Broadband achromatic optical metasurface devices

Nature Communications 8, 187 DOI: 10.1038/s41467-017-00166-7

Citation Report

#	Article	IF	CITATIONS
1	Metalenses: Versatile multifunctional photonic components. Science, 2017, 358, .	6.0	671
2	GaN Metalens for Pixel-Level Full-Color Routing at Visible Light. Nano Letters, 2017, 17, 6345-6352.	4.5	312
3	Graphene Surface Plasmons With Dielectric Metasurfaces. Journal of Lightwave Technology, 2017, 35, 4553-4558.	2.7	88
4	Metasurface optical holography. Materials Today Physics, 2017, 3, 16-32.	2.9	104
5	Wide-Band and High-Efficiency 90° Polarization Rotator Based on Tri-Layered Perforated Metal Films. Journal of Lightwave Technology, 2017, 35, 4817-4823.	2.7	15
6	Multi-wavelength lenses for terahertz surface wave. Optics Express, 2017, 25, 24872.	1.7	7
7	Nanoapertures with ordered rotations: symmetry transformation and wide-angle flat lensing. Optics Express, 2017, 25, 31471.	1.7	114
8	MEMS-tunable dielectric metasurface lens. Nature Communications, 2018, 9, 812.	5.8	527
9	Dualâ€Wavelength Carpet Cloak Using Ultrathin Metasurface. Advanced Optical Materials, 2018, 6, 1800073.	3.6	55
10	Integrated Resonant Unit of Metasurfaces for Broadband Efficiency and Phase Manipulation. Advanced Optical Materials, 2018, 6, 1800031.	3.6	63
11	Polarization Encoded Color Image Embedded in a Dielectric Metasurface. Advanced Materials, 2018, 30, e1707499.	11.1	198
12	Subwavelength Optical Engineering with MetasurfaceÂWaves. Advanced Optical Materials, 2018, 6, 1701201.	3.6	148
13	Achromatic metasurface lens at visible wavelengths. Science Bulletin, 2018, 63, 333-335.	4.3	5
14	A broadband achromatic metalens in the visible. Nature Nanotechnology, 2018, 13, 227-232.	15.6	1,146
15	Plasmonic Metasurfaces for Simultaneous Thermal Infrared Invisibility and Holographic Illusion. Advanced Functional Materials, 2018, 28, 1706673.	7.8	151
16	Highly Efficient Wave-Front Reshaping of Surface Waves with Dielectric Metawalls. Physical Review Applied, 2018, 9, .	1.5	18
17	Functional metasurfaces based on metallic and dielectric subwavelength slits and stripes array. Journal of Physics Condensed Matter, 2018, 30, 144003.	0.7	11
18	A broadband achromatic metalens for focusing and imaging in the visible. Nature Nanotechnology, 2018, 13, 220-226.	15.6	1,190

TATION REDO

#	Article	IF	CITATIONS
19	Dispersion engineering in metamaterials and metasurfaces. Journal Physics D: Applied Physics, 2018, 51, 054002.	1.3	20
20	Metasurface for multi-channel terahertz beam splitters and polarization rotators. Applied Physics Letters, 2018, 112, .	1.5	56
21	Metasurface holography: from fundamentals to applications. Nanophotonics, 2018, 7, 1169-1190.	2.9	296
22	Diatomic Metasurface for Vectorial Holography. Nano Letters, 2018, 18, 2885-2892.	4.5	263
23	Reconfigurable Metasurface Cloak for Dynamical Electromagnetic Illusions. ACS Photonics, 2018, 5, 1718-1725.	3.2	110
24	Multifunctional Metamirror: Polarization Splitting and Focusing. ACS Photonics, 2018, 5, 1648-1653.	3.2	88
25	Broadband Photonic Spin Hall Meta-Lens. ACS Nano, 2018, 12, 82-88.	7.3	79
26	Visible Metasurfaces for On-Chip Polarimetry. ACS Photonics, 2018, 5, 2568-2573.	3.2	114
27	Flexible Broadband Achromatic Microwave Metalens Design Using Polynomial Fitting Method. , 2018, , .		0
28	Helicity-Induced Multifunctional Devices Based on Hybrid Metasurfaces. , 2018, , .		Ο
29	Asterisk Metasurface at 193 THz. , 2018, , .		0
30	Broadband achromatic dielectric metalenses. Light: Science and Applications, 2018, 7, 85.	7.7	449
31	A high numerical aperture, polarization-insensitive metalens for long-wavelength infrared imaging. Applied Physics Letters, 2018, 113, .	1.5	58
32	Feasibility Analysis of Nanostructured Planar Focusing Collectors for Concentrating Solar Power Applications. ACS Applied Energy Materials, 2018, 1, 6927-6935.	2.5	4
33	Combining Frequency-Selective Scattering and Specular Reflection Through Phase-Dispersion Tailoring of a Metasurface. Physical Review Applied, 2018, 10, .	1.5	41
34	Dielectric Metasurface-Based High-Efficiency Mid-Infrared Optical Filter. Nanomaterials, 2018, 8, 938.	1.9	35
35	Design of aluminum nitride metalens for broadband ultraviolet incidence routing. Nanophotonics, 2018, 8, 171-180.	2.9	49
36	Special Issue on "Metasurfaces: Physics and Applications― Applied Sciences (Switzerland), 2018, 8, 1727.	1.3	2

#	Article	IF	CITATIONS
37	Engineering Optics 2.0: A Revolution in Optical Materials, Devices, and Systems. ACS Photonics, 2018, 5, 4724-4738.	3.2	77
38	Metasurface-Based Polarimeters. Applied Sciences (Switzerland), 2018, 8, 594.	1.3	38
39	Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling. Nature Communications, 2018, 9, 4607.	5.8	129
40	Facile metagrating holograms with broadband and extreme angle tolerance. Light: Science and Applications, 2018, 7, 78.	7.7	134
41	Diodelike Spin-Orbit Interactions of Light in Chiral Metasurfaces. IEEE Transactions on Antennas and Propagation, 2018, 66, 7148-7155.	3.1	23
42	Invited Article: Nano-kirigami metasurfaces by focused-ion-beam induced close-loop transformation. APL Photonics, 2018, 3, .	3.0	31
43	Direct Characterization of Near-Field Coupling in Gap Plasmon-Based Metasurfaces. Nano Letters, 2018, 18, 6265-6270.	4.5	31
44	A meta-prism for high-efficiency coupling between free space and optical waveguides with different angular momentums. Europhysics Letters, 2018, 123, 38001.	0.7	Ο
45	Recent advances on optical vortex generation. Nanophotonics, 2018, 7, 1533-1556.	2.9	238
46	A review of dielectric optical metasurfaces for wavefront control. Nanophotonics, 2018, 7, 1041-1068.	2.9	473
47	A review of gap-surface plasmon metasurfaces: fundamentals and applications. Nanophotonics, 2018, 7, 1129-1156.	2.9	250
48	Geometric Metasurfaces for Ultrathin Optical Devices. Advanced Optical Materials, 2018, 6, 1800348.	3.6	58
49	Ultrahigh Numerical Aperture Metalens at Visible Wavelengths. Nano Letters, 2018, 18, 4460-4466.	4.5	187
50	All-optical active THz metasurfaces for ultrafast polarization switching and dynamic beam splitting. Light: Science and Applications, 2018, 7, 28.	7.7	202
51	Broadband Metasurface Carpet Cloak in the Near Infrared Region. IEEE Photonics Technology Letters, 2018, 30, 1281-1284.	1.3	19
52	Substrate aberration and correction for meta-lens imaging: an analytical approach. Applied Optics, 2018, 57, 2973.	0.9	10
53	Computational complex optical field imaging using a designed metasurface diffuser. Optica, 2018, 5, 924.	4.8	44
54	Large area metalenses: design, characterization, and mass manufacturing. Optics Express, 2018, 26, 1573.	1.7	162

#	ARTICLE	IF	CITATIONS
55	Accelerating convergence of an iterative solution of finite difference frequency domain problems via schur complement domain decomposition. Optics Express, 2018, 26, 16925.	1.7	7
56	Demonstration of color display metasurfaces via immersion lithography on a 12-inch silicon wafer. Optics Express, 2018, 26, 19548.	1.7	55
57	Theory of microscopic meta-surface waves based on catenary optical fields and dispersion. Optics Express, 2018, 26, 19555.	1.7	61
58	High efficiency dual-wavelength achromatic metalens via cascaded dielectric metasurfaces. Optical Materials Express, 2018, 8, 1940.	1.6	18
59	Optical field manipulation by dual magnetic resonances of a silicon metasurface. Optics Letters, 2018, 43, 3782.	1.7	1
60	Advances in optical metasurfaces: fabrication and applications [Invited]. Optics Express, 2018, 26, 13148.	1.7	235
61	Metasurfaces for broadband dispersion engineering through custom-tailored multi-resonances. Applied Physics Express, 2018, 11, 082004.	1.1	9
62	Highâ€Efficiency Metasurfaces: Principles, Realizations, and Applications. Advanced Optical Materials, 2018, 6, 1800415.	3.6	250
63	Highâ€Efficiency and Wideâ€Angle Beam Steering Based on Catenary Optical Fields in Ultrathin Metalens. Advanced Optical Materials, 2018, 6, 1800592.	3.6	131
64	Dielectric meta-walls for surface plasmon focusing and Bessel beam generation. Europhysics Letters, 2018, 122, 67002.	0.7	8
65	Active Tuning of Midinfrared Surface Plasmon Resonance and Its Hybridization in Black Phosphorus Sheet Array. ACS Photonics, 2018, 5, 3828-3837.	3.2	33
66	Metasurface-Based Ultrathin Beam Splitter with Variable Split Angle and Power Distribution. ACS Photonics, 2018, 5, 2997-3002.	3.2	64
67	Geometric metasurface enabling polarization independent beam splitting. Scientific Reports, 2018, 8, 9468.	1.6	53
68	Metalenses: Advances and Applications. Advanced Optical Materials, 2018, 6, 1800554.	3.6	149
69	Controlling phase of arbitrary polarizations using both the geometric phase and the propagation phase. Physical Review B, 2018, 97, .	1.1	34
70	A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials. Light: Science and Applications, 2018, 7, 50.	7.7	156
71	Broadband Achromatic Metalenses. , 2018, , .		0
72	Controlling the phase of optical nonlinearity with plasmonic metasurfaces. Nanophotonics, 2018, 7, 1013-1024.	2.9	30

