Energy storage deployment and innovation for the clear

Nature Energy

2,

DOI: 10.1038/nenergy.2017.125

Citation Report

#	Article	IF	CITATIONS
1	Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future. Water Resources Research, 2017, 53, 10523-10538.	4.2	108
2	Pseudo-solid State Batteries See the Light. Joule, 2017, 1, 223-225.	24.0	0
3	An intertemporal decision framework for electrochemical energy storage management. Nature Energy, 2018, 3, 404-412.	39.5	50
4	Bypassing renewable variability with a reversible solid oxide cell plant. Applied Energy, 2018, 217, 101-112.	10.1	58
5	The role that battery and water storage play in Saudi Arabia's transition to an integrated 100% renewable energy power system. Journal of Energy Storage, 2018, 17, 299-310.	8.1	58
6	A battery of innovative choices—if we commit to investing. Bulletin of the Atomic Scientists, 2018, 74, 7-10.	0.6	1
7	Trace Metal Content of Coal Exacerbates Air-Pollution-Related Health Risks: The Case of Lignite Coal in Kosovo. Environmental Science & Technology, 2018, 52, 2359-2367.	10.0	31
8	Solar electric cooking in Africa: Where will the transition happen first?. Energy Research and Social Science, 2018, 40, 257-272.	6.4	40
9	The future of energy storage shaped by electric vehicles: A perspective from China. Energy, 2018, 154, 249-257.	8.8	30
10	Sharing electricity storage at the community level: An empirical analysis of potential business models and barriers. Energy Policy, 2018, 118, 492-503.	8.8	65
11	Electric sector policy, technological change, and U.S. emissions reductions goals: Results from the EMF 32 model intercomparison project. Energy Economics, 2018, 73, 307-325.	12.1	47
12	Quantifying Innovation Patterns in Next Generation Solar Photovoltaics. , 2018, , .		0
13	Micro-Tracked CPV Can Be Cost Competitive With PV in Behind-The-Meter Applications With Demand Charges. Frontiers in Energy Research, 2018, 6, .	2.3	14
14	Community energy storage: A responsible innovation towards a sustainable energy system?. Applied Energy, 2018, 231, 570-585.	10.1	147
15	Lowering greenhouse gas emissions in the built environment by combining ground source heat pumps, photovoltaics and battery storage. Energy and Buildings, 2018, 180, 51-71.	6.7	54
16	Learning from Learning Curves. Joule, 2018, 2, 1637-1638.	24.0	0
17	The role of input assumptions and model structures in projections of variable renewable energy: A multi-model perspective of the U.S. electricity system. Energy Economics, 2018, 76, 313-324.	12,1	56
18	Stand Alone Photovoltaic Management System for ICTs Devices. , 2018, , .		0

#	Article	IF	CITATIONS
19	Pathways to a fully sustainable electricity supply for Nigeria in the mid-term future. Energy Conversion and Management, 2018, 178, 44-64.	9.2	51
20	Aegis of Lithium-Rich Cathode Materials via Heterostructured LiAlF ₄ Coating for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 33260-33268.	8.0	74
21	Transport electrification: the effect of recent battery cost reduction on future emission scenarios. Climatic Change, 2018, 151, 95-108.	3.6	27
22	Lithium Ion Capacitors in Organic Electrolyte System: Scientific Problems, Material Development, and Key Technologies. Advanced Energy Materials, 2018, 8, 1801243.	19.5	207
23	Response to â€~Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems'. Renewable and Sustainable Energy Reviews, 2018, 92, 834-847.	16.4	354
24	Net-zero emissions energy systems. Science, 2018, 360, .	12.6	1,165
25	Negative emissions—Part 2: Costs, potentials and side effects. Environmental Research Letters, 2018, 13, 063002.	5.2	823
26	Relevance of PV with single-axis tracking for energy scenarios. Solar Energy, 2018, 173, 173-191.	6.1	61
27	Solar plus: A review of the end-user economics of solar PV integration with storage and load control in residential buildings. Applied Energy, 2018, 228, 2165-2175.	10.1	80
28	Role of Seawater Desalination in the Management of an Integrated Water and 100% Renewable Energy Based Power Sector in Saudi Arabia. Water (Switzerland), 2018, 10, 3.	2.7	113
29	Harnessing Free Energy From Nature For Efficient Operation of Compressed Air Energy Storage System and Unlocking the Potential of Renewable Power Generation. Scientific Reports, 2018, 8, 9981.	3.3	18
30	Economic benefits of combining self-consumption enhancement with frequency restoration reserves provision by photovoltaic-battery systems. Applied Energy, 2018, 223, 172-187.	10.1	61
31	The road ahead for solar PV power. Renewable and Sustainable Energy Reviews, 2018, 92, 744-756.	16.4	140
32	Monitoring dynamic electrochemical processes with in situ ptychography. Applied Nanoscience (Switzerland), 2018, 8, 627-636.	3.1	5
33	The contribution of transport policies to the mitigation potential and cost of 2 °C and 1.5 °C goals. Environmental Research Letters, 2018, 13, 054008.	5.2	22
34	Low carbon transition in a distributed energy system regulated by localized energy markets. Energy Policy, 2018, 122, 474-485.	8.8	28
35	Direct urrent Triboelectric Nanogenerator Realized by Air Breakdown Induced Ionized Air Channel. Advanced Energy Materials, 2018, 8, 1800889.	19.5	111
36	Resilient solar energy island supply to support SDG7 on the Philippines: Techno-economic optimized electrification strategy for small islands. Utilities Policy, 2018, 54, 55-77.	4.0	43

#	Article	IF	CITATIONS
37	Sharing Storage in a Smart Grid: A Coalitional Game Approach. IEEE Transactions on Smart Grid, 2019, 10, 4379-4390.	9.0	130
38	Decarbonising transport to achieve Paris Agreement targets. Energy Efficiency, 2019, 12, 363-386.	2.8	116
39	Addressing integration challenges of high shares of residential solar photovoltaics with battery storage and smart policy designs. Environmental Research Letters, 2019, 14, 074002.	5.2	16
40	Incident light management in a thin silicon solar cell using a two-dimensional grating according a Gaussian distribution. Solar Energy, 2019, 189, 457-463.	6.1	19
41	Electric Vehicles Beyond Energy Storage and Modern Power Networks: Challenges and Applications. IEEE Access, 2019, 7, 99031-99064.	4.2	70
42	Least-Cost Electrification Modeling and Planning—A Case Study for Five Nigerian Federal States. Proceedings of the IEEE, 2019, 107, 1923-1940.	21.3	21
43	Policy Options to Regulate PV in Low Voltage Grids-Australian Case with International Implications. Technology and Economics of Smart Grids and Sustainable Energy, 2019, 4, 1.	2.6	3
44	Thermodynamic analysis of a novel combined heat and power system incorporating a CO2 heat pump cycle for enhancing flexibility. Applied Thermal Engineering, 2019, 161, 114160.	6.0	9
45	Cost–Benefit Analysis of Rooftop PV Systems on Utilities and Ratepayers in Thailand. Energies, 2019, 12, 2265.	3.1	9
46	Switch 2.0: A modern platform for planning high-renewable power systems. SoftwareX, 2019, 10, 100251.	2.6	57
47	A generalized approach for selecting solar energy system configurations for a wide range of applications. MRS Energy & Sustainability, 2019, 6, 1.	3.0	5
48	Stepwise Global Sensitivity Analysis of a Physics-Based Battery Model using the Morris Method and Monte Carlo Experiments. Journal of Energy Storage, 2019, 25, 100875.	8.1	4
49	Understanding transformational complexity in centralized electricity supply systems: Modelling residential solar and battery adoption dynamics. Renewable and Sustainable Energy Reviews, 2019, 116, 109437.	16.4	12
50	The Future of Vehicle Electrification in India May Ride on Two Wheels. ACS Energy Letters, 2019, 4, 2691-2694.	17.4	5
51	Advanced electrospun nanomaterials for highly efficient electrocatalysis. Inorganic Chemistry Frontiers, 2019, 6, 3012-3040.	6.0	60
52	Deploy diverse renewables to save tropical rivers. Nature, 2019, 569, 330-332.	27.8	35
53	Blueprint and Implementation of Rural Stand-Alone Power Grids with Second-Life Lithium Ion Vehicle Traction Battery Systems for Resilient Energy Supply of Tropical or Remote Regions. Materials, 2019, 12, 2642.	2.9	11
54	Pathway towards achieving 100% renewable electricity by 2050 for South Africa. Solar Energy, 2019, 191, 549-565.	6.1	57

	CITATION	Report	
# 55	ARTICLE The evolution over time of Distributed Energy Resource's penetration: A robust framework to assess the future impact of progumage under different tariff designs. Applied Energy, 2019, 256, 112002	lF 10.1	CITATIONS
56	Inter-seasonal compressed-air energy storage using saline aquifers. Nature Energy, 2019, 2019, 4, 131-139.	39.5	84
57	Redox-coupled alkali-metal ion transport mechanism in binder-free films of Prussian blue nanoparticles. Journal of Materials Chemistry A, 2019, 7, 4777-4787.	10.3	37
58	Construction of Hierarchical K _{1.39} Mn ₃ O ₆ Spheres via AlF ₃ Coating for Highâ€Performance Potassiumâ€Ion Batteries. Advanced Energy Materials, 2019, 9, 1803757.	19.5	83
59	Learning only buys you so much: Practical limits on battery price reduction. Applied Energy, 2019, 239, 218-224.	10.1	115
60	ASEAN grid flexibility: Preparedness for grid integration of renewable energy. Energy Policy, 2019, 128, 711-726.	8.8	66
61	Electricity sector planning for the Philippine islands: Considering centralized and decentralized supply options. Applied Energy, 2019, 251, 113393.	10.1	40
62	Renewable energy utilization to promote sustainability in GCC countries: policies, drivers, and barriers. Environmental Science and Pollution Research, 2019, 26, 20798-20814.	5.3	70
63	Seeking workable solutions to the electrification challenge in Nigeria: Minigrid, reverse auctions and institutional adaptation. Energy Strategy Reviews, 2019, 23, 114-141.	7.3	28
64	Cost optimal self-consumption of PV prosumers with stationary batteries, heat pumps, thermal energy storage and electric vehicles across the world up to 2050. Solar Energy, 2019, 185, 406-423.	6.1	94
65	The emergence of cost effective battery storage. Nature Communications, 2019, 10, 2038.	12.8	147
66	City-scale decarbonization experiments with integrated energy systems. Energy and Environmental Science, 2019, 12, 1695-1707.	30.8	32
67	Hierarchical flower-like Fe2O3 mesoporous nanosheets with superior electrochemical lithium storage performance. Journal of Energy Storage, 2019, 23, 363-370.	8.1	22
68	Analysis of technological knowledge stock and prediction of its future development potential: The case of lithium-ion batteries. Journal of Cleaner Production, 2019, 223, 301-311.	9.3	47
69	Toward high energy-density and long cycling-lifespan lithium ion capacitors: a 3D carbon modified low-potential Li ₂ TiSiO ₅ anode coupled with a lignin-derived activated carbon cathode. Journal of Materials Chemistry A, 2019, 7, 8234-8244.	10.3	46
70	Techno-economic assessment of CO2 direct air capture plants. Journal of Cleaner Production, 2019, 224, 957-980.	9.3	614
71	Radical transformation pathway towards sustainable electricity via evolutionary steps. Nature Communications, 2019, 10, 1077.	12.8	354
72	Community Energy Storage: Governance and Business Models. , 2019, , 209-234.		5

C1-		. D-	DODT
UI.	αποι	N KE	PORT

#	Article	IF	CITATIONS
73	European electricity sector decarbonization under different levels of foresight. Renewable Energy, 2019, 141, 973-987.	8.9	87
74	Leapfrogging to Sustainability: Utility-Scale Renewable Energy and Battery Storage Integration – Exposing the Opportunities Through the Lebanese Power System. Understanding Complex Systems, 2019, , 183-224.	0.6	0
75	The Potential of Biogas; the Solution to Energy Storage. ChemSusChem, 2019, 12, 2147-2153.	6.8	52
76	Analysing the feasibility of powering the Americas with renewable energy and inter-regional grid interconnections by 2030. Renewable and Sustainable Energy Reviews, 2019, 105, 187-205.	16.4	118
77	A semi-empirical financial assessment of combining residential photovoltaics, energy efficiency and battery storage systems. Renewable and Sustainable Energy Reviews, 2019, 105, 206-214.	16.4	21
78	Can flow batteries scale in the behind-the-meter commercial and industrial market? A techno-economic comparison of storage technologies in California. Journal of Power Sources, 2019, 420, 1-8.	7.8	17
79	The mutual dependence of negative emission technologies and energy systems. Energy and Environmental Science, 2019, 12, 1805-1817.	30.8	135
80	Spatiotemporal Arbitrage of Large-Scale Portable Energy Storage for Grid Congestion Relief. , 2019, , .		2
81	A Comparative Study on the Influence of DC/DC-Converter Induced High Frequency Current Ripple on Lithium-Ion Batteries. Sustainability, 2019, 11, 6050.	3.2	16
82	Abating carbon emissions by means of utility-scale photovoltaics and storage: the Duke Energy Progress/Carolinas case study. , 2019, , .		2
83	Optimal Capacity Pricing and Sizing Approach of Cloud Energy Storage: A Bi-level Model. , 2019, , .		2
84	The role of storage technologies throughout the decarbonisation of the sector-coupled European energy system. Energy Conversion and Management, 2019, 201, 111977.	9.2	138
85	Charge transfer and spillover phenomena in ceria-supported iridium catalysts: A model study. Journal of Chemical Physics, 2019, 151, 204703.	3.0	20
86	Cool Steam Method for Desalinating Seawater. Water (Switzerland), 2019, 11, 2385.	2.7	3
87	SimSES Multi-Use: A simulation tool for multiple storage system applications. , 2019, , .		6
88	The role of equity balance and executive stock ownership in the innovation efficiency of renewable energy enterprises. Journal of Renewable and Sustainable Energy, 2019, 11, .	2.0	31
89	Recalibrating climate prospects. Environmental Research Letters, 2019, 14, 120201.	5.2	19
90	SDG 7: Affordable and Clean Energy – How Access to Affordable and Clean Energy Affects Forests and Forest-Based Livelihoods. , 2019, , 206-236.		3

