mml:mrow<></mml:msub></mml:math </mml:math 	2.6	4
789	Catalytic and pseudocapacitive energy storage performance of metal (Co, Ni, Cu and Mn) ferrite nanostructures and nanocomposites. Progress in Materials Science, 2022, 130, 100995.	16.0	25
790	Review of chemical looping process for carbonaceous feedstock Conversion: Rational design of oxygen carriers. Fuel, 2022, 325, 124964.	3.4	13
791	High-Efficiency Electrosynthesis of Ammonia with Selective Reduction of Nitrate in Neutral Media Enabled by Self-Supported Mn ₂ CoO ₄ Nanoarray. ACS Applied Materials & Interfaces, 2022, 14, 33242-33247.	4.0	27
792	Spinel ferrites materials for sulfate radical-based advanced oxidation process: A review. Science of the Total Environment, 2022, 847, 157405.	3.9	22
793	Spinel-Oxide-Based Laccase Mimics for the Identification and Differentiation of Phenolic Pollutants. Analytical Chemistry, 2022, 94, 10198-10205.	3.2	28
794	Air–Cathode Interface-Engineered Electrocatalyst for Solid-State Rechargeable Zinc–Air Batteries. ACS Applied Energy Materials, 2022, 5, 8756-8768.	2.5	3
795	Review on the Theoretical Understanding of Oxygen Carrier Development for Chemical-Looping Technologies. Energy & Fuels, 2022, 36, 9373-9384.	2.5	12
796	Magnetic and Mössbauer Spectroscopy of Co/MgFe2O4 Spinel. Journal of Low Temperature Physics, 2022, 209, 166-181.	0.6	2
797	Crystal phase engineering of electrocatalysts for energy conversions. Nano Research, 2022, 15, 10194-10217.	5.8	13
798	The reaction characteristics and mechanism of pine sawdust chemical-looping gasification based on CoFe2O4 oxygen carrier. Renewable Energy, 2022, 195, 1300-1309.	4.3	3
799	Mercury removal from syngas by metal oxides based adsorbent: A review. Fuel, 2022, 327, 125057.	3.4	16
800	Synthesis of porous Mn-based spinel microspheres with enhanced lithium storage properties. Journal of Alloys and Compounds, 2022, 922, 166237.	2.8	3
801	Doping-engineered bifunctional oxygen electrocatalyst with Se/Fe-doped Co3O4/N-doped carbon nanosheets as highly efficient rechargeable zinc-air batteries. Journal of Colloid and Interface Science, 2022, 626, 475-485.	5.0	15

ARTICLE IF CITATIONS An exsolution constructed FeNi/NiFe₂O₄ composite: preferential breaking of 802 3.7 15 octahedral metal–oxygen bonds in a spinel oxide. Chemical Science, 2022, 13, 9440-9449. Methanol Oxidation Catalytic Performance Enhancement via Constructing Pd-MgAl2O4 Interface and 1.4 its Reaction Mechanism Investigation. Catalysis Letters, 0, , . Construction of visible-light-driven ZnBi2O4/Ag2WO4 p–n heterojunction for restraining carrier recombination and improving visible-light photocatalytic performance. Journal of Materials Science: Materials in Electronics, 2022, 33, 19827-19838. 804 1.1 3 Constructing hollow nanocages of Co3O4-CoMoO4 heterostructure for efficient electrocatalytic 3.1 oxygen evolution reaction. Applied Surface Science, 2022, 606, 154562. Linnaeite Mineral for NIR Light-Triggered Disruption of Alzheimer's Pore-Forming AÎ² Oligomers. ACS 806 4.0 2 Applied Materials & amp; Interfaces, 2023, 15, 48-56. Mn-incorporated Co3O4 bifunctional electrocatalysts for zinc-air battery application: An experimental and DFT study. Applied Catalysis B: Environmental, 2022, 319, 121909. 10.8 Recent Progress on Bimetallicâ€Based Spinels as Electrocatalysts for the Oxygen Evolution Reaction. 808 5.2 45 Small, 2022, 18, . Electrochemical Characteristics of Nanosized Cu, Ni, and Zn Cobaltite Spinel Materials. Catalysts, 809 1.6 2022, 12, 893. Study of cobalt-iron mixed oxides and catalytic behavior for decomposition of hydrogen peroxide. 810 1.0 2 Molecular Catalysis, 2022, 530, 112639. Improvement of high-temperature energy storage performance in polymer dielectrics by nanofillers 2.5 with defect spinel structure. Materials Today Energy, 2022, 29, 101101. AMn2O4 spinels (A - Li, Mg, Mn, Cd) as ORR catalysts: The role of Mn coordination and oxidation state 812 7 2.6 in the catalytic activity and their propensity to degradation. Electrochimica Acta, 2022, 428, 140923. Bimetal defects boost efficient photocatalytic H2O2 in-situ production of Cu1-xCo2-yO4-z for 4.6 contaminant degradation. Journal of Cleaner Production, 2022, 369, 133245. Hollow porous Co–Ni spinel nanosheet arrays with rich oxygen defects on carbon cloth toward 814 5.4 12 highly efficient and selective CO2 photofixation. Carbon, 2022, 200, 149-155. Co3S4/Fe3S4 heterostructured bifunctional catalyst evolved from CoFe LDH for effective overall water splitting in alkaline solution. Journal of Alloys and Compounds, 2022, 925, 166787. 2.8 A highly efficient electrocatalyst for oxygen reduction reaction: Spinel MnCo2O4 nanoparticles supported on three-dimensional Nitrogen-doped graphene material with interconnected hierarchical 816 1.9 1 porous nanostructure. Journal of Electroanalytical Chemistry, 2022, 922, 116802. Porous Fe, N co-doped carbon with high electrocatalytic oxygen reduction reaction performance in 14 Zn-air battery. Carbon, 2022, 200, 337-346. Electrodeposition of small sized NiM2O4 spinels (M: Co, Mn) as bifunctional nanomaterials for 818 2.8 6 rechargeable zinc–air batteries. Journal of Alloys and Compounds, 2022, 929, 167266. Toward emerging two-dimensional nickel-based materials for electrochemical energy storage: Progress and perspectives. Energy Storage Materials, 2022, 53, 79-135.