#	Article	IF	CITATIONS
73	The novel graphene metasurfaces based on split-ring resonators for tunable polarization switching and beam steering at terahertz frequencies. Carbon, 2019, 154, 350-356.	5.4	50
74	Terahertz Dual-Polarization Beam Splitter Via an Anisotropic Matrix Metasurface. IEEE Transactions on Terahertz Science and Technology, 2019, 9, 491-497.	2.0	32
75	Multifunctional Metamirrors for Broadband Focused Vectorâ€Beam Generation. Advanced Optical Materials, 2019, 7, 1900724.	3.6	31
76	Optical meta-devices: advances and applications. Japanese Journal of Applied Physics, 2019, 58, SK0801.	0.8	23
77	Observation of Second Harmonic Generation in Lightning-Bolt-Like Shaped Nanostructured Metasurface. Journal of Electronic Materials, 2019, 48, 5119-5124.	1.0	0
78	Numerical design of a metasurface-based ultra-narrow band terahertz perfect absorber with high Q-factors. Optik, 2019, 194, 163071.	1.4	27
79	A Switchable Metasurface Between Meta-Lens and Absorber. IEEE Photonics Technology Letters, 2019, 31, 1187-1190.	1.3	20
80	A broadband achromatic metalens array for integral imaging in the visible. Light: Science and Applications, 2019, 8, 67.	7.7	201
81	An achromatic metalens in the near-infrared region with an array based on a single nano-rod unit. Applied Physics Express, 2019, 12, 092003.	1.1	23
82	Self-Stabilizing Laser Sails Based on Optical Metasurfaces. ACS Photonics, 2019, 6, 2032-2040.	3.2	35
83	Nanoscale optical lattices of arbitrary orders manipulated by plasmonic metasurfaces combining geometrical and dynamic phases. Nanoscale, 2019, 11, 14024-14031.	2.8	14
84	Broadband Polarization-Conversion Metasurface for a Cassegrain Antenna with High Polarization Purity. Physical Review Applied, 2019, 12, .	1.5	48
85	Experimental demonstration of a continuous varifocal metalens with large zoom range and high imaging resolution. Applied Physics Letters, 2019, 115, .	1.5	29
86	Spoof Plasmonic Metasurfaces with Catenary Dispersion for Two-Dimensional Wide-Angle Focusing and Imaging. IScience, 2019, 21, 145-156.	1.9	41
87	Dual-band and ultra-broadband photonic spin-orbit interaction for electromagnetic shaping based on single-layer silicon metasurfaces. Photonics Research, 2019, 7, 586.	3.4	12
88	Broadband achromatic metalens in terahertz regime. Science Bulletin, 2019, 64, 1525-1531.	4.3	98
89	Dielectric metasurfaces for complete and independent control of the optical amplitude and phase. Light: Science and Applications, 2019, 8, 92.	7.7	278
90	Optimization-free approach for broadband achromatic metalens of high-numerical-aperture with high-index dielectric metasurface. Journal Physics D: Applied Physics, 2019, 52, 505110.	1.3	21

#	Article	IF	CITATIONS
91	Simultaneous Spectral and Spatial Modulation for Color Printing and Holography Using All-Dielectric Metasurfaces. Nano Letters, 2019, 19, 8964-8971.	4.5	103
92	Constructing Metastructures with Broadband Electromagnetic Functionality. Advanced Materials, 2020, 32, e1904646.	11.1	85
93	All-Glass, Large Metalens at Visible Wavelength Using Deep-Ultraviolet Projection Lithography. Nano Letters, 2019, 19, 8673-8682.	4.5	165
94	Spin-Decoupled Multifunctional Metasurface for Asymmetric Polarization Generation. ACS Photonics, 2019, 6, 2933-2941.	3.2	74
95	Spectral tomographic imaging with aplanatic metalens. Light: Science and Applications, 2019, 8, 99.	7.7	107
96	A Multiâ€Foci Metalens with Polarizationâ€Rotated Focal Points. Laser and Photonics Reviews, 2019, 13, 1900182.	4.4	124
97	Chiral Metalens of Circular Polarization Dichroism with Helical Surface Arrays in Midâ€infrared Region. Advanced Optical Materials, 2019, 7, 1901129.	3.6	20
98	Ultrathin Tunable Lens Based on Boundary Tension Effect. Sensors, 2019, 19, 4018.	2.1	4
99	Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control. Light: Science and Applications, 2019, 8, 95.	7.7	165
100	Nearâ€Field Orbital Angular Momentum Generation and Detection Based on Spinâ€Orbit Interaction in Gold Metasurfaces. Advanced Theory and Simulations, 2019, 2, 1900133.	1.3	14
101	Interaction of semiconductor metasurfaces with short laser pulses: From nonlinear-optical response toward spatiotemporal shaping. Journal of Applied Physics, 2019, 126, .	1.1	14
102	Controlling the degrees of freedom in metasurface designs for multi-functional optical devices. Nanoscale Advances, 2019, 1, 3786-3806.	2.2	30
103	Progresses in the practical metasurface for holography and lens. Nanophotonics, 2019, 8, 1701-1718.	2.9	53
104	All-optical tuning of symmetry protected quasi bound states in the continuum. Applied Physics Letters, 2019, 115, .	1.5	36
105	A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nature Communications, 2019, 10, 355.	5.8	297
106	Achromatic metalens array for full-colour light-field imaging. Nature Nanotechnology, 2019, 14, 227-231.	15.6	408
107	Spin-Selected Dual-Wavelength Plasmonic Metalenses. Nanomaterials, 2019, 9, 761.	1.9	30
108	Highâ€Efficiency and Tunable Circularâ€Polarization Beam Splitting with a Liquidâ€Filled Allâ€Metallic	3.0	16

#	ARTICLE	IF	CITATIONS
109	Optical Metasurfaces for Designing Planar Cassegrain-Schwarzschild Objectives. Physical Review Applied, 2019, 11, .	1.5	11
110	Highly efficient beam splitter based on all-dielectric metasurfaces. Japanese Journal of Applied Physics, 2019, 58, 060918.	0.8	4
111	Generation of Switchable Singular Beams with Dynamic Metasurfaces. ACS Nano, 2019, 13, 7100-7106.	7.3	58
112	Metalens-Based Miniaturized Optical Systems. Micromachines, 2019, 10, 310.	1.4	45
113	Roadmap on superoscillations. Journal of Optics (United Kingdom), 2019, 21, 053002.	1.0	111
114	High-Efficiency Generation of Airy Beams with Huygens' Metasurface. Physical Review Applied, 2019, 11, .	1.5	65
115	Highly efficient asymmetric optical transmission by unbalanced excitation of surface evanescent waves in a single—layer dielectric gradient metasurface. Applied Physics Express, 2019, 12, 055010.	1.1	3
116	Quasicrystal Photonic Metasurfaces for Radiation Controlling of Second Harmonic Generation. Advanced Materials, 2019, 31, e1901188.	11.1	18
117	Quantum plasmonics get applied. Progress in Quantum Electronics, 2019, 65, 1-20.	3.5	70
118	Midinfrared real-time polarization imaging with all-dielectric metasurfaces. Applied Physics Letters, 2019, 114, .	1.5	60
119	Planar Aperiodic Arrays as Metasurfaces for Optical Near-Field Patterning. ACS Nano, 2019, 13, 5646-5654.	7.3	8
120	Lattice-Resonance Metalenses for Fully Reconfigurable Imaging. ACS Nano, 2019, 13, 4613-4620.	7.3	55
121	Ultra-thin Semiconductor/Metal Resonant Superabsorbers. Plasmonics, 2019, 14, 1427-1433.	1.8	2
122	Truncated titanium/semiconductor cones for wide-band solar absorbers. Nanotechnology, 2019, 30, 305203.	1.3	86
123	Reconfigurable Terahertz Metasurface Pure Phase Holograms. Advanced Optical Materials, 2019, 7, 1801696.	3.6	76
124	Polarization Generation and Manipulation Based on Nonlinear Plasmonic Metasurfaces. Advanced Optical Materials, 2019, 7, 1801747.	3.6	12
125	Photonic crystal fiber metalens. Nanophotonics, 2019, 8, 443-449.	2.9	87
126	Plasmonic field guided patterning of ordered colloidal nanostructures. Nanophotonics, 2019, 8, 505-512.	2.9	5

~			<u> </u>	
CĽ	ΓΑΤΙ	ION.	REPC	DRT

#	Article	IF	CITATIONS
127	Methodologies for Onâ€Demand Dispersion Engineering of Waves in Metasurfaces. Advanced Optical Materials, 2019, 7, 1801376.	3.6	23
128	Asymmetric all Silicon Micro-Antenna Array for High Angle Beam Bending in Terahertz Band. IEEE Photonics Journal, 2019, 11, 1-9.	1.0	10
129	An Etchingâ€Free Approach Toward Largeâ€Scale Lightâ€Emitting Metasurfaces. Advanced Optical Materials, 2019, 7, 1801271.	3.6	37
130	Multiwavelength achromatic microlens through phase compensation based on the subwavelength metallic nanostructures. Optics Communications, 2019, 445, 90-95.	1.0	5
131	Metalens in harmony with refractive optics. Science Bulletin, 2019, 64, 797-798.	4.3	3
132	Thermally Dependent Dynamic Metaâ€Holography Using a Vanadium Dioxide Integrated Metasurface. Advanced Optical Materials, 2019, 7, 1900175.	3.6	138
133	Manipulating Cherenkov Radiation and Smith–Purcell Radiation by Artificial Structures. Advanced Optical Materials, 2019, 7, 1801666.	3.6	40
134	Near-infrared tunable metalens based on phase change material Ge2Sb2Te5. Scientific Reports, 2019, 9, 5368.	1.6	57
135	From Singleâ€Ðimensional to Multidimensional Manipulation of Optical Waves with Metasurfaces. Advanced Materials, 2019, 31, e1802458.	11.1	127
136	Ultrathin transmissive metasurfaces for multi-wavelength optics in the visible. Applied Physics Letters, 2019, 114, .	1.5	16
137	In-plane coherent control of plasmon resonances for plasmonic switching and encoding. Light: Science and Applications, 2019, 8, 21.	7.7	29
138	Gapâ€Surface Plasmon Metasurfaces for Broadband Circularâ€ŧoâ€Linear Polarization Conversion and Vector Vortex Beam Generation. Advanced Optical Materials, 2019, 7, 1801414.	3.6	55
139	Flexible controls of broadband electromagnetic wavefronts with a mechanically programmable metamaterial. Scientific Reports, 2019, 9, 1809.	1.6	15
140	Broadband Achromatic Metalens in the Midinfrared Range. Physical Review Applied, 2019, 11, .	1.5	72
141	Metalenses and Meta-mirrors. , 2019, , 379-438.		1
142	Twisted Surface Plasmons with Spin ontrolled Gold Surfaces. Advanced Optical Materials, 2019, 7, 1801060.	3.6	36
143	Gap-surface Plasmon Metasurfaces for Structured Beams Generation. , 2019, , .		0
144	Broadband Achromatic Metasurface Devices. , 2019, , .		Ο

