Cellular uptake of nanoparticles: journey inside the cell

Chemical Society Reviews 46, 4218-4244 DOI: 10.1039/c6cs00636a

Citation Report

#	Article	IF	CITATIONS
1	Strategies in the design of gold nanoparticles for intracellular targeting: opportunities and challenges. Therapeutic Delivery, 2017, 8, 879-897.	1.2	17
2	An apolipoprotein-enriched biomolecular corona switches the cellular uptake mechanism and trafficking pathway of lipid nanoparticles. Nanoscale, 2017, 9, 17254-17262.	2.8	73
3	Intracellular Fate of Nanoparticles with Polydopamine Surface Engineering and a Novel Strategy for Exocytosis-Inhibiting, Lysosome Impairment-Based Cancer Therapy. Nano Letters, 2017, 17, 6790-6801.	4.5	143
4	Biomolecular corona formation: nature and bactericidal impact on surface-modified silica nanoparticles. Journal of Materials Chemistry B, 2017, 5, 8052-8059.	2.9	13
5	Bridging Bio–Nano Science and Cancer Nanomedicine. ACS Nano, 2017, 11, 9594-9613.	7.3	304
6	Multiscale technologies for treatment of ischemic cardiomyopathy. Nature Nanotechnology, 2017, 12, 845-855.	15.6	104
7	Cellular uptake of nanoparticles: journey inside the cell. Chemical Society Reviews, 2017, 46, 4218-4244.	18.7	1,709
8	Quantitative Determination of the Carboxyl Groups on Individual Nanoparticles by Acidâ€Base Titrimetry. ChemistrySelect, 2017, 2, 10885-10888.	0.7	4
9	In Vitro Study of Influence of Au Nanoparticles on HT29 and SPEV Cell Lines. Nanoscale Research Letters, 2017, 12, 494.	3.1	13
10	An efficient synergistic cancer therapy by integrating cell cycle inhibitor and photosensitizer into polydopamine nanoparticles. Journal of Materials Chemistry B, 2018, 6, 2620-2629.	2.9	16
11	Peptide and protein nanoparticle conjugates: versatile platforms for biomedical applications. Chemical Society Reviews, 2018, 47, 3574-3620.	18.7	352
12	A DNA Nanotube–Peptide Biocomplex for mRNA Detection and Its Application in Cancer Diagnosis and Targeted Therapy. Chemistry - A European Journal, 2018, 24, 10171-10177.	1.7	14
13	Nanomaterial interactions with biomembranes: Bridging the gap between soft matter models and biological context. Biointerphases, 2018, 13, 028501.	0.6	23
14	pH protective Y1 receptor ligand functionalized antiphagocytosis BPLP-WPU micelles for enhanced tumor imaging and therapy with prolonged survival time. Biomaterials, 2018, 170, 70-81.	5.7	45
15	Concomitant Delivery of Paclitaxel and NuBCP-9 peptide for synergistic enhancement of cancer therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1301-1313.	1.7	21
16	Surface-Enhanced Raman Spectroscopy for Bioanalysis: Reliability and Challenges. Chemical Reviews, 2018, 118, 4946-4980.	23.0	1,241
17	Magnetic labeling of natural lipid encapsulations with iron-based nanoparticles. Nano Research, 2018, 11, 2970-2991.	5.8	9
18	Facilitating the translation of nanomedicines to a clinical product: challenges and opportunities. Drug Discovery Today, 2018, 23, 974-991.	3.2	90

#	Article	IF	CITATIONS
19	Characterization of nanomedicines: A reflection on a field under construction needed for clinical translation success. Journal of Controlled Release, 2018, 275, 254-268.	4.8	75
20	Smart Self-Assembled Nanosystem Based on Water-Soluble Pillararene and Rare-Earth-Doped Upconversion Nanoparticles for pH-Responsive Drug Delivery. ACS Applied Materials & Interfaces, 2018, 10, 4910-4920.	4.0	104
21	Intracellular Mechanistic Understanding of 2D MoS ₂ Nanosheets for Anti-Exocytosis-Enhanced Synergistic Cancer Therapy. ACS Nano, 2018, 12, 2922-2938.	7.3	188
22	Combining Magnetic Resonance Imaging with Photothermal Therapy of CuS@BSA Nanoparticles for Cancer Theranostics. ACS Applied Nano Materials, 2018, 1, 2332-2340.	2.4	30
23	Effect of Cell Sex on Uptake of Nanoparticles: The Overlooked Factor at the Nanobio Interface. ACS Nano, 2018, 12, 2253-2266.	7.3	87
24	Progress towards standardized and validated characterizations for measuring physicochemical properties of manufactured nanomaterials relevant to nano health and safety risks. NanoImpact, 2018, 9, 14-30.	2.4	117
25	Targeting and isolation of cancer cells using micro/nanomotors. Advanced Drug Delivery Reviews, 2018, 125, 94-101.	6.6	125
26	The Effects of Biological Fluids on Colloidal Stability and siRNA Delivery of a pH-Responsive Micellar Nanoparticle Delivery System. ACS Nano, 2018, 12, 187-197.	7.3	52
27	Emerging potential of stimulus-responsive nanosized anticancer drug delivery systems for systemic applications. Archives of Pharmacal Research, 2018, 41, 111-129.	2.7	46
28	Magnetoâ€Conducting Core/Shell Nanoparticles for Biomedical Applications. ChemNanoMat, 2018, 4, 151-164.	1.5	19
29	Mitochondria targeting IR780-based nanoGUMBOS for enhanced selective toxicity towards cancer cells. RSC Advances, 2018, 8, 31700-31709.	1.7	23
30	Size-Controlled Synthesis of Drug-Loaded Zeolitic Imidazolate Framework in Aqueous Solution and Size Effect on Their Cancer Theranostics in Vivo. ACS Applied Materials & Interfaces, 2018, 10, 42165-42174.	4.0	67
31	Antitumor activity of the bioreductive prodrug 3-(2-nitrophenyl) propionic acid-paclitaxel nanoparticles (NPPA-PTX NPs) on MDA-MB-231 cells: in vitro and in vivo. International Journal of Nanomedicine, 2019, Volume 14, 195-204.	3.3	6
32	Polydopamine/Transferrin Hybrid Nanoparticles for Targeted Cell-Killing. Nanomaterials, 2018, 8, 1065.	1.9	22
33	Insight into Cellular Uptake and Intracellular Trafficking of Nanoparticles. Nanoscale Research Letters, 2018, 13, 339.	3.1	872
34	Precise nanomedicine for intelligent therapy of cancer. Science China Chemistry, 2018, 61, 1503-1552.	4.2	336
35	Challenges facing nanotoxicology and nanomedicine due to cellular diversity. Clinica Chimica Acta, 2018, 487, 186-196.	0.5	17
36	Extracellular vesicles: translational challenges and opportunities. Biochemical Society Transactions, 2018, 46, 1073-1082.	1.6	40