#	Article	IF	CITATIONS
820	A review on oxygen evolution electrocatalysts based on the different Ni-Fe matrix composites. Journal of Environmental Chemical Engineering, 2022, 10, 108591.	3.3	4
821	Vacancy and strain engineering of Co3O4 for efficient water oxidation. Journal of Colloid and Interface Science, 2023, 629, 346-354.	5.0	7
822	Influence of Combustion Temperature of the Chelating-Fuel Agent on the Morphology of ZnCr2O4 nanoparticles. Naukovij VĬsnik ÄŒernĬvecʹkogo UnĬversitetu HĬmĬĢ, 2020, , 23-27.	0.0	0
823	Effect of the synthesis method on the MnCo ₂ O ₄ towards the photocatalytic production of H ₂ . Reviews on Advanced Materials Science, 2022, 61, 654-672.	1.4	6
824	A controllable one-pot hydrothermal synthesis of spherical cobalt ferrite nanoparticles: synthesis, characterization, and optical properties. RSC Advances, 2022, 12, 25081-25095.	1.7	22
825	An Electrochemical Nonenzymatic Microsensor Modified by CuCo ₂ O ₄ Nanoparticles for Glucose Sensing. IEEE Sensors Journal, 2022, 22, 21462-21469.	2.4	3
826	Emerging two-dimensional nanostructured manganese-based materials for electrochemical energy storage: recent advances, mechanisms, challenges, and prospects. Journal of Materials Chemistry A, 2022, 10, 21197-21250.	5.2	43
827	Boosting Catalyst Activity with High Valency Metal Species Through Fe Doping on Normal Spinel Nicr2o4 for Superior Water Oxidation. SSRN Electronic Journal, 0, , .	0.4	0
828	Non-noble metal nanocatalysts for oxygen evolution reaction. , 2022, , .		1
829	Research on Preparation of Phosphorus-Doped NiMoO ₄ Nanoribbon and Its Electrocatalytic Hydrogen Evolution Performance. Hans Journal of Nanotechnology, 2022, 12, 165-175.	0.1	0
830	Interactions of water and short-chain alcohols with CoFe ₂ O ₄ (001) surfaces at low coverages. Physical Chemistry Chemical Physics, 2022, 24, 23195-23208.	1.3	2
831	Vacancy engineering and hydrophilic construction of CoFe-MOF for boosting water splitting by in situ phytic acid treatment. Applied Surface Science, 2023, 607, 155079.	3.1	7
832	Enhanced photocatalytic performances of highly efficient perovskite BaSnO3 nanorods decorated by CuMn2O4 nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 435, 114298.	2.0	15
833	Hierarchical heterostructure consists of Al ³⁺ doped NiFe ₂ O ₄ nanocubes on NiCo ₂ O ₄ nanosheets for efficient electrocatalytic water splitting. Journal of Physics: Conference Series, 2022, 2334, 012008.	0.3	0
834	Yttrium- and Cerium-Codoped Ultrathin Metal–Organic Framework Nanosheet Arrays for High-Efficiency Electrocatalytic Overall Water Splitting. Nano Letters, 2022, 22, 7238-7245.	4.5	48
835	Nano-Sheet-like Morphology of Nitrogen-Doped Graphene-Oxide-Grafted Manganese Oxide and Polypyrrole Composite for Chemical Warfare Agent Simulant Detection. Nanomaterials, 2022, 12, 2965.	1.9	4
836	Progress in the Preparation and Modification of Zinc Ferrites Used for the Photocatalytic Degradation of Organic Pollutants. International Journal of Environmental Research and Public Health, 2022, 19, 10710.	1.2	8
837	Efficient Electrocatalytic Oxidation of Glycerol via Promoted OH* Generation over Single-Atom-Bismuth-Doped Spinel Co ₃ O ₄ . ACS Catalysis, 2022, 12, 12432-12443.	5.5	63

