Self-optimizing, highly surface-active layered metal d evolution

Nature Energy

2,

DOI: 10.1038/nenergy.2017.127

Citation Report

#	Article	IF	CITATIONS
1	Two-dimensional boron: structures, properties and applications. Chemical Society Reviews, 2017, 46, 6746-6763.	18.7	296
2	Two-dimensional metallic tantalum disulfide as a hydrogen evolution catalyst. Nature Communications, 2017, 8, 958.	5.8	191
3	Hydrogen evolution: Not living on the edge. Nature Energy, 2017, 2, .	19.8	16
4	Synergistic Effect of MoS ₂ Nanosheets and VS ₂ for the Hydrogen Evolution Reaction with Enhanced Humidity-Sensing Performance. ACS Applied Materials & Interfaces, 2017, 9, 42139-42148.	4.0	112
5	Surface Oxidation of AuNi Heterodimers to Achieve High Activities toward Hydrogen/Oxygen Evolution and Oxygen Reduction Reactions. Small, 2018, 14, e1703749.	5.2	60
6	Ultrathin two-dimensional materials for photo- and electrocatalytic hydrogen evolution. Materials Today, 2018, 21, 749-770.	8.3	228
7	Vertical 1Tâ€TaS ₂ Synthesis on Nanoporous Gold for Highâ€Performance Electrocatalytic Applications. Advanced Materials, 2018, 30, e1705916.	11.1	75
8	Manganese deception on graphene and implications in catalysis. Carbon, 2018, 132, 623-631.	5.4	54
9	Two-Dimensional MoS ₂ Confined Co(OH) ₂ Electrocatalysts for Hydrogen Evolution in Alkaline Electrolytes. ACS Nano, 2018, 12, 4565-4573.	7.3	302
10	Surface Vacancy-Induced Switchable Electric Polarization and Enhanced Ferromagnetism in Monolayer Metal Trihalides. Nano Letters, 2018, 18, 2943-2949.	4.5	157
11	Mapping Catalytically Relevant Edge Electronic States of MoS ₂ . ACS Central Science, 2018, 4, 493-503.	5.3	39
12	Oxidized Laserâ€Induced Graphene for Efficient Oxygen Electrocatalysis. Advanced Materials, 2018, 30, e1707319.	11.1	94
13	One-pot synthesized boron-doped RhFe alloy with enhanced catalytic performance for hydrogen evolution reaction. Applied Catalysis B: Environmental, 2018, 230, 58-64.	10.8	112
14	Anion–Cation Double Substitution in Transition Metal Dichalcogenide to Accelerate Water Dissociation Kinetic for Electrocatalysis. Advanced Energy Materials, 2018, 8, 1702139.	10.2	70
15	The formation of (NiFe)S ₂ pyrite mesocrystals as efficient pre-catalysts for water oxidation. Chemical Science, 2018, 9, 2762-2767.	3.7	60
16	Oxygenâ€Vacancy Abundant Ultrafine Co ₃ O ₄ /Graphene Composites for Highâ€Rate Supercapacitor Electrodes. Advanced Science, 2018, 5, 1700659.	5.6	392
17	Auto-optimizing Hydrogen Evolution Catalytic Activity of ReS ₂ through Intrinsic Charge Engineering. ACS Nano, 2018, 12, 4486-4493.	7.3	111
18	Metallic Transition-Metal Dichalcogenide Nanocatalysts for Energy Conversion. CheM, 2018, 4, 1510-1537.	5.8	141

#	Article	IF	CITATIONS
19	Universal Descriptor for Large-Scale Screening of High-Performance MXene-Based Materials for Energy Storage and Conversion. Chemistry of Materials, 2018, 30, 2687-2693.	3.2	71
20	Emerging Two-Dimensional Nanomaterials for Electrocatalysis. Chemical Reviews, 2018, 118, 6337-6408.	23.0	1,552
21	Interfacial Interactions as an Electrochemical Tool To Understand Mo-Based Catalysts for the Hydrogen Evolution Reaction. ACS Catalysis, 2018, 8, 828-836.	5.5	34
22	Two-Dimensional, Ordered, Double Transition Metal Carbides (MXenes): A New Family of Promising Catalysts for the Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2018, 122, 28113-28122.	1.5	104
23	Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nature Catalysis, 2018, 1, 985-992.	16.1	1,236
24	Transition metal modification and carbon vacancy promoted Cr ₂ CO ₂ (MXenes): a new opportunity for a highly active catalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 20956-20965.	5.2	74
25	Preparation and Physical and Photocatalytic Activity of a New Niobate Oxide Material Containing NbO4 Tetrahedra. International Journal of Photoenergy, 2018, 2018, 1-6.	1.4	4
26	Structural Self-Reconstruction of Catalysts in Electrocatalysis. Accounts of Chemical Research, 2018, 51, 2968-2977.	7.6	252
27	Chemical Vapor Deposition Grown Waferâ€Scale 2D Tantalum Diselenide with Robust Chargeâ€Densityâ€Wave Order. Advanced Materials, 2018, 30, e1804616.	11.1	63
28	Selfâ€Limited onâ€6ite Conversion of MoO ₃ Nanodots into Vertically Aligned Ultrasmall Monolayer MoS ₂ for Efficient Hydrogen Evolution. Advanced Energy Materials, 2018, 8, 1800734.	10.2	112
29	Fine Tuning Electronic Structure of Catalysts through Atomic Engineering for Enhanced Hydrogen Evolution. Advanced Energy Materials, 2018, 8, 1800789.	10.2	59
30	Substantial Impact of Charge on Electrochemical Reactions of Two-Dimensional Materials. Journal of the American Chemical Society, 2018, 140, 9127-9131.	6.6	170
31	Efficient hydrogen evolution catalyzed by amorphous molybdenum sulfide/N-doped active carbon hybrid on carbon fiber paper. International Journal of Hydrogen Energy, 2018, 43, 15135-15143.	3.8	14
32	Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting. Nature Communications, 2018, 9, 2452.	5.8	431
33	Physical properties and potential applications of two-dimensional metallic transition metal dichalcogenides. Coordination Chemistry Reviews, 2018, 376, 1-19.	9.5	49
34	The Subâ€Nanometer Scale as a New Focus in Nanoscience. Advanced Materials, 2018, 30, e1802031.	11.1	99
35	Electronic and optical properties of heterostructures based on transition metal dichalcogenides and graphene-like zinc oxide. Scientific Reports, 2018, 8, 12009.	1.6	173
36	Selectively nitrogen-doped carbon materials as superior metal-free catalysts for oxygen reduction. Nature Communications, 2018, 9, 3376.	5.8	436

