Portable and Error-Free DNA-Based Data Storage

Scientific Reports 7, 5011 DOI: 10.1038/s41598-017-05188-1

Citation Report

#	Article	IF	CITATIONS
1	Rates of DNA Sequence Profiles for Practical Values of Read Lengths. IEEE Transactions on Information Theory, 2017, 63, 7166-7177.	2.4	22
2	Reconstruction of sequences over non-identical channels. , 2017, , .		1
3	Codes in the Damerau Distance for Deletion and Adjacent Transposition Correction. IEEE Transactions on Information Theory, 2018, 64, 2550-2570.	2.4	37
4	Random access in large-scale DNA data storage. Nature Biotechnology, 2018, 36, 242-248.	17.5	445
5	Mutually Uncorrelated Primers for DNA-Based Data Storage. IEEE Transactions on Information Theory, 2018, 64, 6283-6296.	2.4	38
6	DNA multi-bit non-volatile memory and bit-shifting operations using addressable electrode arrays and electric field-induced hybridization. Nature Communications, 2018, 9, 281.	12.8	25
7	DNA as a digital information storage device: hope or hype?. 3 Biotech, 2018, 8, 239.	2.2	34
8	Efficient Encoding/Decoding of Irreducible Words for Codes Correcting Tandem Duplications. , 2018, ,		3
9	Reconstruction of Sequences Over Non-Identical Channels. IEEE Transactions on Information Theory, 2019, 65, 1267-1286.	2.4	7
10	A Characterization of the DNA Data Storage Channel. Scientific Reports, 2019, 9, 9663.	3.3	151
11	Optimized Code Design for Constrained DNA Data Storage With Asymmetric Errors. IEEE Access, 2019, 7, 84107-84121.	4.2	21
12	DNA assembly for nanopore data storage readout. Nature Communications, 2019, 10, 2933.	12.8	80
13	Unique Reconstruction of Coded Strings From Multiset Substring Spectra. IEEE Transactions on Information Theory, 2019, 65, 7682-7696.	2.4	15
14	Set-Codes with Small Intersections and Small Discrepancies. , 2019, , .		1
15	LDPC Codes for Portable DNA Storage. , 2019, , .		15
16	Efficient and Explicit Balanced Primer Codes. , 2019, , .		7
17	Nucleic Acid Databases and Molecular-Scale Computing. ACS Nano, 2019, 13, 6256-6268.	14.6	56
18	Driving the Scalability of DNA-Based Information Storage Systems. ACS Synthetic Biology, 2019, 8, 1241-1248.	3.8	56

# 19	ARTICLE Carbon-based archiving: current progress and future prospects of DNA-based data storage. GigaScience, 2019, 8, .	IF 6.4	Citations 39
20	Terminator-free template-independent enzymatic DNA synthesis for digital information storage. Nature Communications, 2019, 10, 2383.	12.8	133
21	Molecular digital data storage using DNA. Nature Reviews Genetics, 2019, 20, 456-466.	16.3	312
22	Construction of Bio-Constrained Code for DNA Data Storage. IEEE Communications Letters, 2019, 23, 963-966.	4.1	46
23	Demonstration of End-to-End Automation of DNA Data Storage. Scientific Reports, 2019, 9, 4998.	3.3	81
24	Reconstruction and Error-Correction Codes for Polymer-Based Data Storage. , 2019, , .		9
25	Beyond Trace Reconstruction: Population Recovery from the Deletion Channel. , 2019, , .		12
26	An Upper Bound on the Capacity of the DNA Storage Channel. , 2019, , .		22
27	Linear-Time Encoders for Codes Correcting a Single Edit for DNA-Based Data Storage. , 2019, , .		6
28	Coded Trace Reconstruction. , 2019, , .		11
29	High capacity DNA data storage with variable-length Oligonucleotides using repeat accumulate code and hybrid mapping. Journal of Biological Engineering, 2019, 13, 89.	4.7	26
30	Oligo Design with Single Primer Binding Site for High Capacity DNA-Based Data Storage. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 17, 2176-2182.	3.0	10
31	A DNA-of-things storage architecture to create materials with embedded memory. Nature Biotechnology, 2020, 38, 39-43.	17.5	113
32	Coding Over Sets for DNA Storage. IEEE Transactions on Information Theory, 2020, 66, 2331-2351.	2.4	47
33	HEDGES error-correcting code for DNA storage corrects indels and allows sequence constraints. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18489-18496.	7.1	75
34	Construction of Duplication Correcting Codes. IEEE Access, 2020, 8, 96150-96161.	4.2	1
35	Designing Uncorrelated Address Constrain for DNA Storage by DMVO Algorithm. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19, 866-877.	3.0	43
36	Coding for Sequence Reconstruction for Single Edits. , 2020, , .		11