#	Article	IF	Citations
838	Recent Progress and Challenges in Mixed Ionic–Electronic Conducting Membranes for Oxygen Separation. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	7
839	Dealloyingâ€Derived Porous Spinel Oxide for Bifunctional Oxygen Electrocatalysis and Rechargeable Zincâ€Air Batteries: Promotion of Activity Via Hereditary Alâ€Doping. ChemSusChem, 2022, 15, .	3.6	8
840	MOF-Derived Bimetallic Pd–Co Alkaline ORR Electrocatalysts. ACS Applied Materials & Interfaces, 2022, 14, 44735-44744.	4.0	11
841	Spin-glass behavior and redox catalytic properties of room temperature produced ZnCrMnO4. Ceramics International, 2022, , .	2.3	Ο
842	Nanoparticles of Mixed-Valence Oxides MnXCO3-XO4 (0 ≤ ≤) Obtained with Agar-Agar from Red Algae (Rhodophyta) for Oxygen Evolution Reaction. Nanomaterials, 2022, 12, 3170.	1.9	3
843	Iron Doped NiCo2O4 Nanoparticles: Synthesis via Homogeneous Precipitation Method and Studies on their Peroxidaseâ€like Activity. European Journal of Inorganic Chemistry, 0, , .	1.0	0
844	Tuning the Semiconducting Properties in Co ₃ O ₄ /PMN–PT Heterostructures by Oxygen Vacancies and Domain Structure. ACS Applied Electronic Materials, 2022, 4, 4733-4740.	2.0	0
845	Highâ€Entropy Materials for Water Electrolysis. Energy Technology, 2022, 10, .	1.8	84
846	Cerium-Doped CoMn2O4 Spinels as Highly Efficient Bifunctional Electrocatalysts for ORR/OER Reactions. Catalysts, 2022, 12, 1122.	1.6	11
847	Understanding the growth N-Fe3C from assembly of carbon-coated iron nanoparticles on rGO as efficient oxygen reduction electrocatalysts. Journal of Materials Research and Technology, 2022, , .	2.6	0
848	High-Efficiency Electrochemical Nitrate Reduction to Ammonia on a Co ₃ O ₄ Nanoarray Catalyst with Cobalt Vacancies. ACS Applied Materials & Interfaces, 2022, 14, 46595-46602.	4.0	62
849	Identifying and Interpreting Geometric Configuration-Dependent Activity of Spinel Catalysts for Water Reduction. Journal of the American Chemical Society, 2022, 144, 19163-19172.	6.6	34
850	Non-metal/metalloid modification of perovskite oxide enables lattice oxygen participation in accelerating oxygen evolution activity. International Journal of Hydrogen Energy, 2022, , .	3.8	2
851	In Situ Grown CoMn-Based Metal–Organic Framework on Nickel Foam as Efficient and Robust Electrodes for Electrochemical Oxygen Evolution Reaction. Journal of Electrochemical Energy Conversion and Storage, 2023, 20, .	1.1	0
852	A new CoFe1.9Li0.1O4 spinel oxide cathode for proton-conducting solid oxide fuel cells. Ceramics International, 2022, 48, 34098-34104.	2.3	4
853	Crystalline Metal Oxide Catalysts for Organic Synthesis. , 2022, , 219-271.		0
854	Review on cobalt ferrite as photo-Fenton catalysts for degradation of organic wastewater. Catalysis Science and Technology, 2023, 13, 274-296.	2.1	31
855	Overview of Crystalline Metal Oxide Catalysts. , 2022, , 1-51.		0