#	Article	IF	CITATIONS
91	Stationary batteries in the EU countries, Norway and Switzerland: Market shares and system benefits in a decentralized world. , 2019, , .		2
92	Recent Progress in Grapheneâ€Based Nobleâ€Metal Nanocomposites for Electrocatalytic Applications. Advanced Materials, 2019, 31, e1800696.	21.0	219
93	Harnessing the unique properties of 2D materials for advanced lithium–sulfur batteries. Nanoscale Horizons, 2019, 4, 77-98.	8.0	79
94	Synthesis of Cobalt Sulfide Multiâ€shelled Nanoboxes with Precisely Controlled Two to Five Shells for Sodiumâ€lon Batteries. Angewandte Chemie, 2019, 131, 2701-2705.	2.0	29
95	Synthesis of Cobalt Sulfide Multiâ€shelled Nanoboxes with Precisely Controlled Two to Five Shells for Sodiumâ€lon Batteries. Angewandte Chemie - International Edition, 2019, 58, 2675-2679.	13.8	182
96	Projecting the Future Levelized Cost of Electricity Storage Technologies. Joule, 2019, 3, 81-100.	24.0	515
97	Optimal operational planning of scalable DC microgrid with demand response, islanding, and battery degradation cost considerations. Applied Energy, 2019, 237, 695-707.	10.1	111
98	Assessing the progress toward lower priced long range battery electric vehicles. Energy Policy, 2019, 124, 144-155.	8.8	150
99	Managing PV power injection and storage, enabling a larger direct consumption of renewable energy: A case study for the Belgian electricity system. Progress in Photovoltaics: Research and Applications, 2019, 27, 905-917.	8.1	3
100	Unexplored Pathways To Charge Storage in Supercapacitors. Journal of Physical Chemistry C, 2019, 123, 195-204.	3.1	14
101	Dandelion Derived Nitrogen-Doped Hollow Carbon Host for Encapsulating Sulfur in Lithium Sulfur Battery. ACS Sustainable Chemistry and Engineering, 2019, 7, 3042-3051.	6.7	71
102	Quantifying the Economic Case for Electric Semi-Trucks. ACS Energy Letters, 2019, 4, 149-155.	17.4	26
103	Geospatial multi-criteria analysis for identifying high priority clean energy investment opportunities: A case study on land-use conflict in Bangladesh. Applied Energy, 2019, 235, 1457-1467.	10.1	39
104	Cost-Optimal Energy Management of Hybrid Electric Vehicles Using Fuel Cell/Battery Health-Aware Predictive Control. IEEE Transactions on Power Electronics, 2020, 35, 382-392.	7.9	254
105	Assessment of a cost-optimal power system fully based on renewable energy for Iran by 2050 – Achieving zero greenhouse gas emissions and overcoming the water crisis. Renewable Energy, 2020, 146, 125-148.	8.9	53
106	Carbon dioxide direct air capture for effective climate change mitigation based on renewable electricity: a new type of energy system sector coupling. Mitigation and Adaptation Strategies for Global Change, 2020, 25, 43-65.	2.1	97
107	2 D Materials for Inhibiting the Shuttle Effect in Advanced Lithium–Sulfur Batteries. ChemSusChem, 2020, 13, 1447-1479.	6.8	49
108	Customer economics of residential PV–battery systems in Thailand. Renewable Energy, 2020, 146, 297-308.	8.9	48

#	Article	IF	CITATIONS
109	Assessment of residential battery storage systems and operation strategies considering battery aging. International Journal of Energy Research, 2020, 44, 718-731.	4.5	9
110	Impact of weighted average cost of capital, capital expenditure, and other parameters on future utilityâ€scale PV levelised cost of electricity. Progress in Photovoltaics: Research and Applications, 2020, 28, 439-453.	8.1	247
111	Understanding and accounting for the effect of exchange rate fluctuations on global learning rates. Nature Energy, 2020, 5, 71-78.	39.5	15
112	K ₂ Ti ₂ O ₅ @C Microspheres with Enhanced K ⁺ Intercalation Pseudocapacitance Ensuring Fast Potassium Storage and Longâ€Term Cycling Stability. Small, 2020, 16, e1906131.	10.0	49
113	Experience Curves for Operations and Maintenance Costs of Renewable Energy Technologies. Joule, 2020, 4, 359-375.	24.0	74
114	The socially optimal energy storage incentives for microgrid: A real option game-theoretic approach. Science of the Total Environment, 2020, 710, 136199.	8.0	22
115	Green and low-carbon technology innovations. , 2020, , 209-253.		1
116	Case study of MWâ€sized power generation at St. Eustatius island combining photovoltaics, battery storage, and gensets. Progress in Photovoltaics: Research and Applications, 2020, 28, 562-568.	8.1	7
117	The experience curve: concept, history, methods, and issues. , 2020, , 9-31.		4
118	Implementation of experience curves in energy-system models. , 2020, , 33-47.		0
119	Grid-scale energy storage. , 2020, , 119-143.		9
120	Electric vehicles. , 2020, , 145-163.		7
121	Photovoltaic solar energy. , 2020, , 65-86.		6
122	Environmental regulatory spillovers, institutions, and clean technology innovation: A panel of 32 countries over 16 years. Energy Research and Social Science, 2020, 62, 101363.	6.4	25
123	Battery-Involved Energy Management for Hybrid Electric Bus Based on Expert-Assistance Deep Deterministic Policy Gradient Algorithm. IEEE Transactions on Vehicular Technology, 2020, 69, 12786-12796.	6.3	132
124	Changes in Energy Supplies in the Countries of the Visegrad Group. Sustainability, 2020, 12, 7916.	3.2	23
125	From hot rock to useful energy: A global estimate of enhanced geothermal systems potential. Applied Energy, 2020, 279, 115769.	10.1	71
126	Projecting the Competition between Energy-Storage Technologies in the Electricity Sector. Joule, 2020, 4, 2162-2184.	24.0	48

#	Article	IF	CITATIONS
127	Projecting the Price of Lithium-Ion NMC Battery Packs Using a Multifactor Learning Curve Model. Energies, 2020, 13, 5276.	3.1	24
128	Material Design of Aqueous Redox Flow Batteries: Fundamental Challenges and Mitigation Strategies. Advanced Materials, 2020, 32, e2002132.	21.0	129
129	Battery storage manufacturing in India: A strategic perspective. Journal of Energy Storage, 2020, 32, 101817.	8.1	6
130	Can renewable generation, energy storage and energy efficient technologies enable carbon neutral energy transition?. Applied Energy, 2020, 279, 115889.	10.1	147
131	Linking carbon market and electricity market for promoting the grid parity of photovoltaic electricity in China. Energy, 2020, 211, 118924.	8.8	31
132	Graphene encircled KFeSO ₄ F cathode composite for high energy density potassium-ion batteries. Chemical Communications, 2020, 56, 10050-10053.	4.1	16
133	A Causal Model of the Sustainable Use of Resources: A Case Study on a Woodworking Process. Sustainability, 2020, 12, 9057.	3.2	0
134	Read all about it! Comparing media discourse on energy storage in Canada and the United Kingdom in a transition era. Energy Research and Social Science, 2020, 70, 101709.	6.4	18
135	Effects of Deep Reductions in Energy Storage Costs on Highly Reliable Wind and Solar Electricity Systems. IScience, 2020, 23, 101484.	4.1	36
136	Can electricity pricing leverage electric vehicles and battery storage to integrate high shares of solar photovoltaics?. Applied Energy, 2020, 277, 115548.	10.1	23
137	Yolk–shell structured FeS/MoS ₂ @nitrogen-doped carbon nanocubes with sufficient internal void space as an ultrastable anode for potassium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 23983-23993.	10.3	49
138	Assessment of lithium criticality in the global energy transition and addressing policy gaps in transportation. Nature Communications, 2020, 11, 4570.	12.8	208
139	Economic Issues in Deep Low-Carbon Energy Systems. Energies, 2020, 13, 4151.	3.1	6
140	Phase Engineering of Nanomaterials for Clean Energy and Catalytic Applications. Advanced Energy Materials, 2020, 10, 2002019.	19.5	85
141	Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy and Environmental Science, 2020, 13, 3330-3360.	30.8	576
142	Design and Fabrication of Solar Thermal Energy Storage System Using Potash Alum as a PCM. Energies, 2020, 13, 6169.	3.1	12
143	Optimal Benefit Strategy of Clean Energy Consumption Based on Transmission Channel Constraints. Journal of Physics: Conference Series, 2020, 1578, 012167.	0.4	0
144	A holistic view on sector coupling. Energy Policy, 2020, 147, 111913.	8.8	66

#	Article	IF	CITATIONS
145	Unlocking the Potential of Battery Storage with the Dynamic Stacking of Multiple Applications. Cell Reports Physical Science, 2020, 1, 100238.	5.6	46
146	Evolution of Environmental Engineering: Challenges and Solutions. Journal of Environmental Engineering, ASCE, 2020, 146, 02520001.	1.4	2
147	Flexible epoxy film: Moderate crosslinking enhances the high temperature energy storage performance. International Journal of Energy Research, 2020, 44, 7580-7590.	4.5	20
148	Parameterizing open-source energy models: Statistical learning to estimate unknown power plant attributes. Applied Energy, 2020, 269, 114941.	10.1	3
149	Service pricing and load dispatch of residential shared energy storage unit. Energy, 2020, 202, 117543.	8.8	54
150	The impact of oil price on the clean energy metal prices: A multi-scale perspective. Resources Policy, 2020, 68, 101730.	9.6	24
151	A new hybrid approach for evaluating technology risks and opportunities in the energy transition in Ireland. Environmental Innovation and Societal Transitions, 2020, 35, 429-444.	5.5	11
152	The role of responsiveness in deployment policies: A quantitative, cross-country assessment using agent-based modelling. Applied Energy, 2020, 275, 115358.	10.1	5
153	How to achieve China's CO2 emission reduction targets by provincial efforts? – An analysis based on generalized Divisia index and dynamic scenario simulation. Renewable and Sustainable Energy Reviews, 2020, 127, 109892.	16.4	73
154	Bifunctional Oxygen Electrocatalyst of Mesoporous Ni/NiO Nanosheets for Flexible Rechargeable Zn–Air Batteries. Nano-Micro Letters, 2020, 12, 68.	27.0	103
155	Oxygen-rich porous carbons derived from alfalfa flowers for high performance supercapacitors. Materials Chemistry and Physics, 2020, 246, 122830.	4.0	26
156	Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis. Energies, 2020, 13, 432.	3.1	6
157	Motivations and options for deploying hybrid generator-plus-battery projects within the bulk power system. Electricity Journal, 2020, 33, 106739.	2.5	47
158	Transition towards decarbonised power systems and its socio-economic impacts in West Africa. Renewable Energy, 2020, 154, 1092-1112.	8.9	50
159	Phasor-Based Control for Scalable Integration of Variable Energy Resources. Energies, 2020, 13, 190.	3.1	13
160	How to Select the Optimal Electrochemical Energy Storage Planning Program? A Hybrid MCDM Method. Energies, 2020, 13, 931.	3.1	16
161	A Movable Electrode Triboelectric Nanogenerator Fabricated Using a Pencil Lead for Selfâ€Powered Locating Collision. Advanced Engineering Materials, 2020, 22, 2000109.	3.5	6
162	Emissions impacts of future battery storage deployment on regional power systems. Applied Energy, 2020, 264, 114678.	10.1	33

#	Article	IF	CITATIONS
163	Towards sustainable development in the MENA region: Analysing the feasibility of a 100% renewable electricity system in 2030. Energy Strategy Reviews, 2020, 28, 100466.	7.3	88
164	Modeling the Supply of Renewable Electricity to Metropolitan Regions in China. Energies, 2020, 13, 3042.	3.1	9
165	Hydrogels and Hydrogel-Derived Materials for Energy and Water Sustainability. Chemical Reviews, 2020, 120, 7642-7707.	47.7	646
166	Recent Advances in Filler Engineering of Polymer Electrolytes for Solid-State Li-Ion Batteries: A Review. Energy & Fuels, 2020, 34, 9189-9207.	5.1	89
167	The economic end of life of electrochemical energy storage. Applied Energy, 2020, 273, 115151.	10.1	28
168	Core/shell cable-like Ni3S2 nanowires/N-doped graphene-like carbon layers as composite electrocatalyst for overall electrocatalytic water splitting. Chemical Engineering Journal, 2020, 401, 126045.	12.7	134
169	An optimized ensemble learning framework for lithium-ion Battery State of Health estimation in energy storage system. Energy, 2020, 206, 118140.	8.8	75
170	Recent advances of thermal safety of lithium ion battery for energy storage. Energy Storage Materials, 2020, 31, 195-220.	18.0	262
171	CO2 electrolysis – Complementary operando XRD, XAS and Raman spectroscopy study on the stability of CuxO foam catalysts. Journal of Catalysis, 2020, 389, 592-603.	6.2	42
172	One-step green and scalable dry synthesis of nitrogen-doped graphene-encapsulated Fe3O4 nanoparticles as high-performance supercapacitor electrode. Journal of Alloys and Compounds, 2020, 834, 154477.	5.5	15
173	The impact of intelligent cyber-physical systems on the decarbonization of energy. Energy and Environmental Science, 2020, 13, 744-771.	30.8	104
174	Compounding climate change impacts during high stress periods for a high wind and solar power system in Texas. Environmental Research Letters, 2020, 15, 024002.	5.2	8
175	Mitigation of PV Variability Using Adaptive Moving Average Control. IEEE Transactions on Sustainable Energy, 2020, 11, 2252-2262.	8.8	27
176	Progress and Perspective of Ceramic/Polymer Composite Solid Electrolytes for Lithium Batteries. Advanced Science, 2020, 7, 1903088.	11.2	403
177	Synchronously integration of Co, Fe dual-metal doping in Ru@C and CDs for boosted water splitting performances in alkaline media. Applied Catalysis B: Environmental, 2020, 267, 118657.	20.2	82
178	An Analysis of Energy Consumption and the Use of Renewables for a Small Drinking Water Treatment Plant. Water (Switzerland), 2020, 12, 28.	2.7	32
179	What Are the Energy and Environmental Impacts of Adding Battery Storage to Photovoltaics? A Generalized Life Cycle Assessment. Energy Technology, 2020, 8, 1901146.	3.8	35
180	Solutions to the water flooding problem for unitized regenerative fuel cells: status and perspectives. RSC Advances, 2020, 10, 16844-16860.	3.6	27