#	Article	IF	CITATIONS
145	Design of task-specific optical systems using broadband diffractive neural networks. Light: Science and Applications, 2019, 8, 112.	7.7	150
146	Chromatic Dispersion Manipulation Based on Metalenses. Advanced Materials, 2020, 32, e1904935.	11.1	46
147	Metasurface for Constructing a Stable Highâ€∢i>Q Planoâ€Planar Open Cavity. Advanced Optical Materials, 2019, 7, 1801339.	3.6	5
148	Heat Resisting Metallic Metaâ€5kin for Simultaneous Microwave Broadband Scattering and Infrared Invisibility Based on Catenary Optical Field. Advanced Materials Technologies, 2019, 4, 1800612.	3.0	32
149	Nanoscale Core–Shell Hyperbolic Structures for Ultralow Threshold Laser Action: An Efficient Platform for the Enhancement of Optical Manipulation. ACS Applied Materials & Interfaces, 2019, 11, 1163-1173.	4.0	11
150	Mitigating Chromatic Dispersion with Hybrid Optical Metasurfaces. Advanced Materials, 2019, 31, e1805555.	11.1	37
151	Broadband Functional Metasurfaces: Achieving Nonlinear Phase Generation toward Achromatic Surface Cloaking and Lensing. Advanced Optical Materials, 2019, 7, 1801480.	3.6	43
152	Total Reflection Metasurface with Pure Modulated Signal. Advanced Optical Materials, 2019, 7, 1801130.	3.6	11
153	Active all-dielectric bifocal metalens assisted by germanium antimony telluride. Journal Physics D: Applied Physics, 2019, 52, 095106.	1.3	28
154	Meta-optics and bound states in the continuum. Science Bulletin, 2019, 64, 836-842.	4.3	325
154 155	Meta-optics and bound states in the continuum. Science Bulletin, 2019, 64, 836-842. Completely Spin-Decoupled Dual-Phase Hybrid Metasurfaces for Arbitrary Wavefront Control. ACS Photonics, 2019, 6, 211-220.	4.3 3.2	325 132
	Completely Spin-Decoupled Dual-Phase Hybrid Metasurfaces for Arbitrary Wavefront Control. ACS		
155	Completely Spin-Decoupled Dual-Phase Hybrid Metasurfaces for Arbitrary Wavefront Control. ACS Photonics, 2019, 6, 211-220. Structured Semiconductor Interfaces: Active Functionality on Light Manipulation. Proceedings of the	3.2	132
155 156	Completely Spin-Decoupled Dual-Phase Hybrid Metasurfaces for Arbitrary Wavefront Control. ACS Photonics, 2019, 6, 211-220. Structured Semiconductor Interfaces: Active Functionality on Light Manipulation. Proceedings of the IEEE, 2020, 108, 772-794.	3.2 16.4	132 16
155 156 157	Completely Spin-Decoupled Dual-Phase Hybrid Metasurfaces for Arbitrary Wavefront Control. ACS Photonics, 2019, 6, 211-220. Structured Semiconductor Interfaces: Active Functionality on Light Manipulation. Proceedings of the IEEE, 2020, 108, 772-794. Three-Dimensional Aberration Analyses of Metasurface Flat Lenses. Plasmonics, 2020, 15, 225-233. Wideband Leaky-Wave Antennas Loaded With Gradient Metasurface for Fixed-Beam Radiations With	3.2 16.4 1.8	132 16 1
155 156 157 158	Completely Spin-Decoupled Dual-Phase Hybrid Metasurfaces for Arbitrary Wavefront Control. ACS Photonics, 2019, 6, 211-220. Structured Semiconductor Interfaces: Active Functionality on Light Manipulation. Proceedings of the IEEE, 2020, 108, 772-794. Three-Dimensional Aberration Analyses of Metasurface Flat Lenses. Plasmonics, 2020, 15, 225-233. Wideband Leaky-Wave Antennas Loaded With Gradient Metasurface for Fixed-Beam Radiations With Customized Tilting Angles. IEEE Transactions on Antennas and Propagation, 2020, 68, 161-170. Polariton Photonics Using Structured Metals and 2D Materials. Advanced Optical Materials, 2020, 8,	3.2 16.4 1.8 3.1	132 16 1 21
155 156 157 158 159	Completely Spin-Decoupled Dual-Phase Hybrid Metasurfaces for Arbitrary Wavefront Control. ACS Photonics, 2019, 6, 211-220. Structured Semiconductor Interfaces: Active Functionality on Light Manipulation. Proceedings of the IEEE, 2020, 108, 772-794. Three-Dimensional Aberration Analyses of Metasurface Flat Lenses. Plasmonics, 2020, 15, 225-233. Wideband Leaky-Wave Antennas Loaded With Gradient Metasurface for Fixed-Beam Radiations With Customized Tilting Angles. IEEE Transactions on Antennas and Propagation, 2020, 68, 161-170. Polariton Photonics Using Structured Metals and 2D Materials. Advanced Optical Materials, 2020, 8, 1901090.	 3.2 16.4 1.8 3.1 3.6 	132 16 1 21 15

#	Article	IF	CITATIONS
163	Emerging advanced metasurfaces: Alternatives to conventional bulk optical devices. Microelectronic Engineering, 2020, 220, 111146.	1.1	28
164	Metasurfaces Composed of Plasmonic Molecules: Hybridization Between Parallel and Orthogonal Surface Lattice Resonances. Advanced Optical Materials, 2020, 8, 1901109.	3.6	26
165	Simultaneous Achromatic and Varifocal Imaging with Quartic Metasurfaces in the Visible. ACS Photonics, 2020, 7, 120-127.	3.2	32
166	Dual-Band Metasurfaces Using Multiple Gap-Surface Plasmon Resonances. ACS Applied Materials & Interfaces, 2020, 12, 1250-1256.	4.0	18
167	All-metallic geometric metasurfaces for broadband and high-efficiency wavefront manipulation. Nanophotonics, 2020, 9, 3209-3215.	2.9	28
168	Metasurface Spiral Focusing Generators with Tunable Orbital Angular Momentum Based on Slab Silicon Nitride Waveguide and Vanadium Dioxide (VO2). Nanomaterials, 2020, 10, 1864.	1.9	7
169	Squeezing a Prism into a Surface: Emulating Bulk Optics with Achromatic Metasurfaces. Advanced Optical Materials, 2020, 8, 2000942.	3.6	17
170	Analysis of Tapered Nanopillars for Reflective Metalens: The Role of Higher-Order Modes. IEEE Photonics Journal, 2020, 12, 1-7.	1.0	4
171	Continuous scattering angle control of transmission terahertz wave by convolution manipulation of all-dielectric encoding metasurfaces. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	4
172	Demonstration of > 2Ï€ reflection phase range in optical metasurfaces based on detuned gap-surface plasmon resonators. Scientific Reports, 2020, 10, 19031.	1.6	11
173	Design of metasurfaces to enable shear horizontal wave trapping. Journal of Applied Physics, 2020, 128, .	1.1	10
174	Optical properties of metasurfaces infiltrated with liquid crystals. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20390-20396.	3.3	66
175	A hybrid achromatic metalens. Nature Communications, 2020, 11, 3892.	5.8	92
176	Axially Tailored Light Field by Means of a Dielectric Metalens. Physical Review Applied, 2020, 14, .	1.5	12
177	Broadband Achromatic Subâ€Diffraction Focusing by an Amplitudeâ€Modulated Terahertz Metalens. Advanced Optical Materials, 2020, 8, 2000842.	3.6	43
178	Bilayer liquid-filled compound microlens arrays: A way to compensate aberration. Journal of Applied Physics, 2020, 128, .	1.1	3
179	Metaâ€Imaging: from Nonâ€Computational to Computational. Advanced Optical Materials, 2020, 8, 2001000.	3.6	19
180	All-Dielectric Metasurface-Based Quad-Beam Splitter in the Terahertz Regime. IEEE Photonics Journal, 2020, 12, 1-10.	1.0	11

#	Article	IF	CITATIONS
181	Achromatic Huygens' Metalenses with Deeply Subwavelength Thickness. Advanced Optical Materials, 2020, 8, 2000754.	3.6	26
182	Revisiting the Fresnel-phase-matched nonlinear frequency conversion. Physical Review A, 2020, 102, .	1.0	1
183	Harnessing Evanescent Waves by Bianisotropic Metasurfaces. Laser and Photonics Reviews, 2020, 14, 1900244.	4.4	33
184	Lightâ€Controlled Nearâ€Field Energy Transfer in Plasmonic Metasurface Coupled MoS 2 Monolayer. Small, 2020, 16, 2003539.	5.2	16
185	Single-Element Diffraction-Limited Fisheye Metalens. Nano Letters, 2020, 20, 7429-7437.	4.5	104
186	Mid-infrared polarization-controlled broadband achromatic metadevice. Science Advances, 2020, 6, .	4.7	71
187	Nanostructured Color Filters: A Review of Recent Developments. Nanomaterials, 2020, 10, 1554.	1.9	15
188	Atomically Thin Noble Metal Dichalcogenides for Phase-Regulated Meta-optics. Nano Letters, 2020, 20, 7811-7818.	4.5	27
189	Polarization Independent Achromatic Meta-Lens Designed for the Terahertz Domain. Frontiers in Physics, 2020, 8, .	1.0	12
190	Dielectric Resonance-Based Optical Metasurfaces: From Fundamentals to Applications. IScience, 2020, 23, 101868.	1.9	37
191	At-will chromatic dispersion by prescribing light trajectories with cascaded metasurfaces. Light: Science and Applications, 2020, 9, 93.	7.7	32
192	Chirality-selected second-harmonic holography with phase and binary amplitude manipulation. Nanoscale, 2020, 12, 13330-13337.	2.8	14
193	Flat optics with dispersion-engineered metasurfaces. Nature Reviews Materials, 2020, 5, 604-620.	23.3	411
194	Metasurface waves in digital optics. JPhys Photonics, 2020, 2, 041003.	2.2	17
195	Chip-scale molecule trapping by a blue-detuned metasurface hollow beam. Journal of Optics (United) Tj ETQq0 0	0 rgBT /O\ 190	verlock 10 T
196	CMOS-compatible a-Si metalenses on a 12-inch glass wafer for fingerprint imaging. Nanophotonics, 2020, 9, 823-830.	2.9	46
197	Multifunctional Metasurface: Coplanar Embedded Design for Metalens and Nanoprinted Display. ACS Photonics, 2020, 7, 1171-1177.	3.2	25
198	Metasurfaces: Subwavelength nanostructure arrays for ultrathin flat optics and photonics. MRS Bulletin, 2020, 45, 180-187.	1.7	19

		CITATION REPORT	
#	Article	IF	CITATIONS
199	Optical wavefront shaping based on functional metasurfaces. Nanophotonics, 2020, 9, 987-1002.	2.9	36
200	Recent advances in optical metasurfaces for polarization detection and engineered polarization profiles. Nanophotonics, 2020, 9, 1003-1014.	2.9	95
201	Portable deep learning singlet microscope. Journal of Biophotonics, 2020, 13, e202000013.	1.1	8
202	Photonic Metasurfaces as Relativistic Light Sails for Dopplerâ€Broadened Stable Beamâ€Riding and Radiative Cooling. Laser and Photonics Reviews, 2020, 14, 1900311.	d 4.4	35
203	Metalens-array–based high-dimensional and multiphoton quantum source. Science, 2020, 368, 1487-1490.	6.0	239
204	Octave bandwidth photonic fishnet-achromatic-metalens. Nature Communications, 2020, 11, 320.	5. 5.8	108
205	Multiplexed Anticounterfeiting Meta-image Displays with Single-Sized Nanostructures. Nano Letter 2020, 20, 1830-1838.	rs, 4.5	142
206	Silicon multi-resonant metasurface for full-spectrum perfect solar energy absorption. Solar Energy, 2020, 199, 360-365.	2.9	14
207	Spin ontrolled Nonlinear Harmonic Generations from Plasmonic Metasurfaces Coupled to Intersubband Transitions. Advanced Optical Materials, 2020, 8, 2000004.	3.6	15
208	Metasurfaces-based imaging and applications: from miniaturized optical components to functional imaging platforms. Nanoscale Advances, 2020, 2, 605-625.	2.2	52
209	Recent advances in infrared imagers: toward thermodynamic and quantum limits of photon sensitivity. Reports on Progress in Physics, 2020, 83, 044101.	8.1	20
210	Observation of an exceptional point in a non-Hermitian metasurface. Nanophotonics, 2020, 9, 103	1-1039. 2.9	55
211	Achromatic reflected metalens for highly directional and long-distance acoustic probing. New Journal of Physics, 2020, 22, 023006.	1.2	10
212	Cavity-enhanced metallic metalens with improved Efficiency. Scientific Reports, 2020, 10, 417.	1.6	6
213	A Tunable Metasurface with Switchable Functionalities: From Perfect Transparency to Perfect Absorption. Advanced Optical Materials, 2020, 8, 1901548.	3.6	160
214	Broadband transmission-type 1-bit coding metasurface for electromagnetic beam forming and scanning. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.	2.0	31
215	Optical Metasurfaces Are Coming of Age: Short- and Long-Term Opportunities for Commercial Applications. ACS Photonics, 2020, 7, 1323-1354.	3.2	35
216	Development of diffraction binary grating using hot embossing processing with electroformed nick mold for broadband IR optics. Infrared Physics and Technology, 2020, 107, 103293.	zel 1.3	1