#	Article	IF	CITATIONS
37	Gefitinib-loaded Nanoparticles with Folic Acid-modified Dextran Surface Prepared by Flash Nanoprecipitation. Chemistry Letters, 2018, 47, 1405-1408.	0.7	7
38	Titanium dioxide nanoparticles induce proteostasis disruption and autophagy in human trophoblast cells. Chemico-Biological Interactions, 2018, 296, 124-133.	1.7	26
39	LIMITATIONS OF PEGYLATED NANOCARRIERS: UNFAVOURABLE PHYSICOCHEMICAL PROPERTIES, BIODISTRIBUTION PATTERNS AND CELLULAR AND SUBCELLULAR FATES. International Journal of Applied Pharmaceutics, 2018, 10, 6.	0.3	30
40	Porous Inorganic Carriers Based on Silica, Calcium Carbonate and Calcium Phosphate for Controlled/Modulated Drug Delivery: Fresh Outlook and Future Perspectives. Pharmaceutics, 2018, 10, 167.	2.0	103
41	Nanoparticle-Based Delivery of CRISPR/Cas9 Genome-Editing Therapeutics. AAPS Journal, 2018, 20, 108.	2.2	67
42	An Intrinsic Mitochondrial Pathway Is Required for Phytic Acid-Chitosan-Iron Oxide Nanocomposite (Phy-CS-MNP) to Induce G0/G1 Cell Cycle Arrest and Apoptosis in the Human Colorectal Cancer (HT-29) Cell Line. Pharmaceutics, 2018, 10, 198.	2.0	14
43	Safety considerations for nanoparticles in tumor treatment. Nanomedicine, 2018, 13, 2373-2376.	1.7	4
44	Highly Biocompatible, Fluorescence, and Zwitterionic Carbon Dots as a Novel Approach for Bioimaging Applications in Cancerous Cells. ACS Applied Materials & Interfaces, 2018, 10, 37835-37845.	4.0	58
45	3,2-Hydroxypyridinone-Grafted Chitosan Oligosaccharide Nanoparticles as Efficient Decorporation Agents for Simultaneous Removal of Uranium and Radiation-Induced Reactive Oxygen Species <i>in Vivo</i> . Bioconjugate Chemistry, 2018, 29, 3896-3905.	1.8	21
46	Novel nano therapeutic materials for the effective treatment of rheumatoid arthritis-recent insights. Materials Today Communications, 2018, 17, 200-213.	0.9	38
47	Minimum information reporting in bio–nano experimental literature. Nature Nanotechnology, 2018, 13, 777-785.	15.6	455
48	The effects and the potential mechanism of environmental transformation of metal nanoparticles on their toxicity in organisms. Environmental Science: Nano, 2018, 5, 2482-2499.	2.2	109
49	Metal–organic frameworks induce autophagy in mouse embryonic fibroblast cells. Nanoscale, 2018, 10, 18161-18168.	2.8	17
50	Interaction of CuO nanoparticles with plant cells: internalization, oxidative stress, electron transport chain disruption, and toxicogenomic responses. Environmental Science: Nano, 2018, 5, 2269-2281.	2.2	39
51	Mutually Exclusive Cellular Uptake of Combinatorial Supramolecular Copolymers. Chemistry - A European Journal, 2018, 24, 16445-16451.	1.7	10
52	Cellular Uptake of Nanoparticles versus Small Molecules: A Matter of Size. Accounts of Chemical Research, 2018, 51, 2305-2313.	7.6	292
53	Cellular uptake and apoptotic potential of rhenium labeled magnetic protein cages in MDA-MB-231 cells. Environmental Toxicology and Pharmacology, 2018, 63, 127-134.	2.0	6
54	Phthalocyanine-based photosensitizer with tumor-pH-responsive properties for cancer theranostics. Journal of Materials Chemistry B, 2018, 6, 6080-6088.	2.9	20

#	Article	IF	CITATIONS
55	TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nature Biomedical Engineering, 2018, 2, 578-588.	11.6	714
56	Morphological and mechanical determinants of cellular uptake of deformable nanoparticles. Nanoscale, 2018, 10, 11969-11979.	2.8	37
57	Hydroxyethyl starch stabilized polydopamine nanoparticles for cancer chemotherapy. Chemical Engineering Journal, 2018, 349, 129-145.	6.6	65
58	Dual pH-Responsive Shell-Cleavable Polycarbonate Micellar Nanoparticles for in Vivo Anticancer Drug Delivery. ACS Applied Materials & Interfaces, 2018, 10, 19355-19364.	4.0	70
59	Screening Small Metabolites from Cells as Multifunctional Coatings Simultaneously Improves Nanomaterial Biocompatibility and Functionality. Advanced Science, 2018, 5, 1800341.	5.6	7
60	Role of surface charge on the interaction between carbon nanodots and human serum albumin. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 204, 484-494.	2.0	22
61	Sustainable synthesis of single crystalline sulphur-doped graphene quantum dots for bioimaging and beyond. Green Chemistry, 2018, 20, 4245-4259.	4.6	112
62	Considerations for the Uptake Characteristic of Inorganic Nanoparticles into Mammalian Cells—Insights Gained by TEM Investigations. Advanced Biology, 2018, 2, 1700254.	3.0	5
63	Enhanced cytoplasmic release of drug delivery systems: chloroquine as a multilayer and template constituent of layer-by-layer microcarriers. Journal of Materials Chemistry B, 2018, 6, 5153-5163.	2.9	14
64	Colloidal Stability of Lipid/Proteinâ€Coated Nanomaterials in Salt and Sucrose Solutions. ChemistrySelect, 2018, 3, 8325-8331.	0.7	5
65	Polydopamine-Functionalized CA-(PCL-ran-PLA) Nanoparticles for Target Delivery of Docetaxel and Chemo-photothermal Therapy of Breast Cancer. Frontiers in Pharmacology, 2018, 9, 125.	1.6	31
66	Cancer nanomedicine: mechanisms, obstacles and strategies. Nanomedicine, 2018, 13, 1639-1656.	1.7	38
67	Bioinspired, nanoscale approaches in contemporary bioanalytics (Review). Biointerphases, 2018, 13, 040801.	0.6	12
68	Drug-delivering-drug platform-mediated potent protein therapeutics <i>via</i> a non-endo-lysosomal route. Theranostics, 2018, 8, 3474-3489.	4.6	29
69	Twoâ€Dimensional Antimoneneâ€Based Photonic Nanomedicine for Cancer Theranostics. Advanced Materials, 2018, 30, e1802061.	11.1	314
70	Self-assembled biodegradable polymeric micelles to improve dapoxetine delivery across the blood–brain barrier. International Journal of Nanomedicine, 2018, Volume 13, 3679-3687.	3.3	50
71	Nanoengineering of Soft Polymer Particles for Exploring Bio-Nano Interactions. , 2018, , 393-419.		1
72	Detection of Intracellular Gold Nanoparticles: An Overview. Materials, 2018, 11, 882.	1.3	25

#	Article	IF	CITATIONS
73	Thermoresponsive Polymer Grafted Porous Silicas as Smart Nanocarriers. Australian Journal of Chemistry, 2018, 71, 477.	0.5	12
74	The effects of lanthanide-doped upconverting nanoparticles on cancer cell biomarkers. Nanoscale, 2018, 10, 14464-14471.	2.8	16
75	Folate-conjugated zein/Fe3O4 nanocomplexes for the enhancement of cellular uptake and cytotoxicity of gefitinib. Journal of Materials Science, 2018, 53, 14907-14921.	1.7	19
76	Methodologies to investigate intracellular barriers for nucleic acid delivery in non-viral gene therapy. Nano Today, 2018, 21, 74-90.	6.2	37
77	Flat Cell Culturing Surface May Cause Misinterpretation of Cellular Uptake of Nanoparticles. Advanced Biology, 2018, 2, 1800046.	3.0	7
78	iRGD-decorated reduction-responsive nanoclusters for targeted drug delivery. Nanoscale, 2018, 10, 10514-10527.	2.8	18
79	Synthesis and biological activity of a CXCR4-targeting bis(cyclam) lipid. Organic and Biomolecular Chemistry, 2018, 16, 6479-6490.	1.5	3
80	Facile synthesis and surface modification of bioinspired nanoparticles from quercetin for drug delivery. Biomaterials Science, 2018, 6, 2656-2666.	2.6	31
81	Biocompatible Single-Chain Polymer Nanoparticles for Drug Delivery—A Dual Approach. ACS Applied Materials & Interfaces, 2018, 10, 30946-30951.	4.0	56
82	Plasmonic Band Tunable (Au Nanocrystal)/SnO ₂ Core/Shell Hybrids for Photothermal Therapy. Particle and Particle Systems Characterization, 2018, 35, 1800238.	1.2	5
83	Mechanisms of interaction of biodegradable polyester nanocapsules with non-phagocytic cells. European Journal of Pharmaceutical Sciences, 2018, 124, 89-104.	1.9	30
84	Mechanisms of the effectiveness of poly(ε-caprolactone) lipid-core nanocapsules loaded with methotrexate on glioblastoma multiforme treatment. International Journal of Nanomedicine, 2018, Volume 13, 4563-4573.	3.3	19
85	Low-Fouling and Biodegradable Protein-Based Particles for Thrombus Imaging. ACS Nano, 2018, 12, 6988-6996.	7.3	30
86	Directed Grapheneâ€Based Nanoplatforms for Hyperthermia: Overcoming Multiple Drug Resistance. Angewandte Chemie - International Edition, 2018, 57, 11198-11202.	7.2	78
87	Aspect-ratio-dependent interaction of molecular polymer brushes and multicellular tumour spheroids. Polymer Chemistry, 2018, 9, 3461-3465.	1.9	40
88	Multivalent Interactions between 2D Nanomaterials and Biointerfaces. Advanced Materials, 2018, 30, e1706709.	11.1	112
89	Pre-adsorption of antibodies enables targeting of nanocarriers despite a biomolecular corona. Nature Nanotechnology, 2018, 13, 862-869.	15.6	210
90	Directed Grapheneâ€Based Nanoplatforms for Hyperthermia: Overcoming Multiple Drug Resistance. Angewandte Chemie, 2018, 130, 11368-11372.	1.6	22