ARTICLE IF CITATIONS Supplying not electrified islands with 100% renewable energy based micro grids: A geospatial and 181 8.8 45 techno-economic analysis for the Philippines. Energy, 2020, 202, 117670. Low-temperature and high-voltage Zn-based liquid metal batteries based on multiple redox mechanism. Journal of Power Sources, 2020, 463, 228233. Destined for decline? Examining nuclear energy from a technological innovation systems perspective. 183 6.4 61 Energy Research and Social Science, 2020, 67, 101512. Recent Advances in Rechargeable Magnesiumâ€Based Batteries for Highâ€Efficiency Energy Storage. 184 132 Advanced Energy Materials, 2020, 10, 1903591. Photovoltatronics: intelligent PV-based devices for energy and information applications. Energy and 185 30.8 33 Environmental Science, 2021, 14, 106-126. Battery Thermal- and Health-Constrained Energy Management for Hybrid Electric Bus Based on Soft Actor-Critic DRL Algorithm. IEEE Transactions on Industrial Informatics, 2021, 17, 3751-3761. 11.3 169 Carbon–based transition metal sulfides/selenides nanostructures for electrocatalytic water 187 5.5 58 splitting. Journal of Alloys and Compounds, 2021, 852, 156810. Strategies for the Stabilization of Zn Metal Anodes for Znâ€lon Batteries. Advanced Energy Materials, 188 19.5 431 2021, 11, . Electronic modulation and interface engineering of electrospun nanomaterialsâ€based 189 134 electrocatalysts toward water splitting., 2021, 3, 101-128. Recent advances in lithium-based batteries using metal organic frameworks as electrode materials. Electrochemistry Communications, 2021, 122, 106881. Utility-scale photovoltaics and storage: Decarbonizing and reducing greenhouse gases abatement 191 10.1 19 costs. Applied Energy, 2021, 282, 116120. Climate change extremes and photovoltaic power output. Nature Sustainability, 2021, 4, 270-276. Real-time cost-minimization power-allocating strategy via model predictive control for fuel cell 193 9.2 104 hybrid electric vehicles. Energy Conversion and Management, 2021, 229, 113721. Utility-Scale Portable Energy Storage Systems. Joule, 2021, 5, 379-392. 194 24.0 Sol-gel synthesis of nanocrystalline MgO and its application as support in Ni/MgO catalysts for 195 6.1 21 ethanol steam reforming. Applied Surface Science, 2021, 542, 148744. Chickpea derived Co nanocrystal encapsulated in 3D nitrogen-doped mesoporous carbon: Pressure cooking synthetic strategy and its application in lithium-sulfur batteries. Journal of Colloid and Interface Science, 2021, 585, 328-336. 9.4 29 Integrated transition metal and compounds with carbon nanomaterials for electrochemical water 197 10.3 140 splitting. Journal of Materials Chemistry A, 2021, 9, 3786-3827. Economic analysis of a novel design of microtracked concentrating photovoltaic modules. Progress 198 8.1 in Photovoltaics: Research and Applications, 2021, 29, 485-498.

	Сітаті	on Report	
#	Article	IF	CITATIONS
199	Organic Liquid Crystals as Singleâ€ion Li ⁺ Conductors. ChemSusChem, 2021, 14, 655-661.	6.8	8
200	Community Solar: Strategies and Implementation for Sustainability. Encyclopedia of the UN Sustainable Development Goals, 2021, , 188-205.	0.1	2
201	A multifunctional artificial protective layer for producing an ultra-stable lithium metal anode in a commercial carbonate electrolyte. Journal of Materials Chemistry A, 2021, 9, 7667-7674.	10.3	31
202	Economically Optimal Solar Power Generation. , 2021, , 385-415.		0
203	A vanadium-based oxide-phosphate-pyrophosphate framework as a 4 V electrode material for K-ion batteries. Chemical Science, 2021, 12, 12383-12390.	7.4	10
204	Phase modulation of 1T/2H MoSe ₂ nanoflowers for highly efficient bifunctional electrocatalysis in rechargeable Li–O ₂ batteries. Journal of Materials Chemistry A, 2021, 9, 19922-19931.	10.3	37
205	Multiâ€chambered, carbonâ€coated Ni _{0.4} Fe _{2.6} O ₄ nanoparticle superlattice microspheres for boosting water oxidation reaction. Aggregate, 2021, 2, e17.	9.9	10
206	When the Wind of Change Blows, Build Batteries? Optimum Renewable Generation and Energy Storage Investments SSRN Electronic Journal, 0, , .	0.4	3
207	Review on physical impedance models in modern battery research. Physical Chemistry Chemical Physics, 2021, 23, 12926-12944.	2.8	34
208	DEA Model Construction and Investment Efficiency Analysis of Overseas Electric Power Market in Clean Energy. E3S Web of Conferences, 2021, 267, 01008.	0.5	1
209	Few-layered ultra-small MoS ₂ nanosheet cathode for high-performance rechargeable aluminum-ion battery. Sustainable Energy and Fuels, 2021, 5, 4289-4294.	4.9	8
210	Defect engineering of molybdenum disulfide for energy storage. Materials Chemistry Frontiers, 2021, 5, 5880-5896.	5.9	25
211	Electrochemical oxidation of biomass derived 5-hydroxymethylfurfural (HMF): pathway, mechanism, catalysts and coupling reactions. Green Chemistry, 2021, 23, 4228-4254.	9.0	191
212	Digital transformation of energy sector companies. E3S Web of Conferences, 2021, 250, 06001.	0.5	8
213	Hydropower Generation in Tropical Countries. Green Energy and Technology, 2021, , 33-52.	0.6	1
214	PV Systems with Storage. , 2021, , 1-28.		0
215	Favourites after five. Nature Energy, 2021, 6, 7-12.	39.5	0
216	Efficacious nitrogen introduction into MoS2 as bifunctional electrocatalysts for long-life Li-O2 batteries. Electrochimica Acta, 2021, 369, 137653.	5.2	18

#	Article	IF	CITATIONS
217	Battery storage systems integrated renewable energy sources: A biblio metric analysis towards future directions. Journal of Energy Storage, 2021, 35, 102296.	8.1	66
218	Formation of Li2CO3 Nanostructures for Lithium-Ion Battery Anode Application by Nanotransfer Printing. Materials, 2021, 14, 1585.	2.9	0
219	Non-contaminating cryogenic fluid access to high-temperature resources: Liquid nitrogen fracturing in a lab-scale Enhanced Geothermal System. Renewable Energy, 2021, 165, 125-138.	8.9	49
220	Engineering Nanostructure–Interface of Photoanode Materials Toward Photoelectrochemical Water Oxidation. Advanced Materials, 2021, 33, e2005389.	21.0	100
221	Decarbonizing China's power sector by 2030 with consideration of technological progress and cross-regional power transmission. Energy Policy, 2021, 150, 112150.	8.8	32
222	MnCr2O4/graphene composite as a high-performance anode material for lithium-ion batteries. Electrochimica Acta, 2021, 372, 137855.	5.2	10
223	Self-consumption for energy communities in Spain: A regional analysis under the new legal framework. Energy Policy, 2021, 150, 112144.	8.8	53
224	Induced innovation in energy technologies and systems: a review of evidence and potential implications for CO ₂ mitigation. Environmental Research Letters, 2021, 16, 043007.	5.2	59
225	Unlocking extra value from grid batteries using advanced models. Journal of Power Sources, 2021, 487, 229355.	7.8	35
226	The feasibility of heavy battery electric trucks. Joule, 2021, 5, 901-913.	24.0	70
226 227	The feasibility of heavy battery electric trucks. Joule, 2021, 5, 901-913. Unstable Cathode Potential in Alkaline Flow Cells for CO ₂ Electroreduction Driven by Gas Evolution. ACS Sustainable Chemistry and Engineering, 2021, 9, 5570-5579.	24.0 6.7	70 14
226 227 228	The feasibility of heavy battery electric trucks. Joule, 2021, 5, 901-913. Unstable Cathode Potential in Alkaline Flow Cells for CO ₂ Electroreduction Driven by Gas Evolution. ACS Sustainable Chemistry and Engineering, 2021, 9, 5570-5579. Discharge performance of Mg–Al–Cd anode for Mg-air Battery. Materials Research Express, 2021, 8, 046521.	24.0 6.7 1.6	70 14 3
226 227 228 229	The feasibility of heavy battery electric trucks. Joule, 2021, 5, 901-913. Unstable Cathode Potential in Alkaline Flow Cells for CO ₂ Electroreduction Driven by Gas Evolution. ACS Sustainable Chemistry and Engineering, 2021, 9, 5570-5579. Discharge performance of Mg–Al–Cd anode for Mg-air Battery. Materials Research Express, 2021, 8, 046521. Optimization and service lifetime prediction of hydro-wind power complementary system. Journal of Cleaner Production, 2021, 291, 125983.	24.0 6.7 1.6 9.3	70 14 3 15
226 227 228 229 230	The feasibility of heavy battery electric trucks. Joule, 2021, 5, 901-913. Unstable Cathode Potential in Alkaline Flow Cells for CO ₂ Electroreduction Driven by Gas Evolution. ACS Sustainable Chemistry and Engineering, 2021, 9, 5570-5579. Discharge performance of Mg–Al–Cd anode for Mg-air Battery. Materials Research Express, 2021, 8, 046521. Optimization and service lifetime prediction of hydro-wind power complementary system. Journal of Cleaner Production, 2021, 291, 125983. Recent progress in conjugated microporous polymers for clean energy: Synthesis, modification, computer simulations, and applications. Progress in Polymer Science, 2021, 115, 101374.	24.0 6.7 1.6 9.3 24.7	 70 14 3 15 117
226 227 228 229 230 231	The feasibility of heavy battery electric trucks. Joule, 2021, 5, 901-913. Unstable Cathode Potential in Alkaline Flow Cells for CO ₂ Electroreduction Driven by Cas Evolution. ACS Sustainable Chemistry and Engineering, 2021, 9, 5570-5579. Discharge performance of Mg–Al–Cd anode for Mg-air Battery. Materials Research Express, 2021, 8, 046521. Optimization and service lifetime prediction of hydro-wind power complementary system. Journal of Cleaner Production, 2021, 291, 125983. Recent progress in conjugated microporous polymers for clean energy: Synthesis, modification, computer simulations, and applications. Progress in Polymer Science, 2021, 115, 101374. Recent progress in 2D metal-organic framework photocatalysts: synthesis, photocatalytic mechanism and applications. JPhys Energy, 2021, 3, 032010.	 24.0 6.7 1.6 9.3 24.7 5.3 	 70 14 3 15 117 51
226 227 228 229 230 231	The feasibility of heavy battery electric trucks. Joule, 2021, 5, 901-913. Unstable Cathode Potential in Alkaline Flow Cells for CO ₂ Electroreduction Driven by Gas Evolution. ACS Sustainable Chemistry and Engineering, 2021, 9, 5570-5579. Discharge performance of Mg–Al–Cd anode for Mg-air Battery. Materials Research Express, 2021, 8, 046521. Optimization and service lifetime prediction of hydro-wind power complementary system. Journal of Cleaner Production, 2021, 291, 125983. Recent progress in conjugated microporous polymers for clean energy: Synthesis, modification, computer simulations, and applications. Progress in Polymer Science, 2021, 115, 101374. Recent progress in 2D metal-organic framework photocatalysts: synthesis, photocatalytic mechanism and applications. JPhys Energy, 2021, 3, 032010. Joint strategic energy and river basin planning to reduce dam impacts on rivers in Myanmar. Environmental Research Letters, 2021, 16, 054054.	24.0 6.7 1.6 9.3 24.7 5.3 5.2	 70 14 3 15 117 51 20
 226 227 228 229 230 231 232 233 	The feasibility of heavy battery electric trucks. Joule, 2021, 5, 901-913. Unstable Cathode Potential in Alkaline Flow Cells for CO ₂ Electroreduction Driven by Gas Evolution. ACS Sustainable Chemistry and Engineering, 2021, 9, 5570-5579. Discharge performance of Mg–Al—Cd anode for Mg-air Battery. Materials Research Express, 2021, 8, 046521. Optimization and service lifetime prediction of hydro-wind power complementary system. Journal of Cleaner Production, 2021, 291, 125983. Recent progress in conjugated microporous polymers for clean energy: Synthesis, modification, computer simulations, and applications. Progress in Polymer Science, 2021, 115, 101374. Recent progress in 2D metal-organic framework photocatalysts: synthesis, photocatalytic mechanism and applications. JPhys Energy, 2021, 3, 032010. Joint strategic energy and river basin planning to reduce dam impacts on rivers in Myanmar. Environmental Research Letters, 2021, 16, 054054. Plummeting costs of renewables - Are energy scenarios lagging?. Energy Strategy Reviews, 2021, 35, 100636.	 24.0 6.7 1.6 9.3 24.7 5.3 5.2 7.3 	 70 14 3 15 117 51 20 60