#	Article	IF	CITATIONS
217	Switchable Metasurface With Broadband and Highly Efficient Electromagnetic Functionality. Frontiers in Physics, 2020, 8, .	1.0	5
218	<i>In vivo</i> immunological response of exposure to PEGylated graphene oxide <i>via</i> intraperitoneal injection. Journal of Materials Chemistry B, 2020, 8, 6845-6856.	2.9	14
219	Diffractive metalens: from fundamentals, practical applications to current trends. Advances in Physics: X, 2020, 5, 1742584.	1.5	22
220	High-efficiency, polarization-independent back reflector. Optics Communications, 2021, 479, 126320.	1.0	0
221	Two-dimensional optical spatial differentiation and high-contrast imaging. National Science Review, 2021, 8, nwaa176.	4.6	74
222	Optical vortex knots and links via holographic metasurfaces. Advances in Physics: X, 2021, 6, .	1.5	9
223	Achromatic Dielectric Metasurface with Linear Phase Gradient in the Terahertz Domain. Advanced Optical Materials, 2021, 9, 2001403.	3.6	27
224	Construct Achromatic Polymer Microlens for Highâ€Transmission Fullâ€Color Imaging. Advanced Optical Materials, 2021, 9, 2001524.	3.6	7
225	Generation of Concentric Space-Variant Linear Polarized Light by Dielectric Metalens. Nano Letters, 2021, 21, 562-568.	4.5	5
226	Kerr Metasurface Enabled by Metallic Quantum Wells. Nano Letters, 2021, 21, 330-336.	4.5	8
227	Ultraâ€Broadband Highâ€Efficiency Airy Optical Beams Generated with Allâ€Silicon Metasurfaces. Advanced Optical Materials, 2021, 9, .	3.6	27
228	Monolithicâ€Integrated Multiplexed Devices Based on Metasurfaceâ€Driven Guided Waves. Advanced Theory and Simulations, 2021, 4, 2000239.	1.3	22
229	Coupling Plasmonic System for Efficient Wavefront Control. ACS Applied Materials & Interfaces, 2021, 13, 5844-5852.	4.0	22
230	Design and fabrication of off-axis meta-lens with large focal depth. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 197802-197802.	0.2	1
231			
	An ultrabroadband 3D achromatic metalens. Nanophotonics, 2021, 10, 1259-1264.	2.9	42
232	An ultrabroadband 3D achromatic metalens. Nanophotonics, 2021, 10, 1259-1264. All-dielectric orthogonal doublet cylindrical metalens in long-wave infrared regions. Optics Express, 2021, 29, 3524.	2.9 1.7	42 12
232 233	All-dielectric orthogonal doublet cylindrical metalens in long-wave infrared regions. Optics Express,		

		CITATION REPORT		
#	Article		IF	CITATIONS
235	Meta-objective with sub-micrometer resolution for microendoscopes. Photonics Resear	ch, 2021, 9, 106.	3.4	22
236	Recent progresses on metamaterials for optical absorption and sensing: a review. Journa Applied Physics, 2021, 54, 113002.	al Physics D:	1.3	58
237	Generation of focusing ring of metalens and its application in optical trapping of cold m Wuli Xuebao/Acta Physica Sinica, 2021, .	iolecules.	0.2	0
238	Design of high efficiency achromatic metalens with large operation bandwidth using bil architecture. Opto-Electronic Advances, 2021, 4, 200008-200008.	ayer	6.4	94
239	Grapheneâ€Integrated Reconfigurable Metasurface for Independent Manipulation of Re Magnitude and Phase. Advanced Optical Materials, 2021, 9, 2001950.	flection	3.6	32
240	Principles, Functions, and Applications of Optical Meta‣ens. Advanced Optical Materi 2001414.	ials, 2021, 9,	3.6	112
241	Broadband Achromatic Transmission–Reflectionâ€Integrated Metasurface Based on F Multiplexing and Dispersion Engineering. Advanced Optical Materials, 2021, 9, 200173		3.6	7
242	Quantum photonics based on metasurfaces. Opto-Electronic Advances, 2021, 4, 20009	2-200092.	6.4	50
243	A Review on Metasurface: From Principle to Smart Metadevices. Frontiers in Physics, 20	21, 8, .	1.0	146
244	Topological-Insulator-Based Gap-Surface Plasmon Metasurfaces. Photonics, 2021, 8, 40		0.9	2
245	Spectral imaging and spectral LIDAR systems: moving toward compact nanophotonics- Nanophotonics, 2021, 10, 1437-1467.	pased sensing.	2.9	28
246	Metasurfaces with Planar Chiral Meta-Atoms for Spin Light Manipulation. Nano Letters, 1815-1821.	2021, 21,	4.5	62
247	Endless Single-Mode Photonics Crystal Fiber Metalens for Broadband and Efficient Focu Near-Infrared Range. Micromachines, 2021, 12, 219.	sing in	1.4	6
248	Phase characterisation of metalenses. Light: Science and Applications, 2021, 10, 52.		7.7	44
249	Double-layer metalens with a reduced meta-atom aspect ratio. Optics Letters, 2021, 46	, 1510.	1.7	9
250	Conformally Mapped Mikaelian Lens for Broadband Achromatic High Resolution Focusir Photonics Reviews, 2021, 15, 2000564.	ng. Laser and	4.4	13
251	Subwavelength optical localization with toroidal excitations in plasmonic and <scp>Mie metamaterials. InformaÄnÃ-Materiály, 2021, 3, 577-597.</scp>	?	8.5	27
252	Multifunctional metalens generation using bilayer all-dielectric metasurfaces. Optics Exp 29, 9332.	press, 2021,	1.7	32

#	Article	IF	CITATIONS
253	Dualâ€Functional Optical Waveplates Based on Gap‣urface Plasmon Metasurfaces. Advanced Optical Materials, 2021, 9, 2002253.	3.6	21
254	Recent Advances in Polarizationâ€Encoded Optical Metasurfaces. Advanced Photonics Research, 2021, 2, 2000173.	1.7	46
255	High-performance gallium nitride dielectric metalenses for imaging in the visible. Scientific Reports, 2021, 11, 6500.	1.6	18
256	Constructing an achromatic polarization-dependent bifocal metalens with height-gradient metastructures. Optics Letters, 2021, 46, 1193.	1.7	11
257	Interference-enhanced chirality-reversible dichroism metalens imaging using nested dual helical surfaces. Optica, 2021, 8, 502.	4.8	8
258	Coded Liquid Crystal Metasurface for Achromatic Imaging in the Broadband Wavelength Range. ACS Applied Nano Materials, 2021, 4, 5068-5075.	2.4	9
259	Metasurface Fabrication by Cryogenic and Bosch Deep Reactive Ion Etching. Micromachines, 2021, 12, 501.	1.4	15
260	Metalenses: from design principles to functional applications. Frontiers of Optoelectronics, 2021, 14, 170-186.	1.9	16
261	Metasurface Holography in the Microwave Regime. Photonics, 2021, 8, 135.	0.9	22
262	A design method of broadband metalens using time-domain topology optimization. AlP Advances, 2021, 11, .	0.6	4
263	Space-Time-Coding Digital Metasurfaces: Principles and Applications. Research, 2021, 2021, 9802673.	2.8	36
264	Multi-channel beam splitters based on gradient metasurfaces. Results in Physics, 2021, 24, 104084.	2.0	10
265	Generation of needle beams through focusing of azimuthally polarized vortex beams by polarization-insensitive metasurfaces. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 1869.	0.9	13
266	Integrating the optical tweezers and spanner onto an individual single-layer metasurface. Photonics Research, 2021, 9, 1062.	3.4	46
267	Bandpass-filter-integrated multiwavelength achromatic metalens. Photonics Research, 2021, 9, 1384.	3.4	31
268	High-efficiency reflection phase tunable metasurface at near-infrared frequencies*. Chinese Physics B, 2021, 30, 057802.	0.7	2
269	Generalized Pancharatnam-Berry Phase in Rotationally Symmetric Meta-Atoms. Physical Review Letters, 2021, 126, 183902.	2.9	95
270	Dynamic Display of Full-Stokes Vectorial Holography Based on Metasurfaces. ACS Photonics, 2021, 8, 1746-1753.	3.2	29

#	Article	IF	CITATIONS
271	Electrically Tunable Terahertz Focusing Modulator Enabled by Liquid Crystal Integrated Dielectric Metasurface. Crystals, 2021, 11, 514.	1.0	7
272	Light-emitting metalenses and meta-axicons for focusing and beaming of spontaneous emission. Nature Communications, 2021, 12, 3591.	5.8	31
273	Multidimensional light field manipulation and applications based on optical metasurface. , 2021, , .		1
274	Anomalous deflection based on three-dimensional variable nanopillar metasurfaces. , 2021, , .		1
275	Broadband, Highâ€Efficiency and Wideâ€Incidentâ€Angle Anomalous Reflection in Groove Metagratings. Annalen Der Physik, 2021, 533, 2100149.	0.9	4
276	Fabrication and imaging of liquid crystal-based metalens. , 2021, , .		0
277	Asymmetric hologram with a single-size nanostructured metasurface. Optics Express, 2021, 29, 19964.	1.7	17
278	Cubic-Phase Metasurface for Three-Dimensional Optical Manipulation. Nanomaterials, 2021, 11, 1730.	1.9	15
279	Single-layer phase gradient mmWave metasurface for incident angle independent focusing. Scientific Reports, 2021, 11, 12671.	1.6	12
280	Varifocal Metalens for Optical Sectioning Fluorescence Microscopy. Nano Letters, 2021, 21, 5133-5142.	4.5	97
281	Multifunctional Allâ€Dielectric Metasurfaces for Terahertz Multiplexing. Advanced Optical Materials, 2021, 9, 2100506.	3.6	24
282	A Broad-Band Achromatic Polarization-Insensitive In-Plane Lens with High Focusing Efficiency. ACS Photonics, 2021, 8, 2481-2488.	3.2	7
283	Edge detection with meta-lens: from one dimension to three dimensions. Nanophotonics, 2021, 10, 3709-3715.	2.9	33
284	Graphene-enabled active terahertz focusing with wide tuning range. Journal Physics D: Applied Physics, 2021, 54, 385104.	1.3	5
285	Broadband Achromatic Metalens in Midâ€Wavelength Infrared. Laser and Photonics Reviews, 2021, 15, 2100020.	4.4	54
286	Multiobjective Statistical Learning Optimization of RGB Metalens. ACS Photonics, 2021, 8, 2498-2508.	3.2	25
287	Metalens Eyepiece for 3D Holographic Near-Eye Display. Nanomaterials, 2021, 11, 1920.	1.9	15
288	Accurate and broadband manipulations of harmonic amplitudes and phases to reach 256 QAM millimeter-wave wireless communications by time-domain digital coding metasurface. National Science	4.6	46