#	Article	IF	CITATIONS
91	Mass spectrometry-based proteomics for system-level characterization of biological responses to engineered nanomaterials. Analytical and Bioanalytical Chemistry, 2018, 410, 6067-6077.	1.9	22
92	Probing the biological obstacles of nanomedicine with gold nanoparticles. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1542.	3.3	51
93	Insights into the Cellular Uptake, Cytotoxicity, and Cellular Death Modality of Phospholipid-Coated Gold Nanorods toward Breast Cancer Cell Lines. Molecular Pharmaceutics, 2019, 16, 4149-4164.	2.3	12
94	Chlorotoxin modified morusin–PLGA nanoparticles for targeted glioblastoma therapy. Journal of Materials Chemistry B, 2019, 7, 5896-5919.	2.9	39
95	Safe and potent MRI contrast agents by complexing gadolinium with enzyme/reduction dual-sensitive branched polymers. Applied Materials Today, 2019, 17, 92-103.	2.3	23
96	Uptake of Intact Copper Oxide Nanoparticles Causes Acute Toxicity in Cultured Glial Cells. Neurochemical Research, 2019, 44, 2156-2169.	1.6	7
97	Synthesis and engineering of mesoporous ZnO@HAP heterostructure as a pH-sensitive nano-photosensitizer for chemo-photodynamic therapy of malignant tumor cells. Journal of Drug Delivery Science and Technology, 2019, 53, 101200.	1.4	13
98	Enantiopure polythiophene nanoparticles. Chirality dependence of cellular uptake, intracellular distribution and antimicrobial activity. RSC Advances, 2019, 9, 23036-23044.	1.7	15
99	Intracellular trafficking and endocytic uptake pathway of Pepper vein banding virus-like particles in epithelial cells. Nanomedicine, 2019, 14, 1247-1265.	1.7	7
100	Envelope-deforming antiviral peptide derived from influenza virus M2 protein. Biochemical and Biophysical Research Communications, 2019, 517, 507-512.	1.0	17
101	A smart drug-delivery nanosystem based on carboxylated graphene quantum dots for tumor-targeted chemotherapy. Nanomedicine, 2019, 14, 2011-2025.	1.7	47
102	Specific Delivery of Oligonucleotides to the Cell Nucleus via Gentle Compression and Attachment of Polythymidine. ACS Applied Materials & Interfaces, 2019, 11, 27624-27640.	4.0	7
103	Natural Polysaccharides for siRNA Delivery: Nanocarriers Based on Chitosan, Hyaluronic Acid, and Their Derivatives. Molecules, 2019, 24, 2570.	1.7	89
104	Effect of molecular crowding on the biological identity of liposomes: an overlooked factor at the bio-nano interface. Nanoscale Advances, 2019, 1, 2518-2522.	2.2	17
105	Water gated contrast switching with polymer–silica hybrid nanoparticles. Chemical Communications, 2019, 55, 8540-8543.	2.2	6
106	Role of Nanoparticle Mechanical Properties in Cancer Drug Delivery. ACS Nano, 2019, 13, 7410-7424.	7.3	243
107	Tissue Response to Neural Implants: The Use of Model Systems Toward New Design Solutions of Implantable Microelectrodes. Frontiers in Neuroscience, 2019, 13, 689.	1.4	96
108	The Effect of Uncoated SPIONs on hiPSC-Differentiated Endothelial Cells. International Journal of Molecular Sciences, 2019, 20, 3536.	1.8	2

#	Article	IF	CITATIONS
109	Remote and real time control of an FVIO–enzyme hybrid nanocatalyst using magnetic stimulation. Nanoscale, 2019, 11, 18081-18089.	2.8	25
110	Unexpected Size Effect: The Interplay between Differentâ€Sized Nanoparticles in Their Cellular Uptake. Small, 2019, 15, e1901687.	5.2	49
111	Surface-Functionalized Nanoparticles as Efficient Tools in Targeted Therapy of Pregnancy Complications. International Journal of Molecular Sciences, 2019, 20, 3642.	1.8	36
112	Nanocarrier systems assembled from PEGylated hyperbranched poly(arylene oxindole). European Polymer Journal, 2019, 119, 247-259.	2.6	7
113	Molecular modelling of TLR agonist Pam3CSK4 entrapment in PLA nanoparticles as a tool to explain loading efficiency and functionality. International Journal of Pharmaceutics, 2019, 568, 118569.	2.6	11
114	Facile Nanolization Strategy for Therapeutic <i>Ganoderma Lucidum Spore Oil</i> to Achieve Enhanced Protection against Radiationâ€Induced Heart Disease. Small, 2019, 15, e1902642.	5.2	27
115	Evolution from Covalent to Self-Assembled PAMAM-Based Dendrimers as Nanovectors for siRNA Delivery in Cancer by Coupled In Silico-Experimental Studies. Part I: Covalent siRNA Nanocarriers. Pharmaceutics, 2019, 11, 351.	2.0	12
116	Biohybrid Nanoparticles to Negotiate with Biological Barriers. Small, 2019, 15, e1902333.	5.2	22
117	Assessment of neurotoxicity induced by different-sized Stöber silica nanoparticles: induction of pyroptosis in microglia. Nanoscale, 2019, 11, 12965-12972.	2.8	39
118	National Cancer Institute Alliance for nanotechnology in cancer—Catalyzing research and translation toward novel cancer diagnostics and therapeutics. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1570.	3.3	16
119	Heuristics for the Optimal Presentation of Bioactive Peptides on Polypeptide Micelles. Nano Letters, 2019, 19, 7977-7987.	4.5	6
120	The rationale and emergence of electroconductive biomaterial scaffolds in cardiac tissue engineering. APL Bioengineering, 2019, 3, 041501.	3.3	84
121	Biodegradable Polymers for Gene Delivery. Molecules, 2019, 24, 3744.	1.7	100
122	FRET in a Polymeric Nanocarrier: IR-780 and IR-780-PDMS. Biomacromolecules, 2019, 20, 4065-4074.	2.6	9
123	Highly efficient and selective antimicrobial isonicotinylhydrazide-coated polyoxometalate-functionalized silver nanoparticles. Colloids and Surfaces B: Biointerfaces, 2019, 184, 110522.	2.5	29
124	Nanoparticleâ€Embedded Electrospun Fiber–Covered Stent to Assist Intraluminal Photodynamic Treatment of Oesophageal Cancer. Small, 2019, 15, e1904979.	5.2	33
125	Screening for new macrophage therapeutics. Theranostics, 2019, 9, 7714-7729.	4.6	26
126	Encapsulation of gadolinium ferrite nanoparticle in generation 4.5 poly(amidoamine) dendrimer for cancer theranostics applications using low frequency alternating magnetic field. Colloids and Surfaces B: Biointerfaces, 2019, 184, 110531.	2.5	41

