Context Aware Process Mining in Logistics

Procedia CIRP 63, 557-562 DOI: 10.1016/j.procir.2017.03.149

Citation Report

#	Article	IF	Citations
1	Machine learning applications in supply chains: An emphasis on neural network applications. , 2017, , .		20
2	Applying Process Mining in Manufacturing and Logistic for Large Transaction Data. Lecture Notes in Logistics, 2018, , 378-388.	0.8	7
3	Exploring the Relationship between Business Processes and Contextual Information in Manufacturing and Logistics Based on Event Logs. Procedia CIRP, 2018, 72, 557-562.	1.9	5
4	Anomaly Detection in Business Process based on Data Stream Mining. , 2018, , .		8
5	Process mining in logistics: The need for rule-based data abstraction. , 2018, , .		9
6	A New Trace Clustering Algorithm Based on Context in Process Mining. Lecture Notes in Computer Science, 2018, , 644-657.	1.3	2
7	Machine Learning Applications in Supply Chains: Long Short-Term Memory for Demand Forecasting. Lecture Notes in Networks and Systems, 2019, , 301-317.	0.7	9
8	The application of big data analytics in optimizing logistics: a developmental perspective review. Journal of Data Information and Management, 2019, 1, 33-43.	2.7	30
9	Process mining techniques and applications – A systematic mapping study. Expert Systems With Applications, 2019, 133, 260-295.	7.6	185
10	On the Contextualization of Event-Activity Mappings. Lecture Notes in Business Information Processing, 2019, , 445-457.	1.0	15
11	Machine Learning and Process Mining applied to Process Optimization: Bibliometric and Systemic Analysis. Procedia Manufacturing, 2019, 38, 84-91.	1.9	6
12	Expanded S-Curve Model of a Relationship Between Crude Steel Consumption and Economic Development: Empiricism from Case Studies of Developed Economies. Natural Resources Research, 2019, 28, 547-562.	4.7	9
14	Process Discovery Method in Dynamic Manufacturing and Logistics Environments. Communications in Computer and Information Science, 2020, , 143-163.	0.5	1
16	Ensuring the integrity of transportation and logistics during the COVID-19 pandemic. Transportation Research Procedia, 2020, 50, 96-105.	1.5	16
17	POP-ON: Prediction of Process Using One-Way Language Model Based on NLP Approach. Applied Sciences (Switzerland), 2021, 11, 864.	2.5	14
18	Arbeitswelten der Logistik im Wandel: Automatisierungstechnik und Ergonomieunterstļtzung fļr eine innovative Arbeitsplatzgestaltung in der Intralogistik. FOM-Edition, 2019, , 51-66.	0.1	6
19	Predicting Manufacturing Feasibility Using Context Analysis. Advances in Intelligent Systems and Computing, 2020, , 125-130.	0.6	1
20	Context-Aware Process Performance Indicator Prediction. IEEE Access, 2020, 8, 222050-222063.	4.2	10

#	Article	IF	CITATIONS
21	A data structure for studying 3D modeling design behavior based on event logs. Automation in Construction, 2021, 132, 103967.	9.8	13
22	Process mining of logistics flows with prom application. Scientific Papers of Silesian University of Technology Organization and Management Series, 2018, 2018, 165-174.	0.1	0
23	Leveraging Anomaly Detection in Business Process with Data Stream Mining. ISys, 2019, 12, 54-75.	0.2	3
24	Checking Wrong Pattern in Process Model Containing Invisible Task by Using Declarative Miner. , 2020, , .		0
25	A Multi Perspective Framework for Enhanced Supply Chain Analytics. Lecture Notes in Computer Science, 2020, , 489-504.	1.3	1
26	Command prediction based on early 3D modeling design logs by deep neural networks. Automation in Construction, 2022, 133, 104026.	9.8	10
27	Combining Process Mining and Machine Learning for Lead Time Prediction in High Variance Processes. Lecture Notes in Production Engineering, 2021, , 528-537.	0.4	0
28	A Bridging Model for Process Mining and IoT. Lecture Notes in Business Information Processing, 2022, , 98-110.	1.0	10
29	A Systematic Literature Review of Machine Learning Tools for Supporting Supply Chain Management in the Manufacturing Environment. , 2021, , .		1
30	Deep learningâ€based clustering of processes and their visual exploration: An industry 4.0 use case for small, mediumâ€sized enterprises. Expert Systems, 2024, 41, .	4.5	2
31	Enterprise information management systems development two cases of mining for process conformance. International Journal of Information Management Data Insights, 2023, 3, 100141.	9.7	5
32	Data-based Approach for Reducing Process Complexity in Parts Manufacturing. , 2022, , .		0
33	Extending Process Discovery with Model Complexity Optimization and Cyclic States Identification: Application to Healthcare Processes. Algorithms, 2023, 16, 57.	2.1	3
34	Exploring Chromium Ore Consumption: New Perspectives from Hybrid CEEMDAN–S-Curve Modeling. Natural Resources Research, 2023, 32, 929-953.	4.7	1
35	Leveraging Exogeneous Data for the Predictive Monitoring of IT Service Management Processes. Lecture Notes in Business Information Processing, 2023, , 641-650.	1.0	0
36	Digital Transformation and Future Impacts in Logistics and Value Chains. Advances in Logistics, Operations, and Management Science Book Series, 2023, , 1-36.	0.4	0
37	Balancing Simplicity andÂComplexity inÂModeling Mined Business Processes: A User Perspective. Lecture Notes in Business Information Processing, 2023, , 3-21.	1.0	0
38	Application of Process Mining in Logistic Processes of Manufacturing Organizations: A Systematic Review. Sustainability, 2023, 15, 11783.	3.2	1

#	Article	IF	CITATIONS
39	A Classification of Data Structures for Process Analysis in Internal Logistics. Communications in Computer and Information Science, 2023, , 53-67.	0.5	0