#	Article	IF	CITATIONS
37	In Situ Dynamic Nanostructuring of the Cu–Ti Catalyst-Support System Promotes Hydrogen Evolution under Alkaline Conditions. ACS Applied Materials & Interfaces, 2018, 10, 29583-29592.	4.0	18
38	Tuning the catalytic activity of heterogeneous two-dimensional transition metal dichalcogenides for hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 20005-20014.	5.2	63
39	Few-Layer PdSe ₂ Sheets: Promising Thermoelectric Materials Driven by High Valley Convergence. ACS Omega, 2018, 3, 5971-5979.	1.6	87
40	Preparation of 2D material dispersions and their applications. Chemical Society Reviews, 2018, 47, 6224-6266.	18.7	459
41	Photoelectrocatalytic Materials for Solar Water Splitting. Advanced Energy Materials, 2018, 8, 1800210.	10.2	364
42	Rapid synthesis of defective and composition-controlled metal chalcogenide nanosheets by supercritical hydrothermal processing. Nanoscale Advances, 2019, 1, 3383-3387.	2.2	8
43	Spin–Orbit Coupling-Dominated Catalytic Activity of Two-Dimensional Bismuth toward CO ₂ Electroreduction: Not the Thinner the Better. Journal of Physical Chemistry Letters, 2019, 10, 4663-4667.	2.1	41
44	A facile alkali metal hydroxide-assisted controlled and targeted synthesis of 1T MoS ₂ single-crystal nanosheets for lithium ion battery anodes. Nanoscale, 2019, 11, 14857-14862.	2.8	30
45	Self-gating in semiconductor electrocatalysis. Nature Materials, 2019, 18, 1098-1104.	13.3	167
46	Synthesis and characterization of rhenium disulfide nanosheets decorated rGO as electrode towards hydrogen generation in different media. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	10
47	Recent progress in the controlled synthesis of 2D metallic transition metal dichalcogenides. Nanotechnology, 2019, 30, 182002.	1.3	54
48	MoS ₂ Moiré Superlattice for Hydrogen Evolution Reaction. ACS Energy Letters, 2019, 4, 2830-2835.	8.8	98
49	Highly Efficient and Stable Photoelectrochemical Hydrogen Evolution with 2D-NbS ₂ /Si Nanowire Heterojunction. ACS Applied Materials & Interfaces, 2019, 11, 44179-44185.	4.0	39
50	Amorphous MoS2 confined in nitrogen-doped porous carbon for improved electrocatalytic stability toward hydrogen evolution reaction. Nano Research, 2019, 12, 3116-3122.	5.8	22
52	Oxygen Evolution Reaction on 2D Ferromagnetic Fe ₃ GeTe ₂ : Boosting the Reactivity by the Selfâ€Reduction of Surface Hydroxyl. Advanced Functional Materials, 2019, 29, 1904782.	7.8	42
53	Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution. Nature Materials, 2019, 18, 1309-1314.	13.3	280
54	Strong interactions in molybdenum disulfide heterostructures boosting the catalytic performance of water splitting: A short review. Nano Materials Science, 2019, 1, 231-245.	3.9	17
55	One-step synthesis of a hierarchical self-supported WS ₂ film for efficient electrocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 22405-22411.	5.2	33

ARTICLE IF CITATIONS # Tuning the Hydrogen Evolution Performance of Metallic 2D Tantalum Disulfide by Interfacial 7.3 77 56 Engineering. ACS Nano, 2019, 13, 11874-11881. Modulation of Phosphorene for Optimal Hydrogen Evolution Reaction. ACS Applied Materials & amp; 38 Interfaces, 2019, 11, 37787-37795. Scalable Production of Two-Dimensional Metallic Transition Metal Dichalcogenide Nanosheet Powders Using NaCl Templates toward Electrocatalytic Applications. Journal of the American 58 6.6 56 Chemical Society, 2019, 141, 18694-18703. Facile microwave assisted synthesis of vastly edge exposed 1T/2H-MoS₂ with enhanced 59 24 activity for hydrogen evolution catalysis. Journal of Materials Chemistry A, 2019, 7, 3563-3569. Impact of Interfacial Electron Transfer on Electrochemical CO₂ Reduction on Graphitic 60 5.2 69 Carbon Nitride/Doped Graphene. Small, 2019, 15, e1804224. Cracked eight-awn star TaS₂ with fractal structures used as an efficient electrocatalyst for the hydrogen evolution reaction. CrystEngComm, 2019, 21, 3517-3524. 1.3 Engineering Two-Dimensional Materials and Their Heterostructures as High-Performance 62 13.1 74 Electrocatalysts. Electrochemical Energy Reviews, 2019, 2, 373-394. Monodispersed platinum nanoparticles embedded in Ni3S2-containing hollow carbon spheres with ultralow Pt loading and high alkaline hydrogen evolution activity. Electrochimica Acta, 2019, 318, 2.6 590-596. Chemical Vapor Deposition Grown Large-Scale Atomically Thin Platinum Diselenide with 64 7.3 87 Semimetalâ∉"Semiconductor Transition. ACS Nano, 2019, 13, 8442-8451. Etching and Exfoliation Properties of Cr₂AlC into Cr₂CO₂ and the Electrocatalytic Performances of 2D Cr₂CO₂ MXene. Journal of Physical 1.5 Chemistry C, 2019, 123, 15629-15636. Deep insights into the exfoliation properties of MAX to MXenes and the hydrogen evolution 5.2 66 58 performances of 2D MXenes. Journal of Materials Chemistry A, 2019, 7, 15862-15870. Atomic Pillar Effect in PdxNbS2 To Boost Basal Plane Activity for Stable Hydrogen Evolution. Chemistry of Materials, 2019, 31, 4726-4731. 3.2 The electronic structure underlying electrocatalysis of twoâ€dimensional materials. Wiley 68 6.2 17 Interdisciplinary Reviews: Computational Molecular Science, 2019, 9, e1418. Fabrication of MoS2 decorated reduced graphene oxide sheets from solid Mo-precursor for 2.6 electrocatalytic hydrogen evolution reaction. Electrochimica Acta, 2019, 313, 341-351. Metallic 1T phase MoS2/MnO composites with improved cyclability for lithium-ion battery anodes. 70 2.8 22 Journal of Alloys and Compounds, 2019, 796, 25-32. Structure and electrochemical property of amorphous molybdenum selenide H2-evolving catalysts prepared by a solvothermal synthesis. International Journal of Hydrogen Energy, 2019, 44, 13273-13283. Triggering Catalytic Active Sites for Hydrogen Evolution Reaction by Intrinsic Defects in Janus 72 1.549 Monolayer MoSSe. Journal of Physical Chemistry C, 2019, 123, 12261-12267. Phaseâ€Tunable Synthesis of Ultrathin Layered Tetragonal CoSe and Nonlayered Hexagonal CoSe 11.1 Nanoplates. Advanced Materials, 2019, 31, e1900901.