#	Article	IF	CITATIONS
127	Modified Spraying Technique and Response Surface Methodology for the Preparation and Optimization of Propolis Liposomes of Enhanced Anti-Proliferative Activity against Human Melanoma Cell Line A375. Pharmaceutics, 2019, 11, 558.	2.0	35
128	Theranostic nanocarriers combining high drug loading and magnetic particle imaging. International Journal of Pharmaceutics, 2019, 572, 118796.	2.6	18
129	Delivery of RALA/siFKBPL nanoparticles via electrospun bilayer nanofibres: An innovative angiogenic therapy for wound repair. Journal of Controlled Release, 2019, 316, 53-65.	4.8	46
130	Copper(I)â€Chelated Crossâ€Linked Cyclen Micelles as a Nanocatalyst for Azideâ€Alkyne Cycloaddition in Both Water and Cells. Advanced Synthesis and Catalysis, 2019, 361, 5057-5062.	2.1	9
131	A Dynamic 3D Tumor Spheroid Chip Enables More Accurate Nanomedicine Uptake Evaluation. Advanced Science, 2019, 6, 1901462.	5.6	39
133	Cellular Uptake Evaluation of Amphiphilic Polymer Assemblies: Importance of Interplay between Pharmacological and Genetic Approaches. Biomacromolecules, 2019, 20, 4407-4418.	2.6	26
134	Evidence for Nanoparticle-Induced Lysosomal Dysfunction in Lung Adenocarcinoma (A549) Cells. International Journal of Molecular Sciences, 2019, 20, 5253.	1.8	19
135	Reduction-Responsive Polymer Prodrug Micelles with Enhanced Endosomal Escape Capability for Efficient Intracellular Translocation and Drug Release. ACS Applied Bio Materials, 2019, 2, 5099-5109.	2.3	14
136	A gain of function paradox: Targeted therapy for glioblastoma associated with abnormal NHE9 expression. Journal of Cellular and Molecular Medicine, 2019, 23, 7859-7872.	1.6	11
137	Decoding Live Cell Interactions with Multi-Nanoparticle Systems: Differential Implications for Uptake, Trafficking, and Gene Regulation. ACS Applied Materials & Interfaces, 2019, 11, 33659-33666.	4.0	3
138	Engineered Polymeric Materials for Biological Applications: Overcoming Challenges of the Bio–Nano Interface. Polymers, 2019, 11, 1441.	2.0	24
139	Polymer design and component selection contribute to uptake, distribution & trafficking behaviours of polyethylene glycol hyperbranched polymers in live MDA-MB-468 breast cancer cells. Biomaterials Science, 2019, 7, 4661-4674.	2.6	13
140	Mechanomodulation of Lipid Membranes by Weakly Aggregating Silver Nanoparticles. Biochemistry, 2019, 58, 4761-4773.	1.2	7
141	Translocation of transition metal oxide nanoparticles to breast milk and offspring: The necessity of bridging mother-offspring-integration toxicological assessments. Environment International, 2019, 133, 105153.	4.8	31
142	Gold nanourchins induce cellular stress, impair proteostasis and damage RNA. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 22, 102083.	1.7	14
143	Cellular Uptake, Cytotoxicity and Trafficking of Supported Lipid-Bilayer-Coated Lanthanide Upconverting Nanoparticles in Alveolar Lung Cancer Cells. ACS Applied Bio Materials, 2019, 2, 4527-4536.	2.3	12
144	Polystyrene Nanoparticles Reduced ROS and Inhibited Ferroptosis by Triggering Lysosome Stress and TFEB Nucleus Translocation in a Size-Dependent Manner. Nano Letters, 2019, 19, 7781-7792.	4.5	75
145	Using pH-Activable Carbon Nanoparticles as Cell Imaging Probes. Micromachines, 2019, 10, 568.	1.4	3

#	Article	IF	CITATIONS
146	Advancing antimicrobial strategies for managing oral biofilm infections. International Journal of Oral Science, 2019, 11, 28.	3.6	150
147	Calcium Phosphate Nanoparticle-Based Vaccines as a Platform for Improvement of HIV-1 Env Antibody Responses by Intrastructural Help. Nanomaterials, 2019, 9, 1389.	1.9	21
148	Visible light-induced apoptosis activatable nanoparticles of photosensitizer-DEVD-anticancer drug conjugate for targeted cancer therapy. Biomaterials, 2019, 224, 119494.	5.7	48
149	An in vitro assay and artificial intelligence approach to determine rate constants of nanomaterial-cell interactions. Scientific Reports, 2019, 9, 13943.	1.6	9
150	Effectiveness of Diverse Mesoporous Silica Nanoparticles as Potent Vehicles for the Drug L-DOPA. Materials, 2019, 12, 3202.	1.3	18
151	Hydrophobically modified inulin-based micelles: Transport mechanisms and drug delivery applications for breast cancer. Journal of Drug Delivery Science and Technology, 2019, 54, 101254.	1.4	17
152	Metal–Phenolic Coatings as a Platform to Trigger Endosomal Escape of Nanoparticles. ACS Nano, 2019, 13, 11653-11664.	7.3	128
153	Cooperative Cellular Uptake and Activity of Octaarginine Antisense Peptide Nucleic acid (PNA) Conjugates. Biomolecules, 2019, 9, 554.	1.8	17
154	Bioinspired Nanoparticles Engineered for Enhanced Delivery to the Bone. ACS Applied Nano Materials, 2019, 2, 6249-6257.	2.4	7
155	Galactose:PEGamine coated gold nanoparticles adhere to filopodia and cause extrinsic apoptosis. Nanoscale Advances, 2019, 1, 807-816.	2.2	4
156	3D quantum theranosomes: a new direction for label-free theranostics. Nanoscale Horizons, 2019, 4, 495-515.	4.1	1
157	Curvature-driven adsorption of cationic nanoparticles to phase boundaries in multicomponent lipid bilayers. Nanoscale, 2019, 11, 2767-2778.	2.8	33
158	Perspective—Bio-Nano-Interaction in Treatment and Management of Cancer. Journal of the Electrochemical Society, 2019, 166, B3007-B3011.	1.3	7
159	Organotypic and primary neural cultures as models to assess effects of different gold nanostructures on glia and neurons. Nanotoxicology, 2019, 13, 285-304.	1.6	13
160	Drug Delivery Applications of Starch Biopolymer Derivatives. , 2019, , .		2
161	Starch-Based DDSs with Physiological Interactions. , 2019, , 101-132.		0
162	Uptake and intracellular fate of biocompatible nanocarriers in cycling and noncycling cells. Nanomedicine, 2019, 14, 301-316.	1.7	17
163	Protein-lipid composite nanoparticles for the oral delivery of vitamin B12: Impact of protein succinylation on nanoparticle physicochemical and biological properties. Food Hydrocolloids, 2019, 92, 189-197.	5.6	32

		CITATION REPORT	
#	Article	IF	CITATIONS
164	2D Black Phosphorus–Based Biomedical Applications. Advanced Functional Materials, 2019, 29, 1808306.	7.8	438
165	Transportation and Biointeraction Properties in Nanomaterials Across Biological Systems. , 2019, , 343-368.		5
166	Disparate effects of PEG or albumin based surface modification on the uptake of nano- and micro-particles. Biomaterials Science, 2019, 7, 1411-1421.	2.6	16
167	Targeting mitochondria with Au–Ag@Polydopamine nanoparticles for papillary thyroid cancer therapy. Biomaterials Science, 2019, 7, 1052-1063.	2.6	31
168	Directing Traffic: Halogenâ€Bondâ€Mediated Membrane Transport. Chemistry - A European Journal, 2019, 25, 11180-11192.	1.7	8
169	Evaluation of urinary 8-hydroxy-2-deoxyguanosine level in experimental Alzheimer's disease: Impact of carvacrol nanoparticles. Molecular Biology Reports, 2019, 46, 4517-4527.	1.0	27
170	Carbon-based quantum particles: an electroanalytical and biomedical perspective. Chemical Society Reviews, 2019, 48, 4281-4316.	18.7	187
171	Bioreducible poly(urethane amine)s for robust nucleic acid transfection in stem cells. Biomaterials Science, 2019, 7, 3510-3518.	2.6	5
172	Biomedical applications of polyelectrolyte coated spherical gold nanoparticles. Nano Convergence, 2019, 6, 11.	6.3	42
173	A Multifunctional Nanotherapy for Targeted Treatment of Colon Cancer by Simultaneously Regulating Tumor Microenvironment. Theranostics, 2019, 9, 3732-3753.	4.6	49
174	Biogenic synthesis of silver nanoparticles using rhizome extract of Dysosma pleiantha and its antiproliferative effect against breast and human gastric cancer cells. Molecular Biology Reports, 2019, 46, 4725-4734.	1.0	24
175	Three-dimensionally Patterned Scaffolds Modulate the Biointerface at the Nanoscale. Nano Letters, 2019, 19, 5118-5123.	4.5	28
176	Cellulose Nanocrystals as a Sustainable Raw Material: Cytotoxicity and Applications on Healthcare Technology. Macromolecular Materials and Engineering, 2019, 304, 1900092.	1.7	32
177	Nanovaccines for cancer immunotherapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1559.	3.3	76
178	Upconversion nano-particles from synthesis to cancer treatment: A review. Advanced Powder Technology, 2019, 30, 1731-1753.	2.0	27
179	InÂvitro cell uptake evaluation of curcumin-loaded PCL/F68 nanoparticles for potential application in neuronal diseases. Journal of Drug Delivery Science and Technology, 2019, 52, 905-914.	1.4	33
180	Effects of organic matter on uptake and intracellular trafficking of nanoparticles in <i>Tetrahymena thermophila</i> . Environmental Science: Nano, 2019, 6, 2116-2128.	2.2	16
181	Cell-Penetrating Peptide Conjugated SERS Nanosensor for in Situ Intracellular pH Imaging of Single Living Cells during Cell Cycle. Analytical Chemistry, 2019, 91, 8383-8389.	3.2	47