#	Article	IF	CITATIONS
289	Optical Multiparameter Detection System Based on a Broadband Achromatic Metalens Array. Advanced Optical Materials, 2021, 9, 2100772.	3.6	7
290	Polarization-insensitive GaN metalenses at visible wavelengths. Scientific Reports, 2021, 11, 14541.	1.6	14
291	Time-Effective Simulation Methodology for Broadband Achromatic Metalens Using Deep Neural Networks. Nanomaterials, 2021, 11, 1966.	1.9	8
292	Graphene metalens with dynamic focusing and plane focusing in the terahertz range. Applied Optics, 2021, 60, 5752.	0.9	13
293	Metasurfaces 2.0: Laser-integrated and with vector field control. APL Photonics, 2021, 6, 080902.	3.0	18
294	Geometric Phase in Optics: From Wavefront Manipulation to Waveguiding. Laser and Photonics Reviews, 2021, 15, 2100003.	4.4	44
295	High Transmittance and Broadband Group Delay Metasurface Element in Ka Band. , 2021, , .		0
296	Broadband continuous beam-steering with time-modulated metasurfaces in the near-infrared spectral regime. APL Photonics, 2021, 6, 086109.	3.0	15
297	Surface Plasmonic Sensors: Sensing Mechanism and Recent Applications. Sensors, 2021, 21, 5262.	2.1	54
298	Highly efficient achromatic subdiffraction focusing lens in the near field with large numerical aperture. Photonics Research, 2021, 9, 2088.	3.4	3
299	Continuous-zoom bifocal metalens by mutual motion of cascaded bilayer metasurfaces in the visible. Optics Express, 2021, 29, 26569.	1.7	16
300	Electromagnetic Architectures: Structures, Properties, Functions and Their Intrinsic Relationships in Subwavelength Optics and Electromagnetics. Advanced Photonics Research, 2021, 2, 2100023.	1.7	9
301	Silicon Metalens Fabrication from Electron Beam to UV-Nanoimprint Lithography. Nanomaterials, 2021, 11, 2329.	1.9	11
302	Broadband achromatic metalens based on lithium niobite on insulator. Journal Physics D: Applied Physics, 2021, 54, 485103.	1.3	10
303	Next-Generation Imaging Techniques: Functional and Miniaturized Optical Lenses Based on Metamaterials and Metasurfaces. Micromachines, 2021, 12, 1142.	1.4	7
304	Chromatic aberration in planar focusing mirrors based on a monolithic high contrast grating. Optics Express, 2021, 29, 30296.	1.7	Ο
305	Multistate Nonvolatile Metamirrors with Tunable Optical Chirality. ACS Applied Materials & Interfaces, 2021, 13, 45890-45897.	4.0	22
306	Broadband achromatic metalens and meta-deflector based on integrated metasurface. Journal Physics D: Applied Physics, 2022, 55, 025107.	1.3	6

#	Article	IF	CITATIONS
307	Symmetric and asymmetric photonic spin-orbit interaction in metasurfaces. Progress in Quantum Electronics, 2021, 79, 100344.	3.5	16
308	Aberration-corrected large-scale hybrid metalenses. Optica, 2021, 8, 1405.	4.8	28
309	High-efficiency broadband achromatic metalens for near-IR biological imaging window. Nature Communications, 2021, 12, 5560.	5.8	130
310	Multipole optimization of light focusing by silicon nanosphere structures. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 3009.	0.9	4
311	Asymmetric off-axis focusing THz metasurface for circularly polarized light waves. Results in Physics, 2021, 29, 104815.	2.0	1
312	Nanophotonic Color Routing. Advanced Materials, 2021, 33, e2103815.	11.1	24
313	Experimental realization of ultrasonic retroreflection tweezing via metagratings. Ultrasonics, 2021, 117, 106548.	2.1	14
314	Neural network enabled metasurface design for phase manipulation. Optics Express, 2021, 29, 2521.	1.7	39
315	Metasurfaces for manipulating terahertz waves. Light Advanced Manufacturing, 2021, 2, 148.	2.2	61
316	Meta-optics achieves RCB-achromatic focusing for virtual reality. Science Advances, 2021, 7, .	4.7	142
317	Phase Manipulation of Electromagnetic Waves with Metasurfaces and Its Applications in Nanophotonics. Advanced Optical Materials, 2018, 6, 1800104.	3.6	103
318	Multifunctional linearâ€polarized terahertz focusing metasurface. Microwave and Optical Technology Letters, 2020, 62, 2721-2727.	0.9	5
319	Recent Progress on Ultrathin Metalenses for Flat Optics. IScience, 2020, 23, 101877.	1.9	55
320	Numerical simulation research of wide-angle beam steering based on catenary shaped ultrathin metalens. Optics Communications, 2020, 474, 126085.	1.0	5
321	Metasurface Generation of Paired Accelerating and Rotating Optical Beams for Passive Ranging and Scene Reconstruction. ACS Photonics, 2020, 7, 1529-1536.	3.2	32
322	Controllable chiral emissions from free-electron driven plasmonic metasurfaces. Journal Physics D: Applied Physics, 2021, 54, 105105.	1.3	4
323	Graphene-enabled reconfigurable terahertz wavefront modulator based on complete Fermi level modulated phase. New Journal of Physics, 2020, 22, 063054.	1.2	10
324	Efficient Manipulation of Terahertz waves by multi-bit Coding Metasurfaces and its further application. Chinese Physics B, 0, , .	0.7	17

	CITATION	Report	
#	Article	IF	Citations
325	Numerical study on the tight focusing of radially polarized beams with polarization-insensitive metalenses. Journal of Optics (United Kingdom), 2020, 22, 105104.	1.0	7
326	Reconfigurable metasurfaces with mechanical actuations: towards flexible and tunable photonic devices. Journal of Optics (United Kingdom), 2021, 23, 013001.	1.0	16
327	Liquid crystal integrated metalens with tunable chromatic aberration. Advanced Photonics, 2020, 2, 1.	6.2	68
328	Metalens for structure light. , 2018, , .		2
329	Large area metasurface lenses in the NIR region. , 2019, , .		2
330	Imaging based on metalenses. PhotoniX, 2020, 1, .	5.5	104
331	Achieving high numerical aperture near-infrared imaging based on an ultrathin cylinder dielectric metalens. Applied Optics, 2019, 58, 8914.	0.9	10
332	Subwavelength interference of light on structured surfaces. Advances in Optics and Photonics, 2018, 10, 757.	12.1	76
333	Electromagnetic metasurfaces: physics and applications. Advances in Optics and Photonics, 2019, 11, 380.	12.1	324
334	Photonic crystal fiber metalens enabled by geometric phase optical metasurfaces. , 2018, , .		2
335	Optical focusing based on the planar metasurface reflector with application to trapping cold molecules. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 3049.	0.9	6
336	Polarization-insensitive dielectric metalenses with different numerical apertures and off-axis focusing characteristics. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 3588.	0.9	7
337	Metasurface of deflection prism phases for generating non-diffracting optical vortex lattices. Optics Express, 2018, 26, 28228.	1.7	14
338	Bandwidth and size limits of achromatic printed-circuit metasurfaces. Optics Express, 2018, 26, 29440.	1.7	17
339	Liquid crystal tunable terahertz lens with spin-selected focusing property. Optics Express, 2019, 27, 8800.	1.7	42
340	Cascaded metasurface for simultaneous control of transmission and reflection. Optics Express, 2019, 27, 9061.	1.7	30
341	Polarization-independent infrared micro-lens array based on all-silicon metasurfaces. Optics Express, 2019, 27, 10738.	1.7	37
342	Mechanically tunable focusing metamirror in the visible. Optics Express, 2019, 27, 15194.	1.7	23

#	Article	IF	CITATIONS
343	Multi-functional coding metasurface for dual-band independent electromagnetic wave control. Optics Express, 2019, 27, 19196.	1.7	24
344	Polarization controllable generation of flat superimposed OAM states based on metasurface. Optics Express, 2019, 27, 20133.	1.7	15
345	Computational inverse design for cascaded systems of metasurface optics. Optics Express, 2019, 27, 30308.	1.7	62
346	Ultra-thin transmissive crystalline silicon high-contrast grating metasurfaces. Optics Express, 2019, 27, 30931.	1.7	4
347	Polarization and direction-controlled asymmetric multifunctional metadevice for focusing, vortex and Bessel beam generation. Optics Express, 2020, 28, 3732.	1.7	10
348	A fractional phase-coding strategy for terahertz beam patterning on digital metasurfaces. Optics Express, 2020, 28, 6395.	1.7	17
349	General design formalism for highly efficient flat optics for broadband applications. Optics Express, 2020, 28, 6452.	1.7	12
350	Doublet metalens design for high numerical aperture and simultaneous correction of chromatic and monochromatic aberrations. Optics Express, 2020, 28, 18059.	1.7	57
351	Tuning the phase and amplitude response of plasmonic metasurface etalons. Optics Express, 2020, 28, 17923.	1.7	8
352	Towards high-throughput large-area metalens fabrication using UV-nanoimprint lithography and Bosch deep reactive ion etching. Optics Express, 2020, 28, 15542.	1.7	26
353	Graphene-enabled electrically tunability of metalens in the terahertz range. Optics Express, 2020, 28, 28101.	1.7	14
354	Geometry phase for generating multiple focal points with different polarization states. Optics Express, 2020, 28, 28452.	1.7	9
355	Dual-layer achromatic metalens design with an effective Abbe number. Optics Express, 2020, 28, 26041.	1.7	47
356	Overcome chromatism of metasurface via Greedy Algorithm empowered by self-organizing map neural network. Optics Express, 2020, 28, 35724.	1.7	6
357	Helicity multiplexed terahertz multi-foci metalens. Optics Letters, 2020, 45, 463.	1.7	33
358	High-efficiency, linear-polarization-multiplexing metalens for long-wavelength infrared light. Optics Letters, 2018, 43, 6005.	1.7	25
359	Plasmonic color printing based on third-order gap surface plasmons [Invited]. Optical Materials Express, 2019, 9, 717.	1.6	7
360	Multifunctional 2.5D metastructures enabled by adjoint optimization. Optica, 2020, 7, 77.	4.8	111

ARTICLE IF CITATIONS # Focusing on bandwidth: achromatic metalens limits. Optica, 2020, 7, 624. 4.8 109 361 Aberration-corrected three-dimensional positioning with a single-shot metalens array. Optica, 2020, 7, 4.8 1706. 363 Dynamic 2D implementation of 3D diffractive optics. Optica, 2018, 5, 1220. 4.8 24 Direct polarization measurement using a multiplexed Pancharatnam–Berry metahologram. Optica, 364 4.8 2019, 6, 1190. High performance metalenses: numerical aperture, aberrations, chromaticity, and trade-offs. Optica, 365 4.8 114 2019, 6, 1461. Design of a broadband achromatic dielectric metalens for linear polarization in the near-infrared 1.8 spectrum. OSA Continuum, 2018, 1, 882. Dynamically tunable polarization-independent terahertz absorber based on bulk Dirac semimetals. OSA 367 1.8 7 Continuum, 2019, 2, 2477. Single flat lens enabling imaging in the short-wave infra-red (SWIR) band. OSA Continuum, 2019, 2, 1.8 2968. Upper bound of efficiency for Smith-Purcell emission and evanescent-to-propagating wave conversion 369 1.8 2 in metal-groove metasurfaces. OSA Continuum, 2020, 3, 1608. Dielectric metalens-based Hartmannâ€"Shack array for a high-efficiency optical multiparameter 370 3.4 detection system. Photonics Research, 2020, 8, 482. Bi-channel near- and far-field optical vortex generator based on a single plasmonic metasurface. 371 19 3.4 Photonics Research, 2020, 8, 986. Gap-surface plasmon metasurfaces for linear-polarization conversion, focusing, and beam splitting. 3.4 Photonics Research, 2020, 8, 707. Design and analysis of extended depth of focus metalenses for achromatic computational imaging. 373 3.4 35 Photonics Research, 2020, 8, 1613. Multifunctional geometric phase optical element for high-efficiency full Stokes imaging polarimetry. 374 3.4 Photonics Research, 2019, 7, 1066. Ultra-broadband photoresponse of localized surface plasmon resonance from Si-based pyramid 375 23 3.4 structures. Photonics Research, 2019, 7, 1119. Optical telescope with Cassegrain metasurfaces. Nanophotonics, 2020, 9, 3263-3269. Design for quality: reconfigurable flat optics based on active metasurfaces. Nanophotonics, 2020, 9, 377 2.9 87 3505-3534. Broadband metamaterials and metasurfaces: a review from the perspectives of materials and devices. 378 Nanophotonics, 2020, 9, 3165-3196.