	CHAI	ION REPORT	
#	ARTICLE	IF	CITATIONS
856	Simultaneously Improved Surface and Bulk Participation of Evolved Perovskite Oxide for Boosting Oxygen Evolution Reaction Activity Using a Dynamic Cation Exchange Strategy. Small, 2022, 18, .	5.2	9
858	Unveiling Ruthenium(II) Diazadienyls for Gas Phase Deposition Processes: Low Resistivity Ru Thin Films and Their Performance in the Acidic Oxygen Evolution Reaction. Advanced Materials Interfaces, 0, , 2201709.	1.9	1
859	ltinerant antiferromagnetism in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Co</mml:mi> mathvariant="normal">S<mml:mrow><mml:mn>4</mml:mn><mml:mo>â^'</mml:mo><mml:n Physical Review B, 2022, 106, .</mml:n </mml:mrow></mml:msub></mml:mrow></mml:math 	<mml:mn>3i)î(<td>ll:mn>mi:mrow><!--</td--></td></mml:mn>	ll:mn>mi:mrow> </td
860	Advanced Nonplatinum Oxygen Reduction Electrocatalysts Prepared by Lowâ€Temperature Plasma Technology. Advanced Energy and Sustainability Research, 0, , 2200113.	2.8	0
861	Structure and Reactivity of CoFe2O4(001) Surfaces in Contact with a Thin Water Film. Physchem, 2022, 2, 321-333.	0.5	4
862	Accelerated discovery of novel high-performance zinc-ion battery cathode materials by combining high-throughput screening and experiments. Chinese Chemical Letters, 2023, 34, 107885.	4.8	9
864	Facet Impact of CuMn ₂ O ₄ Spinel Nanocatalysts on Enhancement of the Oxygen Reduction Reaction in Alkaline Media. ACS Catalysis, 2022, 12, 13663-13670.	5.5	13
865	Effect of sintering temperature on structural, dielectric and magnetic properties of CoFe1.5Ni0.5O4 prepared by solid-state reaction method. Applied Physics A: Materials Science and Processing, 2022, 128, .	1.1	0
866	Nanoclay Modulates Cation Occupancy in Manganese Ferrite for Catalytic Antibacterial Treatment. Inorganic Chemistry, 2022, 61, 17692-17702.	1.9	5
867	Tuning d Orbital of Ni Single Atom by Encapsulating Ni Nanoparticle in Carbon Nanotube for Efficient Oxygen Evolution Reaction. Energy & Fuels, 2022, 36, 13159-13167.	2.5	2
868	Enhancing OER Activity of Ni/Co Oxides via Fe/Mn Substitution within Tailored Mesoporous Frameworks. ACS Applied Energy Materials, 2022, 5, 13385-13397.	2.5	13
869	Entropy Engineering and Tunable Magnetic Order in the Spinel High-Entropy Oxide. Journal of the American Chemical Society, 2022, 144, 20590-20600.	6.6	20
870	Spinodal Decomposition in the Mg–Al–Fe–O System. Inorganic Chemistry, 2022, 61, 18170-18180). 1.9	0
871	Fe-Cu-Rh ternary alloy nanofibers as an outstanding pH-universal electrocatalyst for hydrogen evolution reaction: The catalytic roles of Fe depending on pH. Applied Surface Science, 2023, 611, 155484.	3.1	2
872	Design and Preparation of NiFe2O4@FeOOH Composite Electrocatalyst for Highly Efficient and Stable Oxygen Evolution Reaction. Molecules, 2022, 27, 7438.	1.7	3
873	Active bimetallic Fe–O–Co sites built on 2D trimetallic complex spinel oxides for industrially oxygen evolution electrocatalyst. Materials Today Chemistry, 2022, 26, 101214.	1.7	2
874	Water splitting performance of metal and non-metal-doped transition metal oxide electrocatalysts. Coordination Chemistry Reviews, 2023, 474, 214864.	9.5	90
875	Current and future trends for spinel-type electrocatalysts in electrocatalytic oxygen evolution reaction. Coordination Chemistry Reviews, 2023, 475, 214869.	9.5	91

#	Article	IF	Citations
876	Boosting catalyst activity with high valency metal species through Fe doping on normal spinel NiCr2O4 for superior water oxidation. Applied Surface Science, 2023, 609, 155326.	3.1	5
877	Rational tuning towards B-sites (BÂ=ÂMn, Co, Al) on CoB2O4 binary oxide for efficient selective catalytic oxidation of ammonia. Chemical Engineering Journal, 2023, 453, 139941.	6.6	6
878	Modulating surface cation vacancies of nickel-cobalt oxides as efficient catalysts for lithium-oxygen batteries. Journal of Materials Science and Technology, 2023, 139, 147-155.	5.6	12
879	Stable lithium storage behavior observed in Mn-doped MgCo2O4 anode materials. Materials Chemistry and Physics, 2023, 294, 127027.	2.0	3
880	Structure and Stoichiometry Self-Organization in a Mixed Vanadium–Iron Oxide Honeycomb Film on Ru(0001). Journal of Physical Chemistry C, 2022, 126, 19947-19955.	1.5	1
881	Efficient Ternary Mnâ€Based Spinel Oxide with Multiple Active Sites for Oxygen Evolution Reaction Discovered via Highâ€Throughput Screening Methods. Small, 0, , 2204520.	5.2	0
882	Quenching-induced surface engineering of ZnCo2O4 spinel oxide for enhanced oxygen evolution reaction. Applied Surface Science, 2023, 611, 155662.	3.1	5
883	Reconstructured Electrocatalysts during Oxygen Evolution Reaction under Alkaline Electrolytes. Chemistry - A European Journal, 2023, 29, .	1.7	4
884	Selenium heteroatom-doped mesoporous carbon as an efficient air-breathing electrode for rechargeable lithium–oxygen batteries. New Journal of Chemistry, 2023, 47, 2189-2201.	1.4	1
885	Cobalt-rich spinel oxide-based wide angular spectral selective absorber coatings for solar thermal conversion applications. Renewable Energy, 2023, 203, 334-344.	4.3	9
886	Preparation of (Ga0.2Cr0.2Mn0.2Ni0.2Zn0.2)3O4 high-entropy oxide with narrow bandgap for photocatalytic CO2 reduction with water vapor. Applied Surface Science, 2023, 612, 155809.	3.1	8
887	Multi-scale designed Co Mn3–O4 spinels: Smart pre-catalysts towards high-efficiency pyrolysis-catalysis recycling of waste plastics. Applied Catalysis B: Environmental, 2023, 324, 122271.	10.8	4
888	Ce-modified Co–Mn oxide spinel on reduced graphene oxide and carbon black as ethanol tolerant oxygen reduction electrocatalyst in alkaline media. RSC Advances, 2022, 12, 35966-35976.	1.7	4
889	Solution combustion synthesis of high-entropy metal spinel oxide as oxygen evolution reaction catalyst. China Foundry, 2022, 19, 551-558.	0.5	1
890	Correlation between Cation Distribution and Magnetic and Dielectric Properties of Dy ³⁺ -Substituted Fe-Rich Cobalt Ferrite. Inorganic Chemistry, 2022, 61, 19319-19332.	1.9	8
891	Steering •OH-triggered radicalization of surface phosphate functionality and its protonated analogues to accelerate mineralization of aqueous organic wastes. Chemical Engineering Journal, 2023, 455, 140537.	6.6	8
892	<i>>e</i> _g Occupancy as a Predictive Descriptor for Spinel Oxide Nanozymes. Nano Letters, 2022, 22, 10003-10009.	4.5	9
893	Methods to Synthesize Nanostructured Materials for Electrocatalytic Activities. ACS Symposium Series, 0, , 31-51.	0.5	0