#	Article	IF	CITATIONS
182	Ligand density on nanoparticles: A parameter with critical impact on nanomedicine. Advanced Drug Delivery Reviews, 2019, 143, 22-36.	6.6	124
183	Effect of surfactant on the size and stability of PLGA nanoparticles encapsulating a protein kinase C inhibitor. International Journal of Pharmaceutics, 2019, 566, 756-764.	2.6	44
184	Intravitreal nanoparticles for retinal delivery. Drug Discovery Today, 2019, 24, 1510-1523.	3.2	45
185	In vitro anticancer activity of folate-modified docetaxel-loaded PLGA nanoparticles against drug-sensitive and multidrug-resistant cancer cells. Cancer Nanotechnology, 2019, 10, .	1.9	30
186	Direct Monitoring of Cell Membrane Vesiculation with 2D AuNP@MnO ₂ Nanosheet Supraparticles at the Singleâ€Particle Level. Angewandte Chemie, 2019, 131, 10652-10656.	1.6	13
187	Direct Monitoring of Cell Membrane Vesiculation with 2D AuNP@MnO ₂ Nanosheet Supraparticles at the Singleâ€Particle Level. Angewandte Chemie - International Edition, 2019, 58, 10542-10546.	7.2	58
188	pH-sensitive polymeric nanoparticles of quercetin as a potential colon cancer-targeted nanomedicine. Journal of Drug Delivery Science and Technology, 2019, 52, 670-676.	1.4	51
189	Biodegradable nanosyringes for intracellular amplification-based dual-diagnosis and gene therapy in single living cells. Chemical Science, 2019, 10, 6113-6119.	3.7	15
190	Polymer–Doxorubicin Prodrug with Biocompatibility, pH Response, and Main Chain Breakability Prepared by Catalyst-Free Click Reaction. ACS Biomaterials Science and Engineering, 2019, 5, 2307-2315.	2.6	29
191	Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Advanced Drug Delivery Reviews, 2019, 143, 68-96.	6.6	561
192	Calcium Phosphate Nanoparticle-Based Systems for Therapeutic Delivery. , 2019, , 147-164.		1
193	Transferrin Functionization Elevates Transcytosis of Nanogranules across Epithelium by Triggering Polarity-Associated Transport Flow and Positive Cellular Feedback Loop. ACS Nano, 2019, 13, 5058-5076.	7.3	50
194	A switching role of hard-uptake nanoparticles in microalgae cell electroporation. Analyst, The, 2019, 144, 3581-3589.	1.7	6
195	Nanocarriers for Protein Delivery to the Cytosol: Assessing the Endosomal Escape of Poly(Lactide-co-Glycolide)-Poly(Ethylene Imine) Nanoparticles. Nanomaterials, 2019, 9, 652.	1.9	25
196	Crosstalk between chitosan and cell signaling pathways. Cellular and Molecular Life Sciences, 2019, 76, 2697-2718.	2.4	44
197	Uptake of silica particulate drug carriers in an intestine-on-a-chip: towards a better in vitro model of nanoparticulate carrier and mucus interactions. Biomaterials Science, 2019, 7, 2410-2420.	2.6	27
198	Nano-Structural Effects on Gene Transfection: Large, Botryoid-Shaped Nanoparticles Enhance DNA Delivery via Macropinocytosis and Effective Dissociation. Theranostics, 2019, 9, 1580-1598.	4.6	22
199	In situ fluorescent profiling of living cell membrane proteins at a single-molecule level. Chemical Communications, 2019, 55, 4043-4046.	2.2	24

#	Article	IF	CITATIONS
200	Monitoring the trans-membrane transport of single fluorescent silicon nanoparticles based on the force tracing technique. Analytical Methods, 2019, 11, 1724-1728.	1.3	4
201	A critical comparison of lanthanide based upconversion nanoparticles to fluorescent proteins, semiconductor quantum dots, and carbon dots for use in optical sensing and imaging. Methods and Applications in Fluorescence, 2019, 7, 022002.	1.1	57
202	Raman Imaging of Nanocarriers for Drug Delivery. Nanomaterials, 2019, 9, 341.	1.9	47
203	Physiological and Pathological Bases for Designing High Performance Drug Delivery Carriers. , 2019, , 1-17.		1
204	Label-free, quantitative and sensitive detection of nanoparticle/membrane interactions through the optical response of water. Sensors and Actuators B: Chemical, 2019, 289, 169-174.	4.0	5
205	Target Site Delivery and Residence of Nanomedicines: Application of Quantitative Systems Pharmacology. Pharmacological Reviews, 2019, 71, 157-169.	7.1	22
206	Tailoring Nanomaterials for Targeting Tumorâ€Associated Macrophages. Advanced Materials, 2019, 31, e1808303.	11.1	223
207	Metal–Organic Framework (MOF) Hybrid as a Tandem Catalyst for Enhanced Therapy against Hypoxic Tumor Cells. Angewandte Chemie, 2019, 131, 7890-7894.	1.6	125
208	Metal–Organic Framework (MOF) Hybrid as a Tandem Catalyst for Enhanced Therapy against Hypoxic Tumor Cells. Angewandte Chemie - International Edition, 2019, 58, 7808-7812.	7.2	139
209	Bimetallic silver–platinum nanoparticles with combined osteo-promotive and antimicrobial activity. Nanotechnology, 2019, 30, 305101.	1.3	34
210	Role of hydrophobicity in tuning the intracellular uptake of dendron-based fluorophores for in vitro metal ion sensing. Colloids and Surfaces B: Biointerfaces, 2019, 179, 180-189.	2.5	2
211	Tyrosine kinase inhibitor conjugated quantum dots for non-small cell lung cancer (NSCLC) treatment. European Journal of Pharmaceutical Sciences, 2019, 133, 145-159.	1.9	44
212	Nanoparticles as Radiopharmaceutical Vectors. , 2019, , 181-203.		7
213	Size-controlled DNA-cross-linked hydrogel coated silica nanoparticles served as a ratiometric fluorescent probe for the detection of adenosine triphosphate in living cells. Chemical Communications, 2019, 55, 5243-5246.	2.2	32
214	Monitoring the dynamics of hemeoxygenase-1 activation in head and neck cancer cells in real-timeÂusing plasmonically enhanced Raman spectroscopy. Chemical Science, 2019, 10, 4876-4882.	3.7	16
215	Imaging cell morphology and physiology using X-rays. Biochemical Society Transactions, 2019, 47, 489-508.	1.6	29
216	Regulation of the cellular uptake of nanoparticles by the orientation of helical polypeptides. Nano Research, 2019, 12, 889-896.	5.8	14
217	Two distinct cellular pathways leading to endothelial cell cytotoxicity by silica nanoparticle size. Journal of Nanobiotechnology, 2019, 17, 24.	4.2	54