#	Article	IF	CITATIONS
235	Electrofuel Synthesis from Variable Renewable Electricity: An Optimization-Based Techno-Economic Analysis. Environmental Science & Technology, 2021, 55, 7583-7594.	10.0	16
236	Computational assessment of thermo-hydraulic performance of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:mrow><mml:msub><mml:mtext>Al</mml:mtext><mml:mn>2</mml:mn></mml:msub>< nanofluid in hexagonal rod-bundles subchannel. Progress in Nuclear Energy. 2021. 135. 103700.</mml:mrow></mml:math 	mmi:msut	»> ¹⁹ <mml:mte< td=""></mml:mte<>
237	Energy Management System Optimization of Drug Store Electric Vehicles Charging Station Operation. Sustainability, 2021, 13, 6163.	3.2	19
238	Phosphorus and Oxygen Dualâ€Doped Porous Carbon Spheres with Enhanced Reaction Kinetics as Anode Materials for Highâ€Performance Potassiumâ€Ion Hybrid Capacitors. Advanced Functional Materials, 2021, 31, 2102060.	14.9	96
239	Galvanic Couples in Ionic Liquidâ€Based Electrolyte Systems for Lithium Metal Batteries—An Overlooked Cause of Galvanic Corrosion?. Advanced Energy Materials, 2021, 11, 2101021.	19.5	22
240	New York State's 100% renewable electricity transition planning under uncertainty using a data-driven multistage adaptive robust optimization approach with machine-learning. Advances in Applied Energy, 2021, 2, 100019.	13.2	56
241	Integrated electricity, hydrogen and methane system modelling framework: Application to the Dutch Infrastructure Outlook 2050. Applied Energy, 2021, 289, 116713.	10.1	41
242	Solar-driven thermochemical redox cycles of ZrO2 supported NiFe2O4 for CO2 reduction into chemical energy. Energy, 2021, 223, 120073.	8.8	24
243	Impact of tariff structure on the economics of behind-the-meter solar microgrids. Cleaner Engineering and Technology, 2021, 2, 100039.	4.0	2
244	Isothermal compressed wind energy storage using abandoned oil/gas wells or coal mines. Applied Energy, 2021, 292, 116867.	10.1	18
245	The role of batteries in meeting the PV terawatt challenge. Joule, 2021, 5, 1353-1370.	24.0	38
246	Cost Dynamics of Clean Energy Technologies. Schmalenbachs Zeitschrift Fur Betriebswirtschaftliche Forschung, 2021, 73, 179-206.	1.6	16
247	Deleterious effects of strategic, profit-seeking energy storage operation on electric power system costs. Applied Energy, 2021, 292, 116833.	10.1	12
248	Mg Anode Passivation Caused by the Reaction of Dissolved Sulfur in Mg–S Batteries. ACS Applied Materials & Interfaces, 2021, 13, 29461-29470.	8.0	12
249	Strategies for Improving the Catalytic Performance of 2D Covalent Organic Frameworks for Hydrogen Evolution and Oxygen Evolution Reactions. Chemistry - an Asian Journal, 2021, 16, 1851-1863.	3.3	12
250	A Neural Network Approach to Adaptive Inference of Frequency Droop Curves in Power Systems with Solar PV Plants. , 2021, , .		2
251	Clean energy transitions and human well-being outcomes in Lower and Middle Income Countries: A systematic review. Renewable and Sustainable Energy Reviews, 2021, 145, 111063.	16.4	39
252	Polyethylene glycol/modified carbon foam composites for efficient light-thermal conversion and storage. Polymer, 2021, 228, 123894.	3.8	38

#	Article	IF	CITATIONS
253	Low-temperatures synthesis of CuS nanospheres as cathode material for magnesium second batteries. Journal of Magnesium and Alloys, 2023, 11, 192-200.	11.9	5
254	lrRuOx/TiO2 a stable electrocatalyst for the oxygen evolution reaction in acidic media. International Journal of Hydrogen Energy, 2021, 46, 25918-25928.	7.1	18
255	Role of FTFSI Anion Asymmetry on Physical Properties of AFTFSI (A=Li, Na and K) Based Electrolytes and Consequences on Supercapacitor Application. ChemPhysChem, 2021, 22, 1863-1879.	2.1	2
256	A Study of a DC/AC Conversion Structure for Photovoltaic System Connected to the Grid with Active and Reactive Power Control. Complexity, 2021, 2021, 1-11.	1.6	5
257	Evaluating the Passivation Layer of Freshly Cleaved Silicon Surfaces by Binary Silaneâ€Based Electrolytes. Batteries and Supercaps, 2021, 4, 1611.	4.7	2
258	Developments in energy regeneration technologies for hydraulic excavators: A review. Renewable and Sustainable Energy Reviews, 2021, 145, 111076.	16.4	31
259	The Electric Vehicle Transition and the Economics of Banning Gasoline Vehicles. American Economic Journal: Economic Policy, 2021, 13, 316-344.	3.1	18
260	Inspired by "quenching-cracking―strategy: Structure-based design of sulfur-doped graphite felts for ultrahigh-rate vanadium redox flow batteries. Energy Storage Materials, 2021, 39, 166-175.	18.0	27
261	Decline in Share Prices of Energy and Fuel Companies on the Warsaw Stock Exchange as a Reaction to the COVID-19 Pandemic. Energies, 2021, 14, 5412.	3.1	8
262	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si81.svg"> <mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Al</mml:mi </mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow>mathvariant="normal">O</mml:msub></mml:mrow> <mml:mrow><mml:mn>3</mml:mn></mml:mrow> <td>ıb>^{2.7}mml:r b> < mml:n</td> <td>10 nsub><mml:n< td=""></mml:n<></td>	ıb> ^{2.7} mml:r b> < mml:n	10 nsub> <mml:n< td=""></mml:n<>
263	mathvariant="normal">TIO <mmlmrow><mmlmn>2</mmlmn></mmlmrow> Oxygen electrochemistry in Liâ€O ₂ batteries probed by in situ surfaceâ€enhanced Raman spectroscopy. SusMat, 2021, 1, 345-358.	sub>14.9	31
265	The role of biomass in sub-Saharan Africa's fully renewable power sector – The case of Ghana. Renewable Energy, 2021, 173, 297-317.	8.9	36
266	Properties of the Pt(111)/electrolyte electrochemical interface studied with a hybrid DFT–solvation approach. Journal of Physics Condensed Matter, 2021, 33, 444004.	1.8	22
267	Developing the Food, Water, and Energy Nexus for Food and Energy Scenarios with the World Trade Model. Water (Switzerland), 2021, 13, 2354.	2.7	2
269	Large-eddy simulation of a full-scale underwater energy storage accumulator. Ocean Engineering, 2021, 234, 109184.	4.3	6
270	End-of-life or second-life options for retired electric vehicle batteries. Cell Reports Physical Science, 2021, 2, 100537.	5.6	77
271	Scalable Synthesis of the Na ₂ FePO ₄ F Cathode Through an Economical and Reliable Approach for Sodium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 11798-11806.	6.7	17
272	Combined hydrogen production and electricity storage using a vanadium-manganese redox dual-flow battery. Cell Reports Physical Science, 2021, 2, 100556.	5.6	19

#	Article	IF	CITATIONS
273	Battery management for energy communities—Economic evaluation of an artificial intelligence-led system. Journal of Cleaner Production, 2021, 314, 128017.	9.3	9
275	Energy storage integration towards achieving grid decarbonization: A bibliometric analysis and future directions. Journal of Energy Storage, 2021, 41, 102855.	8.1	28
276	Lithiation and Sodiation of Hydrogenated Silicene: A Density Functional Theory Investigation. ChemSusChem, 2021, 14, 5460-5469.	6.8	14
277	Graphdiyne/CdSe quantum dot heterostructure for efficient photoelectrochemical water oxidation. 2D Materials, 2021, 8, 044017.	4.4	7
278	Escalation effect of fossil-based CO2 emissions improves green energy innovation. Science of the Total Environment, 2021, 785, 147257.	8.0	20
279	Pseudocapacitance enhanced by N-defects in Na3MnTi(PO4)3/N-doped carbon composite for symmetric full sodium-ion batteries. Materials Today Energy, 2021, 21, 100754.	4.7	23
280	Rethinking the dynamics of innovation, science, and technology: The curious case of Stirling engines and Stirling refrigerators. Energy Research and Social Science, 2021, 79, 102159.	6.4	2
281	Factors of Collaboration Affecting the Performance of Alternative Energy Patents in South Korea from 2010 to 2017. Sustainability, 2021, 13, 10208.	3.2	6
282	Experience rates of low-carbon domestic heating technologies in the United Kingdom. Energy Policy, 2021, 156, 112387.	8.8	8
283	Iron metal anode for aqueous rechargeable batteries. Materials Today Advances, 2021, 11, 100156.	5.2	18
284	Imaging Sensor for the Detection of the Flow Battery Via Weak Value Amplification. Analytical Chemistry, 2021, 93, 12914-12920.	6.5	7
285	Effects of information strategies on public acceptance of nuclear energy. Energy, 2021, 231, 120907.	8.8	21
286	Global Competition in the Lithium-Ion Battery Supply Chain: A Novel Perspective for Criticality Analysis. Environmental Science & Technology, 2021, 55, 12180-12190.	10.0	24
287	The Role of Surface Curvature in Electrocatalysts. Chemistry - A European Journal, 2022, 28, .	3.3	9
288	Evaluating long-term emission impacts of large-scale electric vehicle deployment in the US using a human-Earth systems model. Applied Energy, 2021, 300, 117364.	10.1	13
289	Impact assessment of battery energy storage systems towards achieving sustainable development goals. Journal of Energy Storage, 2021, 42, 103040.	8.1	26
290	Just transition towards defossilised energy systems for developing economies: A case study of Ethiopia. Renewable Energy, 2021, 176, 346-365.	8.9	30
291	What went wrong? Learning from three decades of carbon capture, utilization and sequestration (CCUS) pilot and demonstration projects. Energy Policy, 2021, 158, 112546.	8.8	64

#	Article	IF	CITATIONS
292	Technologies and economics of electric energy storages in power systems: Review and perspective. Advances in Applied Energy, 2021, 4, 100060.	13.2	77
293	How political decisions affect the economy of a sector: The example of photovoltaic energy in Spain. Energy Reports, 2021, 7, 2940-2949.	5.1	21
294	Constructing NiS2/NiSe2 heteroboxes with phase boundaries for Sodium-Ion batteries. Journal of Colloid and Interface Science, 2022, 607, 752-759.	9.4	36
295	Single-atom catalysts for CO oxidation, CO2 reduction, and O2 electrochemistry. Journal of Energy Chemistry, 2022, 65, 254-279.	12.9	56
296	Morphology-tunable synthesis of CuO modified with Cu-Zn/Cu-Sn intermetallic compounds as high-performance anode for lithium-ion batteries. Journal of Alloys and Compounds, 2021, 889, 161637.	5.5	6
297	Battery cost forecasting: a review of methods and results with an outlook to 2050. Energy and Environmental Science, 2021, 14, 4712-4739.	30.8	189
298	Deriving Experience Curves and Implementing Technological Learning in Energy System Models. , 2021, , 55-73.		0
299	Characterization of the interfacial Li-ion exchange process in a ceramic–polymer composite by solid state NMR. Journal of Materials Chemistry A, 2021, 9, 17812-17820.	10.3	21
300	Can sustainable ammonia synthesis pathways compete with fossil-fuel based Haber–Bosch processes?. Energy and Environmental Science, 2021, 14, 2535-2548.	30.8	162
301	Re-examining rates of lithium-ion battery technology improvement and cost decline. Energy and Environmental Science, 2021, 14, 1635-1651.	30.8	211
302	Making the sun shine at night: comparing the cost of dispatchable concentrating solar power and photovoltaics with storage. Energy Sources, Part B: Economics, Planning and Policy, 2021, 16, 55-74.	3.4	49
303	Defeating Energy Poverty: Invest in Scalable Solutions for the Poor. , 2020, , 333-347.		1
304	Optimal Forecast Models for Clean Energy Stock Returns. , 2020, , 89-109.		1
305	Enhancing the photoelectrocatalytic performance of metal-free graphdiyne-based catalyst. Science China Chemistry, 2020, 63, 1040-1045.	8.2	11
306	Should I Stay Or Should I Go? The importance of electricity rate design for household defection from the power grid. Applied Energy, 2020, 262, 114494.	10.1	20
307	Technological paradigm-based approaches towards challenges and policy shifts for sustainable wind energy development. Energy Policy, 2020, 142, 111538.	8.8	22
308	Recent advances in prelithiation materials and approaches for lithium-ion batteries and capacitors. Energy Storage Materials, 2020, 32, 497-516.	18.0	125
309	Business Models and Profitability of Energy Storage. IScience, 2020, 23, 101554.	4.1	30

#	Article	IF	CITATIONS
310	Energy storage in long-term system models: a review of considerations, best practices, and research needs. Progress in Energy, 2020, 2, 032001.	10.9	21
311	Modeling Costs and Benefits of Energy Storage Systems. Annual Review of Environment and Resources, 2020, 45, 445-469.	13.4	19
312	Overcoming the Bottleneck of Unreliable Grids: Increasing Reliability of Household Supply with Decentralized Backup Systems. Journal of Sustainability Research, 2020, , .	1.2	3
314	Benefit Analysis of Long-Duration Energy Storage in Power Systems with High Renewable Energy Shares. Frontiers in Energy Research, 2020, 8, .	2.3	20
315	Solar PV-Battery-Electric Grid-Based Energy System for Residential Applications: System Configuration and Viability. Research, 2019, 2019, 3838603.	5.7	33
316	MXene for aqueous zinc-based energy storage devices. Functional Materials Letters, 2021, 14, .	1.2	15
317	Cross-sector storage and modeling needed for deep decarbonization. Joule, 2021, 5, 2529-2534.	24.0	14
318	Geophysical constraints on the reliability of solar and wind power worldwide. Nature Communications, 2021, 12, 6146.	12.8	90
319	US state-level capacity expansion pathways with improved modeling of the power sector dynamics within a multisector model. Energy Strategy Reviews, 2021, 38, 100739.	7.3	1
320	Battery-supported eCooking: A transformative opportunity for 2.6 billion people who still cook with biomass. Energy Policy, 2021, 159, 112619.	8.8	11
322	Clean Water Using Solar and Wind: Outside the Power Grid. , 2019, , .		2
323	The Implications of Household PV-Battery Systems for Utilities in Thailand. Journal of Clean Energy Technologies, 2019, 7, 15-18.	0.1	1
324	China's vehicle electrification impacts on sales, fuel use, and battery material demand through 2050: Optimizing consumer and industry decisions. IScience, 2021, 24, 103375.	4.1	19
325	Community Solar: Strategies and Implementation for Sustainability. Encyclopedia of the UN Sustainable Development Goals, 2020, , 1-18.	0.1	1
326	The Role of Renewable Energy in Regional Energy Transitions: An Aggregate Qualitative Analysis for the Partner Regions Bavaria, Georgia, Québec, São Paulo, Shandong, Upper Austria, and Western Cape. Sustainability, 2021, 13, 76.	3.2	5
327	Economically Optimal Solar Power Generation. Impact of Meat Consumption on Health and Environmental Sustainability, 2019, , 254-290.	0.4	0
328	Technology and Data for Improved Decision Making. , 2020, , 85-113.		0
330	Mixed feelings: A review and research agenda for emotions in sustainability transitions. Environmental Innovation and Societal Transitions, 2021, 40, 609-624.	5.5	24