#	Article	IF	CITATIONS
894	Electrocatalysts and Electrocatalysis: From Fundamental Mechanisms to Fuel Cell Applications. ACS Symposium Series, 0, , 53-71.	0.5	1
895	Nanostructured Phosphides as Electrocatalysts for Green Energy Generation. ACS Symposium Series, 0, , 227-255.	0.5	2
898	Noble Metal-Free Electrocatalysts: Materials for Energy Applications. ACS Symposium Series, 0, , 73-94.	0.5	0
899	Introduction to Electrocatalysts. ACS Symposium Series, 0, , 1-29.	0.5	0
900	Evaluation of Bi-Functional Electrochemical Catalytic Activity of Co3O4-CoFe2O4 Composite Spinel Oxide. Energies, 2023, 16, 173.	1.6	3
901	Electrocatalysts Based on Graphene and Its Composites. ACS Symposium Series, 0, , 165-199.	0.5	1
903	The Renewed Interest on Brunogeierite, GeFe2O4, a Rare Mineral of Germanium: A Review. Molecules, 2022, 27, 8484.	1.7	2
906	Rapid microwave-assisted synthesis and magnetic properties of high-entropy spinel (Cr0.2Mn0.2Fe0.2Co0.2-Ni Zn)3O4 nanoparticles. Ceramics International, 2023, 49, 11885-11892.	2.3	4
907	Altering oxygen binding by redoxâ€inactive metal substitution to control catalytic activity: oxygen reduction on manganese oxide nanoparticles as a model system. Angewandte Chemie, 0, , .	1.6	0
908	Altering Oxygen Binding by Redoxâ€Inactive Metal Substitution to Control Catalytic Activity: Oxygen Reduction on Manganese Oxide Nanoparticles as a Model System**. Angewandte Chemie - International Edition, 2023, 62, .	7.2	4
909	Biomass-Derived Electroactive Carbons with Application in Green Electrochemical Technologies. ACS Symposium Series, 0, , 129-164.	0.5	0
910	Hierarchical heterostructure of NiFe2O4 nanoflakes grown on the tip of NiCo2O4 nanoneedles with enhanced interfacial polarization effect to achieve highly efficient electrocatalytic oxygen evolution. Chemical Engineering Journal, 2023, 457, 141169.	6.6	21
911	Covalent Organic Framework-Based Electrocatalysts for CO ₂ Reduction Reaction. ACS Symposium Series, 0, , 257-274.	0.5	0
912	Role of Electrocatalysts in the Performance and Efficiency of Metalâ~'Air Batteries. ACS Symposium Series, 0, , 95-127.	0.5	2
913	Electrocatalysts Based on Metal Oxides for Hydrogen Evolution Reaction. ACS Symposium Series, 0, , 201-226.	0.5	0
914	Highly Stable Bimetal Ni–Co on Alumina-Covered Spinel Oxide Derived from High Entropy Oxide for CO ₂ Methanation. Industrial & Engineering Chemistry Research, 2023, 62, 341-354.	1.8	3
915	Geometrical Engineering of Spinel Oxide Solid Solution to Enhance the Oxygen Evolution Reaction. ACS Applied Energy Materials, 2022, 5, 15239-15246.	2.5	4
916	Surface Engineering in MgCo ₂ O ₄ Spinel Oxide for an Improved Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2023, 11, 744-750.	3.2	6