#	Article	IF	CITATIONS
74	Identifying Catalytic Active Sites of Trimolybdenum Phosphide (Mo ₃ P) for Electrochemical Hydrogen Evolution. Advanced Energy Materials, 2019, 9, 1900516.	10.2	47
75	In situ engineering bi-metallic phospho-nitride bi-functional electrocatalysts for overall water splitting. Applied Catalysis B: Environmental, 2019, 254, 414-423.	10.8	107
76	Dopingâ€Induced Amorphization, Vacancy, and Gradient Energy Band in SnS ₂ Nanosheet Arrays for Improved Photoelectrochemical Water Splitting. Angewandte Chemie, 2019, 131, 6833-6837.	1.6	23
77	Dopingâ€Induced Amorphization, Vacancy, and Gradient Energy Band in SnS ₂ Nanosheet Arrays for Improved Photoelectrochemical Water Splitting. Angewandte Chemie - International Edition, 2019, 58, 6761-6765.	7.2	125
78	Scalable Production of Few-Layer Niobium Disulfide Nanosheets via Electrochemical Exfoliation for Energy-Efficient Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2019, 11, 13205-13213.	4.0	53
79	Discovering superior basal plane active two-dimensional catalysts for hydrogen evolution. Materials Today, 2019, 25, 28-34.	8.3	58
80	Hierarchical Edge-Rich Nickel Phosphide Nanosheet Arrays as Efficient Electrocatalysts toward Hydrogen Evolution in Both Alkaline and Acidic Conditions. ACS Sustainable Chemistry and Engineering, 2019, 7, 7804-7811.	3.2	48
81	Lattice -Mismatch-Induced Ultrastable 1T-Phase MoS ₂ –Pd/Au for Plasmon-Enhanced Hydrogen Evolution. Nano Letters, 2019, 19, 2758-2764.	4.5	98
82	Direct Synthesis of Metalâ€Doped Phosphorene with Enhanced Electrocatalytic Hydrogen Evolution. Small Methods, 2019, 3, 1900083.	4.6	56
83	Enhancing hydrogen evolution on the basal plane of transition metal dichacolgenide van der Waals heterostructures. Npj Computational Materials, 2019, 5, .	3.5	39
84	Atomically engineering activation sites onto metallic 1T-MoS2 catalysts for enhanced electrochemical hydrogen evolution. Nature Communications, 2019, 10, 982.	5.8	311
85	Operando Synthesis of High-Curvature Copper Thin Films for CO2 Electroreduction. Materials, 2019, 12, 602.	1.3	Ο
86	Extending the Colloidal Transition Metal Dichalcogenide Library to ReS ₂ Nanosheets for Application in Gas Sensing and Electrocatalysis. Small, 2019, 15, e1904670.	5.2	38
87	The rapid electrochemical activation of MoTe2 for the hydrogen evolution reaction. Nature Communications, 2019, 10, 4916.	5.8	90
88	Niobium disulphide (NbS ₂)-based (heterogeneous) electrocatalysts for an efficient hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 25593-25608.	5.2	50
89	Harnessing the unique properties of 2D materials for advanced lithium–sulfur batteries. Nanoscale Horizons, 2019, 4, 77-98.	4.1	79
90	Epitaxial Growth of Two-Dimensional Metal–Semiconductor Transition-Metal Dichalcogenide Vertical Stacks (VSe ₂ /MX ₂) and Their Band Alignments. ACS Nano, 2019, 13, 885-893.	7.3	102
91	Activation of MoS ₂ Basal Planes for Hydrogen Evolution by Zinc. Angewandte Chemie - International Edition, 2019, 58, 2029-2033.	7.2	208

		CITATION REPORT		
#	Article		IF	CITATIONS
92	Single-Atom Electroplating on Two Dimensional Materials. Chemistry of Materials, 201	9, 31, 429-435.	3.2	55
93	Novel Insights and Perspectives into Weakly Coupled ReS2 toward Emerging Application 5, 505-525.	ons. CheM, 2019,	5.8	68
94	Activation of MoS ₂ Basal Planes for Hydrogen Evolution by Zinc. Angewa 2019, 131, 2051-2055.	ndte Chemie,	1.6	29
95	2D Metallic Transitional Metal Dichalcogenides for Electrochemical Hydrogen Evolution Technology, 2019, 7, 1801025.	n. Energy	1.8	10
96	Boosting the Electrocatalytic Water Oxidation Performance of CoFe ₂ O <s Nanoparticles by Surface Defect Engineering. ACS Applied Materials & Interfaces,</s 		4.0	76
97	(003)-Facet-exposed Ni3S2 nanoporous thin films on nickel foil for efficient water split Catalysis B: Environmental, 2019, 243, 693-702.	ting. Applied	10.8	129
98	Laserâ€Induced Graphene: From Discovery to Translation. Advanced Materials, 2019, 3	31, e1803621.	11.1	512
99	2D Electrocatalysts for Converting Earthâ€Abundant Simple Molecules into Valueâ€Ac Chemicals: Recent Progress and Perspectives. Advanced Materials, 2020, 32, e190487		11.1	76
100	Facile microwave approach towards high performance MoS2/graphene nanocomposite evolution reaction. Science China Materials, 2020, 63, 62-74.	? for hydrogen	3.5	38
101	Fabrication of 3D flower-like MoS2/graphene composite as high-performance electrode deionization. Desalination, 2020, 473, 114191.	e for capacitive	4.0	95
102	Bond Electronegativity as Hydrogen Evolution Reaction Catalyst Descriptor for Transit	ion Metal (TM) Tj ETQq0 0	0	verlock 10 T
103	Construction of hierarchical yolk–shell nanospheres organized by ultrafine Janus sub efficient overall water splitting. Nanoscale, 2020, 12, 2578-2586.	units for	2.8	14
104	Boronâ€Induced Electronicâ€Structure Reformation of CoP Nanoparticles Drives Enha Hydrogen Evolution. Angewandte Chemie, 2020, 132, 4183-4189.	nced pHâ€ U niversal	1.6	23
105	Boronâ€Induced Electronicâ€Structure Reformation of CoP Nanoparticles Drives Enha Hydrogen Evolution. Angewandte Chemie - International Edition, 2020, 59, 4154-4160		7.2	221
106	Morphology ontrolled Tantalum Diselenide Structures as Selfâ€optimizing Hydroge Catalysts. Energy and Environmental Materials, 2020, 3, 12-18.	n Evolution	7.3	17
107	Engineering grain boundaries at theÂ2D limit for theÂhydrogen evolution reaction. Nat Communications, 2020, 11, 57.	ture	5.8	153
108	Unsaturated Single Atoms on Monolayer Transition Metal Dichalcogenides for Ultrafas Evolution. ACS Nano, 2020, 14, 767-776.	it Hydrogen	7.3	106
109	Architecturing CoTiO3 overlayer on nanosheets-assembled hierarchical TiO2 nanosphe active and robust catalyst for peroxymonosulfate activation and metronidazole degrad Chemical Engineering Journal, 2020, 392, 123819.		6.6	58