		CITATION RE	PORT	
#	Article		IF	Citations
218	Non-spherical micro- and nanoparticles in nanomedicine. Materials Horizons, 2019, 6,	1094-1121.	6.4	120
219	Rifampicin Nanoformulation Enhances Treatment of Tuberculosis in Zebrafish. Biomac 2019, 20, 1798-1815.	romolecules,	2.6	30
220	A Smart Nanovector for Cancer Targeted Drug Delivery Based on Graphene Quantum Nanomaterials, 2019, 9, 282.	Dots.	1.9	83
221	Progress toward Understanding the Interactions between DNA Nanostructures and th 2019, 15, e1805416.	e Cell. Small,	5.2	25
222	Aptamer-functionalized liposomes for targeted cancer therapy. Cancer Letters, 2019, 4	448, 144-154.	3.2	113
223	Label-Free Detection of Multiplexed Metabolites at Single-Cell Level via a SERS-Microfl Platform. Analytical Chemistry, 2019, 91, 15484-15490.	uidic Droplet	3.2	58
224	Hazard Assessment of Polymeric Nanobiomaterials for Drug Delivery: What Can We Le Literature So Far. Frontiers in Bioengineering and Biotechnology, 2019, 7, 261.	arn From	2.0	62
225	Nanoparticles and organized lipid assemblies: from interaction to design of hybrid soft Matter, 2019, 15, 8951-8970.	devices. Soft	1.2	32
226	Toxicity of metallic nanoparticles in the central nervous system. Nanotechnology Revie 175-200.	ews, 2019, 8,	2.6	85
227	Epigenetic Aspects of Engineered Nanomaterials: Is the Collateral Damage Inevitable?. Bioengineering and Biotechnology, 2019, 7, 228.	Frontiers in	2.0	48
228	How can nanovectors be used to treat spinal cord injury?. Nanomedicine, 2019, 14, 31	23-3125.	1.7	3
229	Development of Adamantane-Conjugated TLR7/8 Agonists for Supramolecular Delivery Immunotherapy. Theranostics, 2019, 9, 8426-8436.	y and Cancer	4.6	65
230	Anisotropic polymer nanoparticles with controlled dimensions from the morphological transformation of isotropic seeds. Nature Communications, 2019, 10, 5406.		5.8	35
231	Cancer Cell Membrane-Camouflaged Nanorods with Endoplasmic Reticulum Targeting Antitumor Therapy. ACS Applied Materials & amp; Interfaces, 2019, 11, 46614-46625.	for Improved	4.0	64
232	The Mechanism of Nano-drug Delivery. Current Pharmacology Reports, 2019, 5, 410-4	20.	1.5	2
233	A Comparative Study on Albumin-Binding Molecules for Targeted Tumor Delivery throu and Noncovalent Approach. Bioconjugate Chemistry, 2019, 30, 3107-3118.	ıgh Covalent	1.8	20
234	Comprehensive insights into intracellular fate of WS ₂ nanosheets for en photothermal therapeutic outcomes via exocytosis inhibition. Nanophotonics, 2019, 8	nanced 3, 2331-2346.	2.9	16
235	Multifunctional Magnetic Nanowires: Design, Fabrication, and Future Prospects as Car Therapeutics. Cancers, 2019, 11, 1956.	ncer	1.7	30

#	Article	IF	CITATIONS
236	Promotion of dispersion and anticancer efficacy of hydroxyapatite nanoparticles by the adsorption of fetal bovine serum. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	6
237	Nonlinear Phase Imaging of Gold Nanoparticles Embedded in Organic Thin Films. Langmuir, 2019, 35, 16970-16977.	1.6	1
238	Unraveling Polymeric Nanoparticles Cell Uptake Pathways: Two Decades Working to Understand Nanoparticles Journey to Improve Gene Therapy. Advances in Experimental Medicine and Biology, 2019, 1288, 117-138.	0.8	8
239	In Vivo and in Vitro Demonstration of Gold Nanorod Aided Photothermal Presoftening of B16F10 Melanoma for Efficient Chemotherapy Using Doxorubicin Loaded Graphene Oxide. ACS Applied Bio Materials, 2019, 2, 533-543.	2.3	13
240	Effect of resveratrol-loaded nanostructured lipid carriers supplementation in cryopreservation medium on post-thawed sperm quality and fertility of roosters. Animal Reproduction Science, 2019, 201, 32-40.	0.5	31
241	Versatile Types of Organic/Inorganic Nanohybrids: From Strategic Design to Biomedical Applications. Chemical Reviews, 2019, 119, 1666-1762.	23.0	299
242	Different cytotoxic and apoptotic responses of MCF-7 and HT1080 cells to MnO2 nanoparticles are based on similar mode of action. Toxicology, 2019, 411, 71-80.	2.0	36
243	Biomimetic Nanoparticle Vaccines for Cancer Therapy. Advanced Biology, 2019, 3, e1800219.	3.0	84
244	Single step formation of biocompatible bimetallic alloy nanoparticles of gold and silver using isonicotinylhydrazide. Materials Science and Engineering C, 2019, 96, 286-294.	3.8	36
245	Zebrafish as a predictive screening model to assess macrophage clearance of liposomes in vivo. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 17, 82-93.	1.7	40
246	Genotoxicity of amorphous silica nanoparticles: Status and prospects. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 16, 106-125.	1.7	59
247	A Supramolecular Nanocarrier for Delivery of Amiodarone Anti-Arrhythmic Therapy to the Heart. Bioconjugate Chemistry, 2019, 30, 733-740.	1.8	24
248	Scatter Enhanced Phase Contrast Microscopy for Discriminating Mechanisms of Active Nanoparticle Transport in Living Cells. Nano Letters, 2019, 19, 793-804.	4.5	17
249	Intestinal uptake of barley protein-based nanoparticles for β-carotene delivery. Acta Pharmaceutica Sinica B, 2019, 9, 87-96.	5.7	38
250	Toward comprehension of multiple human cells uptake of engineered nano metal oxides: quantitative inter cell line uptake specificity (QICLUS) modeling. Nanotoxicology, 2019, 13, 14-34.	1.6	23
251	Advances in Porous Silicon–Based Nanomaterials for Diagnostic and Therapeutic Applications. Advanced Therapeutics, 2019, 2, 1800095.	1.6	92
252	Native nanodiscs from blood inhibit pulmonary fibrosis. Biomaterials, 2019, 192, 51-61.	5.7	8
253	Recent Advances in Chiral Plasmonics — Towards Biomedical Applications. Bulletin of the Chemical Society of Japan, 2019, 92, 30-37.	2.0	79

#	Article	IF	CITATIONS
254	New Technologies To Enhance In Vivo Reprogramming for Regenerative Medicine. Trends in Biotechnology, 2019, 37, 604-617.	4.9	23
255	Locked Nucleic Acid Nanomicelle with Cell-Penetrating Peptides for Glutathione-Triggered Drug Release and Cell Fluorescence Imaging. ACS Applied Bio Materials, 2019, 2, 370-377.	2.3	7
256	Exploiting Nanomaterialâ€Mediated Autophagy for Cancer Therapy. Small Methods, 2019, 3, 1800365.	4.6	25
257	Branched and Dendritic Polymer Architectures: Functional Nanomaterials for Therapeutic Delivery. Advanced Functional Materials, 2020, 30, 1901001.	7.8	109
258	Pea protein based vitamin D nanoemulsions: Fabrication, stability and in vitro study using Caco-2 cells. Food Chemistry, 2020, 305, 125475.	4.2	66
259	Mechanoregulation of titanium dioxide nanoparticles in cancer therapy. Materials Science and Engineering C, 2020, 107, 110303.	3.8	47
260	Cancer signaling by plasmonic quantum probes. Applied Materials Today, 2020, 18, 100465.	2.3	1
261	Synthesis of novel N-vinylpyrrolidone/acrylic acid nanoparticles as drug delivery carriers of cisplatin to cancer cells. Colloids and Surfaces B: Biointerfaces, 2020, 185, 110566.	2.5	19
262	Tailor-made PEG coated iron oxide nanoparticles as contrast agents for long lasting magnetic resonance molecular imaging of solid cancers. Materials Science and Engineering C, 2020, 107, 110262.	3.8	40
263	Strategies of enzyme immobilization on nanomatrix supports and their intracellular delivery. Journal of Biomolecular Structure and Dynamics, 2020, 38, 2746-2762.	2.0	21
264	2D Nanomaterials for Cancer Theranostic Applications. Advanced Materials, 2020, 32, e1902333.	11.1	375
265	P‣ME polymer nanocapsules stimulate naÃ⁻ve macrophages and protect them from oxidative damage during controlled drug release. Journal of Applied Polymer Science, 2020, 137, 48363.	1.3	4
266	A review on anti-inflammatory activity of green synthesized zinc oxide nanoparticle: Mechanism-based approach. Bioorganic Chemistry, 2020, 94, 103423.	2.0	91
267	Acid susceptible polymeric stealthy nanoparticles for improved anticancer drug delivery. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, 69, 1187-1196.	1.8	1
268	Cancer-Cell-Membrane-Coated Nanoparticles with a Yolk–Shell Structure Augment Cancer Chemotherapy. Nano Letters, 2020, 20, 936-946.	4.5	144
269	Analyse quantitativer Partikelaufnahme von Zellen über verschiedene Messmethoden. Angewandte Chemie, 2020, 132, 5478-5494.	1.6	0
270	Effects of primary amine-based coatings on microglia internalization of nanogels. Colloids and Surfaces B: Biointerfaces, 2020, 185, 110574.	2.5	7
271	Quantitative Particle Uptake by Cells as Analyzed by Different Methods. Angewandte Chemie - International Edition, 2020, 59, 5438-5453.	7.2	48

