Global alterations in areas of suitability for maize produusing a mechanistic species distribution model (CLIME)

Scientific Reports 7, 5910 DOI: 10.1038/s41598-017-05804-0

Citation Report

#	Article	IF	CITATIONS
1	The greening of the Himalayas and Tibetan Plateau under climate change. Global and Planetary Change, 2017, 159, 77-92.	1.6	48
2	Impact of global warming on mycotoxins. Current Opinion in Food Science, 2017, 18, 76-81.	4.1	74
3	Dry stress decreases areas suitable for Neoleucinodes elegantalis (Lepidoptera: Crambidae) and affects its survival under climate predictions in South America. Ecological Informatics, 2018, 46, 103-113.	2.3	8
4	In situ rumen degradation of kernels from short-season corn silage hybrids as affected by processing1,2. Translational Animal Science, 2018, 2, 428-438.	0.4	4
5	Yield and Quality of Forages in a Triple Cropping System in Southern Kyushu, Japan. Agronomy, 2019, 9, 277.	1.3	5
6	Effects of Severe Water Stress on Maize Growth Processes in the Field. Sustainability, 2019, 11, 5086.	1.6	78
7	Bacterial community associated with rhizosphere of maize and cowpea in a subsequent cultivation. Applied Soil Ecology, 2019, 143, 26-34.	2.1	31
8	Genome-wide haplotype-based association analysis of key traits of plant lodging and architecture of maize identifies major determinants for leaf angle: hapLA4. PLoS ONE, 2019, 14, e0212925.	1.1	37
9	Future climate change likely to reduce the Australian plague locust (Chortoicetes terminifera) seasonal outbreaks. Science of the Total Environment, 2019, 668, 947-957.	3.9	36
10	Genetic Engineering/Genome Editing Approaches to Modulate Signaling Processes in Abiotic Stress Tolerance. , 2019, , 63-82.		13
11	When Will Current Climate Extremes Affecting Maize Production Become the Norm?. Earth's Future, 2019, 7, 113-122.	2.4	74
12	Integrated fuzzy, AHP and GIS techniques for land suitability assessment in semi-arid regions for wheat and maize farming. Ecological Indicators, 2020, 110, 105887.	2.6	95
13	Effect of types of meteorological data on species distribution predicted by the CLIMEX model using an example of Lycorma delicatula (Hemiptera: Fulgoridae). Journal of Asia-Pacific Biodiversity, 2020, 13, 1-6.	0.2	2
14	The impact of climate change on agricultural productivity in Romania. A country-scale assessment based on the relationship between climatic water balance and maize yields in recent decades. Agricultural Systems, 2020, 179, 102767.	3.2	30
15	Change in Maize Final Leaf Numbers and Its Effects on Biomass and Grain Yield across China. Agriculture (Switzerland), 2020, 10, 411.	1.4	7
16	Future scenarios for oil palm mortality and infection by Phytophthora palmivora in Colombia, Ecuador and Brazil, extrapolated to Malaysia and Indonesia. Phytoparasitica, 2020, 48, 513-523.	0.6	20
17	Increased [CO2] Causes Changes in Physiological and Genetic Responses in C4 Crops: A Brief Review. Plants, 2020, 9, 1567.	1.6	17
18	Water Erosion Reduction Using Different Soil Tillage Approaches for Maize (Zea mays L.) in the Czech Republic. Land, 2020, 9, 358.	1.2	14