	СІТАТ	on Report	
#	Article	IF	CITATIONS
37	Coding for Optimized Writing Rate in DNA Storage. , 2020, , .		14
38	Error Rate-Based Log-Likelihood Ratio Processing for Low-Density Parity-Check Codes in DNA Storage. IEEE Access, 2020, 8, 162892-162902.	4.2	9
39	Coding for Efficient DNA Synthesis. , 2020, , .		16
40	Constrained Coding with Error Control for DNA-Based Data Storage. , 2020, , .		15
41	The Error Probability of Maximum-Likelihood Decoding over Two Deletion/Insertion Channels. , 2020, ,		8
42	Locally Balanced Constraints. , 2020, , .		8
43	Mass Error-Correction Codes for Polymer-Based Data Storage. , 2020, , .		12
44	Aerolysin nanopores decode digital information stored in tailored macromolecular analytes. Science Advances, 2020, 6, .	10.3	57
45	A Survey Paper on DNA-Based Data Storage. , 2020, , .		1
46	Efficient and Explicit Balanced Primer Codes. IEEE Transactions on Information Theory, 2020, 66, 5344-5357.	2.4	13
47	Compressed DNA Coding Using Minimum Variance Huffman Tree. IEEE Communications Letters, 2020, 24 1602-1606.	ŀ, 4.1	14
48	Evolving a Thermostable Terminal Deoxynucleotidyl Transferase. ACS Synthetic Biology, 2020, 9, 1725-1735.	3.8	14
49	Coded Trace Reconstruction. IEEE Transactions on Information Theory, 2020, 66, 6084-6103.	2.4	42
50	Efficient Constrained Encoders Correcting a Single Nucleotide Edit in DNA Storage. , 2020, , .		2
51	Overcoming High Nanopore Basecaller Error Rates for DNA Storage via Basecaller-Decoder Integration and Convolutional Codes. , 2020, , .		21
52	Image Processing in DNA. , 2020, , .		8
53	An Intelligent Optimization Algorithm for Constructing a DNA Storage Code: NOL-HHO. International Journal of Molecular Sciences, 2020, 21, 2191.	4.1	33
54	Efficient Encoding/Decoding of GC-Balanced Codes Correcting Tandem Duplications. IEEE Transactions on Information Theory, 2020, 66, 4892-4903.	2.4	9