#	Article	IF	CITATIONS
272	Nanoscale delivery systems for microRNAs in cancer therapy. Cellular and Molecular Life Sciences, 2020, 77, 1059-1086.	2.4	65
273	Toward greener methods of producing branched metal nanostructures. CrystEngComm, 2020, 22, 399-411.	1.3	14
274	Preferential interactions of primary amine-terminated quantum dots with membrane domain boundaries and lipid rafts revealed with nanometer resolution. Environmental Science: Nano, 2020, 7, 149-161.	2.2	12
275	Controlling protein interactions in blood for effective liver immunosuppressive therapy by silica nanocapsules. Nanoscale, 2020, 12, 2626-2637.	2.8	26
276	Deep-Red Fluorescent Organic Nanoparticles with High Brightness and Photostability for Super-Resolution in Vitro and in Vivo Imaging Using STED Nanoscopy. ACS Applied Materials & Interfaces, 2020, 12, 6814-6826.	4.0	40
277	Regulation of Cell Uptake and Cytotoxicity by Nanoparticle Core under the Controlled Shape, Size, and Surface Chemistries. ACS Nano, 2020, 14, 289-302.	7.3	83
278	Detecting the Origin of Cancerâ€Mobile Quantum Probe for Single Cancer Stem Cell Detection. Advanced Functional Materials, 2020, 30, 1907572.	7.8	9
279	Constitutional Isomerization Enables Bright NIRâ€I AlEgen for Brainâ€Inflammation Imaging. Advanced Functional Materials, 2020, 30, 1908125.	7.8	175
280	Controlled Tyrosine Kinase Inhibitor Delivery to Liver Cancer Cells by Gate-Capped Mesoporous Silica Nanoparticles. ACS Applied Bio Materials, 2020, 3, 239-251.	2.3	18
281	Bioavailability and cytotoxicity of Cerium- (IV), Copper- (II), and Zinc oxide nanoparticles to human intestinal and liver cells through food. Science of the Total Environment, 2020, 702, 134700.	3.9	47
282	Forces during cellular uptake of viruses and nanoparticles at the ventral side. Nature Communications, 2020, 11, 32.	5.8	35
283	A Trojan horse biomimetic delivery strategy using mesenchymal stem cells for PDT/PTT therapy against lung melanoma metastasis. Biomaterials Science, 2020, 8, 1160-1170.	2.6	52
284	Uptake and subcellular distribution of radiolabeled polymersomes for radiotherapy. Nanotheranostics, 2020, 4, 14-25.	2.7	15
285	Ferrihydrite nanoparticles interaction with model lipid membranes. Chemistry and Physics of Lipids, 2020, 226, 104851.	1.5	10
286	A mechanistic explanation of the inhibitory role of the protein corona on liposomal gene expression. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183159.	1.4	10
287	Photocontrolled Release of the Anticancer Drug Chlorambucil with Caged Harmonic Nanoparticles. Helvetica Chimica Acta, 2020, 103, e1900251.	1.0	21
288	<i>In vitro</i> localisation and degradation of few-layer MoS ₂ submicrometric plates in human macrophage-like cells: a label free Raman micro-spectroscopic study. 2D Materials, 2020, 7, 025003.	2.0	13
289	Nano-Bio interactions of clay nanotubes with colon cancer cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124242.	2.3	10

		CITATION REPORT		
#	Article		IF	CITATIONS
290	Systematic in vitro biocompatibility studies of multimodal cellulose nanocrystal and lig nanoparticles. Journal of Biomedical Materials Research - Part A, 2020, 108, 770-783.	ŗnin	2.1	32
291	Nanometals in Dentistry: Applications and Toxicological Implications—a Systematic F Trace Element Research, 2020, 197, 70-88.	Review. Biological	1.9	43
292	NIR powered Janus nanocarrier for deep tumor penetration. Applied Materials Today, 2	020, 18, 100504.	2.3	29
293	GO Nanosheets: Promising Nano Carrier for the S29,			

#	Article	IF	CITATIONS
308	Targeting cell plasticity for regeneration: From in vitro to in vivo reprogramming. Advanced Drug Delivery Reviews, 2020, 161-162, 124-144.	6.6	8
309	Resveratrol encapsulation in high molecular weight chitosan-based nanogels for applications in ocular treatments: Impact on human ARPE-19 culture cells. International Journal of Biological Macromolecules, 2020, 165, 804-821.	3.6	31
310	Single-Cell Isotope Dilution Analysis with LA–ICP–MS: A New Approach for Quantification of Nanoparticles in Single Cells. Analytical Chemistry, 2020, 92, 14339-14345.	3.2	30
311	Amphiphilic mannose-6-phosphate glycopolypeptide-based bioactive and responsive self-assembled nanostructures for controlled and targeted lysosomal cargo delivery. Biomaterials Science, 2020, 8, 6322-6336.	2.6	12
312	Nutraceutical nanodelivery; an insight into the bioaccessibility/bioavailability of different bioactive compounds loaded within nanocarriers. Critical Reviews in Food Science and Nutrition, 2021, 61, 3031-3065.	5.4	42
313	A NEVER-ENDING STORY OF RHEUMATOID ARTHRITIS. International Journal of Pharmacy and Pharmaceutical Sciences, 2020, , 10-17.	0.3	0
314	Targeting apoptosis and autophagy following spinal cord injury: Therapeutic approaches to polyphenols and candidate phytochemicals. Pharmacological Research, 2020, 160, 105069.	3.1	74
315	Simultaneous Single-Particle Tracking and Dynamic pH Sensing Reveal Lysosome-Targetable Mesoporous Silica Nanoparticle Pathways. ACS Applied Materials & Interfaces, 2020, 12, 42472-42484.	4.0	16
316	A Novel Mucosal Adjuvant System for Immunization against Avian Coronavirus Causing Infectious Bronchitis. Journal of Virology, 2020, 94, .	1.5	16
317	Bioorthogonal supramolecular cell-conjugation for targeted hitchhiking drug delivery. Materials Today, 2020, 40, 9-17.	8.3	45
318	Endocytosisâ€Enabled Construction of Silica Nanochannels Crossing Living Cell Membrane for Transmembrane Drug Transport. Advanced Functional Materials, 2020, 30, 2002761.	7.8	11
319	Open questions: how do engineered nanomaterials affect our cells?. BMC Biology, 2020, 18, 176.	1.7	0
320	Formulation of Liver-Specific PLGA-DY-635 Nanoparticles Loaded with the Protein Kinase C Inhibitor Bisindolylmaleimide I. Pharmaceutics, 2020, 12, 1110.	2.0	6
321	Acoustically Driven Microbubbles Enable Targeted Delivery of microRNAâ€Loaded Nanoparticles to Spontaneous Hepatocellular Neoplasia in Canines. Advanced Therapeutics, 2020, 3, 2000120.	1.6	9
322	Mitochondrial responses to organelle-specific drug delivering nanoparticles composed of polypeptide and peptide complexes. Nanomedicine, 2020, 15, 2917-2932.	1.7	2
323	Plasmonic Assemblies for Realâ€∓ime Singleâ€Molecule Biosensing. Small, 2020, 16, e2003934.	5.2	26
324	Nanomaterials for Cardiac Tissue Engineering. Molecules, 2020, 25, 5189.	1.7	37
325	Cell-biological effects of zinc oxide spheres and rods from the nano- to the microscale at sub-toxic levels. Cell Biology and Toxicology, 2021, 37, 573-593.	2.4	25