#	Article	IF	CITATIONS
331	Climate change impacts on solar power generation and its spatial variability in Europe based on CMIP6. Earth System Dynamics, 2021, 12, 1099-1113.	7.1	23
332	3D Printing for Solid tate Energy Storage. Small Methods, 2021, 5, e2100877.	8.6	24
333	Challenges, Risks, and Opportunities of a Low-Carbon Transition. , 2020, , 11-35.		0
334	Technoeconomic Assessment of Mini-grids in Myanmar. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2020, 99, 67-74.	0.2	0
335	Rapid rise of decarbonization potentials of photovoltaics plus electric vehicles in residential houses over commercial districts. Applied Energy, 2022, 306, 118142.	10.1	23
336	Challenging dominant sustainability worldviews on the energy transition: Lessons from Indigenous communities in Mexico and a plea for pluriversal technologies. World Development, 2022, 150, 105725.	4.9	24
337	Integrating more renewable electricity into the power system may increase carbon emissions. Sustainable Energy Technologies and Assessments, 2022, 49, 101796.	2.7	3
338	A new framework for environmental education about energy transition: investment and the energy regulatory and industrial complex. Journal of Environmental Studies and Sciences, 2022, 12, 149.	2.0	4
339	Manganese fluoride as non-battery type anode for high performance Li-ion capacitors. Journal of Energy Storage, 2021, , 103594.	8.1	2
340	Revealing the Twoâ€Dimensional Surface Diffusion Mechanism for Zinc Dendrite Formation on Zinc Anode. Small, 2022, 18, e2104148.	10.0	66
341	Electrocatalytic conversion of carbon dioxide for the Paris goals. Nature Catalysis, 2021, 4, 915-920.	34.4	53
342	The Relationships among Social, Environmental, Economic CSR Practices and Digitalization in Polish Energy Companies. Energies, 2021, 14, 7666.	3.1	9
343	There is no economic case for new coal plants in India. World Development Perspectives, 2021, 24, 100373.	2.0	12
344	A Framework for States Co-Estimation of Hybrid Energy Storage Systems Based on Fractional-Order Theory. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11, 224-233.	5.4	12
345	Determinants of lithium-ion battery technology cost decline. Energy and Environmental Science, 2021, 14, 6074-6098.	30.8	46
346	Electrolyte Effects on the Stabilization of Prussian Blue Analogue Electrodes in Aqueous Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 3515-3525.	8.0	27
347	A peer-to-peer energy trading market embedded with residential shared energy storage units. Applied Energy, 2022, 308, 118400.	10.1	59
348	Long-term performance evaluation for deep borehole heat exchanger array under different soil thermal properties and system layouts. Energy, 2022, 241, 122937.	8.8	20

#	Article	IF	CITATIONS
349	Economic Analysis of Transformer Loss of Life Mitigation Using Energy Storage and PV Generation. , 2020, , .		2
350	Accelerating Electric Vehicle Uptake: Modelling Public Policy Options on Prices and Infrastructure. SSRN Electronic Journal, 0, , .	0.4	0
351	Sharing Distributed Energy Storages with Virtual Power Plants. , 2021, , .		0
352	A review of hard carbon anode: Rational design and advanced characterization in potassium ion batteries. InformaÄnÃ-Materiály, 2022, 4, .	17.3	85
353	Endangering the Climate. , 2022, , 415-462.		0
354	Zinc Anode for Mild Aqueous Zinc-Ion Batteries: Challenges, Strategies, and Perspectives. Nano-Micro Letters, 2022, 14, 42.	27.0	207
355	Pathways to a more sustainable electricity sector in India. , 2022, , 257-270.		0
356	PERFORMANCE EVALUATION OF ADVANCED ENERGY STORAGE SYSTEMS: A REVIEW. Energy and Environment, 2023, 34, 1094-1141.	4.6	11
357	Electro―and Photocatalytic Oxidative Upgrading of Bioâ€based 5â€Hydroxymethylfurfural. ChemSusChem, 2022, 15, .	6.8	67
358	Optimizing hybrid offshore wind farms for cost-competitive hydrogen production in Germany. International Journal of Hydrogen Energy, 2022, 47, 6478-6493.	7.1	46
359	Structural evolution and hydrogen storage performance of Mg3LaH (n = 9–20). International Journal of Hydrogen Energy, 2022, 47, 7884-7891.	7.1	8
360	Regional policy effect on photovoltaic (PV) technology innovation: Findings from 260 cities in China. Energy Policy, 2022, 162, 112807.	8.8	26
361	Are coupled renewable-battery power plants more valuable than independently sited installations?. Energy Economics, 2022, 107, 105832.	12.1	13
362	Improved reversibility of phase transformations using electron-rich graphitic carbon matrix in FeF2 cathode for sodium-ion batteries. Chemical Engineering Journal, 2022, 434, 134727.	12.7	6
363	Innovation in intermittent electricity and stationary energy storage in the United States and Canada: A review. Renewable and Sustainable Energy Reviews, 2022, 158, 112149.	16.4	8
365	Scalable synthesis of novel V2O3/carbon composite as advanced cathode material for aqueous zinc-ion batteries. Ceramics International, 2022, 48, 15594-15602.	4.8	19
366	Enhanced Separation Performance of Radioactive Cesium and Cobalt in Graphene Oxide Membrane via Cationic Control. Langmuir, 2022, 38, 1995-2002.	3.5	6
367	Managing the phaseout of coal power: A comparison of power decarbonization pathways in Jilin Province. Resources, Conservation and Recycling, 2022, 180, 106216.	10.8	11

# 368	ARTICLE Selective CO ₂ adsorption and bathochromic shift in a phosphocholine-based lipid and	IF 3.6	Citations
369	High cycle stability of Zn anodes boosted by an artificial electronic–ionic mixed conductor coating layer. Journal of Materials Chemistry A, 2022, 10, 7645-7652.	10.3	21
370	Perovskite Enables High Performance Vanadium Redox Flow Battery. SSRN Electronic Journal, 0, , .	0.4	0
371	Evolutionary Game Analysis of Co-Opetition Strategy in Energy Big Data Ecosystem under Government Intervention. Energies, 2022, 15, 2066.	3.1	9
372	Machine learning in energy storage materials. , 2022, 1, 175-195.		45
373	Toward carbon neutrality: Uncovering constraints on critical minerals in the Chinese power system. Fundamental Research, 2022, 2, 367-374.	3.3	18
374	Techno-economic analysis of battery electricity storage towards self-sufficient buildings. Energy Conversion and Management, 2022, 256, 115313.	9.2	24
375	Confining Sn nanoparticles in interconnected N-doped hollow carbon spheres as hierarchical zincophilic fibers for dendrite-free Zn metal anodes. Science Advances, 2022, 8, eabm5766.	10.3	150
376	Review—Oxygen Electrocatalysts based on Various Modulation Strategies for Rechargeable Li-O ₂ Batteries. Journal of the Electrochemical Society, 2022, 169, 030516.	2.9	4
377	Nonâ€Electrode Components for Rechargeable Aqueous Zinc Batteries: Electrolytes, Solidâ€Electrolyteâ€Interphase, Current Collectors, Binders, and Separators. Advanced Materials, 2022, 34, e2108206.	21.0	58
378	Surface Engineering on Commercial Cu Foil for Steering C ₂ H ₄ /CH ₄ Ratio in CO ₂ Electroreduction. Nano Letters, 2022, 22, 2988-2994.	9.1	16
379	Unraveling the Conversion Evolution on Solidâ€State Na–SeS ₂ Battery via In Situ TEM. Advanced Science, 2022, 9, e2200744.	11.2	25
380	Recent Progress and Future Advances on Aqueous Monovalentâ€ion Batteries towards Safe and Highâ€Power Energy Storage. Advanced Materials, 2022, 34, e2107965.	21.0	48
381	Fast Charging Anode Materials for Lithium″on Batteries: Current Status and Perspectives. Advanced Functional Materials, 2022, 32, .	14.9	185
382	Battery technology and recycling alone will not save the electric mobility transition from future cobalt shortages. Nature Communications, 2022, 13, 1341.	12.8	107
383	Oxygen vacancy-rich ultrafine CoP/Co3O4 nanoparticles as high-efficiency trifunctional electrocatalyst. Electrochimica Acta, 2022, 412, 140134.	5.2	13
384	An Open-Framework Structured Material: [Ni(en) ₂] ₃ [Fe(CN) ₆] ₂ as a Cathode Material for Aqueous Sodium- and Potassium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 16197-16203	8.0	6
385	The impact of a subsidized tax deduction on residential solar photovoltaic-battery energy storage systems. Utilities Policy, 2022, 75, 101358.	4.0	14

#	Article	IF	CITATIONS
386	Serpentine flow field with changing rib width for enhancing electrolyte penetration uniformity in redox flow batteries. Journal of Energy Storage, 2022, 49, 104135.	8.1	12
387	Understanding rechargeable magnesium ion batteries via first-principles computations: A comprehensive review. Energy Storage Materials, 2022, 48, 344-355.	18.0	24
388	Numerical simulation of gasification of a shrinking char particle in supercritical water. Fuel, 2022, 318, 123692.	6.4	7
389	A universal, green, and self-reliant electrolytic approach to high-entropy layered (oxy)hydroxide nanosheets for efficient electrocatalytic water oxidation. Journal of Colloid and Interface Science, 2022, 617, 500-510.	9.4	10
390	Transformer Loss of Life Mitigation by Coordinating Energy Storage, EV charging, and PV Generation at Consumer Sites. , 2021, , .		0
391	The Development of Energy Storage in China: Policy Evolution and Public Attitude. Frontiers in Energy Research, 2021, 9, .	2.3	6
392	High energy storage density and efficiency achieved in dielectric films functionalized with strong electronegative asymmetric halogen-phenyl groups. Chemical Engineering Journal, 2022, 444, 136331.	12.7	15
393	Enabling Multi-Chemisorption Sites on Carbon Nanofibers Cathodes by an In-situ Exfoliation Strategy for High-Performance Zn–Ion Hybrid Capacitors. Nano-Micro Letters, 2022, 14, 106.	27.0	63
394	Sodium-ion battery from sea salt: a review. Materials for Renewable and Sustainable Energy, 2022, 11, 71-89.	3.6	13
395	Recent advances and perspectives in conductive-polymer-based composites as cathode materials for high-performance lithium–sulfur batteries. Sustainable Energy and Fuels, 2022, 6, 2901-2923.	4.9	9
397	Selecting a self-sufficient solar system configuration for 24/7, year-round, per-demand power supply. AIP Conference Proceedings, 2022, , .	0.4	0
398	A twoâ€stage robust optimal configuration model of generationâ€side cloud energy storage system based on cooperative game. IET Generation, Transmission and Distribution, 0, , .	2.5	2
399	Electric vehicle charging load forecasting based on federal learning. , 2022, , .		0
400	Sustainable Approaches to Selective Conversion of Cellulose Into 5-Hydroxymethylfurfural Promoted by Heterogeneous Acid Catalysts: A Review. Frontiers in Chemistry, 2022, 10, .	3.6	8
401	Ligand Stabilization Strategy Boosted Electrode Kinetics in Cyanide Metal Organic Framework for Electrocatalytic Oxygen Evolution Reaction. ChemNanoMat, 0, , .	2.8	0
402	Whither policy innovation? Mapping conceptual engagement with public policy in energy transitions research. Energy Research and Social Science, 2022, 89, 102632.	6.4	6
403	Sodium-Ion Batteries with Ti1Al1TiC1.85 MXene as Negative Electrode: Life Cycle Assessment and Life Critical Resource Use Analysis. Sustainability, 2022, 14, 5976.	3.2	5
404	Does clean energy matter? Revisiting the spillovers between energy and foreign exchange markets. Journal of Futures Markets, 2022, 42, 2068-2083.	1.8	9

#	Article	IF	CITATIONS
405	High-resolution electricity generation model demonstrates suitability of high-altitude floating solar power. IScience, 2022, 25, 104394.	4.1	8
407	Vanadium nitride nanoparticle decorated N-doped carbon nanotube/N-doped carbon nanosheet hybrids <i>via</i> a C ₃ N ₄ self-sacrificing method for electrochemical capacitors. RSC Advances, 2022, 12, 15354-15360.	3.6	10
408	Finelyâ€Dispersed Ni ₂ Co Nanoalloys on Flowerâ€Like Graphene Microassembly Empowering a Bi‧ervice Matrix for Superior Lithium–Sulfur Electrochemistry. Advanced Functional Materials, 2022, 32, .	14.9	22
409	Enhanced photo-carrier transportation at semiconductor/electrolyte interface of TiO2 photoanode by oxygen vacancy engineering. Applied Surface Science, 2022, 597, 153744.	6.1	15
410	Recent Advances of Carbon Materials in Anodes for Aqueous Zinc Ion Batteries. Chemical Record, 2022, 22, .	5.8	14
411	Interface Engineering to Improve the Rate Performance and Stability of the Mn-Cathode Electrode for Aqueous Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 24386-24395.	8.0	11
412	The heterogeneous role of energy policies in the energy transition of Asia–Pacific emerging economies. Nature Energy, 2022, 7, 588-596.	39.5	25
413	The Emergence of 2D MXenes Based Znâ€ŀon Batteries: Recent Development and Prospects. Small, 2022, 18, ·	10.0	76
414	Enhancement of melting performance in a shell and tube thermal energy storage device under different structures and materials. Applied Thermal Engineering, 2022, 214, 118701.	6.0	6
415	Spatially Confined "Edgeâ€ŧoâ€Edge―Strategy for Achieving Compact Na ⁺ /K ⁺ Storage: Constructing Heteroâ€Ni/Ni ₃ S ₂ in Densified Carbons. Advanced Functional Materials, 2022, 32, .	14.9	23
416	Recent Advances in Carbonâ€Supported Nobleâ€Metal Electrocatalysts for Hydrogen Evolution Reaction: Syntheses, Structures, and Properties. Advanced Energy Materials, 2022, 12, .	19.5	64
417	Electrospun-based nanofibers for sodium and potassium ion storage: Structure design for alkali metal ions with large radius. Journal of Alloys and Compounds, 2022, 918, 165680.	5.5	10
418	Use of biochar co-mediated chitosan mesopores to encapsulate alkane and improve thermal properties. Environmental Research, 2022, 212, 113539.	7.5	7
419	Innovation Trigger or Political Symbolism: How Green are Subsidies in Electric Vehicles?. SSRN Electronic Journal, 0, , .	0.4	0
420	Recent Advances in Perovskite Catalysts for Efficient Overall Water Splitting. Catalysts, 2022, 12, 601.	3.5	17
421	Free-standing and binder-free porous monolithic electrodes prepared via sol–gel processes. Journal of Sol-Gel Science and Technology, 2022, 103, 637-679.	2.4	5
422	Prelithiation Bridges the Gap for Developing Nextâ€Generation Lithiumâ€Ion Batteries/Capacitors. Small Methods, 2022, 6, .	8.6	23
423	The State of Israel: Toward a Renewable Lowâ€Carbon Energy Production. Energy Technology, 0, , 2200122.	3.8	Ο