	CITATION	Report	
#	Article	IF	CITATIONS
55	Quantifying molecular bias in DNA data storage. Nature Communications, 2020, 11, 3264.	12.8	53
56	Probing the physical limits of reliable DNA data retrieval. Nature Communications, 2020, 11, 616.	12.8	62
57	K-Means Multi-Verse Optimizer (KMVO) Algorithm to Construct DNA Storage Codes. IEEE Access, 2020, 8, 29547-29556.	4.2	21
58	DNA punch cards for storing data on native DNA sequences via enzymatic nicking. Nature Communications, 2020, 11, 1742.	12.8	70
59	Obstetric Imaging Diagnostic Platform Based on Cloud Computing Technology Under the Background of Smart Medical Big Data and Deep Learning. IEEE Access, 2020, 8, 78265-78278.	4.2	20
60	Achieving the Capacity of the DNA Storage Channel. , 2020, , .		10
61	An Overview of Capacity Results for Synchronization Channels. IEEE Transactions on Information Theory, 2021, 67, 3207-3232.	2.4	24
62	Covering Codes Using Insertions or Deletions. IEEE Transactions on Information Theory, 2021, 67, 3376-3388.	2.4	1
63	Trace Reconstruction Problems in Computational Biology. IEEE Transactions on Information Theory, 2021, 67, 3295-3314.	2.4	13
64	Robust Storage of Chinese Language in a Pool of Small Single-Stranded DNA Rings and Its Facile Reading-Out. Bulletin of the Chemical Society of Japan, 2021, 94, 53-59.	3.2	6
65	SOLQC: Synthetic Oligo Library Quality Control tool. Bioinformatics, 2021, 37, 720-722.	4.1	14
67	Recent progress in non-native nucleic acid modifications. Chemical Society Reviews, 2021, 50, 5126-5164.	38.1	155
69	An artificial chromosome for data storage. National Science Review, 2021, 8, nwab028.	9.5	59
70	Future trends in synthetic biology in Asia. Genetics & Genomics Next, 2021, 2, e10038.	1.5	10
71	Uncertainties in synthetic DNA-based data storage. Nucleic Acids Research, 2021, 49, 5451-5469.	14.5	26
72	An alternative approach to nucleic acid memory. Nature Communications, 2021, 12, 2371.	12.8	38
73	Minimum Free Energy Coding for DNA Storage. IEEE Transactions on Nanobioscience, 2021, 20, 212-222.	3.3	34
74	Concatenated Codes for Recovery From Multiple Reads of DNA Sequences. , 2021, , .		9

#	Article	IF	CITATIONS
75	Reconstructing Mixtures of Coded Strings from Prefix and Suffix Compositions. , 2021, , .		5
76	CLGBO: An Algorithm for Constructing Highly Robust Coding Sets for DNA Storage. Frontiers in Genetics, 2021, 12, 644945.	2.3	14
77	Direct oligonucleotide sequencing with nanopores. Open Research Europe, 0, 1, 47.	2.0	2
78	Error-Correcting Codes for Noisy Duplication Channels. IEEE Transactions on Information Theory, 2021, 67, 3452-3463.	2.4	8
79	Correcting a Single Indel/Edit for DNA-Based Data Storage: Linear-Time Encoders and Order-Optimality. IEEE Transactions on Information Theory, 2021, 67, 3438-3451.	2.4	30
80	Image Encoding Using Multi‣evel DNA Barcodes with Nanopore Readout. Small, 2021, 17, e2100711.	10.0	32
81	Large-Scale de novo Oligonucleotide Synthesis for Whole-Genome Synthesis and Data Storage: Challenges and Opportunities. Frontiers in Bioengineering and Biotechnology, 2021, 9, 689797.	4.1	34
82	Random access DNA memory using Boolean search in an archival file storage system. Nature Materials, 2021, 20, 1272-1280.	27.5	68
83	On Coding for an Abstracted Nanopore Channel for DNA Storage. , 2021, , .		9
84	Decoding for Optimal Expected Normalized Distance over the t-Deletion Channel. , 2021, , .		3
85	Trellis BMA: Coded Trace Reconstruction on IDS Channels for DNA Storage. , 2021, , .		31
86	Trace Reconstruction with Bounded Edit Distance. , 2021, , .		6
87	Approximate Trace Reconstruction: Algorithms. , 2021, , .		8
88	Mean-Based Trace Reconstruction over Practically any Replication-Insertion Channel. , 2021, , .		3
89	Batch Optimization for DNA Synthesis. , 2021, , .		3
90	On Levenshtein Balls with Radius One. , 2021, , .		4
91	Research on constructing artificial neural networks using genetic circuits to realize neuromorphic computing. Chinese Science Bulletin, 2021, , .	0.7	0
92	Capacity-Approaching Constrained Codes With Error Correction for DNA-Based Data Storage. IEEE Transactions on Information Theory, 2021, 67, 5602-5613.	2.4	36