ARTICLE IF CITATIONS Advances in exploiting the degrees of freedom in nanostructured metasurface design: from 1 to 3 to 379 2.9 42 more. Nanophotonics, 2020, 9, 3699-3731. Phase-controlled metasurface design via optimized genetic algorithm. Nanophotonics, 2020, 9, 3931-3939. Achromatic terahertz Airy beam generation with dielectric metasurfaces. Nanophotonics, 2021, 10, 381 2.9 27 1123-1131. Optical Realization of Wave-Based Analog Computing with Metamaterials. Applied Sciences (Switzerland), 2021, 11, 141. Beyond the Limits of Single Resonance Huygens' Metasurfaces., 2021,,. 383 1 Broadband Achromatic Metasurfaces for Longwave Infrared Applications. Nanomaterials, 2021, 11, 384 2760. Spherical Aberration-Corrected Metalens for Polarization Multiplexed Imaging. Nanomaterials, 2021, 385 1.9 7 11, 2774. Envisioning Quantum Electrodynamic Frameworks Based on Bio-Photonic Cavities. Photonics, 2021, 8, 386 470. Wavelength-dependent multifunctional metalens devices via genetic optimization. Optical Materials 387 1.6 6 Express, 2021, 11, 3908. Nanophotonic manipulation of optical angular momentum for high-dimensional information optics. 388 12.1 Advances in Optics and Photonics, 2021, 13, 772. 389 Plasmonic Metasurface for Photonic Applications in Demand., 2017,,. 0 Meta-device for Photonics in Demand., 2018, , . Circular polarization dissymmetry of two-photon-induced photoluminescence from chiral plasmonic 391 0 nanostructured metasurfaces., 2018,,. High efficient metasurface for broadband achromatic focusing in visible spectrum., 2018,,. Surface plasmon resonance "hot spots―and near-field enhanced spectroscopy at interfaces. Wuli 393 0.2 2 Xuebao/Acta Physica Sinica, 2019, 68, 147801. Metalens for light field imaging., 2019,,. 394 Engineering the chromatic dispersion in dual-wavelength metalenses for unpolarized visible light., 395 0 2019,,. Design and studies on gradient index metasurfaces for broadband polarization-independent, 396 subwavelength, and dichroic focusing. Applied Optics, 2019, 58, 5128.

CITATION REPORT

#

ARTICLE IF CITATIONS # Optical manipulation of Rayleigh particles by metalensesâ€"a numerical study. Applied Optics, 2019, 58, 397 0.9 4 5794. Efficient spectral confocal meta-lens in the near infrared., 2019,,. 399 Dynamically tunable perfect absorbers based on periodic microstructures., 2019,,. 0 Metasurface Holography. Synthesis Lectures on Materials and Optics, 2020, 1, 1-76. 0.2 400 Modeling of a Metasurface by a Thin Slab of Constant Voluminal Susceptibility., 2020,,. 401 0 Deep Learning for Nanoscale Arbitrary Meta-element Robustness., 2020, , . 403 Design of broadband and wide field-of-view metalenses. Optics Letters, 2021, 46, 5735-5738. 1.7 18 Plasmonic evolution maps for planar metamaterials. Photonics Research, 2021, 9, 73. 404 3.4 Tunable metasurfaces based on phase-change materials. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 405 0.2 5 154202. Pseudo-local effect medium theory. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 154203. 0.2 Born series using for designing of all-dielectric metalenses. AIP Conference Proceedings, 2020, , . 407 0.3 1 Research progress of analogical gravitation on optical metamaterial chips. Wuli Xuebao/Acta Physica 408 0.2 Sinica, 2020, 69, 157802. High Dimensional Quantum Light Source with Meta-lens Array., 2021,,. 409 0 Metasurfaces in Optics: Physical Basis and Results Achieved. Review. Optoelectronics, Instrumentation 0.2 and Data Processing, 2020, 56, 109-121. Subwavelength high-performance polarizers in the deep ultraviolet region. Optics Express, 2020, 28, 411 1.7 2 11652. Microwave Metamaterial Absorbers with Controllable Luminescence Features. ACS Applied Materials & Interfaces, 2021, 13, 54497-54502. Bandwidth limit and synthesis approach for single resonance ultrathin metasurfaces. Journal Physics 413 1.312 D: Applied Physics, 2020, 53, 495304. Ecotourism is the future of alternative tourism for environmental sustainability and natural areas 414 protection. Systematic Literature Review and Meta-analysis Journal, 2021, 1, 99-116.

#	Article	IF	CITATIONS
415	Wavelength-multiplexed varifocal and switchable metalens with all-metallic C-shaped antennas. Optics and Laser Technology, 2022, 147, 107630.	2.2	2
416	宼2å,¦æ¶^è‰²å·®è¶æž"é€é•œç"ç©¶. Scientia Sinica: Physica, Mechanica Et Astronomica, 2021, , .	0.2	0
417	Multi-wavelength achromatic bifocal metalenses with controllable polarization-dependent functions for switchable focusing intensity. Journal Physics D: Applied Physics, 2022, 55, 115102.	1.3	3
418	Visible Achromatic Metalens Design Based on Artificial Neural Network. Advanced Optical Materials, 2022, 10, .	3.6	24
419	3D displays in augmented and virtual realities with holographic optical elements [Invited]. Optics Express, 2021, 29, 42696.	1.7	31
420	Highly Efficient and Broadband Achromatic Transmission Metasurface to Refract and Focus in Microwave Region. Laser and Photonics Reviews, 2022, 16, .	4.4	12
421	Conditions for establishing the "generalized Snell's law of refraction―in all-dielectric metasurfaces: theoretical bases for design of high-efficiency beam deflection metasurfaces. Nanophotonics, 2021, 11, 21-32.	2.9	7
422	Neural nano-optics for high-quality thin lens imaging. Nature Communications, 2021, 12, 6493.	5.8	116
423	Massâ€Manufactured Beamâ€Steering Metasurfaces for Highâ€Speed Fullâ€Duplex Optical Wirelessâ€Broadcasting Communications. Advanced Materials, 2022, 34, e2106080.	11.1	45
424	Reconfigurable metasurface with tunable and achromatic beam deflections. Optical Materials Express, 2022, 12, 49.	1.6	4
425	Multiplexed multi-focal and multi-dimensional SHE (spin Hall effect) metalens. Optics Express, 2021, 29, 43270.	1.7	23
426	Monolithic topological honeycomb lens for achromatic focusing and imaging. Optica, 2022, 9, 100.	4.8	3
427	Recent advances of wide-angle metalenses: principle, design, and applications. Nanophotonics, 2021, 11, 1-20.	2.9	44
428	Cascaded Composite Turbulence and Misalignment: Statistical Characterization and Applications to Reconfigurable Intelligent Surface-Empowered Wireless Systems. IEEE Transactions on Vehicular Technology, 2022, 71, 3821-3836.	3.9	16
429	A review of high-efficiency Pancharatnam–Berry metasurfaces. Terahertz Science & Technology, 2020, 13, 73-89.	0.5	8
430	Optical Pulling Using Chiral Metalens as a Photonic Probe. Nanomaterials, 2021, 11, 3376.	1.9	4
431	Deep Learning Enabled Strategies for Modeling of Complex Aperiodic Plasmonic Metasurfaces of Arbitrary Size. ACS Photonics, 2022, 9, 575-585.	3.2	17
432	Design framework for polarization-insensitive multifunctional achromatic metalenses. Nanophotonics, 2022, 11, 583-591.	2.9	11

#	Article	IF	CITATIONS
433	Transmissive 2-bit anisotropic coding metasurface. Chinese Physics B, O, , .	0.7	0
434	Polarization-independent broadband achromatic metalens in the mid-infrared (3–5 μm) region. Applied Physics Express, 2022, 15, 022001.	1.1	5
435	Recent Progress in Improving the Performance of Infrared Photodetectors via Optical Field Manipulations. Sensors, 2022, 22, 677.	2.1	13
436	Multi-tasking geometric phase element array based self-referenced vortex interferometer for three-dimensional topography. Optics Express, 2022, 30, 14661.	1.7	2
437	Perfect diffractive circular metagrating for Bessel beam transformation. Optics Letters, 2022, 47, 1375.	1.7	3
438	Broadband continuous achromatic and super-dispersive metalens in near-infrared band. Journal of Applied Physics, 2022, 131, .	1.1	5
439	Emerging Longâ€Range Order from a Freeform Disordered Metasurface. Advanced Materials, 2022, 34, e2108709.	11.1	33
440	Broadband, large-numerical-aperture and high-efficiency microwave metalens by using a double-layer transmissive metasurface. Applied Physics Express, 2022, 15, 014003.	1.1	17
441	Design of an achromatic optical polarization-insensitive zoom metalens. Optics Letters, 2022, 47, 1263.	1.7	5
442	Generation of achromatic auto-focusing Airy beam for visible light by an all-dielectric metasurface. Journal of Applied Physics, 2022, 131, .	1.1	4
443	Metal–Semiconductor–Metal Metasurface for Multiband Infrared Stealth Technology Using Camouflage Color Pattern in Visible Range. Advanced Optical Materials, 2022, 10, .	3.6	50
444	Terahertz metalens of hyper-dispersion. Photonics Research, 2022, 10, 886.	3.4	17
445	Generating diverse functionalities simultaneously and independently for arbitrary linear polarized illumination enabled by a chiral transmission-reflection-selective bifunctional metasurface. Optics Express, 2022, 30, 7124.	1.7	9
446	Full olor Metaoptical Imaging in Visible Light. Advanced Photonics Research, 2022, 3, .	1.7	14
447	Structural Optimization of a One-Dimensional Freeform Metagrating Deflector via Deep Reinforcement Learning. ACS Photonics, 2022, 9, 452-458.	3.2	16
448	Achromatic metasurfaces by dispersion customization for ultra-broadband acoustic beam engineering. National Science Review, 2022, 9, .	4.6	45
449	Meta-lens light-sheet fluorescence microscopy for <i>in vivo</i> imaging. Nanophotonics, 2022, 11, 1949-1959.	2.9	20
450	Polarizationâ€Multiplexed Silicon Metasurfaces for Multiâ€Channel Visible Light Modulation. Advanced Functional Materials, 2022, 32, .	7.8	26