#	Article	IF	CITATIONS
424	Influence Mechanism of Mg ²⁺ Doping on Electrochemical Properties of LiFePO ₄ Cathode Materials. ACS Applied Energy Materials, 2022, 5, 8452-8459.	5.1	18
425	Accelerating electric vehicle uptake: Modelling public policy options on prices and infrastructure. Transportation Research, Part A: Policy and Practice, 2022, 162, 155-174.	4.2	13
426	Beyond innovation and deployment: Modeling the impact of technology-push and demand-pull policies in Germany's solar policy mix. Research Policy, 2022, 51, 104585.	6.4	13
427	Peer-to-Peer Transactive Network with Shared Energy Storage in Distribution Network. , 2022, , .		0
428	Interaction of Consumer Heterogeneity and Technological Progress in the US Electric Vehicle Market. Energies, 2022, 15, 4722.	3.1	9
429	Beyond cost reduction: improving the value of energy storage in electricity systems. , 2022, 1, .		10
430	Thermodynamic study on the natural gas condensation in the throttle valve for the efficiency of the natural gas transport system. Applied Energy, 2022, 322, 119506.	10.1	7
431	Synthesis and Electrochemical Performance of the Orthorhombic V2O5•nH2O Nanorods as Cathodes for Aqueous Zinc Batteries. Nanomaterials, 2022, 12, 2530.	4.1	4
432	Machine Learning for Electrocatalyst and Photocatalyst Design and Discovery. Chemical Reviews, 2022, 122, 13478-13515.	47.7	120
433	Low-Dimensional Nanomaterial Systems Formed by IVA Group Elements Allow Energy Conversion Materials to Flourish. Nanomaterials, 2022, 12, 2521.	4.1	1
434	Techno-economic analyses of several redox flow batteries using levelized cost of energy storage. Current Opinion in Chemical Engineering, 2022, 37, 100855.	7.8	26
495			

#	Article	IF	CITATIONS
442	Is the digital economy driving clean energy development? -New evidence from 276 cities in China. Journal of Cleaner Production, 2022, 372, 133783.	9.3	81
443	Fuzzy logic control of plug-in supercapacitor storage for thermoelectric management of batteries. Renewable Energy Focus, 2022, 43, 59-73.	4.5	3
444	High-capacitance MXene anode based on Zn-ion pre-intercalation strategy for degradable micro Zn-ion hybrid supercapacitors. Nano Energy, 2022, 103, 107791.	16.0	32
445	Wind power resources and China's sustainable development roadmap: Evidence from China. Resources Policy, 2022, 79, 103015.	9.6	7
446	Achieving high-energy and long-cycling aqueous zinc-metal batteries by highly reversible insertion mechanisms in Ti-substituted Na0.44MnO2 cathode. Chemical Engineering Journal, 2023, 451, 139059.	12.7	13
447	Rational Design of Single Tungsten/Cobalt Atom Oxide Anchored on the Tio2-Rgo: A Highly Efficient Electrocatalyst for Water Splitting and Photocatalyst for Decomposition of Pharmaceutical Pollutants. SSRN Electronic Journal, 0, , .	0.4	0
448	Doping of the Mn vacancy of Mn ₂ B ₂ with a single different transition metal atom as the dual-function electrocatalyst. Physical Chemistry Chemical Physics, 2022, 24, 20988-20997.	2.8	6
449	Swarm analytical hierarchical processing approach for sizing hybrid energy storage. AIP Conference Proceedings, 2022, , .	0.4	0
450	Phosphorus-modified Pt@Cu surfaces for efficient electrocatalysis of hydrogen evolution. Materials Advances, 2022, 3, 7667-7672.	5.4	0
451	Weaving an innovation network from the middle-out: the case of the renewable energy ecosystem. Energy, Sustainability and Society, 2022, 12, .	3.8	3
452	Theoretical Study on the Electrochemical Water Splitting of Two-Dimensional Metal–Organic Frameworks TM3C12O12 (TM = Mn, Fe, Co, Ni). Crystals, 2022, 12, 1289.	2.2	5
453	Chitin-Derived Heteroatom-Doped Porous Carbon for High-Performance Room-Temperature Na-S Batteries. ACS Applied Energy Materials, 2022, 5, 11825-11834.	5.1	1
454	Progress and challenges of prelithiation technology for lithiumâ€ion battery. , 2022, 4, 1107-1132.		46
455	Introducing high-valence elements into cobalt-free layered cathodes for practical lithium-ion batteries. Nature Energy, 2022, 7, 946-954.	39.5	103
456	Recent Advances in the Unconventional Design of Electrochemical Energy Storage and Conversion Devices. Electrochemical Energy Reviews, 2022, 5, .	25.5	29
457	Contextualizing the scope, scale, and speed of energy pathways toward sustainable development in Africa. IScience, 2022, 25, 104965.	4.1	11
458	Rethinking radiation effects in materials science using the plasma-focused ion beam. Journal of Materials Science, 2022, 57, 16795-16808.	3.7	1
459	A pro-health cookstove strategy to advance energy, social and ecological justice. Nature Energy, 2022, 7, 999-1002.	39.5	9

#	Article	IF	CITATIONS
460	Incremental green certificate towards flexibility incentive for renewable dominated power systems. Journal of Cleaner Production, 2022, 377, 134345.	9.3	7
461	Non-Covalent Bond-Regulated Solar Evaporation Modulator: Facilitative Hydration Domains Originated via a Homogeneous Polymeric Network. ACS Applied Materials & Interfaces, 2022, 14, 46945-46957.	8.0	4
462	Transition Metal Oxalate-Based Materials: An Emerging Material Family for Alkali-Ion Battery Cathodes. ACS Applied Energy Materials, 2022, 5, 11947-11963.	5.1	2
463	Operational characteristics and optimization of Hydro-PV power hybrid electricity system. Renewable Energy, 2022, , .	8.9	4
464	Rational design of single tungsten/cobalt atom oxide anchored on the TiO2-rGO: A highly efficient electrocatalyst for water splitting and photocatalyst for decomposition of pharmaceutical pollutant. Separation and Purification Technology, 2022, 303, 122298.	7.9	9
465	Electricity storage requirements to support the transition towards high renewable penetration levels – Application to the Greek power system. Journal of Energy Storage, 2022, 55, 105748.	8.1	13
466	How collaboration with G7 countries drives environmental technology innovation in ten Newly Industrializing Countries. Energy for Sustainable Development, 2022, 71, 176-185.	4.5	8
467	Ionic Conductivity Enhancement of Li ₂ ZrCl ₆ Halide Electrolytes via Mechanochemical Synthesis for All-Solid-State Lithium–Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 49839-49846.	8.0	9
468	High Emission Scenario Substantially Damages China's Photovoltaic Potential. Geophysical Research Letters, 2022, 49, .	4.0	8
469	Ferrocene Formic Acid Surface Modified Ni(OH)2 for Highly Efficient Alkaline Oxygen Evolution. Crystals, 2022, 12, 1404.	2.2	1
470	Democracy, Economic Development and Low-Carbon Energy: When and Why Does Democratization Promote Energy Transition?. Sustainability, 2022, 14, 13213.	3.2	6
471	The future of lithium-ion batteries: Exploring expert conceptions, market trends, and price scenarios. Energy Research and Social Science, 2022, 93, 102850.	6.4	22
472	The flexible roles of distributed energy storages in peer-to-peer transactive energy market: A state-of-the-art review. Applied Energy, 2022, 327, 120085.	10.1	11
473	Regulation mechanism of magnetic field on non-Newtonian melting and energy storage performance of metal foam composite nano-enhanced phase change materials. International Journal of Heat and Mass Transfer, 2023, 200, 123501.	4.8	15
474	Self-templated and triethanolamine-induced hollow MnO2 nanoboxes with abundant active Mn3+ and oxygen vacancies for high-performance Na-ion pseudocapacitors. Chemical Engineering Journal, 2023, 452, 139661.	12.7	10
475	Regulating desolvation and homogenized ion flux towards highly reversible dendrite-free zinc anode. Chemical Engineering Journal, 2023, 453, 139963.	12.7	11
476	The active ruthenium (101) crystal plane selectively exposed by <i>in situ</i> metal hyperaccumulation on a living plant for overall water splitting. Green Chemistry, 2022, 24, 9668-9676.	9.0	4
477	Quantifying policy gaps for achieving the net-zero GHG emissions target in the U.S. light-duty vehicle market through electrification. Journal of Cleaner Production, 2022, 380, 135000.	9.3	2

#	Article	IF	CITATIONS
478	Advances in Power-to-Gas Technologies: Cost and Conversion Efficiency. SSRN Electronic Journal, 0, , .	0.4	0
479	Measuring the low-carbon energy transition in Chinese cities. IScience, 2023, 26, 105803.	4.1	22
480	Advanced trifunctional electrodes for 1.5 V-based self-powered aqueous electrochemical energy devices. Journal of Materials Chemistry A, 2022, 11, 374-384.	10.3	26
481	Recent advances of cobalt-based nitride catalysts in solar energy conversion. Materials Chemistry Frontiers, 2023, 7, 607-627.	5.9	9
482	The photovoltaic revolution is on: How it will change the electricity system in a lasting way. Energy, 2023, 265, 126351.	8.8	7
483	Energy system transition pathways to meet the global electricity demand for ambitious climate targets and cost competitiveness. Applied Energy, 2023, 331, 120401.	10.1	37
484	Bimetal Substitution Enabled Energetic Polyanion Cathode for Sodium-Ion Batteries. Nano Letters, 2022, 22, 9685-9692.	9.1	8
485	In Situ Reconstruction of Dendrite-Free Zinc Anode with Cu from Reactive Copper Phthalocyanine Interlayer. ACS Sustainable Chemistry and Engineering, 2022, 10, 15838-15845.	6.7	5
486	Impact of the Participation of the Tourism Sector on Carbon Emission Reduction in the Tourism Industry. Sustainability, 2022, 14, 15570.	3.2	3
487	Faradic Side Reactions at Novel Carbon Flowâ€Through Electrodes for Desalination Studied in a Static Supercapacitor Architecture. Advanced Energy and Sustainability Research, 2023, 4, .	5.8	1
488	Temperature―and Ambient Pressureâ€Independent Sensing of Hydrogen in Fluids Using Cascaded Interferometers Incorporated in Optical Fibers. Advanced Materials Technologies, 2023, 8, .	5.8	4
489	Energy transition research: A bibliometric mapping of current findings and direction for future research. Cleaner Production Letters, 2022, 3, 100026.	2.9	19
490	Decarbonization, population disruption and resource inventories in the global energy transition. Nature Communications, 2022, 13, .	12.8	18
491	Advances in Selective Electrochemical Oxidation of 5â€Hydroxymethylfurfural to Produce Highâ€Value Chemicals. Advanced Science, 2023, 10, .	11.2	26
492	Factors affecting the market dynamics of lithium-ion battery for electric mobility: a system dynamics perspective. Journal of Simulation, 0, , 1-18.	1.5	1
493	Modulation of the Oxidation Endâ€Product Toward Polysulfidesâ€Free and Sustainable Lithiumâ€Pyrite Thermal Batteries. Advanced Science, 2023, 10, .	11.2	3
494	A Facile Candle-Soot Nanoparticle Decoration Enables Dendrite-Free Zn Anodes for Long-Cycling Aqueous Batteries. ACS Applied Energy Materials, 2023, 6, 1897-1905.	5.1	4
495	Assessing Fossil Fuels and Renewables' Impact on Energy Poverty Conditions in Europe. Energies, 2023, 16, 560.	3.1	14