		CITATION R	EPORT	
#	Article		IF	CITATIONS
93	Direct oligonucleotide sequencing with nanopores. Open Research Europe, 0, 1, 47.		2.0	0
94	Image storage onto synthetic DNA. Signal Processing: Image Communication, 2021, 9	7, 116331.	3.2	10
95	Multidimensional data organization and random access in large-scale DNA storage syst Theoretical Computer Science, 2021, 894, 190-202.	tems.	0.9	4
98	Novel Modalities in DNA Data Storage. Trends in Biotechnology, 2021, 39, 990-1003.		9.3	23
99	Data Storage Based on DNA. Small Structures, 2021, 2, 2000046.		12.0	36
108	Improved Coding Over Sets for DNA-Based Data Storage. IEEE Transactions on Informa 2022, 68, 118-129.	ition Theory,	2.4	4
109	Enhancing Physical and Thermodynamic Properties of DNA Storage Sets With End-Con Transactions on Nanobioscience, 2022, 21, 184-193.	istraint. IEEE	3.3	19
110	Electrically Controlled Nanofluidic DNA Sluice for Data Storage Applications. ACS Appl Materials, 2021, 4, 11063-11069.	ed Nano	5.0	5
115	Symbolwise MAP Estimation for Multiple-Trace Insertion/Deletion/Substitution Channe	:ls. , 2020, , .		4
117	Coding for Sequence Reconstruction for Single Edits. IEEE Transactions on Informatior 68, 66-79.	1 Theory, 2022,	2.4	12
118	Set-Codes with Small Intersections and Small Discrepancies. SIAM Journal on Discrete 2020, 34, 1148-1171.	Mathematics,	0.8	2
119	Current and emerging opportunities in biological mediumâ€based computing and digi Nano Select, 2022, 3, 883-902.	tal data storage.	3.7	2
120	Iterative Programming of Noisy Memory Cells. IEEE Transactions on Communications,	2022, 70, 769-782.	7.8	0
121	Electrochemical DNA synthesis and sequencing on a single electrode with scalability fo data storage. Science Advances, 2021, 7, eabk0100.	r integrated	10.3	27
122	A brief review on DNA storage, compression, and digitalization. Nano Communication 31, 100391.	Networks, 2022,	2.9	11
123	Coded trace reconstruction in a constant number of traces. , 2020, , .			11
124	DNA Sequence Error Corrections based on TensorFlow. , 2020, , .			2
125	Biochemical constraint compatible address design for fuzzy retrieval of images in DNA	Storage. , 2020,		0

#	Article	IF	CITATIONS
126	Channel Model with Memory for DNA Data Storage with Nanopore Sequencing. , 2021, , .		6
127	A JPEC-based image coding solution for data storage on DNA. , 2021, , .		10
128	Sequence Reconstruction Under Stutter Noise in Enzymatic DNA Synthesis. , 2021, , .		4
129	DNAâ€Based Concatenated Encoding System for Highâ€Reliability and Highâ€Density Data Storage. Small Methods, 2022, 6, e2101335.	8.6	20
130	Mean-Based Trace Reconstruction Over Oblivious Synchronization Channels. IEEE Transactions on Information Theory, 2022, 68, 4272-4281.	2.4	0
131	Expanding the Molecular Alphabet of DNA-Based Data Storage Systems with Neural Network Nanopore Readout Processing. Nano Letters, 2022, 22, 1905-1914.	9.1	18
132	Bio-Constrained Codes with Neural Network for Density-Based DNA Data Storage. Mathematics, 2022, 10, 845.	2.2	14
133	Particle detection and tracking with DNA. European Physical Journal C, 2022, 82, 1.	3.9	2
134	Encoding of non-biological information for its long-term storage in DNA. BioSystems, 2022, 215-216, 104664.	2.0	3
135	On the Capacity of DNA-based Data Storage under Substitution Errors. , 2021, , .		2
136	Reconstructing trees from traces. Annals of Applied Probability, 2021, 31, .	1.3	1
137	Explicit and Efficient Constructions of Linear Codes Against Adversarial Insertions and Deletions. IEEE Transactions on Information Theory, 2022, 68, 6516-6526.	2.4	0
138	Design considerations for advancing data storage with synthetic DNA for long-term archiving. Materials Today Bio, 2022, 15, 100306.	5.5	9
139	Rewritable two-dimensional DNA-based data storage with machine learning reconstruction. Nature Communications, 2022, 13, .	12.8	16
141	Managing reliability skew in DNA storage. , 2022, , .		3
142	Cipher constrained encoding for constraint optimization in extended nucleic acid memory. Computational Biology and Chemistry, 2022, 99, 107696.	2.3	0
143	Batch Optimization for DNA Synthesis. IEEE Transactions on Information Theory, 2022, 68, 7454-7470.	2.4	3
144	Selective Run-Length Constrained Encoding Scheme on Extended Nucleic Acid Memory. , 2022, , .		0