#	Article	IF	CITATIONS
917	Cathode Materials for Secondary Zinc-Air Batteries. , 2023, , 67-156.		0
918	Compositing redox-rich Co–Co@Ni–Fe PBA nanocubes into cauliflower-like conducting polypyrrole as an electrode material in supercapacitors. Materials Chemistry Frontiers, 2023, 7, 1110-1119.	3.2	9
919	Electrochemical Oxidation of 5â€Hydroxymethylfurfural on CeO ₂ â€Modified Co ₃ O ₄ with Regulated Intermediate Adsorption and Promoted Charge Transfer. Advanced Functional Materials, 2023, 33, .	7.8	30
920	High magnetic moment of nanoparticle-sphere-like Co, Fe based composites and alloys prepared by proteic sol-gel synthesis: Structure, magnetic study and OER activity. Journal of Alloys and Compounds, 2023, 940, 168783.	2.8	6
921	Humidity and Temperature Sensing of Mixed Nickel–Magnesium Spinel Ferrites. Chemosensors, 2023, 11, 34.	1.8	3
922	Cathode Materials for Primary Zinc-Air Battery. , 2023, , 23-66.		0
923	Metalâ€free spent disposable papercupâ€derived porous carbon as airâ€breathing electrode for rechargeable <scp>lithiumâ€air</scp> battery. Energy Storage, 0, , .	2.3	0
924	A 3D oxalateâ€bridged [Cu ^{II} Fe ^{II}] coordination polymer as molecular precursor for CuFe ₂ O ₄ spinel—photocatalytic features. Journal of the American Ceramic Society, 2023, 106, 2997-3008.	1.9	2
925	Defect engineering of electrocatalysts for metal-based battery. Chinese Journal of Catalysis, 2023, 45, 27-87.	6.9	15
926	MnCo2O4 decorating porous PbO2 composite with enhanced activity and durability for acidic water oxidation. Fuel, 2023, 338, 127344.	3.4	3
927	Covalency competition triggers Fe-Co synergistic catalysis for boosted Fenton-like reactions. Applied Catalysis B: Environmental, 2023, 325, 122358.	10.8	9
928	High efficient trifunctional electrocatalyst based on bimetallic oxide with rich oxygen vacancies towards electrochemical oxidation of small molecules at high current density. International Journal of Hydrogen Energy, 2023, 48, 9669-9681.	3.8	3
929	Material Changes in Electrocatalysis: An In Situ/Operando Focus on the Dynamics of Cobaltâ€Based Oxygen Reduction and Evolution Catalysts. ChemElectroChem, 2023, 10, .	1.7	9
930	The role of cationic defects in boosted lattice oxygen activation during toluene total oxidation over nano-structured CoMnO _{<i>x</i>} spinel. Environmental Science: Nano, 2023, 10, 812-823.	2.2	4
931	Pressure-Induced Structural Phase Transitions in the Chromium Spinel LiInCr4O8 with Breathing Pyrochlore Lattice. Crystals, 2023, 13, 170.	1.0	1
932	ZIF-67-Derived NiCo-Layered Double Hydroxide@Carbon Nanotube Architectures with Hollow Nanocage Structures as Enhanced Electrocatalysts for Ethanol Oxidation Reaction. Molecules, 2023, 28, 1173.	1.7	2
933	Electrocatalytic oxygen reduction with cobalt corroles bearing cationic substituents. Physical Chemistry Chemical Physics, 2023, 25, 4604-4610.	1.3	5
934	Vanadium Oxide Nanosheet-Infused Functionalized Polysulfone Bipolar Membrane for an Efficient Water Dissociation Reaction. ACS Applied Materials & Interfaces, 2023, 15, 5466-5477.	4.0	3