#	Article	IF	CITATIONS
496	Towards a business model for second-life batteries: Barriers, opportunities, uncertainties, and technologies. Journal of Energy Chemistry, 2023, 78, 507-525.	12.9	16
497	The enhanced electrical energy storage properties of (Bi0.5Na0.5)TiO3–BaTiO3/graphene oxide heterogeneous structures. Journal of Materials Science: Materials in Electronics, 2023, 34, .	2.2	Ο
498	High energy capacity or high power rating: Which is the more important performance metric for battery energy storage systems at different penetrations of variable renewables?. Journal of Energy Storage, 2023, 59, 106560.	8.1	3
499	How the new energy industry contributes to carbon reduction? —Evidence from China. Journal of Environmental Management, 2023, 329, 117066.	7.8	10
500	Comprehensive thermo-exploration of a near-isothermal compressed air energy storage system with a pre-compressing process and heat pump discharging. Energy, 2023, 268, 126609.	8.8	4
501	A non-academic perspective on the future of lithium-based batteries. Nature Communications, 2023, 14,	12.8	135
502	Alleviation path III: is the low-carbon reform of energy an excellent strategy to solve energy poverty?. , 2023, , 239-267.		0
503	Economical cobalt-free single-crystal LiNi0.6Mn0.4O2 cathodes for high-performance lithium-ion batteries. Journal of Solid State Electrochemistry, 2023, 27, 1363-1372.	2.5	3
505	Integrated Micro Space Electrostatic Field in Aqueous Znâ€lon Battery: Scalable Electrospray Fabrication of Porous Crystalline Anode Coating. Angewandte Chemie, 2023, 135, .	2.0	2
506	Investigation and optimization on melting performance of a triplex-tube heat storage tank by rotational mechanism. International Journal of Heat and Mass Transfer, 2023, 205, 123892.	4.8	27
507	Matching of everyday power supply and demand with dynamic pricing: Problem formalisation and conceptual analysis. Energy Reports, 2023, 9, 2453-2462.	5.1	2
508	Green Chemistry case study on alternative energy. , 2023, , 141-158.		0
509	Transfer Deep Reinforcement Learning-Based Energy Management Strategy for Plug-In Hybrid Electric Heavy-Duty Trucks under Segmented Usage Scenarios. International Journal of Energy Research, 2023, 2023, 1-26.	4.5	1
510	Extreme climate, innovative ability and energy efficiency. Energy Economics, 2023, 120, 106586.	12.1	15
511	Optimizing Large-Scale PV Systems with Machine Learning: A Neuro-Fuzzy MPPT Control for PSCs with Uncertainties. Electronics (Switzerland), 2023, 12, 1720.	3.1	5
512	Construction of amorphous/crystalline heterointerfaces for enhanced electrochemical processes. EScience, 2023, 3, 100112.	41.6	24
513	Atomic phosphorus induces tunable lattice strain in high entropy alloys and boosts alkaline water splitting. Nano Energy, 2023, 110, 108380.	16.0	18
514	Recent progress and challenges of Zn anode modification materials in aqueous Zn-ion batteries. Coordination Chemistry Reviews, 2023, 485, 215142.	18.8	31

#	ARTICLE	IF	CITATIONS
515	Battery innovation and the Circular Economy: What are patents revealing?. Renewable Energy, 2023, 209, 516-532.	8.9	4
516	Impact of demand growth on decarbonizing India's electricity sector and the role for energy storage. Energy and Climate Change, 2023, 4, 100098.	4.4	4
517	New energy technology innovation and sustainable economic development in the complex scientific environment. Energy Reports, 2023, 9, 4214-4223.	5.1	9
518	Policy design for green hydrogen. Renewable and Sustainable Energy Reviews, 2023, 178, 113216.	16.4	10
519	Equilibrium analysis of a peer-to-peer energy trading market with shared energy storage in a power transmission grid. Energy, 2023, 274, 127362.	8.8	9
520	Integrated Micro Space Electrostatic Field in Aqueous Znâ€Ion Battery: Scalable Electrospray Fabrication of Porous Crystalline Anode Coating. Angewandte Chemie - International Edition, 2023, 62,	13.8	38
521	Perspective on China's commitment to carbon neutrality under the innovation-energy-emissions nexus. Journal of Cleaner Production, 2023, 390, 136202.	9.3	13
522	MOF-derived ultrasmall Ru@RuO2 heterostructures as bifunctional and pH-universal electrocatalysts for 0.79ÂV asymmetric amphoteric overall water splitting. Chemical Engineering Journal, 2023, 460, 141672.	12.7	17
523	Electrolytes in Organic Batteries. Chemical Reviews, 2023, 123, 1712-1773.	47.7	57
524	Understanding and quantifying capacity loss in storage aging of Ahâ€level Li metal pouch cells. InformaÄnÃ-Materiály, 2023, 5, .	17.3	3
525	Suppression of CO2 induced lithium anode corrosion by fluorinated functional group in quasi-solid polymer electrolyte enabling long-cycle and high-safety Li-CO2 batteries. Energy Storage Materials, 2023, 57, 260-268.	18.0	7
526	MoS2/NiSe2/rGO Multiple-Interfaced Sandwich-like Nanostructures as Efficient Electrocatalysts for Overall Water Splitting. Nanomaterials, 2023, 13, 752.	4.1	2
527	Bonding Lithium Metal with Garnet Electrolyte by Interfacial Lithiophobicity/Lithiophilicity Transition Mechanism over 380 °C. Small Methods, 2023, 7, .	8.6	6
528	China's electric vehicle and climate ambitions jeopardized by surging critical material prices. Nature Communications, 2023, 14, .	12.8	24
529	Enabling Multi-electron Reactions in NASICON Positive Electrodes for Aqueous Zinc-Metal Batteries. ACS Energy Letters, 2023, 8, 1671-1679.	17.4	11
530	Deep Reinforcement Learning for Real-Time Energy Management in Smart Home. IEEE Systems Journal, 2023, 17, 2489-2499.	4.6	5
531	Optimal geometrical configuration and oxidation state of cobalt cations in spinel oxides to promote the performance of Li-O2 battery. Nano Research, 2024, 17, 221-227.	10.4	3
532	How social imbalance and governance quality shape policy directives for energy transition in the OECD countries?. Energy Economics, 2023, 120, 106642.	12.1	26

#	Article	IF	CITATIONS
533	Green innovation, natural extreme events, and energy transition: Evidence from Asia-Pacific economies. Energy Economics, 2023, 121, 106638.	12.1	13
534	Ion engines in hydrogels boosting hydrovoltaic electricity generation. Energy and Environmental Science, 2023, 16, 2494-2504.	30.8	9
535	Engineering a manganese-based oxide heterostructure cathode for high-performance aqueous potassium-ion storage. Materials Advances, 0, , .	5.4	1
536	Co-doped PVA-borax anodic supercapacitors with high capacity and self-healability features. Solid State Ionics, 2023, 396, 116230.	2.7	2
537	Urban planning policy and clean energy development Harmony- evidence from smart city pilot policy in China. Renewable Energy, 2023, 210, 251-257.	8.9	34
538	A bibliometric review of grid parity, energy transition and electricity cost research for sustainable development. Heliyon, 2023, 9, e15532.	3.2	3
539	Vesicular mesoporous copper oxide as anode for high lithium storage. Journal of Materials Science: Materials in Electronics, 2023, 34, .	2.2	0
540	Toward stable and highly reversible zinc anodes for aqueous batteries via electrolyte engineering. Journal of Energy Chemistry, 2023, 83, 209-228.	12.9	8
541	Depth optimization of solidification properties of a latent heat energy storage unit under constant rotation mechanism. Energy and Buildings, 2023, 290, 113099.	6.7	18
542	Monolayer AsC5 as the Promising Hydrogen Storage Material for Clean Energy Applications. Nanomaterials, 2023, 13, 1553.	4.1	4
543	Customized predictions of the installed cost of behind-the-meter battery energy storage systems. Energy Reports, 2023, 9, 5509-5531.	5.1	0
544	The Impact of China's National Sustainable Development Experimental Zone Policy on Energy Transition. Sustainability, 2023, 15, 8315.	3.2	0
546	Modified luminescent properties from green afterglow to efficient orange emission in zirconium-based organometallic chloride scintillator by Sb3+ doping. Materials Today Chemistry, 2023, 30, 101527.	3.5	1
547	Boosting the Development of Hard Carbon for Sodiumâ€lon Batteries: Strategies to Optimize the Initial Coulombic Efficiency. Advanced Functional Materials, 2024, 34, .	14.9	20
548	Ultrafast Electrical Pulse Synthesis of Highly Active Electrocatalysts for Beyondâ€Industrialâ€Level Hydrogen Gas Batteries. Advanced Materials, 2023, 35, .	21.0	11
549	Impacts of Environmental Pollution and Digital Economy on the New Energy Industry. Sustainability, 2023, 15, 9262.	3.2	0
550	The role of electricity market design for energy storage in cost-efficient decarbonization. Joule, 2023, 7, 1227-1240.	24.0	1
551	Battery valuation and management for battery swapping station. Energy, 2023, 279, 128120.	8.8	1

#	Article	IF	CITATIONS
552	Nano-semiconductor material stabilized Zn metal anode for long-life aqueous Zn-ion batteries. Journal of Colloid and Interface Science, 2023, 650, 593-602.	9.4	3
553	Self-supporting and flexible organic potassium terephthalate with controllable carbon layers in K-ion batteries. Journal of Solid State Chemistry, 2023, 325, 124172.	2.9	Ο
554	Engineering accordion-like Fe-doped NiS2 enabling high-performance aqueous supercapacitors and Zn-Ni batteries. Chemical Engineering Journal, 2023, 470, 144148.	12.7	9
555	Experimental investigation of a new solar panels cleaning system using ionic wind produced by corona discharge. Journal of Electrostatics, 2023, 124, 103827.	1.9	4
556	Thermal Runaway Characteristics of LFP Batteries by Immersion Cooling. ACS Applied Energy Materials, 2023, 6, 7205-7211.	5.1	2
557	The Low-Carbon Transition of Energy Systems: A Bibliometric Review from an Engineering Management Perspective. Engineering, 2023, 29, 147-158.	6.7	5
558	Inexhaustible natural celluloses in advanced Li–S batteries: a review. Journal of Materials Chemistry C, 2023, 11, 6819-6833.	5.5	3
559	Microgrids: An Opportunity for Sustainable Development on Islands. Social and Ecological Interactions in the Galapagos Islands, 2023, , 427-435.	0.4	0
560	In situ quantitative polymerization of dopamine on dual functional carbon nanotubes as high stability and rate capacity anodes for potassium ion storage. Nanoscale, 2023, 15, 10330-10341.	5.6	1
561	Electricity, Transportation, and Water Provision of 100% Renewable Energy for Remote Areas. Energies, 2023, 16, 4146.	3.1	0
562	Effect of nanoparticle size during discharging of NePCM in TTHE: A numerical investigation. Materials Today: Proceedings, 2023, , .	1.8	1
563	In Situ Induced Core–Shell Carbonâ€Encapsulated Amorphous Vanadium Oxide for Ultraâ€Long Cycle Life Aqueous Zincâ€Ion Batteries. Advanced Functional Materials, 2023, 33, .	14.9	12
564	Residential photovoltaic and energy storage systems for sustainable development: An economic analysis applied to incentive mechanisms. Sustainable Development, 0, , .	12.5	7
565	Highly renewable energy systems in Africa: Rationale, research, and recommendations. Joule, 2023, 7, 1437-1470.	24.0	7
567	Electrolyte Strategies Facilitating Anionâ€Derived Solidâ€Electrolyte Interphases for Aqueous Zinc–Metal Batteries. Small Methods, 0, , .	8.6	5
568	Marshall-Olkin length biased exponential distribution for wind speed analysis alternative to Weibull distribution. Modeling Earth Systems and Environment, 0, , .	3.4	0
569	The cost of direct air capture and storage can be reduced via strategic deployment but is unlikely to fall below stated cost targets. One Earth, 2023, 6, 899-917.	6.8	13
571	Renaissance of elemental phosphorus materials: properties, synthesis, and applications in sustainable energy and environment. Chemical Society Reviews, 2023, 52, 5388-5484.	38.1	9

ARTICLE IF CITATIONS # Combined sustainable production technology of calcium chloride and lignin-derived porous carbon 572 9.3 3 electrode materials. Journal of Cleaner Production, 2023, 419, 138201. Climate change impacts on planned supply–demand match in global wind and solar energy systems. 573 39.5 Nature Energy, 2023, 8, 870-880. Monolayer and bilayer AsC5 as promising anode materials for Na-ion batteries. Journal of Power 574 0 7.8 Sources, 2023, 580, 233439. Review of Emerging Atomically Precise Composite Siteâ€Based Electrocatalysts. Advanced Energy Materials, 2023, 13, . Stacked revenues for energy storage participating in energy and reserve markets with an optimal 576 10.1 4 frequency regulation modeling. Applied Energy, 2023, 350, 121721. YF₃ with Nanostructure: A Rare Earth Metal Fluoride Anode for Lithiumâ€lon Batteries. 577 1.5 ChemistrySelect, 2023, 8, . Advanced Catalyst Design and Reactor Configuration Upgrade in Electrochemical Carbon Dioxide 578 21.0 4 Conversion. Advanced Materials, 2023, 35, . Optimal transition pathways toward carbon neutrality in Chinese power sector: Considering regional 579 6.3 heterogeneity and technological change. Computers and Industrial Engineering, 2023, 183, 109553. 580 Non-fragile guaranteed cost control of microbial fuel cells. ISA Transactions, 2023, 143, 398-408. 0 5.7 New Consideration of Degradation Accelerating of Allâ€Solidâ€State Batteries under a Lowâ€Pressure Condition. Advanced Energy Materials, 2023, 13, . Single metal atoms supported on N-doped 2D M₂C MXenes: an efficient electrocatalyst for 582 0 2.8 overall water splitting. New Journal of Chemistry, 2023, 47, 18285-18294. Three-Dimensional (3D) Ordered Macroporous Bimetallic (Mn,Fe) Selenide/Carbon Composite with Heterojunction Interface for High-Performance Sodium Ion Batteries. ACS Applied Materials & amp; 8.0 Interfaces, 2023, 15, 40100-40114. Regulating Steric Hindrance of Porous Organic Polymers in Composite Solidâ€State Electrolytes to 584 Induce the Formation of LiFâ€Rich SEI in Liâ€Ion Batteries. Angewandte Chemie - International Edition, 2023, 13.8 9 62,. Harnessing renewable energy technologies for energy independence within Zimbabwean tourism industry: A pathway towards sustainability. Energy for Sustainable Development, 2023, 76, 101301. 4.5 Cogeneration transition for energy system decarbonization: From basic to flexible and 586 16.4 3 complementary multi-energy sources. Renewable and Sustainable Energy Reviews, 2023, 187, 113709. State of the Art Progress in Copper Vanadate Materials for Solar Water Splitting. Nanomaterials, 587 2023, 13, 2599. Acid response nanochannels of graphene oxide membranes for fast nuclide ions separation. 588 7.9 2 Separation and Purification Technology, 2024, 328, 125086. 589 Printable Energy Storage: Stay or Go?. ACS Nano, 2023, 17, 17624-17633. 14.6