#	Article	IF	Citations
145	Adaptive coding for DNA storage with high storage density and low coverage. Npj Systems Biology and Applications, 2022, 8, .	3.0	26
146	Preservation and Encryption in DNA Digital Data Storage. ChemPlusChem, 2022, 87, .	2.8	9
147	Hidden Addressing Encoding for DNA Storage. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	10
148	Optimal Single Chromosome-Inversion Correcting Codes for Data Storage in Live DNA. , 2022, , .		2
149	Coding for Trace Reconstruction over Multiple Channels with Vanishing Deletion Probabilities. , 2022, , .		1
150	Reed Solomon Codes Against Adversarial Insertions and Deletions. , 2022, , .		1
151	Bee Identification Problem for DNA Strands. , 2022, , .		3
152	Insertion and Deletion Correction in Polymer-based Data Storage. , 2022, , .		2
154	10 Years of Natural Data Storage. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2022, 8, 263-275.	2.1	1
155	Balanced Set Codes With Small Intersections. IEEE Transactions on Information Theory, 2023, 69, 147-156.	2.4	4
156	Concatenated Codes for Multiple Reads of a DNA Sequence. IEEE Transactions on Information Theory, 2023, 69, 910-927.	2.4	5
157	Beyond Single-Deletion Correcting Codes: Substitutions and Transpositions. IEEE Transactions on Information Theory, 2023, 69, 169-186.	2.4	8
158	Integrated Microfluidic DNA Storage Platform with Automated Sample Handling and Physical Data Partitioning. Analytical Chemistry, 2022, 94, 13153-13162.	6.5	6
159	Data and image storage on synthetic DNA: existing solutions and challenges. Eurasip Journal on Image and Video Processing, 2022, 2022, .	2.6	1
160	Emerging Approaches to DNA Data Storage: Challenges and Prospects. ACS Nano, 2022, 16, 17552-17571.	14.6	48
161	Reconstruction of Sets of Strings From Prefix/Suffix Compositions. IEEE Transactions on Communications, 2023, 71, 3-12.	7.8	8
162	Log-likelihood Ratio for Low-Density Parity-Check Codes Under Binary Symmetric Erasure Channel in DNA Storage. , 2022, , .		0
163	Catalytic DNAâ€Assisted Mass Production of Arbitrary Singleâ€Stranded DNA. Angewandte Chemie - International Edition, 2023, 62, .	13.8	9