#	Article	IF	CITATIONS
110	Bifunctional NbS ₂ -Based Asymmetric Heterostructure for Lateral and Vertical Electronic Devices. ACS Nano, 2020, 14, 175-184.	7.3	51
111	Room-temperature sputtered electrocatalyst WSe2 nanomaterials for hydrogen evolution reaction. Journal of Energy Chemistry, 2020, 47, 107-111.	7.1	41
112	Dualâ€Metal Interbonding as the Chemical Facilitator for Singleâ€Atom Dispersions. Advanced Materials, 2020, 32, e2003484.	11.1	90
113	Mechanical testing of two-dimensional materials: a brief review. International Journal of Smart and Nano Materials, 2020, 11, 207-246.	2.0	20
114	Active Site Engineering in Porous Electrocatalysts. Advanced Materials, 2020, 32, e2002435.	11.1	304
115	TaS ₂ , TaSe ₂ , and Their Heterogeneous Films as Catalysts for the Hydrogen Evolution Reaction. ACS Catalysis, 2020, 10, 3313-3325.	5.5	60
116	Parameter optimisation for electrochemically activated MoTe ₂ . Sustainable Energy and Fuels, 2020, 4, 4473-4477.	2.5	9
117	Unveiling active sites by structural tailoring of <scp>twoâ€dimensional</scp> niobium disulfide for improved electrocatalytic hydrogen evolution reaction. International Journal of Energy Research, 2020, 44, 10551-10561.	2.2	6
118	Scalable and controllable synthesis of 2D high-proportion 1T-phase MoS2. Nano Research, 2020, 13, 2933-2938.	5.8	16
119	Microwaveâ€Induced Structural Engineering and Pt Trapping in <i>6R</i> â€TaS ₂ for the Hydrogen Evolution Reaction. Small, 2020, 16, e2003372.	5.2	18
120	Hierarchical Ultrathin Mo/MoS _{2(1â^'} <i>_x</i> _{â^'} <i>_y</i> ₎ P <i>_{x<!--<br-->Nanosheets Assembled on P, N Coâ€Đoped Carbon Nanotubes for Hydrogen Evolution in Both Acidic and Alkaline Electrolytes. Small, 2020, 16, e2004973.}</i>	sub> 5.2	29
121	Ag-Decorated MoS _{<i>x</i>} Laminar-Film Electrocatalyst Made with Simple and Scalable Magnetron Sputtering Technique for Hydrogen Evolution: A Defect Model to Explain the Enhanced Electron Transport. ACS Applied Materials & amp; Interfaces, 2020, 12, 35011-35021.	4.0	25
122	Two-dimensional forms of robust CO2 reduction photocatalysts. Npj 2D Materials and Applications, 2020, 4, .	3.9	20
123	Enhancing both selectivity and activity of CO2 conversion by breaking scaling relations with bimetallic active sites anchored in covalent organic frameworks. Journal of Catalysis, 2020, 390, 126-134.	3.1	41
124	Hierarchical flower-like Co ₂ TiO ₄ nanosheets with unique structural and compositional advantages to boost peroxymonosulfate activation for degradation of organic pollutants. Journal of Materials Chemistry A, 2020, 8, 20953-20962.	5.2	50
125	A Tandem 0D/2D/2D NbS ₂ Quantum Dot/Nb ₂ O ₅ Nanosheet/gâ€C ₃ N ₄ Flake System with Spatial Charge–Transfer Cascades for Boosting Photocatalytic Hydrogen Evolution. Small, 2020, 16, e2003302.	5.2	40
126	Two-dimensional metallic tantalum ditelluride with an intrinsic basal-plane activity for oxygen reduction: A microkinetic modeling study. Green Energy and Environment, 2022, 7, 525-532.	4.7	5
127	Atomic‧cale Edge Morphology, Stability, and Oxidation of Single‣ayer 2Hâ€TaS ₂ . ChemPlusChem, 2020, 85, 2557-2564.	1.3	5

#	Article	IF	CITATIONS
128	Single-phase perovskite oxide with super-exchange induced atomic-scale synergistic active centers enables ultrafast hydrogen evolution. Nature Communications, 2020, 11, 5657.	5.8	134
129	A Physical Model for Understanding the Activation of MoS ₂ Basalâ€Plane Sulfur Atoms for the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2020, 59, 14835-14841.	7.2	36
130	Advancement of Platinum (Pt)-Free (Non-Pt Precious Metals) and/or Metal-Free (Non-Precious-Metals) Electrocatalysts in Energy Applications: A Review and Perspectives. Energy & Fuels, 2020, 34, 6634-6695.	2.5	100
131	Highly Effective Electrochemical Exfoliation of Ultrathin Tantalum Disulfide Nanosheets for Energy-Efficient Hydrogen Evolution Electrocatalysis. ACS Applied Materials & Interfaces, 2020, 12, 24675-24682.	4.0	29
132	Just add water to split water: ultrahigh-performance bifunctional electrocatalysts fabricated using eco-friendly heterointerfacing of NiCo diselenides. Journal of Materials Chemistry A, 2020, 8, 12035-12044.	5.2	38
133	High-Throughput Identification of Exfoliable Two-Dimensional Materials with Active Basal Planes for Hydrogen Evolution. ACS Energy Letters, 2020, 5, 2313-2321.	8.8	54
134	Lithium incorporation assisted synthesis of ultra-small Mo2C nanodots as efficient photocatalytic H2 evolution cocatalysts. Chemical Engineering Journal, 2020, 399, 125794.	6.6	33
135	Hierarchical NbS ₂ /MoS ₂ -Carbon Nanofiber Electrode for Highly Efficient and Stable Hydrogen Evolution Reaction at All Ranges of pH. ACS Applied Energy Materials, 2020, 3, 6717-6725.	2.5	28
136	Two-Dimensional Metallic NiTe ₂ with Ultrahigh Environmental Stability, Conductivity, and Electrocatalytic Activity. ACS Nano, 2020, 14, 9011-9020.	7.3	60
137	First-principle calculations on the structure, electronic property and catalytic activity for hydrogen evolution reaction of 2D transition-metal borides. Materials Chemistry and Physics, 2020, 253, 123334.	2.0	21
138	Adsorption behavior of CO, CO2, H2, H2O, NO, and O2 on pristine and defective 2D monolayer ferromagnetic Fe3GeTe2. Applied Surface Science, 2020, 527, 146894.	3.1	20
139	A Physical Model for Understanding the Activation of MoS ₂ Basalâ€Plane Sulfur Atoms for the Hydrogen Evolution Reaction. Angewandte Chemie, 2020, 132, 14945-14951.	1.6	9
140	Recent Modification Strategies of MoS2 for Enhanced Electrocatalytic Hydrogen Evolution. Molecules, 2020, 25, 1136.	1.7	44
141	Magnetic Enhancement for Hydrogen Evolution Reaction on Ferromagnetic MoS ₂ Catalyst. Nano Letters, 2020, 20, 2923-2930.	4.5	130
142	Two-Dimensional Layered Materials: High-Efficient Electrocatalysts for Hydrogen Evolution Reaction. ACS Applied Nano Materials, 2020, 3, 6270-6296.	2.4	70
143	Pairing of Transition Metal Dichalcogenides and Doped Graphene for Catalytically Dual Active Interfaces for the Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2020, , .	3.2	0
144	Recent Progress in MXeneâ€Based Materials: Potential Highâ€Performance Electrocatalysts. Advanced Functional Materials, 2020, 30, 2003437.	7.8	181
145	Theoretical prediction of B/Al-doped black phosphorus as potential cathode material in lithium-sulfur batteries. Applied Surface Science. 2020. 512. 145639.	3.1	22