#	Article	IF	CITATIONS
19	Phenotyping for drought resistance in bread wheat using physiological and biochemical traits. Science of the Total Environment, 2020, 729, 139082.	3.9	65
20	Risk of the introduction of Lobesia botrana in suitable areas for Vitis vinifera. Journal of Pest Science, 2020, 93, 1167-1179.	1.9	22
21	Crop and forest pest metawebs shift towards increased linkage and suitability overlap under climate change. Communications Biology, 2020, 3, 233.	2.0	34
22	Action needed for staple crops in the Andean-Amazon foothills because of climate change. Mitigation and Adaptation Strategies for Global Change, 2020, 25, 1103-1127.	1.0	8
23	Impacts of climate change on agro-climatic suitability of major food crops in Ghana. PLoS ONE, 2020, 15, e0229881.	1.1	48
24	Corn Stunt Disease: An Ideal Insect–Microbial–Plant Pathosystem for Comprehensive Studies of Vector-Borne Plant Diseases of Corn. Plants, 2020, 9, 747.	1.6	13
25	Nitrate leaching and nitrous oxide emissions from maize after grass-clover on a coarse sandy soil: Mitigation potentials of 3,4-dimethylpyrazole phosphate (DMPP). Journal of Environmental Management, 2020, 260, 110165.	3.8	25
26	Improving CERES-Maize for simulating maize growth and yield under water stress conditions. European Journal of Agronomy, 2020, 117, 126072.	1.9	27
27	Land suitability assessment for maize farming using a GIS-AHP method for a semi- arid region, Iran. Journal of the Saudi Society of Agricultural Sciences, 2020, 19, 332-338.	1.0	36
28	Ectopic expression of antifreeze protein gene from Ammopiptanthus nanus confers chilling tolerance in maize. Crop Journal, 2021, 9, 924-933.	2.3	10
29	Longitudinal trends of future climate change and oil palm growth: empirical evidence for tropical Africa. Environmental Science and Pollution Research, 2021, 28, 21193-21203.	2.7	8
30	Food Systems at Risk: Transformative Adaptation for Long-Term Food Security. , 0, , .		4
31	Chapter 9 The Outlook for C4 Crops in Future Climate Scenarios. Advances in Photosynthesis and Respiration, 2021, , 251-281.	1.0	5
32	Longitudinal trends of future suitable climate for conserving oil palm indicates refuges in tropical south-east Asia with comparisons to Africa and South America. Pacific Conservation Biology, 2021, , .	0.5	10
33	Predicting Shifts in Land Suitability for Maize Cultivation Worldwide Due to Climate Change: A Modeling Approach. Land, 2021, 10, 295.	1.2	9
34	Modeling the current land suitability and future dynamics of global soybean cultivation under climate change scenarios. Field Crops Research, 2021, 263, 108069.	2.3	38
35	Mapping the Global-Scale Maize Drought Risk Under Climate Change Based on the GEPIC-Vulnerability-Risk Model. International Journal of Disaster Risk Science, 2021, 12, 428-442.	1.3	10
36	Production suitability of date palm under changing climate in a semi-arid region predicted by CLIMEX model. Journal of King Saud University - Science, 2021, 33, 101394.	1.6	13

#	Article	IF	CITATIONS
37	Dynamic Assessment of Global Maize Exposure to Extremely High Temperatures. International Journal of Disaster Risk Science, 2021, 12, 713-730.	1.3	2
38	A deadly encounter: Alien invasive Spodoptera frugiperda in Africa and indigenous natural enemy, Cotesia icipe (Hymenoptera, Braconidae). PLoS ONE, 2021, 16, e0253122.	1.1	16
39	Influence of Heat Stress, Variations in Soil Type, and Soil Amendment on the Growth of Three Drought–Tolerant Maize Varieties. Agronomy, 2021, 11, 1485.	1.3	12
40	Heat Stress Effect on the Grain Yield of Three Drought-Tolerant Maize Varieties under Varying Growth Conditions. Plants, 2021, 10, 1532.	1.6	12
41	Projected impacts of 1.5 and 2°C global warming on temperature and precipitation patterns in South America. International Journal of Climatology, 2022, 42, 1597-1611.	1.5	26
42	Future climate change will accelerate maize phenological development and increase yield in the Nemoral climate. Science of the Total Environment, 2021, 784, 147175.	3.9	8
43	Agricultural breadbaskets shift poleward given adaptive farmer behavior under climate change. Global Change Biology, 2022, 28, 167-181.	4.2	23
44	Physio-morphological traits and osmoregulation strategies of hybrid maize (Zea mays) at the seedling stage in response to water-deficit stress. Protoplasma, 2022, 259, 869-883.	1.0	6
45	Estimating the global number and distribution of maize and wheat farms. Global Food Security, 2021, 30, 100558.	4.0	59
46	Spatio-Temporal Distribution of Digitaria insularis: Risk Analysis of Areas with Potential for Selection of Clyphosate-Resistant Biotypes in Eucalyptus Crops in Brazil. Sustainability, 2021, 13, 10405.	1.6	7
47	Spatial variation of maize height morphological traits for the same cultivars at a large agroecological scale. European Journal of Agronomy, 2021, 130, 126349.	1.9	8
48	Molecular mechanisms of mesocotyl elongation induced by brassinosteroid in maize under deep-seeding stress by RNA-sequencing, microstructure observation, and physiological metabolism. Genomics, 2021, 113, 3565-3581.	1.3	17
49	Maize. , 2021, , 2-43.		4
50	How to increase maize production without extra nitrogen input. Resources, Conservation and Recycling, 2020, 160, 104913.	5.3	78
51	The Assessment of Impacts and Risks of Climate Change on Agriculture (AIRCCA) model: a tool for the rapid global risk assessment for crop yields at a spatially explicit scale. Spatial Economic Analysis, 2020, 15, 262-279.	0.8	7
52	Pesticide application rates and their toxicological impacts: why do they vary so widely across the U.S.?. Environmental Research Letters, 2020, 15, 124049.	2.2	4
53	Modelling Impacts of Climate Change on Maize (<i>Zea mays</i> L.) Growth and Productivity: A Review of Models, Outputs and Limitations. Journal of Geoscience and Environment Protection, 2019, 07, 76-95.	0.2	11
54	A comparative modeling study on non-climatic and climatic risk assessment on Asian Tiger Mosquito (<i>Aedes albopictus</i>). PeerJ, 2018, 6, e4474.	0.9	17