#	Article	IF	CITATIONS
590	Recent progress on advanced high energy electrode materials for sodium ion batteries. , 2023, 1, 100033.		3
591	Toward rational design of dual-metal-site single atom electrocatalysts for hydrogen and oxygen evolution reactions. Chemical Physics, 2024, 576, 112091.	1.9	0
592	Cathode materials for aqueous zinc-ion batteries and prospect of self-supporting electrodes: A review. Journal of Energy Storage, 2023, 73, 109174.	8.1	4
593	Tunable Oxygen Vacancies of Cobalt Oxides in Lithium–Oxygen Batteries: Morphology Control of Discharge Product. Nano Letters, 2023, 23, 9119-9125.	9.1	2
594	Regulating Steric Hindrance of Porous Organic Polymers in Composite Solidâ€State Electrolytes to Induce the Formation of LiFâ€Rich SEI in Liâ€Ion Batteries. Angewandte Chemie, 2023, 135, .	2.0	0
595	A Functional Janus Ag Nanowires/Bacterial Cellulose Separator for Highâ€Performance Dendriteâ€Free Zinc Anode Under Harsh Conditions. Advanced Materials, 2023, 35, .	21.0	11
596	A Bibliometric Analysis on Energy Transition with Emphasis on Decarbonization of Lignite Towards a Post-Lignite Era. Springer Proceedings in Business and Economics, 2023, , 223-235.	0.3	0
597	Coal power demand and paths to peak carbon emissions in China: A provincial scenario analysis oriented by CO2-related health co-benefits. Energy, 2023, 282, 128830.	8.8	3
598	Optimal sizing of supercapacitors for cost-effective hybridization of battery-alone energy storage systems. Journal of Cleaner Production, 2023, 422, 138532.	9.3	0
599	Optimizing underground hydrogen storage in aquifers: The impact of cushion gas type. International Journal of Hydrogen Energy, 2024, 52, 1537-1549.	7.1	5
600	When Should the Off-Grid Sun Shine at Night? Optimum Renewable Generation and Energy Storage Investments. Management Science, 2023, 69, 7633-7650.	4.1	2
601	Improving the High-Temperature Energy Storage Performance of Epoxy Films: Moderately Reducing Unsaturation for Extremely High Efficiency. Langmuir, 0, , .	3.5	0
602	How to shape communication for CO2-derived insulation boards considering different accepter profiles. Environment, Development and Sustainability, 0, , .	5.0	0
603	Techno-economic analysis of lithium-ion battery price reduction considering carbon footprint based on life cycle assessment. Journal of Cleaner Production, 2023, 425, 139045.	9.3	6
604	The critical role of electricity storage for a clean and renewable European economy. Energy and Environmental Science, 0, , .	30.8	0
605	System price dynamics for battery storage. Energy Policy, 2023, 183, 113836.	8.8	0
606	A "Trinity―Design of Liâ€O ₂ Battery Engaging the Slowâ€Release Capsule of Redox Mediators. Advanced Materials, 2023, 35, .	21.0	0
607	Nanosheets array-induced nanofluidic channels toward efficient primary batteries-coordinated textiles. Nano Energy, 2023, 118, 108988.	16.0	2

ARTICLE IF CITATIONS Cooperative mechanisms for multi-energy complementarity in the electricity spot market. Energy 609 12.1 1 Economics, 2023, 127, 107108. Correlating the Potential-Holding Formation Protocol of Solid–Electrolyte Interphases with Improving Calendar Aging on Lithium Metal Anode. ACS Energy Letters, 0, , 4702-4710. 17.4 Optimizing Energy Usage and Smoothing Load Profile via a Home Energy Management Strategy with 611 3.2 0 Vehicle-to-Home and Energy Storage System. Sustainability, 2023, 15, 15046. Costs, carbon footprint, and environmental impacts of lithium-ion batteries – From cathode active material synthesis to cell manufacturing and recycling. Applied Energy, 2024, 353, 122132. MOF-Based Nanoarchitectonics for Lithium-Ion Batteries: A Comprehensive Review. Journal of 613 3.7 0 Inorganic and Organometallic Polymers and Materials, 0, , . Emerging Multiscale Porous Anodes toward Fast Charging Lithium-Ion Batteries. ACS Nano, 2023, 17, 20850-20874. 614 14.6 Towards the Enhanced Lithiumâ€Ion Batteries by Designing (N, Co, Zr, P) Tetraâ€Doped Porous Carbon 615 3.4 0 Anode. ChemElectroChem, 2023, 10, . Allocation of policy resources for energy storage development considering the Inflation Reduction 8.8 Act. Energy Policy, 2024, 184, 113861 Direct Current Triboelectric Nanogenerators, a Perspective from Material Selections. Nanoenergy 617 7.7 2 Advances, 2023, 3, 343-375. Atomically Dispersed Ruthenium Catalysts with Open Hollow Structure for Lithium–Oxygen Batteries. Nano-Micro Letters, 2024, 16, . How is the acceptance of new energy vehicles under the recurring COVID-19 â€" A case study in China. 619 0 9.3 Journal of Cleaner Production, 2023, 430, 139751. Chlorine doping endows Bi2Te3 with superior charge storage properties as a cathode material for high-performance aqueous zinc-proton hybrid ion batteries. Journal of Energy Storage, 2024, 76, 620 8.1 109814. Geological energy storage in Aotearoa New Zealand a technical, geological and social overview. 621 1.9 1 Journal of the Royal Society of New Zealand, 0, , 1-20. Preâ€intercalation of Ammonium Ions in Layered <i>δ</i>â€MnO₂ Nanosheets for 13.8 Highâ€Performance Aqueous Zincâ€Ion Batteries. Angewandte Chemie - International Edition, 2023, 62, . Preâ€intercalation of Ammonium Ions in Layered <i>δ</i>àâ€MnO₂ Nanosheets for 623 2.0 0 Highâ€Performance Aqueous Zincâ€Ion Batteries. Angewandte Chemie, 2023, 135, . Advances in power-to-gas technologies: cost and conversion efficiency. Energy and Environmental 624 30.8 Science, 202'3, 16, 6058-6070. Ultraâ€Thin Hydrogenâ€Organicâ€Framework (HOF) Nanosheets for Ultraâ€Stable Alkali Ions Battery Storage. 625 10.0 3 Small, 0, , . Melting-solidification cycle of finned heat storage tank: Optimization of fin structure by response surface method. Case Studies in Thermal Engineering, 2023, 52, 103759.

#	Article	IF	CITATIONS
627	Solid redox equilibrium via d-band centers regulation in the MoS2/Ni3S2 heterojunction for efficient selective oxidation of 5-hydroxymethylfurfural. Materials Today Energy, 2024, 39, 101463.	4.7	0
628	Impact Assessment Framework for Grid Integration of Energy Storage Systems and Renewable Energy Sources Toward Clean Energy Transition. IEEE Access, 2023, 11, 134995-135005.	4.2	1
629	Thermalâ€Induced Structure Evolution at the Interface between Cathode and Solidâ€State Electrolyte. Small Structures, 0, , .	12.0	0
630	Oxygen Vacancies Boosted Proton Intercalation Kinetics for Aqueous Aluminum–Manganese Batteries. Nano Letters, 0, , .	9.1	0
631	Experimental and numerical study of ice storage and melting process of external melting ice coil. Journal of Energy Storage, 2024, 77, 109961.	8.1	2
632	Frontiers of Energy Storage Technologies. International Journal of Energy Research, 2023, 2023, 1-14.	4.5	0
633	A dataset of low-carbon energy transition index for Chinese cities 2003–2019. Scientific Data, 2023, 10,	5.3	1
634	Unveiling the dynamic impact of energy generation on economic sustainability in Canada: A roadmap towards sustainable development. Journal of Cleaner Production, 2024, 434, 139783.	9.3	1
635	Review: recent advances using severe plastic deformation to improve the properties of battery materials. Journal of Materials Science, 0, , .	3.7	0
637	Developing flexible and safety-reinforced 3D polymer electrolytes based on polyethylene oxide for solid-state lithium metal batteries. Journal of Energy Storage, 2024, 78, 109853.	8.1	0
638	Descarbonização do transporte de soja no Estado de Mato Grosso do Sul, Brasil: estratégias para uma logÃstica mais sustentável. Revista Caderno Pedagógico, 2023, 20, 3668-3699.	0.0	0
639	A novel geothermal-PV led energy system analysis on the case of the central American countries Guatemala, Honduras, and Costa Rica. Renewable Energy, 2024, 221, 119859.	8.9	1
640	MXene Based Zinc Ion Batteries: Recent Development and Prospects. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2024, 39, 204.	1.3	0
641	Indian Green Hydrogen Framework: An Assessment. EAI Endorsed Transactions on Energy Web, 0, 10, .	0.4	0
642	Toward high-energy magnesium battery anode: recent progress and future perspectives. Materials Today Energy, 2024, 40, 101485.	4.7	0
643	Porous carbonaceous materials simultaneously dispersing N, Fe and Co as bifunctional catalysts for the ORR and OER: electrochemical performance in a prototype of a Zn–air battery. Dalton Transactions, 2024, 53, 3143-3158.	3.3	0
644	Clean energy for all? Mapping inequity potential in the clean energy transition in the United States. Energy Research and Social Science, 2024, 108, 103400.	6.4	0
645	Ordered Mesoporous Crystalline Frameworks Toward Promising Energy Applications. Advanced Materials, 2024, 36, .	21.0	1

#	Article	IF	CITATIONS
646	Unlocking OER catalytic potential and chiral Fe ₃ O ₄ film as a game-changer for electrochemical water oxidation pathway and by-product control. Materials Advances, 2024, 5, 1340-1347.	5.4	0
647	Methanol-induced assembly and pyrolysis preparation of three-dimensional N-doped interconnected open carbon cages supported FeNb2O6 nanoparticles for boosting oxygen reduction reaction and Zn-air battery. Journal of Colloid and Interface Science, 2024, 661, 102-112.	9.4	2
648	Energy transition: Connotations, mechanisms and effects. Energy Strategy Reviews, 2024, 52, 101320.	7.3	0
649	Regulating the interface chemistry of separator to normalize zinc deposition for long lifespan Zn batteries. Chemical Engineering Journal, 2024, 481, 148448.	12.7	0
650	Benchmarking the ragone behaviour and power performance trends of pseudocapacitive batteries. JPhys Energy, 2024, 6, 015019.	5.3	0
651	Strengthening and control of second-phase particle precipitation in ferritic/austenitic/martensitic heat-resistant alloys: a review. Journal of Iron and Steel Research International, 2024, 31, 3-23.	2.8	0
652	Is renewable energy technology innovation an excellent strategy for reducing climate risk? The case of China. Renewable Energy, 2024, 223, 120042.	8.9	0
653	Effect of the aquifer characteristics on heat transfer performance of deep borehole heat exchangers in water-rich geothermal reservoir via an improved multilayer calculation method. Journal of Building Engineering, 2024, 84, 108550.	3.4	0
654	Prospects for practical anode-free sodium batteries. Materials Today, 2024, 73, 260-274.	14.2	0
655	Recent advances in the surface modification strategies towards 3D carbon-based hosts for dendrite-free Li/Na/Zn metal anodes. EnergyChem, 2024, 6, 100117.	19.1	1
656	DEST: A Simplified Model and Automated Tool for Loss of Lithium Inventory and Loss of Active Material Estimation in Liâ€ion Batteries**. ChemElectroChem, 2024, 11, .	3.4	0
657	Correlating Buffering Agents' Premier pH with Interface Stability Toward Longâ€∓erm Zn Metal Anodes. Small, 0, , .	10.0	0
659	A Lost Frontier or a New Gateway to Global Climate Action? The Afghan Leadership and the Revival of Afghanistan's Mineral Sector. India Quarterly, 2024, 80, 26-54.	0.5	0
660	Online Lifecycle Operating Costs Minimization Strategy for Fuel Cell Buses Considering Power Sources Degradation. Energy Technology, 2024, 12, .	3.8	0
661	Reliability index setting and fuzzy multi-state modeling for battery storage station. Journal of Energy Storage, 2024, 84, 110720.	8.1	0
662	Deciphering the effect of nucleation/growth kinetics on the morphology of Li plating/stripping on vertically aligned carbon nanofibers - A low-tortuosity 3-D nanostructured carbon host. Chemical Engineering Journal, 2024, 484, 149515.	12.7	0
663	MOFs-Based Materials for Solid-State Hydrogen Storage: Strategies and Perspectives. Chemical Engineering Journal, 2024, 485, 149665.	12.7	0
664	Bimetal-Initiated Concerted Zn Regulation Enabling Highly Stable Aqueous Zn-Ion Batteries. Batteries, 2024, 10, 70.	4.5	0

#	Article	IF	CITATIONS
665	It starts at home: non-economic factors influencing consumer acceptance of battery storage in Australia. Environmental Science and Pollution Research, 0, , .	5.3	0
666	Microstructures and corrosion resistance of PbCaSnAl-M (M=Mg, Sr, Ba) grid alloys. Journal of Energy Storage, 2024, 85, 110909.	8.1	0
667	Fullerenes and Its' Derivatives: Marvels in Supercapacitor Technology. Engineering Materials, 2024, , 281-299.	0.6	0
668	The spatial impact of digital economy on carbon emissions reduction: evidence from 215 cities in China. Frontiers in Environmental Science, 0, 12, .	3.3	0
669	Al-enhanced forecasting of Indian primary energy demand: Fuzzy auto-regressive distributed lag models. Journal of Intelligent and Fuzzy Systems, 2024, , 1-12.	1.4	0
670	Improved cycle stability and high-rate capability of LiNbO3-coated Li3VO4 as anode material for lithium-ion battery. Journal of Energy Storage, 2024, 86, 111351.	8.1	0
672	Integration of carbon emission reduction policies and technologies: Research progress on carbon capture, utilization and storage technologies. Separation and Purification Technology, 2024, 343, 127153.	7.9	0
673	Revitalization of Diluent Amideâ€Based Electrolyte for Building Highâ€Voltage Lithiumâ€Metal Batteries. Small, 0, , .	10.0	0
674	Correlation between physical properties and the electrochemical behavior in inorganic solid-state electrolytes for lithium and sodium batteries: A comprehensive review. Journal of Energy Storage, 2024, 86, 111254.	8.1	0
675	Shaping the stationary energy storage landscape with reversible fuel cells. Journal of Energy Storage, 2024, 86, 111354.	8.1	0
676	Efficient energy transport from triboelectric nanogenerators to lithium-ion batteries via releasing electrostatic energy instantaneously. Chemical Engineering Journal, 2024, 487, 150449.	12.7	0