#	Article	IF	CITATIONS
451	Broadband Achromatic and Polarization Insensitive Focused Optical Vortex Generator Based on Metasurface Consisting of Anisotropic Nanostructures. Frontiers in Physics, 2022, 10, .	1.0	4
452	Broadband achromatic mid-infrared metalens with polarization-insensitivity. AIP Advances, 2022, 12, 025123.	0.6	4
453	Arbitrary manipulations of focused higher-order Poincaré beams by a Fresnel zone metasurface with alternate binary geometric and propagation phases. Photonics Research, 2022, 10, 1117.	3.4	7
454	Broadband polarization-insensitive metalens integrated with a charge-coupled device in the short-wave near-infrared range. Optics Express, 2022, 30, 11372.	1.7	4
455	Single-layer metalens for achromatic focusing with wide field of view in the visible range. Journal Physics D: Applied Physics, 2022, 55, 235106.	1.3	3
456	Understanding wide field-of-view metalenses. , 2022, , .		0
457	Full-Stokes polarization transformations and time sequence metasurface holographic display. Photonics Research, 2022, 10, 1031.	3.4	23
458	Planar wide-angle-imaging camera enabled by metalens array. Optica, 2022, 9, 431.	4.8	47
459	Broadband Singleâ€Chip Full Stokes Polarizationâ€Spectral Imaging Based on Allâ€Dielectric Spatial Multiplexing Metalens. Laser and Photonics Reviews, 2022, 16, .	4.4	15
460	Polarization multiplexing metasurface for dual-band achromatic focusing. Optics Express, 2022, 30, 12069.	1.7	2
461	Tutorial on metalenses for advanced flat optics: Design, fabrication, and critical considerations. Journal of Applied Physics, 2022, 131, .	1.1	23
462	Pushing the Limits of Functionalityâ€Multiplexing Capability in Metasurface Design Based on Statistical Machine Learning. Advanced Materials, 2022, 34, e2110022.	11.1	87
463	Controlling Dispersion Characteristic of Focused Vortex Beam Generation. Photonics, 2022, 9, 179.	0.9	1
464	Broadband Coding Metasurfaces with 2-bit Manipulations. Physical Review Applied, 2022, 17, .	1.5	29
465	A Lowâ€Temperature Annealing Method for Alloy Nanostructures and Metasurfaces: Unlocking a Novel Degree of Freedom. Advanced Materials, 2022, 34, e2108225.	11.1	14
466	Design of broadband achromatic metasurface device based on phase-change material Ge ₂ Sb ₂ Te ₅ . Chinese Physics B, 2022, 31, 124206.	0.7	1
467	Steerable chromatic dispersive metalenses in dual bands. Journal Physics D: Applied Physics, 2022, 55, 255105.	1.3	5
468	Polarization insensitive achromatic terahertz metalens based on all-dielectric metasurfaces. Optics Communications, 2022, 512, 128061.	1.0	8

#	Article	IF	CITATIONS
469	Dual-band Trifunctional Coding Metasurfaces Based on Independent Control of Transmission and Reflection. , 2021, , .		0
470	Plasmonic Metasurfaces for Medical Diagnosis Applications: A Review. Sensors, 2022, 22, 133.	2.1	23
471	Experimental Demonstration of Genetic Algorithm Based Metalens Design for Generating Side‣obe‣uppressed, Large Depthâ€ofâ€Focus Light Sheet. Laser and Photonics Reviews, 2022, 16, .	4.4	20
472	TiO ₂ Nanodisk Arrays as All-Dielectric Huygens' Metasurfaces for Engineering the Wavefront of Near-UV Light. ACS Applied Nano Materials, 2022, 5, 925-930.	2.4	4
473	Tailoring Circular Dichroism in an Isomeric Manner: Complete Control of Amplitude and Phase for Highâ€Quality Hologram and Beam Forming. Advanced Optical Materials, 2022, 10, .	3.6	19
474	Design Method of Broadband Flat Metasurface Lenses by Using an One-Dimensional Distributed Transmission-Line Model. , 2021, , .		4
475	Orthogonal manipulations of phase and phase dispersion in realization of azimuthal angle-resolved focusings. Optics Express, 2021, 29, 43757.	1.7	2
476	Refraction of Flexural Waves by Ultra-Broadband Achromatic Meta-Slab With Wavelength-Dependent Phase Shifts. Journal of Applied Mechanics, Transactions ASME, 2022, 89, .	1.1	8
477	Progress in design, nanofabrication and performance of metalenses. Journal of Optics (United) Tj ETQq0 0 0 rgB	Г /Qverloct 1.0	10 Tf 50 42
478	Broadband achromatic polarization-insensitive metalens in the mid-wave infrared range. Applied Optics, 2022, 61, 4106.	0.9	2
479	Substrate-Independent Broad-Band Immersion Microlens Arrays with a High Coupling Efficiency for Infrared Focal Plane Arrays. ACS Applied Electronic Materials, 2022, 4, 1910-1920.	2.0	3
482	Meta-Lens in the Sky. IEEE Access, 2022, 10, 46552-46557.	2.6	13
483	Graphene-empowered dynamic metasurfaces and metadevices. Opto-Electronic Advances, 2022, 5, 200098-200098.	6.4	54
484	Gold Metasurfaces as Saturable Absorbers for All-Normal-Dispersion Ytterbium-Doped Mode-Locked Fiber Laser. IEEE Photonics Journal, 2022, 14, 1-6.	1.0	0
485	Generation of complicated millimeter-wave beams based on a wideband high-transmission polarization-independent complex-amplitude metasurface. Optics Express, 2022, 30, 34188.	1.7	2
486	Terahertz Airy beam generated by Pancharatnam-Berry phases in guided wave-driven metasurfaces. Optics Express, 2022, 30, 16699.	1.7	10
487	Geometric metasurface for polarization synthesis and multidimensional multiplexing of terahertz converged vortices. Photonics Research, 2022, 10, 1517.	3.4	33

488RGB Achromatic Metalens Doublet for Digital Imaging. Nano Letters, 2022, 22, 3969-3975.4.531

#	Article	IF	CITATIONS
489	Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules. Chinese Physics B, 2023, 32, 023301.	0.7	3
490	Numerical and experimental analysis of patterning multi-period and multi-radius metasurfaces. Materials Today Advances, 2022, 14, 100247.	2.5	1
491	Angle-insensitive phase shift in one-dimensional photonic crystal containing hyperbolic metamaterials in the visible range. Physica B: Condensed Matter, 2022, 639, 413967.	1.3	1
492	Highly efficient wavefront control based on extremely anisotropic materials. Journal of Optics (United Kingdom), 0, , .	1.0	0
493	Ultra-compact snapshot spectral light-field imaging. Nature Communications, 2022, 13, 2732.	5.8	52
494	Optical metalenses: fundamentals, dispersion manipulation, and applications. Frontiers of Optoelectronics, 2022, 15, .	1.9	18
495	Generation of 2D Airy beams with switchable metasurfaces. Optics Express, 2022, 30, 20389.	1.7	7
496	Diffraction-limit focusing using a 60-nm-thick spiral slit. Optics Letters, 2022, 47, 3219.	1.7	0
497	Pixel-level Bayer-type colour router based on metasurfaces. Nature Communications, 2022, 13, .	5.8	41
498	Artificial Intelligence in Meta-optics. Chemical Reviews, 2022, 122, 15356-15413.	23.0	64
499	Through-Wall Wireless Communication Enabled by a Metalens. Physical Review Applied, 2022, 17, .	1.5	12
500	Twisted Rainbow Light and Natureâ€Inspired Generation of Vector Vortex Beams. Laser and Photonics Reviews, 2022, 16, .	4.4	4
501	Dielectric metalens for miniaturized imaging systems: progress and challenges. Light: Science and Applications, 2022, 11, .	7.7	108
502	Recent Advancement in Optical Metasurface: Fundament to Application. Micromachines, 2022, 13, 1025.	1.4	12
503	Topology-empowered membrane devices for terahertz photonics. Advanced Photonics, 2022, 4, .	6.2	13
504	Bandpass Filter Integrated Metalens Based on Electromagnetically Induced Transparency. Nanomaterials, 2022, 12, 2282.	1.9	6
505	An Ultraâ€Broadband High Efficiency Polarization Beam Splitter for High Spectral Resolution Polarimetric Imaging in the Near Infrared. Advanced Science, 2022, 9, .	5.6	5
506	Fourier Optical Spin Splitting Microscopy. Physical Review Letters, 2022, 129, .	2.9	16

#	Article	IF	CITATIONS
507	An achromatic metafiber for focusing and imaging across the entire telecommunication range. Nature Communications, 2022, 13, .	5.8	61
508	Toward a universal metasurface for optical imaging, communication, and computation. Nanophotonics, 2022, 11, 3745-3768.	2.9	20
509	Chip-scale metalens microscope for wide-field and depth-of-field imaging. Advanced Photonics, 2022, 4,	6.2	18
510	Achromatic acoustic generalized phase-reversal zone plates. New Journal of Physics, 2022, 24, 083009.	1.2	2
512	Heliconical Cholesterics Endows Spatial Phase Modulator with an Electrically Customizable Working Band. Advanced Optical Materials, 2022, 10, .	3.6	24
513	Multiwavelength achromatic super-resolution focusing via a metasurface-empowered controlled generation of focused cylindrically polarized vortex beams. Optics Express, 2022, 30, 30811.	1.7	5
514	Generation of scalar/vectorial vortex beams by using the plasmonic metasurfaces. Applied Optics, 2022, 61, 7336.	0.9	1
515	Polarization-multiplexing achromatic metasurfaces for manipulation of terahertz waves. Journal of the Optical Society of America B: Optical Physics, 2022, 39, 2378.	0.9	5
516	Three-channel metasurface based on simultaneous and independent control of near and far field under a single line light source. Optics Express, 2022, 30, 30936.	1.7	4
517	Phase Modulation Rules of Metasurface Holograms. Synthesis Lectures on Materials and Optics, 2020, , 13-27.	0.2	1
518	Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization. Opto-Electronic Advances, 2022, 5, 220058-220058.	6.4	81
519	Spectral Response and Wavefront Control of a C-Shaped Fractal Cadmium Telluride/Silicon Carbide Metasurface in the THz Bandgap. Materials, 2022, 15, 5944.	1.3	1
520	Review on Metasurfaces: An Alternative Approach to Advanced Devices and Instruments. Advanced Devices & Instrumentation, 2022, 2022, .	4.0	14
521	High-Efficiency Geometric Phase Metasurface with Multifold Rotationally Symmetric Resonators. , 2023, 1, 173-178.		2
522	Multi-Band High-Efficiency Multi-Functional Polarization Controller Based on Terahertz Metasurface. Nanomaterials, 2022, 12, 3189.	1.9	9
523	Magnifying Lens with Ultrabroadband Superâ€Resolution Real Imaging. Laser and Photonics Reviews, 2022, 16, .	4.4	3
524	High dimensional optical meta-devices: classical to quantum. , 2022, , .		0
525	VIS-NIR superachromatic triplet design with five-color correction for a broadband interferometer. Applied Optics, 2022, 61, 8880.	0.9	1

