Effect of feather meal as proteic feeder on combi-CLEAs clarification

Process Biochemistry 62, 122-127 DOI: 10.1016/j.procbio.2017.07.015

Citation Report

#	Article	IF	CITATIONS
1	Combined Cross-Linked Enzyme Aggregates as Biocatalysts. Catalysts, 2018, 8, 460.	3.5	65
2	Preparation and characterization of cross-linked enzyme aggregates of dextransucrase from Leuconostoc mesenteroides B-512F. Process Biochemistry, 2018, 71, 101-108.	3.7	9
3	Crosslinked enzyme aggregates (CLEA) of phytase with soymilk proteins. Journal of Biotechnology, 2018, 282, 67-69.	3.8	22
4	Improvement of cross-linking and stability on cross-linked enzyme aggregate (CLEA)-xylanase by protein surface engineering. Process Biochemistry, 2019, 86, 40-49.	3.7	22
5	Stability/activity features of the main enzyme components of rohapect 10L. Biotechnology Progress, 2019, 35, e2877.	2.6	10
6	Crossâ€linked enzyme aggregates of recombinant <i>Candida antarctica</i> lipase B for the efficient synthesis of olvanil, a nonpungent capsaicin analogue. Biotechnology Progress, 2019, 35, e2807.	2.6	22
7	CLEAs, Combi-CLEAs and â€~Smart' Magnetic CLEAs: Biocatalysis in a Bio-Based Economy. Catalysts, 2019, 9, 261.	3.5	114
8	Enzyme co-immobilization: Always the biocatalyst designers' choice…or not?. Biotechnology Advances, 2021, 51, 107584.	11.7	152
9	Greener production of low methoxyl pectin via recyclable enzymatic de-esterification using pectin methylesterase cross-linked enzyme aggregates captured from citrus peels. Food Hydrocolloids, 2020, 108, 105786.	10.7	22
10	Rapidly and Precisely Cross-Linked Enzymes Using Bio-Orthogonal Chemistry from Cell Lysate for the Synthesis of (<i>S</i>)-1-(2,6-Dichloro-3-fluorophenyl) Ethanol. ACS Sustainable Chemistry and Engineering, 2020, 8, 6466-6478.	6.7	16
11	Multicatalytic Hybrid Materials for Biocatalytic and Chemoenzymatic Cascades—Strategies for Multicatalyst (Enzyme) Co-Immobilization. Catalysts, 2021, 11, 936.	3.5	13
12	Immobilization of Enzymes as Cross-Linked Enzyme Aggregates: General Strategy to Obtain Robust Biocatalysts. Methods in Molecular Biology, 2020, 2100, 345-361.	0.9	13
13	Co-Immobilized Carrier-Free Enzymes For Lactose Upgrading. Current Opinion in Green and Sustainable Chemistry, 2021, , 100553.	5.9	7
14	Preparation of combined cross-linked enzyme aggregates containing galactitol dehydrogenase and NADH oxidase for l-tagatose synthesis via in situ cofactor regeneration. Bioprocess and Biosystems Engineering, 2022, 45, 353-364.	3.4	2
15	Clarification of apple, grape and pear juices by co-immobilized amylase, pectinase and cellulase. Food Chemistry, 2023, 398, 133900.	8.2	19
16	Support-free immobilization. , 2023, , 87-114.		0
17	Combined cross-linked enzyme aggregates of cyclodextrin glucanotransferase and maltogenic amylase from Bacillus lehensis G1 for maltooligosaccharides synthesis. International Journal of Biological Macromolecules, 2023, 242, 124675.	7.5	2
18	Enzyme immobilization technology as a tool to innovate in the production of biofuels: A special review of the Cross-Linked Enzyme Aggregates (CLEAs) strategy. Enzyme and Microbial Technology, 2023. 170. 110300.	3.2	4

ITATION REDO