#	Article	IF	CITATIONS
146	Mechanochemical-assisted synthesis of ternary Ru-Ni-S pyrite analogue for enhanced hydrogen evolution performance. Carbon, 2020, 162, 172-180.	5.4	17
147	Two-dimensional M2CO2/MoS2 (M = Ti, Zr and Hf) van der Waals heterostructures for overall water splitting: A density functional theory study. Ceramics International, 2020, 46, 13377-13384.	2.3	22
148	Tackling the Activity and Selectivity Challenges of Electrocatalysts toward the Nitrogen Reduction Reaction via Atomically Dispersed Biatom Catalysts. Journal of the American Chemical Society, 2020, 142, 5709-5721.	6.6	664
149	Engineering Substrate Interaction To Improve Hydrogen Evolution Catalysis of Monolayer MoS ₂ Films beyond Pt. ACS Nano, 2020, 14, 1707-1714.	7.3	97
150	Mo-dopant-strengthened basal-plane activity in VS2 for accelerating hydrogen evolution reaction. Chemical Engineering Journal, 2020, 396, 125227.	6.6	31
151	Modulating the Electronic Structure and In-Plane Activity of Two-Dimensional Transition Metal Dichalcogenide (MoS ₂ , TaS ₂ , NbS ₂) Monolayers by Interfacial Engineering. Journal of Physical Chemistry C, 2020, 124, 8822-8833.	1.5	20
152	Descriptor for Hydrogen Evolution Catalysts Based on the Bulk Band Structure Effect. ACS Catalysis, 2020, 10, 5042-5048.	5.5	46
153	Enhanced Electrocatalytic Hydrogen Evolution Activity in Single-Atom Pt-Decorated VS ₂ Nanosheets. ACS Nano, 2020, 14, 5600-5608.	7.3	135
154	2D Transition Metal Dichalcogenides: Design, Modulation, and Challenges in Electrocatalysis. Advanced Materials, 2021, 33, e1907818.	11.1	284
155	Mass production of two-dimensional materials beyond graphene and their applications. Nano Research, 2021, 14, 1583-1597.	5.8	54
156	Synthesis of metallic mixed 3R and 2H Nb _{1+x} S ₂ nanoflakes by chemical vapor deposition. Faraday Discussions, 2021, 227, 332-340.	1.6	2
157	Establishing a Theoretical Landscape for Identifying Basal Plane Active 2D Metal Borides (MBenes) toward Nitrogen Electroreduction. Advanced Functional Materials, 2021, 31, 2008056.	7.8	97
158	"More is Different:―Synergistic Effect and Structural Engineering in Doubleâ€Atom Catalysts. Advanced Functional Materials, 2021, 31, 2007423.	7.8	179
159	Design of 2D Layered Catalyst by Coherent Heteroepitaxial Conversion for Robust Hydrogen Generation. Advanced Functional Materials, 2021, 31, 2005449.	7.8	11
160	Design of Local Atomic Environments in Singleâ€Atom Electrocatalysts for Renewable Energy Conversions. Advanced Materials, 2021, 33, e2003075.	11.1	187
161	Structure, Preparation, and Applications of 2D Materialâ€Based Metal–Semiconductor Heterostructures. Small Structures, 2021, 2, 2000093.	6.9	71
162	Three-dimensional CoMoMg nanomesh based on the nanoscale Kirkendall effect for the efficient hydrogen evolution reaction. Journal of Alloys and Compounds, 2021, 857, 158086.	2.8	17
163	Alkaline Anion Exchange Membrane (AEM) Water Electrolysers—Current/Future Perspectives in Electrolysers for Hydrogen. , 2022, , 473-504.		2

#	Article	IF	Citations
164	1T Phase Transition Metal Dichalcogenides for Hydrogen Evolution Reaction. Electrochemical Energy Reviews, 2021, 4, 194-218.	13.1	65
165	Facilitating electrocatalytic hydrogen evolution <i>via</i> multifunctional tungsten@tungsten disulfide core–shell nanospheres. Journal of Materials Chemistry A, 2021, 9, 9272-9280.	5.2	13
166	Identification of electronic descriptors for catalytic activity of transition-metal and non-metal doped MoS ₂ . Physical Chemistry Chemical Physics, 2021, 23, 15101-15106.	1.3	3
167	Probing interface strength in nanocomposites and hybrid nanomaterials. , 2021, , 209-240.		1
168	Engineering sulfur vacancies into Fe ₉ S ₁₀ nanosheet arrays for efficient alkaline hydrogen evolution. Nanoscale, 2021, 13, 12951-12955.	2.8	13
169	Surface reconstruction of AgPdF and AgPd nanoalloys under the formate oxidation reaction. Journal of Materials Chemistry A, 2021, 9, 23072-23084.	5.2	18
170	Two-Dimensional Metallic Vanadium Ditelluride as a High-Performance Electrode Material. ACS Nano, 2021, 15, 1858-1868.	7.3	49
171	Recent advances in transition-metal-sulfide-based bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2021, 9, 5320-5363.	5.2	322
172	Singleâ€Atom‣ayer Catalysis in a MoS ₂ Monolayer Activated by Longâ€Range Ferromagnetism for the Hydrogen Evolution Reaction: Beyond Singleâ€Atom Catalysis. Angewandte Chemie - International Edition, 2021, 60, 7251-7258.	7.2	84
173	Non-noble Metal Electrocatalysts for the Hydrogen Evolution Reaction in Water Electrolysis. Electrochemical Energy Reviews, 2021, 4, 473-507.	13.1	224
174	Singleâ€Atom‣ayer Catalysis in a MoS ₂ Monolayer Activated by Longâ€Range Ferromagnetism for the Hydrogen Evolution Reaction: Beyond Singleâ€Atom Catalysis. Angewandte Chemie, 2021, 133, 7327-7334.	1.6	16
175	Single WTe ₂ Sheet-Based Electrocatalytic Microdevice for Directly Detecting Enhanced Activity of Doped Electronegative Anions. ACS Applied Materials & Interfaces, 2021, 13, 14302-14311.	4.0	15
176	Concurrent Vacancy and Adatom Defects of Mo _{1–<i>x</i>} Nb _{<i>x</i>} Se ₂ Alloy Nanosheets Enhance Electrochemical Performance of Hydrogen Evolution Reaction. ACS Nano, 2021, 15, 5467-5477.	7.3	51
177	Synergism on Electronic Structures and Active Edges of Metallic Vanadium Disulfide Nanosheets via Co Doping for Efficient Hydrogen Evolution Reaction in Seawater. ChemCatChem, 2021, 13, 2138-2144.	1.8	13
178	Elimination of Interlayer Potential Barriers of Chromium Sulfide by Self-Intercalation for Enhanced Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2021, 13, 13055-13062.	4.0	17
179	Manipulating Electrocatalysis using Mosaic Catalysts. Small Science, 2021, 1, 2000059.	5.8	15
180	Electronic structure modulation of MoS2 by substitutional Se incorporation and interfacial MoO3 hybridization: Implications of Fermi engineering for electrocatalytic hydrogen evolution and oxygen evolution. Chemical Physics Reviews, 2021, 2, .	2.6	8
181	A highly efficient Fe-doped Ni3S2 electrocatalyst for overall water splitting. Nano Research, 2021, 14, 4740-4747.	5.8	52