		CITATION REPORT		
# 935	ARTICLE Battery cathodes for lithium-ion batteries with liquid and solid-state electrolytes. , 2023	3, , 171-195.	IF	Citations
936	Preferential Adsorption of Ethylene Oxide on Fe and Chlorine on Ni Enabled Scalable Ele of Ethylene Chlorohydrin. Angewandte Chemie - International Edition, 2023, 62, .	ectrosynthesis	7.2	8
937	Comparative investigation of methane combustion over palladium-based catalysts sup mesoporous MgAl2O4 and Al2O3. Fuel, 2023, 340, 127493.	ported on	3.4	5
938	Structure and oxygen vacancy engineered CuCo-layered double oxide nanotube arrays bifunctional electrocatalysts for overall water splitting. Dalton Transactions, 2023, 52,	as advanced 6473-6483.	1.6	5
939	A comprehensive review of cathode materials for Na–air batteries. Energy Advances,	2023, 2, 465-502.	1.4	1
940	Photoactive p-Type Spinel CuGa ₂ O ₄ Nanocrystals. Nano Let 2974-2980.	ters, 2023, 23,	4.5	1
941	High entropy materials as emerging electrocatalysts for hydrogen production through low-temperature water electrolysis. Materials Futures, 2023, 2, 022102.		3.1	10
942	Acid-etched spinel CoMn2O4 with highly active surface lattice oxygen species for signi improvement of catalytic performance of VOCs oxidation. Chemical Engineering Journa 142316.	ficant II, 2023, 463,	6.6	18
943	Structural, optical, magnetic and anti-bacterial properties of green synthesized spinel z microwave-assisted method. Materials Chemistry and Physics, 2023, 301, 127641.	inc ferrite by	2.0	6
944	Tuning octahedron sites in MnFe2O4 spinel by boron doping for highly efficient seawa Applied Catalysis B: Environmental, 2023, 330, 122577.	ter splitting.	10.8	27
945	Enhanced catalytic stability of non-stoichiometric Cu–Al spinel catalysts for dimethyl from syngas: Effect of coordination structure. Fuel Processing Technology, 2023, 247,	ether synthesis 107772.	3.7	3
946	Exploring the effects of Mn content in the Mn-Co spinel coating on its formation and s outward Cr diffusion. Corrosion Science, 2023, 217, 111158.	owing the	3.0	1
947	Recent progress of Ni-based catalysts for methanol electrooxidation reaction in alkaline 2, 100055.	? media. , 2023,		16
948	Compositing ultrafine CoFe2O4 spinel with porous silica as catalyst for photothermal F and interfacial water evaporation. Journal of Alloys and Compounds, 2023, 949, 16990		2.8	10
949	Alloying normal and inverse spinel (Zn–Co ferrite) nanostructures via direct precurso enhanced supercapacitance and water splitting. Materials Chemistry and Physics, 2023		2.0	3
950	Photo Energy-Enhanced Oxygen Reduction and Evolution Kinetics in Zn-Air Batteries. A Materials & Interfaces, 2023, 15, 6788-6796.	CS Applied	4.0	3
951	Electronic tuning of Ni–Fe–Co oxide/hydroxide as highly active electrocatalyst for Zn–air batteries. Dalton Transactions, 2023, 52, 4315-4322.	echargeable	1.6	2
952	Preferential Adsorption of Ethylene Oxide on Fe and Chlorine on Ni Enabled Scalable Ele of Ethylene Chlorohydrin. Angewandte Chemie, 2023, 135, .	ectrosynthesis	1.6	4

23.0

81

#	Article	IF	CITATIONS
953	低ç"µèŸæ€§é~´ç¦»å掺æ;è°f控钴é…,锌的电å结构以æé«~æžæ°§å应活性. Science China Materi	als3, 2 023,	664, 1793-180
954	Colorimetry characteristics and color contribution of fluorescence in natural Cr-containing spinel. Scientific Reports, 2023, 13, .	1.6	0
955	Recent progress in transition-metal-oxide-based electrocatalysts for the oxygen evolution reaction in natural seawater splitting: A critical review. EScience, 2023, 3, 100111.	25.0	49
956	Self-template synthesis of CuCo2O4 nanosheet-based nanotube sorbent for efficient HgO removal. Separation and Purification Technology, 2023, 313, 123432.	3.9	7
957	Enhanced electrocatalytic nitrate reduction to ammonia on cobalt oxide nanosheets via multiscale defect modulation. Chemical Engineering Journal, 2023, 461, 141960.	6.6	25
958	Morphology-controlled NiFe2O4 nanostructures: Influence of calcination temperature on structural, magnetic and catalytic properties towards OER. Journal of Electroanalytical Chemistry, 2023, 933, 117277.	1.9	9
959	Chiral electrocatalysts eclipse water splitting metrics through spin control. Nature Communications, 2023, 14, .	5.8	23
960	Recent advancements in CaFe ₂ O ₄ -based composite: Properties, synthesis, and multiple applications. Energy and Environment, 2024, 35, 458-490.	2.7	6
961	Photothermal CO-PROX reaction over ternary CuCoMnO _{<i>x</i>} spinel oxide catalysts: the effect of the copper dopant and thermal treatment. Physical Chemistry Chemical Physics, 2023, 25, 8064-8073.	1.3	3
962	Spinel-Derived Formation and Amorphization of Bimetallic Oxyhydroxides for Efficient Electrocatalytic Biomass Oxidation. Journal of Physical Chemistry Letters, 2023, 14, 2674-2683.	2.1	1
963	Modification of micro/nanoscaled manganese dioxide-based materials and their electrocatalytic applications toward oxygen evolution reaction. Journal of Materials Chemistry A, 2023, 11, 6688-6746.	5.2	13
964	Recent advances in spinel ferrite-based magnetic photocatalysts for efficient degradation of organic pollutants. Water Science and Technology, 2023, 87, 1465-1495.	1.2	5
965	Single Phase Trimetallic Spinel CoCr <i>_x</i> Rh _{2â€} <i>_x</i> O ₄ Nanofibers for Highly Efficient Oxygen Evolution Reaction under Freshwater Mimicking Seawater Conditions. Advanced Functional Materials, 2023, 33, .	7.8	7
966	Redox-active Sn(<scp>ii</scp>) to lead to SnFe ₂ O ₄ spinel as a bi-functional water splitting catalyst. Chemical Communications, 2023, 59, 4943-4946.	2.2	3