#	Article	IF	CITATIONS
526	Direction-dependent polarization modulation of Cherenkov diffraction radiation based on metasurfaces. Journal of Applied Physics, 2022, 132, 113101.	1.1	0
527	Strain-tunable optical microlens arrays with deformable wrinkles for spatially coordinated image projection on a security substrate. Microsystems and Nanoengineering, 2022, 8, .	3.4	6
528	Pitfalls in the spectral measurements of polarization-altering metasurfaces. Applied Optics, 2022, 61, 8100.	0.9	2
529	Superheterodyne-inspired waveguide-integrated metasurfaces for flexible free-space light manipulation. Nanophotonics, 2022, 11, 4499-4514.	2.9	7
530	Onâ€Demand Mode Conversion and Wavefront Shaping via Onâ€Chip Metasurfaces. Advanced Optical Materials, 2022, 10, .	3.6	14
531	Chiralityâ€Reversed Bidirectional Highâ€Efficiency Dichroic Metalens based on Hybrid Helical Surfaces. Laser and Photonics Reviews, 2022, 16, .	4.4	4
532	Guided-Wave Inspired Metasurfaces for Multifunctional Vortex Beam Generation and Manipulation. Journal of Lightwave Technology, 2023, 41, 2094-2106.	2.7	3
533	Research progress of non-Hermitian electromagnetic metasurfaces. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 247802.	0.2	2
534	A Global Phaseâ€Modulation Mechanism for Flatâ€Lens Design. Advanced Optical Materials, 2022, 10, .	3.6	3
535	Nonresonant propagation phase based metasurface design for independent manipulation of dual circularly polarized waves. Journal of Applied Physics, 2022, 132, 163103.	1.1	0
536	A polarization-insensitive infrared broadband achromatic metalens consisting of all-silicon anisotropic microstructures. Applied Physics Letters, 2022, 121, .	1.5	5
537	Constructing a Frequency-Dependent Phase Profile of Linear Dispersion for Achromatic Superresolution Focusing. Physical Review Applied, 2022, 18, .	1.5	1
538	Versatile platform of nonlocal metasurfaces for both spectral and spatial control of light waves. Light: Science and Applications, 2022, 11, .	7.7	1
539	Mid-Infrared Broadband Achromatic Metalens with Wide Field of View. Materials, 2022, 15, 7587.	1.3	2
540	High-efficiency SOI-based metalenses at telecommunication wavelengths. Nanophotonics, 2022, 11, 4697-4704.	2.9	2
541	Moiré meta-device for flexibly controlled Bessel beam generation. Photonics Research, 2023, 11, 100.	3.4	9
542	Micro-dimensional oscillation-based optimization for a dielectric metalens in the mid-infrared. Applied Optics, 2022, 61, 9324.	0.9	1
543	Recent advances in strongly resonant and gradient all-dielectric metasurfaces. Materials Advances, 2023, 4, 11-34.	2.6	13

#	Article	IF	CITATIONS
544	Large-scale achromatic flat lens by light frequency-domain coherence optimization. Light: Science and Applications, 2022, 11, .	7.7	28
545	Metasurface Based Spinâ€Selective Wollastonâ€andâ€Rochonâ€Prismâ€Like Circularly Polarized Beam Splitter. Advanced Theory and Simulations, 0, , 2200574.	1.3	0
546	Metalens for structured light. , 2018, , .		0
547	Flat optics with nanophotonic metasurface. , 2019, , .		0
548	Ultracompact multifunctional metalens visor for augmented reality displays. PhotoniX, 2022, 3, .	5.5	34
549	Wideband and high-efficiency spin-locked achromatic meta-device. Nanophotonics, 2023, 12, 119-127.	2.9	3
550	All-Dielectric Tunable Terahertz Metagrating for Diffraction Control. ACS Applied Materials & amp; Interfaces, 2022, 14, 55174-55182.	4.0	5
551	Enabling smart vision with metasurfaces. Nature Photonics, 2023, 17, 26-35.	15.6	44
552	Virtual metasurfaces: reshaping electromagnetic waves in distance. Photonics Research, 2023, 11, 203.	3.4	4
553	Metasurface design with a complex residual neural network. Applied Optics, 2023, 62, 1200.	0.9	2
554	Helical Structure Endows Liquid Crystal Planar Optics with a Customizable Working Band. Advanced Quantum Technologies, 2023, 6, .	1.8	10
555	Parity-protected anomalous diffraction in optical phase gradient metasurfaces. Physical Review A, 2023, 107, .	1.0	6
556	Hybrid Dispersion Engineering based on Chiral Metamirror. Laser and Photonics Reviews, 2023, 17, .	4.4	41
557	Single-Row Coding Metasurface for Bi-directional Beam Multiplexing in Mid-infrared Regime. Plasmonics, 0, , .	1.8	1
558	Full-space wavefront manipulation enabled by asymmetric photonic spin-orbit interactions. Optics Express, 2023, 31, 1409.	1.7	0
559	A Dual-polarized High-NA Achromatic Transmission Huygens' Metalens. , 2022, , .		1
560	Tunable Light Field Modulations with Chip- and Fiber-Compatible Monolithic Dielectric Metasurfaces. Nanomaterials, 2023, 13, 69.	1.9	1
561	Spinâ€Decoupled Beam Steering with Active Optical Chirality Based on Terahertz Liquid Crystal Chiral Metadevice. Advanced Materials Interfaces, 2023, 10, .	1.9	3

		CITATION REPORT	
#	Article	IF	Citations
562	Recent Advances and Prospects of Optical Metasurfaces. ACS Photonics, 2023, 10, 2045-2063.	3.2	9
563	Sound‧peed Modifying Acoustic Metasurfaces for Acoustic Holography. Advanced Materials, 202	13, 35, . 11.1	9
564	Linearâ€Polarizationâ€Preserving Metasurfaces Based on Identically Spinâ€Locked Geometric Phase and Photonics Reviews, 2023, 17, .	2. Laser 4.4	0
565	Exceptional point in a terahertz graphene metasurface. , 2023, , .		0
566	Broadband Diffractive Graphene Orbital Angular Momentum Metalens by Laser Nanoprinting. Ultrafast Science, 2023, 3, .	5.8	2
567	Chiral-magic angle of nanoimprint meta-device. Nanophotonics, 2023, 12, 2479-2490.	2.9	6
568	Electrically tunable conducting oxide metasurfaces for high power applications. Nanophotonics, 2023, 12, 239-253.	2.9	5
569	UV-Nanoimprint and Deep Reactive Ion Etching of High Efficiency Silicon Metalenses: High Through at Low Cost with Excellent Resolution and Repeatability. Nanomaterials, 2023, 13, 436.	put 1.9	4
570	Broadband Achromatic Metalens in the Long-Wave Infrared Regime. IEEE Photonics Journal, 2023, 1	5, 1-7. 1.0	1
571	Broadband, Low-Profile, Planar Reflectarray Antenna Based on an Achromatic Metasurface. IEEE Transactions on Antennas and Propagation, 2023, 71, 5440-5445.	3.1	2
572	Multiresonant metasurfaces for arbitrarily broad bandwidth pulse chirping and dispersion compensation. Physical Review B, 2023, 107, .	1.1	3
573	Dispersionâ€Enabled Symmetry Switching of Photonic Angularâ€Momentum Coupling. Advanced Functional Materials, 2023, 33, .	7.8	8
574	Design of a bifocal metalens with tunable intensity based on deep-learning-forward genetic algorith Journal Physics D: Applied Physics, 2023, 56, 095101.	m. 1.3	2
575	60 nm Span Wavelength-Tunable Vortex Fiber Laser with Intracavity Plasmon Metasurfaces. ACS Photonics, 2023, 10, 623-631.	3.2	8
576	Research on the design of metalens with achromatic and amplitude modulation. Optoelectronics Letters, 2023, 19, 77-82.	0.4	0
577	A reconfigurable asymmetric-transmission metasurface for dynamic manipulation of transmission, reflection, and polarization. Journal of Applied Physics, 2023, 133, 083101.	1.1	1
578	Birefringent dielectric multi-foci metalens for polarization detection. Physica Scripta, 2023, 98, 045502.	1.2	4
579	Recent advanced applications of metasurfaces in multi-dimensions. Nanophotonics, 2023, 12, 2295	i-2315. 2.9	8

#	Article	IF	CITATIONS
580	Metasurfaces designed by a bidirectional deep neural network and iterative algorithm for generating quantitative field distributions. , 2023, 4, 1.		22
581	High-NA and broadband achromatic metalens for sub-diffraction focusing of long-wavelength infrared waves. Results in Physics, 2023, 46, 106308.	2.0	6
582	A study on achromatic metalens in the visible range. , 2023, , .		0
583	High-Efficiency Achromatic Metalens Topologically Optimized in the Visible. Nanomaterials, 2023, 13, 890.	1.9	7
584	Polarization-modulated broadband achromatic bifunctional metasurface in the visible light. Optics Express, 2023, 31, 10905.	1.7	3
585	Research advances in simple and compact optical imaging techniques. Wuli Xuebao/Acta Physica Sinica, 2023, 72, 084205.	0.2	2
586	Advance of large-area achromatic flat lenses. Light: Science and Applications, 2023, 12, .	7.7	3
587	Polarization-Insensitive, Orthogonal Linearly Polarized and Orthogonal Circularly Polarized Synthetic Aperture Metalenses. Photonics, 2023, 10, 348.	0.9	2
588	A 4Dâ€Printed Electromagnetic Cloaking and Illusion Function Convertible Metasurface. Advanced Materials Technologies, 2023, 8, .	3.0	1
589	Tunable Waterâ€Based Meta‣ens. Advanced Optical Materials, 2024, 12, .	3.6	7
590	Advances in Meta-Optics and Metasurfaces: Fundamentals and Applications. Nanomaterials, 2023, 13, 1235.	1.9	11
591	Terahertz Metasurface Modulators Based on Photosensitive Silicon. Laser and Photonics Reviews, 2023, 17, .	4.4	8
592	Revolutionary meta-imaging: from superlens to metalens. , 2023, 2, R01.		21
593	Continuously varifocal metalens for broadband achromatic focusing of terahertz waves. Journal of Science: Advanced Materials and Devices, 2023, 8, 100560.	1.5	5
594	Design Strategies and Applications of Dimensional Optical Field Manipulation Based on Metasurfaces. Advanced Materials, 2023, 35, .	11.1	6
595	Active-passive compound metasurface for simultaneously manipulating radiation and scattering in a wide band. Materials and Design, 2023, 230, 111932.	3.3	1
596	Leaky Cavity Modes in Metasurfaces: A Route to Low-loss Wideband Anomalous Dispersion. Photonics Research, 0, , .	3.4	0
615	Recent advances in metasurface design and quantum optics applications with machine learning, physics-informed neural networks, and topology optimization methods. Light: Science and Applications, 2023, 12, .	7.7	12

CITAT	ION	R	FPO	DT.

#	Article	IF	CITATIONS
622	Design of liquid crystal metalens for achromatic full-color imaging with multiplexed phase coding. , 2023, , .		0
628	Design Method of Broadband Metasurfaces for Generating a Two-dimensional Gaussian Beam from a Normal Incident Plane Wave with the Same Amplitude Distribution. , 2023, , .		0
629	Design of a Broadband Flat Metasurface Lens by Using One-Dimensional Meander Microstrip-Line Structures. , 2023, , .		0
632	Miniature Two-Photon Microscopic Imaging Using Dielectric Metalens. Nano Letters, 0, , .	4.5	1
646	A Reconfigurable Intelligent Surface for Broadband Achromatic Beam Deflection. , 2023, , .		0
662	Cost-Effective and EnvironmentallyÂFriendly Mass Manufacturing of Optical Metasurfaces Towards Practical Applications and Commercialization. International Journal of Precision Engineering and Manufacturing - Green Technology, 2024, 11, 685-706.	2.7	1
681	Design of polarization-insensitive metalens with linear dispersion via improved particle swarm algorithm. , 2023, , .		0
682	Novel Approaches for Designing Broadband Achromatic and Polarization-Insensitive Metalenses. , 2023, , .		0
701	Deep Learning Assisted Terahertz Metasurface Unit Structure Reverse Design and Multiple Solution Seeking. , 2023, , .		0
704	High Dimensional Optical Meta-Devices: Classical to Quantum. , 2022, , .		0