#	Article	IF	CITATIONS
182	Theoretical Prediction of Two-Dimensional Materials, Behavior, and Properties. ACS Nano, 2021, 15, 5959-5976.	7.3	30
183	Metal substrates-induced phase transformation of monolayer transition metal dichalcogenides for hydrogen evolution catalysis*. Chinese Physics B, 2021, 30, 116401.	0.7	3
184	Progress in energy recovery and graphene usage in capacitive deionization. Critical Reviews in Environmental Science and Technology, 2022, 52, 3080-3136.	6.6	15
185	First-Principles Study of the Atomic Structures and Catalytic Properties of Monolayer TaS ₂ with Intrinsic Defects. Journal of Physical Chemistry C, 2021, 125, 10362-10369.	1.5	22
186	Experimental and theoretical insights to demonstrate the hydrogen evolution activity of layered platinum dichalcogenides electrocatalysts. Journal of Materials Research and Technology, 2021, 12, 385-398.	2.6	11
187	Density Functional Theory Study of Edge-Induced Atomic-Scale Structural Phase Transitions of MoS2 Nanocrystals: Implications for a High-Performance Catalyst. ACS Applied Nano Materials, 2021, 4, 5496-5502.	2.4	2
188	Transition Metal Chalcogenides as a Versatile and Tunable Platform for Catalytic CO ₂ and N ₂ Electroreduction. ACS Materials Au, 2021, 1, 6-36.	2.6	55
189	Modifying redox properties and local bonding of Co3O4 by CeO2 enhances oxygen evolution catalysis in acid. Nature Communications, 2021, 12, 3036.	5.8	262
190	A fundamental viewpoint on the hydrogen spillover phenomenon of electrocatalytic hydrogen evolution. Nature Communications, 2021, 12, 3502.	5.8	183
191	Planarâ€Coordination PdSe ₂ Nanosheets as Highly Active Electrocatalyst for Hydrogen Evolution Reaction. Advanced Functional Materials, 2021, 31, 2102321.	7.8	98
192	Mo-incorporated three-dimensional hierarchical ternary nickel-cobalt-molybdenum layer double hydroxide for high-efficiency water splitting. International Journal of Hydrogen Energy, 2021, 46, 22463-22477.	3.8	39
193	Sustained Solar-Powered Electrocatalytic H ₂ Production by Seawater Splitting Using Two-Dimensional Vanadium Disulfide. ACS Sustainable Chemistry and Engineering, 2021, 9, 8572-8580.	3.2	10
194	Ionic conductance oscillations in sub-nanometer pores probed by optoelectronic control. Matter, 2021, 4, 2378-2391.	5.0	13
195	Introducing a self-improving catalyst for hydrogen evolution and efficient catalyst for oxygen evolution reaction. Journal of Molecular Liquids, 2021, 334, 116511.	2.3	6
196	Understanding the air stability of defective MoS ₂ and the oxidation effect on the surface HER activity. Journal of Physics Condensed Matter, 2021, 33, 395002.	0.7	4
197	2D Metallic Transitionâ€Metal Dichalcogenides: Structures, Synthesis, Properties, and Applications. Advanced Functional Materials, 2021, 31, 2105132.	7.8	111
198	Controlled Syntheses and Multifunctional Applications of Two-Dimensional Metallic Transition Metal Dichalcogenides. Accounts of Materials Research, 2021, 2, 751-763.	5.9	11
199	Vertically aligned MoS2 thin film catalysts with Fe-Ni sulfide nanoparticles by one-step sulfurization for efficient solar water reduction. Chemical Engineering Journal, 2021, 418, 129369.	6.6	26

#	Article	IF	CITATIONS
200	2D Pentagonal Pdâ€Based Janus Transition Metal Dichalcogenides for Photocatalytic Water Splitting. Physica Status Solidi - Rapid Research Letters, 2022, 16, 2100344.	1.2	17
201	Enhancing Hydrogen Evolution Activity of Monolayer Molybdenum Disulfide via a Molecular Proton Mediator. ACS Catalysis, 2021, 11, 12159-12169.	5.5	19
202	Scalable production of intrinsic WX ₂ (XÂ=ÂS, Se, Te) quantum sheets for efficient hydrogen evolution electrocatalysis. Nanotechnology, 2021, 32, 495701.	1.3	10
203	Multilevel Theoretical Screening of Novel Two-Dimensional MA ₂ Z ₄ Family for Hydrogen Evolution. Journal of Physical Chemistry Letters, 2021, 12, 9149-9154.	2.1	32
204	Synthesis of vertically aligned wafer-scale tantalum disulfide using high-Ar/H ₂ S ratio plasma. Nanotechnology, 2022, 33, 025603.	1.3	5
205	Mesoporous carbon-supported ultrasmall metal nanoparticles via a mechanochemical-driven redox reaction: A "Two-in-One―strategy. Applied Catalysis B: Environmental, 2021, 294, 120232.	10.8	8
206	Mixed-dimensional niobium disulfide-graphene foam heterostructures as an efficient catalyst for hydrogen production. International Journal of Hydrogen Energy, 2021, 46, 33679-33688.	3.8	10
207	Advanced catalyst for hydrogen evolution reaction by dealloying Al-based nanocrystalline alloys. Journal of Alloys and Compounds, 2021, 880, 160548.	2.8	17
208	Utilizing the charge-transfer model to design promising electrocatalysts. Current Opinion in Electrochemistry, 2021, 30, 100805.	2.5	4
209	Manipulating and probing the structural self-optimization in oxygen evolution reaction catalysts. Current Opinion in Electrochemistry, 2021, 30, 100788.	2.5	11
210	Improving oxygen evolution reaction activity by constructing core-shell structure of Co/N-doped carbon polyhedron@NiCo layered double hydroxides. Journal of Alloys and Compounds, 2022, 890, 161805.	2.8	12
211	An electrodeposited MoS2-MoO3â~'x/Ni3S2 heterostructure electrocatalyst for efficient alkaline hydrogen evolution. Chemical Engineering Journal, 2022, 428, 131055.	6.6	39
212	Inverted perovskite solar cells with enhanced lifetime and thermal stability enabled by a metallic tantalum disulfide buffer layer. Nanoscale Advances, 2021, 3, 3124-3135.	2.2	23
213	Atomic Layer Deposition of 2D Metal Dichalcogenides for Electronics, Catalysis, Energy Storage, and Beyond. Advanced Materials Interfaces, 2021, 8, 2001677.	1.9	39
214	Key role of antibonding electron transfer in bonding on solid surfaces. Physical Review Materials, 2019, 3, .	0.9	22
215	Steric effects in the hydrogen evolution reaction based on the TMX ₄ active center: Fe–BHT as a case study. Physical Chemistry Chemical Physics, 2021, 23, 25239-25245.	1.3	4
216	A Ta-TaS2 monolith catalyst with robust and metallic interface for superior hydrogen evolution. Nature Communications, 2021, 12, 6051.	5.8	112
217	Phase-Tunable Synthesis and Etching-Free Transfer of Two-Dimensional Magnetic FeTe. ACS Nano, 2021, 15, 19089-19097.	7.3	18