#	Article	IF	CITATIONS
55	Investigating the potential impact of 1.5, 2 and 3 °C global warming levels on crop suitability and planting season over West Africa. PeerJ, 2020, 8, e8851.	0.9	7
56	Risks and Opportunities Due to Climate Change. Encyclopedia of the UN Sustainable Development Goals, 2019, , 1-12.	0.0	0
57	Risks and Opportunities Due to Climate Change. Encyclopedia of the UN Sustainable Development Goals, 2020, , 791-802.	0.0	0
58	Childhood dietary exposure of aflatoxins and fumonisins in Tanzania: A review. Cogent Food and Agriculture, 2020, 6, 1859047.	0.6	4
59	Pós de rochas regionais como fonte de fósforo e potássio para plantas. Research, Society and Development, 2020, 9, e497974257.	0.0	0
60	Assessment of CERES-Maize model in simulating maize growth, yield and soil water content under rainfed, limited and full irrigation. Agricultural Water Management, 2022, 259, 107271.	2.4	6
62	Predicting potential cultivation region and paddy area for ratoon rice production in China using Maxent model. Field Crops Research, 2022, 275, 108372.	2.3	46
63	Adaptive Agricultural Strategies for Facing Water Deficit in Sweet Maize Production: A Case Study of a Semi-Arid Mediterranean Region. Water (Switzerland), 2021, 13, 3285.	1.2	9
64	Field Crop Responses and Management Strategies to Mitigate Soil Salinity in Modern Agriculture: A Review. Agronomy, 2021, 11, 2299.	1.3	59
65	Projected changes in East African climate and its impacts on climatic suitability of maize production areas by the mid-twenty-first century. Environmental Monitoring and Assessment, 2021, 193, 831.	1.3	12
66	Methylglyoxal induces stress signaling and promotes the germination of maize at low temperature. Physiologia Plantarum, 2022, 174, e13609.	2.6	7
67	Potential distribution of fall armyworm in Africa and beyond, considering climate change and irrigation patterns. Scientific Reports, 2022, 12, 539.	1.6	42
69	Biological Properties of Vitamins of the B-Complex, Part 1: Vitamins B1, B2, B3, and B5. Nutrients, 2022, 14, 484.	1.7	59
70	A doubling of atmospheric CO2 mitigates the effects of severe drought on maize through the preservation of soil water. Annals of Botany, 2022, 129, 607-618.	1.4	4
71	Modelling climate change impacts on maize. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , .	0.6	3
72	Effects of climate change on annual crops: the case of maize production in Africa. , 2022, , 213-228.		2
73	Coupling genetic structure analysis and ecological-niche modeling in Kersting's groundnut in West Africa. Scientific Reports, 2022, 12, 5590.	1.6	7
74	Projecting global mariculture production and adaptation pathways under climate change. Global Change Biology, 2022, 28, 1315-1331.	4.2	12