900	oxygen reduction. Journal of Porphyrins and Phthalocyanines, 2023, 27, 719-727.	0.4	1
969	Polysulfide-Induced Synthesis of Coral-Like MoS ₂ /NiS ₂ Nanostructures for Overall Water Splitting. ACS Applied Nano Materials, 2023, 6, 5136-5144.	2.4	3
970	CoAl ₂ 0 ₄ Spinel Growth on SiO ₂ Substrates via Annealing of Magnetron Sputtered Thin Films. Key Engineering Materials, 0, 943, 145-150.	0.4	0

Oxygen Evolution/Reduction Reaction Catalysts: From <i>In Situ</i> Monitoring and Reaction Mechanisms to Rational Design. Chemical Reviews, 2023, 123, 6257-6358.

A cobalt corrole with a biologically relevant imidazolium pendant for boosted electrocatalytic

#	Article	IF	CITATIONS
971	Co ₃ O ₄ /CoS ₂ Heterostructure: Synergistic Interfacial Coupling Induced Superior Electrochemical Performance for Hydrazine Oxidation Reaction. ACS Applied Energy Materials, 2023, 6, 3977-3985.	2.5	2
972	3D Flower-like Zn substituted CuCo2O4 spinel catalyst for electrochemical oxygen evolution reaction. Journal of Electroanalytical Chemistry, 2023, 937, 117406.	1.9	5
973	Heterogeneous Interface Catalysts with Electron Local Exchange toward Highly Selective Oxidation of Biomass Platform Compounds. ACS Catalysis, 2023, 13, 5665-5677.	5.5	4
974	Hierarchical superhydrophilic/superaerophobic 3D porous trimetallic (Fe, Co, Ni) spinel/carbon/nickel foam for boosting oxygen evolution reaction. Applied Catalysis B: Environmental, 2023, 332, 122717.	10.8	10
975	Recent Advances in Nanocarbon-Based Nonprecious Metal Catalysts for Oxygen/Hydrogen Reduction/Evolution Reactions and Zn-Air Battery. Bulletin of the Chemical Society of Japan, 2023, 96, 429-443.	2.0	3
976	Dinuclear metal synergistic catalysis for energy conversion. Chemical Society Reviews, 2023, 52, 3170-3214.	18.7	21
977	Interfacial Electronic Modulation on Nickel Cobaltite/Black Phosphorus Heterostructures for Boosting the Electrocatalytic Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2023, 11, 6629-6640.	3.2	8
978	Nanostructured spinel high-entropy oxide (Fe0.2Mn0.2Co0.2Ni0.2Zn0.2)3O4 as a potential cathode for solid oxide fuel cells. Ceramics International, 2023, 49, 23057-23067.	2.3	14
979	Bamboo derived N-doped carbon as a bifunctional electrode for high-performance zinc–air batteries. Sustainable Energy and Fuels, 2023, 7, 2717-2726.	2.5	3
1000	Recent Advances of VOCs Catalytic Oxidation over Spinel Oxides: Catalyst Design and Reaction Mechanism. Environmental Science & amp; Technology, 2023, 57, 9495-9514.	4.6	8
1001	Other S-scheme photocatalysts. Interface Science and Technology, 2023, , 253-287.	1.6	2
1017	Tellurium-induced defect engineering for boosting the oxygen evolution reaction of spinel oxide. Chemical Communications, 2023, 59, 8834-8837.	2.2	Ο
1020	Ceramics, Glasses, and Glazed Materials II. Monographs in Electrochemistry, 2023, , 207-236.	0.2	0
1025	Rational design of bifunctional catalysts for zinc-air batteries with high performance and high durability: from materials to reconstruction. Nanoscale Advances, 0, , .	2.2	1
1026	Synthesis and advantages of spinel-type composites. Materials Chemistry Frontiers, 2023, 7, 5288-5308.	3.2	1
1046	Research progress of spinel CoFe ₂ O ₄ as an electrocatalyst for the oxygen evolution reaction. Catalysis Science and Technology, 0, , .	2.1	0
1093	Effect of Annealing Temperature on Microstructural, Optical and Magnetic Properties of spinel-ZnFe2O4 Nano Particles. Springer Proceedings in Materials, 2024, , 49-55.	0.1	0
1094	Modular preparation of functional bimetallic spinels from metal–organic frameworks: a deep exploration from macro and micro perspectives. Journal of Materials Chemistry A, O, , .	5.2	0

#	Article	IF	CITATIONS
1097	ZnFe ₂ O ₄ nanosheet array: a highly efficient electrocatalyst for ambient ammonia production <i>via</i> nitrite reduction. Catalysis Science and Technology, 0, , .	2.1	0
1103	Advances in Flexible Zinc-air Batteries: Working Principle, Preparation of Key Components, and Electrode Configuration Design. Journal of Materials Chemistry A, 0, , .	5.2	0