#	Article	IF	CITATIONS
218	Initiating VBâ€Group Laminated NbS ₂ Electromagnetic Wave Absorber toward Superior Absorption Bandwidth as Large as 6.48ÂGHz through Phase Engineering Modulation. Advanced Functional Materials, 2022, 32, 2108194.	7.8	147
219	Charge regulation engineering to suppress Jahn-Teller distortion in low crystallinity In-doping MnCo2O4 for high activity pseudocapacitors and hydrogen evolution reaction. Chemical Engineering Journal, 2022, 430, 132886.	6.6	20
220	Review of cobalt-based nanocomposites as electrode for supercapacitor application. lonics, 2022, 28, 989-1015.	1.2	15
221	Controllable growth of two-dimensional materials on noble metal substrates. IScience, 2021, 24, 103432.	1.9	5
222	Recent Advances in Manifold Exfoliated Synthesis of Twoâ€Dimensional Nonâ€precious Metalâ€Based Nanosheet Electrocatalysts for Water Splitting. Small Structures, 2022, 3, 2100153.	6.9	43
223	Mesoporous IrNiTa metal glass ribbon as a superior self-standing bifunctional catalyst for water electrolysis. Chemical Engineering Journal, 2022, 431, 134210.	6.6	16
224	Boosting hydrogen evolution activity of transition meta-nitrogen embedded graphene through introducing secondary transition metal. Surfaces and Interfaces, 2022, 29, 101714.	1.5	1
225	P and Se-codopants triggered basal plane active sites in NbS2 3D nanosheets toward electrocatalytic hydrogen evolution. Applied Surface Science, 2022, 581, 152419.	3.1	7
227	NiMoFe nanoparticles@MoO ₂ nano-pillar arrays as bifunctional electrodes for ultra-low-voltage overall water splitting. Journal of Materials Chemistry A, 2022, 10, 3760-3770.	5.2	22
228	High-yield production of mono- or few-layer transition metal dichalcogenide nanosheets by an electrochemical lithium ion intercalation-based exfoliation method. Nature Protocols, 2022, 17, 358-377.	5.5	100
229	Heteroatomic Platinum–Cobalt Synergetic Active Centers with Charge Polarization Enable Superior Hydrogen Evolution Performance in both Acid and Base Media. ACS Applied Energy Materials, 2022, 5, 1496-1504.	2.5	19
230	Emerging 2D Materials for Electrocatalytic Applications: Synthesis, Multifaceted Nanostructures, and Catalytic Center Design. Small, 2022, 18, e2105831.	5.2	31
231	Defect-mediated successive ionic layer adsorption and reaction for constructing Sb2Te3/Ag2S heterojunction to boost hydrogen evolution reaction performance. Fuel, 2022, 315, 123242.	3.4	4
232	Recent progress of two-dimensional metallic transition metal dichalcogenides: Syntheses, physical properties, and applications. Journal of Applied Physics, 2022, 131, .	1.1	13
233	Plasmonic hot-electron assisted phase transformation in 2D-MoS ₂ for the hydrogen evolution reaction: current status and future prospects. Journal of Materials Chemistry A, 2022, 10, 8626-8655.	5.2	24
234	Computational screening of single-atom catalysts supported by VS ₂ monolayers for electrocatalytic oxygen reduction/evolution reactions. Nanoscale, 2022, 14, 6902-6911.	2.8	30
235	MoS2/Mo2TiC2Tx supported Pd nanoparticles as an efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline media. International Journal of Hydrogen Energy, 2022, 47, 11739-11749.	3.8	13
236	Combinatorial High-Throughput Methods for Designing Hydrogen Evolution Reaction Catalysts. ACS Catalysis, 2022, 12, 3789-3796.	5.5	22

#	Article	IF	Citations
237	Transition metal dichalcogenides as catalysts for the hydrogen evolution reaction: The emblematic case of "inert―ZrSe ₂ as catalyst for electrolyzers. Nano Select, 2022, 3, 1069-1081.	1.9	6
238	Tetragonal transition metal selenide for hydrogen evolution. Applied Surface Science, 2022, 591, 153249.	3.1	19
239	Dualâ€Regulation of Defect Sites and Vertical Conduction by Spiral Domain for Electrocatalytic Hydrogen Evolution. Angewandte Chemie, 2022, 134, .	1.6	4
240	Dualâ€Regulation of Defect Sites and Vertical Conduction by Spiral Domain for Electrocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2022, 61, .	7.2	35
241	Ammonium Salts: New Synergistic Additive for Chemical Vapor Deposition Growth of MoS ₂ . Journal of Physical Chemistry Letters, 2021, 12, 12384-12390.	2.1	7
242	Surface and Interface Engineering Strategies for MoS ₂ Towards Electrochemical Hydrogen Evolution. Chemistry - an Asian Journal, 2022, 17, .	1.7	6
243	Phase-Tuned MoS ₂ and Its Hybridization with Perovskite Oxide as Bifunctional Catalyst: A Rationale for Highly Stable and Efficient Water Splitting. ACS Applied Materials & Interfaces, 2022, 14, 18248-18260.	4.0	16
244	Controllable Synthesis Quadratic-Dependent Unsaturated Magnetoresistance of Two-Dimensional Nonlayered Fe ₇ S ₈ with Robust Environmental Stability. ACS Nano, 2022, 16, 8301-8308.	7.3	12
245	Giant coercivity in single crystal Ta ₃ FeS ₆ film. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 127503.	0.2	0
246	Nickel nanoparticle-activated MoS ₂ for efficient visible light photocatalytic hydrogen evolution. Nanoscale, 2022, 14, 8601-8610.	2.8	11
247	Pt modulation of NbSe ₂ for enhanced activity and stability: a new Pt ₃ Nb ₂ Se ₈ compound for highly-efficient alkaline hydrogen evolution. Chemical Communications, 2022, 58, 6204-6207.	2.2	6
248	Structural engineering of ultrathin vertical NbS ₂ on carbon cloth by chemical vapor deposition for hydrogen evolution reaction. Functional Materials Letters, 2022, 15, .	0.7	3
249	Encapsulating N‑doped graphite carbon in MoO2 as a novel cocatalyst for boosting photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2022, 623, 267-276.	5.0	11
250	Atomistic Understanding of Two-dimensional Electrocatalysts from First Principles. Chemical Reviews, 2022, 122, 10675-10709.	23.0	60
251	D-band frontier: A new hydrogen evolution reaction activity descriptor of Pt single-atom catalysts. Journal of Energy Chemistry, 2022, 72, 203-209.	7.1	16
252	Optimizing the Atom Substitution of Er in WS ₂ Nanosheets for High-Performance Photoelectrochemical Applications. Journal of Physical Chemistry C, 2022, 126, 9293-9303.	1.5	20
253	Fe-doped Co9S8@CoO aerogel with core-shell nanostructures for boosted oxygen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 21182-21190.	3.8	16
254	Interfacial synergies between single-atomic Pt and CoS for enhancing hydrogen evolution reaction catalysis. Applied Catalysis B: Environmental, 2022, 315, 121534.	10.8	63

#	Article	IF	CITATIONS
255	In-situ engineered heterostructured nickel tellur-selenide nanosheets for robust overall water splitting. Chemical Engineering Journal, 2022, 446, 137297.	6.6	22
256	Regulation of Electronic Structures to Boost Efficient Nitrogen Fixation: Synergistic Effects between Transition Metals and Boron Nanotubes. ACS Applied Materials & Interfaces, 0, , .	4.0	1
257	Theoretical Advances in Understanding and Designing the Active Sites for Hydrogen Evolution Reaction. ACS Catalysis, 2022, 12, 8404-8433.	5.5	72
258	Ultrafast self-heating synthesis of robust heterogeneous nanocarbides for high current density hydrogen evolution reaction. Nature Communications, 2022, 13, .	5.8	62
259	Ultrathin Metallic NbS ₂ Nanosheets with Unusual Intercalation Mechanism for Ultraâ€Stable Potassiumâ€Ion Storage. Advanced Functional Materials, 2022, 32, .	7.8	15
260	Atomicâ€Level Design of Active Site on Twoâ€Dimensional MoS ₂ toward Efficient Hydrogen Evolution: Experiment, Theory, and Artificial Intelligence Modelling. Advanced Functional Materials, 2022, 32, .	7.8	53
261	Improving the device performances of two-dimensional semiconducting transition metal dichalcogenides: Three strategies. Frontiers of Physics, 2022, 17, .	2.4	10
262	Recent advances in metallic transition metal dichalcogenides as electrocatalysts for hydrogen evolution reaction. IScience, 2022, 25, 105098.	1.9	14
263	Photoinduced loading of electron-rich Cu single atoms by moderate coordination for hydrogen evolution. Nature Communications, 2022, 13, .	5.8	31
264	Hydrogen evolution reaction activity obtained using platinum single atoms on TiO2 nanosheetsÂmodified with graphene. Journal of Materials Science, 2022, 57, 16448-16459.	1.7	2
265	Controllable Growth and Defect Engineering of Vertical PtSe ₂ Nanosheets for Electrocatalytic Hydrogen Evolution. ACS Energy Letters, 2022, 7, 3675-3684.	8.8	12
266	Charge self-regulation in 1T'''-MoS2 structure with rich S vacancies for enhanced hydrogen evolution activity. Nature Communications, 2022, 13, .	5.8	56
267	Realizing Favorable Synergism Toward Efficient Hydrogen Evolution Reaction with Heterojunction Engineered Cu ₇ S ₄ /CuS ₂ /NiS ₂ and Functionalized Carbon Sheet Heterostructures. Advanced Materials Interfaces, 2022, 9, .	1.9	1
268	Application of in situ/operando characterization techniques in heterostructure catalysts toward water electrolysis. Nano Research, 2023, 16, 1984-1991.	5.8	8
269	Computational screening of nonmetal dopants to active MoS2 basal-plane for hydrogen evolution reaction via structural descriptor. Journal of Catalysis, 2022, 416, 47-57.	3.1	7
270	Constructing 1ÂT-2ÂH TaS2 nanosheets with architecture and defect engineering for enhance hydrogen evolution reaction. Journal of Alloys and Compounds, 2023, 935, 167877.	2.8	3
271	N+ irradiation regulates surface defects and doping towards efficient hydrogen evolution reaction on Sb2Te3. Applied Surface Science, 2023, 609, 155347.	3.1	7
272	Designed TiS ₂ nanosheets for efficient electrocatalytic reductive amination of biomass-derived furfurals. Green Chemistry, 2022, 24, 9570-9578.	4.6	10