		CITATION REPORT		
#	Article	I	IF	CITATIONS
165	Catalytic DNAâ€Assisted Mass Production of Arbitrary Singleâ€Stranded DNA. Angewandte C	hemie, 0, ,	2.0	0
166	On the Size of Balls and Anticodes of Small Diameter Under the Fixed-Length Levenshtein Me Transactions on Information Theory, 2023, 69, 2324-2340.	tric. IEEE	2.4	1
167	The Noisy Drawing Channel: Reliable Data Storage in DNA Sequences. IEEE Transactions on In Theory, 2022, , 1-1.	formation	2.4	0
168	DNA computing-based Big Data storage. Advances in Computers, 2022, , .		1.6	0
169	A constrained Shannon-Fano entropy coder for image storage in synthetic DNA. , 2022, , .			5
170	The Input and Output Entropies of the k-Deletion/Insertion Channel with Small Radii. , 2022, ,			0
171	Codes for the Asymmetric Damerauâ \in "Levenshtein Distance. , 2022, , .			0
172	Bionicâ€structure thermoâ€responsive (best) hydrogels with controllable layer for highâ€cap data storage. Nano Select, 0, , .	acity DNA	3.7	1
173	Encoding, Decoding, and Rendering Information in DNA Nanoswitch Libraries. ACS Synthetic 2023, 12, 978-983.	3iology,	3.8	2
174	Modelling, Characterization of Data-Dependent and Process-Dependent Errors in DNA Data S IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2023, 20, 2147-2158.	corage.	3.0	2
175	Reed Solomon Codes Against Adversarial Insertions and Deletions. IEEE Transactions on Inform Theory, 2023, 69, 2991-3000.	nation	2.4	2
176	Insertion and Deletion Correction in Polymer-Based Data Storage. IEEE Transactions on Inforn Theory, 2023, 69, 4384-4406.	nation	2.4	0
177	DNAsmart: Multiple attribute ranking tool for DNA data storage systems. Computational and Structural Biotechnology Journal, 2023, 21, 1448-1460.		4.1	5
178	RBS: A Rotational Coding Based on Blocking Strategy for DNA Storage. IEEE Transactions on Nanobioscience, 2023, 22, 912-922.		3.3	3
179	Solid-State MoS ₂ Nanopore Membranes for Discriminating among the Lengths of on a Double-Stranded DNA: A New Simulation-Based Differentiating Algorithm. ACS Applied N Materials, 2023, 6, 4651-4660.	of RNA Tails ano	5.0	2
180	Evolutionary approach to construct robust codes for DNA-based data storage. Frontiers in Ge 0, 14, .	netics,	2.3	5
181	Study of the error correction capability of multiple sequence alignment algorithm (MAFFT) in storage. BMC Bioinformatics, 2023, 24, .	DNA :	2.6	4
182	An image cryptography method by highly error-prone DNA storage channel. Frontiers in Bioengineering and Biotechnology, 0, 11, .		4.1	0

#	Article	IF	CITATIONS
183	Optimal Codes Detecting Deletions in Concatenated Binary Strings Applied to Trace Reconstruction. IEEE Transactions on Information Theory, 2023, 69, 5687-5700.	2.4	0
184	Mobile and Self‧ustained Data Storage in an Extremophile Genomic DNA. Advanced Science, 2023, 10, .	11.2	6
185	BIC Codes: Bit Insertion-Based Constrained Codes With Error Correction for DNA Storage. IEEE Transactions on Emerging Topics in Computing, 2023, 11, 764-777.	4.6	3
186	Coding for Polymer-Based Data Storage. IEEE Transactions on Information Theory, 2023, 69, 4812-4836.	2.4	0
187	Toward highly effective loading of DNA in hydrogels for high-density and long-term information storage. Science Advances, 2023, 9, .	10.3	0
188	Magnetic DNA random access memory with nanopore readouts and exponentially-scaled combinatorial addressing. Scientific Reports, 2023, 13, .	3.3	2
189	DNA Data Storage. BioTech, 2023, 12, 44.	2.6	1
190	A Robust and Efficient DNA Storage Architecture Based on Modulation Encoding and Decoding. Journal of Chemical Information and Modeling, 2023, 63, 3967-3976.	5.4	3
191	Iterative Soft Decoding Algorithm for DNA Storage Using Quality Score and Redecoding. IEEE Transactions on Nanobioscience, 2024, 23, 81-90.	3.3	0
192	Integrating FPGA Acceleration in the DNAssim Framework for Faster DNA-Based Data Storage Simulations. Electronics (Switzerland), 2023, 12, 2621.	3.1	2
193	Achievable Information Rates and Concatenated Codes for the DNA Nanopore Sequencing Channel. , 2023, , .		0
194	Efficient DNA-Based Image Coding and Storage. , 2023, , .		0
195	DNA Encoding-Based Nucleotide Pattern and Deep Features for Instance and Class-Based Image Retrieval. IEEE Transactions on Nanobioscience, 2024, 23, 190-201.	3.3	2
196	Reducing cost in DNA-based data storage by sequence analysis-aided soft information decoding of variable-length reads. Bioinformatics, 2023, 39, .	4.1	1
197	Processing DNA Storage through Programmable Assembly in a Dropletâ€Based Fluidics System. Advanced Science, 2023, 10, .	11.2	2
198	Weakly mutually uncorrelated codes with maximum run length constraint for DNA storage. Computers in Biology and Medicine, 2023, 165, 107439.	7.0	1
199	Improving error-correcting capability in DNA digital storage via soft-decision decoding. National Science Review, 2024, 11, .	9.5	1
200	Gapped Binomial Complexities in Sequences. , 2023, , .		0