#	Article	IF	CITATIONS
75	Evaluation of Drought Tolerance of Five Maize Genotypes by Virtue of Physiological and Molecular Responses. Agronomy, 2022, 12, 59.	1.3	16
76	Vulnerability to climate variability of productive livelihoods in the Talgua watershed, Honduras Discover Sustainability, 2022, 3, .	1.4	1
77	Projected climate in coffee-based farming systems: implications for crop suitability in Uganda. Regional Environmental Change, 2022, 22, .	1.4	6
78	Nitrogen transformation genes and ammonia emission from soil under biochar and urease inhibitor application. Soil and Tillage Research, 2022, 223, 105491.	2.6	12
79	Evaluation of Maximum Entropy (Maxent) Machine Learning Model to Assess Relationships between Climate and Corn Suitability. Land, 2022, 11, 1382.	1.2	15
80	Effects of Phloem-Feeding Pest, Dalbulus maidis on Morphological Expression of Drought-Tolerant Traits in Maize. Stresses, 2022, 2, 322-335.	1.8	1
81	The whole grain manifesto: From Green Revolution to Grain Evolution. Global Food Security, 2022, 34, 100649.	4.0	11
82	Climate change on Eucalyptus plantations and adaptive measures for sustainable forestry development across Brazil. Industrial Crops and Products, 2022, 188, 115538.	2.5	14
83	Corn Stunt Pathosystem and Its Leafhopper Vector in Brazil. Journal of Economic Entomology, 2022, 115, 1817-1833.	0.8	4
84	A suite of agronomic factors can offset the effects of climate variability on rainfed maize production in Kenya. Scientific Reports, 2022, 12, .	1.6	4
85	Maize Intercropping in the Traditional "Milpa―System. Physiological, Morphological, and Agronomical Parameters under Induced Warming: Evidence of related Effect of Climate Change in San Luis PotosÃ-(Mexico). Life, 2022, 12, 1589.	1.1	2
86	Nitrogen uptake and utilization of two maize hybrids with contrasting nitrogen use efficiencies depending on fertilization amount. Archives of Agronomy and Soil Science, 0, , 1-16.	1.3	1
87	Agriculture and food security under a changing climate: An underestimated challenge. IScience, 2022, 25, 105551.	1.9	15
88	Effectiveness of vegetation indices and UAV-multispectral imageries in assessing the response of hybrid maize (Zea mays L.) to water deficit stress under field environment. Environmental Monitoring and Assessment, 2023, 195, .	1.3	7
89	Relationships between Grain Weight and Other Yield Component Traits of Maize Varieties Exposed to Heat-Stress and Combined Heat- and Water-Stress Conditions. Stresses, 2022, 2, 467-476.	1.8	1
90	Optimizing maize yields using growth stimulants under the strategy of replacing chemicals with biological fertilizers. Frontiers in Plant Science, 0, 13, .	1.7	4
91	Comparing the performance of three common species distribution modelling frameworks for freshwater environments through application to eel species in New Zealand. Canadian Journal of Fisheries and Aquatic Sciences, 0, , .	0.7	0
92	Application of true skill statistics as a practical method for quantitatively assessing CLIMEX performance. Ecological Indicators, 2023, 146, 109830.	2.6	1

#	Article	IF	CITATIONS
93	Modeling climate change impacts on potential global distribution of Tamarixia radiata Waterston (Hymenoptera: Eulophidae). Science of the Total Environment, 2023, 864, 160962.	3.9	6
94	Climate change hotpots and their implications on rain-fed cropping system in a tropical environment. Applied Geography, 2023, 154, 102953.	1.7	0
95	Tamarixia radiata global distribution to current and future climate using the climate change experiment (CLIMEX) model. Scientific Reports, 2023, 13, .	1.6	3
96	Assessing impacts of climate change on selected foundation species and ecosystem services in the Southâ€Central USA. Ecosphere, 2023, 14, .	1.0	4
97	Toxicogenic fungal profile, Ochratoxin A exposure and cancer risk characterization through maize (Zea mays) consumed by different age populations in the Volta region of Ghana. Toxicon, 2023, 226, 107085.	0.8	3
98	Mycotoxin risk management in maize gluten meal. Critical Reviews in Food Science and Nutrition, 0, , 1-20.	5.4	0
99	Spatial Distribution Characteristics of Suitable Planting Areas for Pyrus Species under Climate Change in China. Plants, 2023, 12, 1559.	1.6	3
110	Perspective Chapter: Microclimate, Plant Stress and Extension of Cacao Frontiers to Marginal Agroecologies of the Rainforest Tropics. , 0, , .		1
115	Agriculture and Food Security in the Era of Climate Change. , 2024, , 47-58.		0