		CITATION REPORT		
#	Article		IF	CITATIONS
273	Single atom catalysts in Van der Waals gaps. Nature Communications, 2022, 13, .		5.8	17
275	Correlation between Electronic Descriptor and Proton-Coupled Electron Transfer Therm in Doped Graphite-Conjugated Catalysts. Journal of Physical Chemistry Letters, 2022, 1	odynamics 3, 11216-11222.	2.1	4
276	Self-Supported Graphene Nanosheet-Based Composites as Binder-Free Electrodes for A Electrochemical Energy Conversion and Storage. Electrochemical Energy Reviews, 2022		13.1	27
277	Microwave induced rapid surface amorphization of metal oxide nanowire into sulfides s electronically modulated efficient hydrogen evolution catalyst. Catalysis Today, 2023, 4	hell for 23, 113962.	2.2	2
278	Design of XS ₂ (XÂ=ÂW or Mo)â€Decorated VS ₂ Hybrid Nanc Abundant Active Edge Sites for Highâ€Rate Asymmetric Supercapacitors and Hydrogen Reactions. Small, 2023, 19, .	aê€Architectures with Evolution	5.2	11
279	Dopant-vacancy activated tetragonal transition metal selenide for hydrogen evolution electrocatalysis. Chinese Chemical Letters, 2023, 34, 108046.		4.8	5
280	Plasmonic imaging of the layer-dependent electrocatalytic activity of two-dimensional c Nature Communications, 2022, 13, .	atalysts.	5.8	10
281	Post cobalt doping and defect engineering of NbSSe for efficient hydrogen evolution re Journal of Materials Chemistry A, 2023, 11, 2690-2697.	action.	5.2	7
282	The kinetics and potential dependence of the hydrogen evolution reaction optimized for basal-plane Te vacancy site of MoTe2. Chem Catalysis, 2023, 3, 100489.	ir the	2.9	4
283	<i>In situ</i> formation of nickel sulfide quantum dots embedded into a two-dimension metal–organic framework for water splitting. Inorganic Chemistry Frontiers, 2023, 10		3.0	6
284	In Situ Surface Reconstruction of Catalysts for Enhanced Hydrogen Evolution. Catalysts	s, 2023, 13, 120.	1.6	3
285	The S-Fe(Ni) sub-surface active sites for efficient and stable overall water splitting. Appl B: Environmental, 2023, 325, 122365.	ied Catalysis	10.8	16
286	Beyond the Platinum Era─Scalable Preparation and Electrochemical Activation of TaS Flakes. ACS Applied Materials & Interfaces, 2023, 15, 5679-5686.	₂	4.0	3
287	Thermal Shrinkage Engineering Enables Electrocatalysts for Stable Hydrogen Evolution 2000ÂmAÂcm ^{â^2} . Advanced Functional Materials, 2023, 33, .	at	7.8	9
288	Theoretical prediction of novel two-dimensional MA ₂ Z ₄ famil battery anodes. 2D Materials, 2023, 10, 025020.	y for Li/Na	2.0	2
289	Edges of Layered FePSe ₃ Exhibit Increased Electrochemical and Electrocat Compared to Basal Planes. ACS Applied Electronic Materials, 2023, 5, 928-934.	alytic Activity	2.0	1
290	Stable Mo/1T-MoS ₂ Monolith Catalyst with a Metallic Interface for Large C Splitting. ACS Applied Materials & Interfaces, 0, , .	Current Water	4.0	0
291	Extending MoS ₂ -based materials into the catalysis of non-acidic hydrogen challenges, progress, and perspectives. Materials Futures, 2023, 2, 022103.	evolution:	3.1	12

#	Article	IF	CITATIONS
292	2D FeS _{<i>x</i>} Nanosheets by Atomic Layer Deposition: Electrocatalytic Properties for the Hydrogen Evolution Reaction. ChemSusChem, 2023, 16, .	3.6	3
293	Interfacial engineering of Co5.47N/Mo5N6 nanosheets with rich active sites synergistically accelerates water dissociation kinetics for Pt-like hydrogen evolution. Journal of Colloid and Interface Science, 2023, 643, 455-464.	5.0	6
294	Tunable hydrogen evolution activity of black antimony–phosphorus monolayers via strain engineering: a first-principles calculation. Applied Physics A: Materials Science and Processing, 2023, 129, .	1.1	1
295	Regulating the Electrical and Mechanical Properties of TaS2 Films via van der Waals and Electrostatic Interaction for High Performance Electromagnetic Interference Shielding. Nano-Micro Letters, 2023, 15, .	14.4	9
296	Engineering polymorphs in colloidal metal dichalcogenides: precursor-mediated phase control, molecular insights into crystallisation kinetics and promising electrochemical activity. Journal of Materials Chemistry A, 2023, 11, 11341-11353.	5.2	5
298	Recent advances of two-dimensional metal-organic frameworks in alkaline electrolysis water for hydrogen production. Science China Chemistry, 2023, 66, 1924-1939.	4.2	4
300	Synergistic Overview and Perspectives of Two-Dimensional Heterostructures for Cathodes and Separators in Flexible Li–S Batteries. Energy & Fuels, 0, , .	2.5	1
312	The CeO2 supported multi-nuclear NbxSy clusters for hydrogen evolution reaction. Sustainable Energy and Fuels, 0, , .	2.5	Ο
316	From VIB- to VB-Group Transition Metal Disulfides: Structure Engineering Modulation for Superior Electromagnetic Wave Absorption. Nano-Micro Letters, 2024, 16, .	14.4	8
325	Recent advances in trifunctional electrocatalysts for Zn–air battery and water splitting. Materials Chemistry Frontiers, 0, , .	3.2	Ο
331	Computational chemistry for water-splitting electrocatalysis. Chemical Society Reviews, 2024, 53, 2771-2807.	18.7	1