#	Article	IF	Citations
201	FrameD: framework for DNA-based data storage design, verification, and validation. Bioinformatics, 2023, 39, .	4.1	0
202	Cover Your Bases: How to Minimize the Sequencing Coverage in DNA Storage Systems. , 2023, , .		2
203	On Constant-Weight Binary B ₂ -Sequences. , 2023, , .		0
204	Deletion Correcting Codes for Efficient DNA Synthesis. , 2023, , .		2
205	On the Design of Codes for DNA Computing: Secondary Structure Avoidance Codes. , 2023, , .		1
206	DNA-Correcting Codes: End-to-end Correction in DNA Storage Systems. , 2023, , .		2
207	Improved Upper and Lower Bounds on the Capacity of the Binary Deletion Channel. , 2023, , .		1
208	Reservoir Computing With Dynamic Reservoir using Cascaded DNA Memristors. IEEE Transactions on Biomedical Circuits and Systems, 2024, 18, 131-144.	4.0	0
210	Survey of Information Encoding Techniques for DNA. ACM Computing Surveys, 2024, 56, 1-30.	23.0	1
211	Finite Blocklength Performance Bound for the DNA Storage Channel. , 2023, , .		0
212	Sequence Design and Reconstruction Under the Repeat Channel in Enzymatic DNA Synthesis. IEEE Transactions on Communications, 2024, 72, 675-691.	7.8	0
213	DNA-Based Storage of RDF Graph Data: A Futuristic Approach to Data Analytics. IEEE Access, 2023, 11, 129931-129944.	4.2	0
214	Efficiently Enabling Block Semantics and Data Updates in DNA Storage. , 2023, , .		0
215	Storageâ€D: A userâ€friendly platform that enables practical and personalized DNA data storage. , 2024, 3, .		0
217	Adaptable DNA Storage Coding: An Efficient Framework for Homopolymer Constraint Transitions. IEEE Access, 2024, 12, 9976-9983.	4.2	0
218	Reconstruction algorithms for DNA-storage systems. Scientific Reports, 2024, 14, .	3.3	1
219	Inkjet-printed quantum dots on paper as concept towards high-density long-term data storage. Journal of Physics Communications, 2024, 8, 025005.	1.2	1
220	"Cell Disk―DNA Storage System Capable of Random Reading and Rewriting. Advanced Science, 2024, 11, .	11.2	0

#	Article	IF	Citations
221	Storing Images in DNA via base128 Encoding. Journal of Chemical Information and Modeling, 2024, 64, 1719-1729.	5.4	0
222	Efficient data reconstruction: The bottleneck of large-scale application of DNA storage. Cell Reports, 2024, 43, 113699.	6.4	0