#	Article	IF	Citations
326	Ultrasmall gold and silver/gold nanoparticles (2 nm) as autofluorescent labels for poly(D,L-lactide-co-glycolide) nanoparticles (140 nm). Journal of Materials Science: Materials in Madicina, 2020, 21, 117	1.7	10
327	Nanomicelles potentiate histone deacetylase inhibitor efficacy in vitro. Cancer Nanotechnology, 2020, 11, .	1.9	2
328	Alpha-Synuclein—Nanoparticle Interactions: Understanding, Controlling and Exploiting Conformational Plasticity. Molecules, 2020, 25, 5625.	1.7	15
329	Bioinspired Composite, pH-Responsive Sodium Deoxycholate Hydrogel and Generation 4.5 Poly(amidoamine) Dendrimer Improves Cancer Treatment Efficacy via Doxorubicin and Resveratrol Co-Delivery. Pharmaceutics, 2020, 12, 1069.	2.0	9
330	<i>In situ</i> tumor-triggered subcellular precise delivery of multi-drugs for enhanced chemo-photothermal-starvation combination antitumor therapy. Theranostics, 2020, 10, 12158-12173.	4.6	12
331	Gold Nanoparticles as a Potent Radiosensitizer: A Transdisciplinary Approach from Physics to Patient. Cancers, 2020, 12, 2021.	1.7	103
332	Size, shape and surface charge considerations of orally delivered nanomedicines. , 2020, , 143-176.		4
333	Uptake and in vitro anticancer activity of oleic acid delivered in nanocapsules stabilized by amphiphilic derivatives of hyaluronic acid and chitosan. International Journal of Biological Macromolecules, 2020, 164, 2000-2009.	3.6	17
334	Self-assembled N-doped Q-dot carbon nanostructures as a SERS-active biosensor with selective therapeutic functionality. Sensors and Actuators B: Chemical, 2020, 323, 128703.	4.0	30
335	Biomimetic nanovesicle design for cardiac tissue repair. Nanomedicine, 2020, 15, 1873-1896.	1.7	14
336	Quantifying the level of nanoparticle uptake in mammalian cells using flow cytometry. Nanoscale, 2020, 12, 15743-15751.	2.8	51
337	Pyridoclax-loaded nanoemulsion for enhanced anticancer effect on ovarian cancer. International Journal of Pharmaceutics, 2020, 587, 119655.	2.6	11
338	Tetrahedral DNA nanostructures as drug delivery and bioimaging platforms in cancer therapy. Cancer Science, 2020, 111, 3164-3173.	1.7	58
339	A tumor-microenvironment fully responsive nano-platform for MRI-guided photodynamic and photothermal synergistic therapy. Journal of Materials Chemistry B, 2020, 8, 8271-8281.	2.9	32
340	The dual effect of natural organic matter on the two-step internalization process of Au@Sio2 in freshwater. Water Research, 2020, 184, 116216.	5.3	8
341	Fantastic Voyage of Nanomotors into the Cell. ACS Nano, 2020, 14, 9423-9439.	7.3	144
342	Stannic Oxide Nanoparticle Regulates Proliferation, Invasion, Apoptosis, and Oxidative Stress of Oral Cancer Cells. Frontiers in Bioengineering and Biotechnology, 2020, 8, 768.	2.0	13
343	Argovitâ"¢ Silver Nanoparticles Effects on Allium cepa: Plant Growth Promotion without Cyto Genotoxic Damage. Nanomaterials, 2020, 10, 1386.	1.9	29

#	Article	IF	CITATIONS
344	Electrosprayed Alginate Nanoparticles as CRISPR Plasmid DNA Delivery Carrier: Preparation, Optimization, and Characterization. Pharmaceuticals, 2020, 13, 158.	1.7	28
345	Pharmacokinetic and Pharmacodynamic Evaluation of Resveratrol Loaded Cationic Liposomes for Targeting Hepatocellular Carcinoma. ACS Biomaterials Science and Engineering, 2020, 6, 4969-4984.	2.6	52
346	Micro Versus Macro – The Effect of Environmental Confinement on Cellular Nanoparticle Uptake. Frontiers in Bioengineering and Biotechnology, 2020, 8, 869.	2.0	3
347	Influence of Cell Membrane Wrapping on the Cellâ^'Porous Silicon Nanoparticle Interactions. Advanced Healthcare Materials, 2020, 9, e2000529.	3.9	11
348	Application of advances in endocytosis and membrane trafficking to drug delivery. Advanced Drug Delivery Reviews, 2020, 157, 118-141.	6.6	44
349	Dual Role of Doxorubicin for Photopolymerization and Therapy. Biomacromolecules, 2020, 21, 3887-3897.	2.6	15
350	Catechol-Functionalized Alginate Nanoparticles as Mucoadhesive Carriers for Intravesical Chemotherapy. AAPS PharmSciTech, 2020, 21, 212.	1.5	18
351	<p>Hydroxyapatite Particles Induced Modulation of Collagen Expression and Secretion in Primary Human Dermal Fibroblasts</p> . International Journal of Nanomedicine, 2020, Volume 15, 4943-4956.	3.3	12
352	Potentiated cytosolic drug delivery and photonic hyperthermia by 2D free-standing silicene nanosheets for tumor nanomedicine. Nanoscale, 2020, 12, 17931-17946.	2.8	20
353	Doxorubicin and Crocin Co-delivery by Polymeric Nanoparticles for Enhanced Anticancer Potential <i>In Vitro</i> and <i>In Vivo</i> . ACS Applied Bio Materials, 2020, 3, 7789-7799.	2.3	17
354	Development of a size-tunable paclitaxel micelle using a microfluidic-based system and evaluation of its in-vitro efficacy and intracellular delivery. Journal of Drug Delivery Science and Technology, 2020, 60, 102041.	1.4	8
355	Cockle shell-derived aragonite calcium carbonate nanoparticle for targeting cancer and breast cancer stem cells. Cancer Nanotechnology, 2020, 11, .	1.9	5
356	Exploring High Aspect Ratio Gold Nanotubes as Cytosolic Agents: Structural Engineering and Uptake into Mesothelioma Cells. Small, 2020, 16, e2003793.	5.2	7
357	Fluorescent Nanomaterials for Cellular Imaging. , 2020, , .		1
358	Polymeric Nanoparticles Controlled by Onâ€Chip Selfâ€Assembly Enhance Cancer Treatment Effectiveness. Advanced Healthcare Materials, 2020, 9, 2001633.	3.9	6
359	Synthesis of Ciprofloxacin Drug Capped Silver Nanoparticles and Their Antimicrobial Activity: A Joint Spectrophotometric and Density Functional Investigation. Journal of Cluster Science, 2021, 32, 1575-1584.	1.7	5
360	Selective Targeting of the Hedgehog Signaling Pathway by PBM Nanoparticles in Docetaxel-Resistant Prostate Cancer. Cells, 2020, 9, 1976.	1.8	23
361	Recent Advances in Stimuli-Responsive Platforms for Cancer Immunotherapy. Accounts of Chemical Research, 2020, 53, 2044-2054.	7.6	72

#	Article	IF	CITATIONS
362	Surface Charge-Dependent Cytotoxicity of Plastic Nanoparticles in Alveolar Cells under Cyclic Stretches. Nano Letters, 2020, 20, 7168-7176.	4.5	68
363	Investigation of the Cellular Destination of Fluorescently Labeled Carbon Nanohorns in Cultured Cells. ACS Applied Bio Materials, 2020, 3, 6790-6801.	2.3	4
364	Nanocarriers for effective nutraceutical delivery to the brain. Neurochemistry International, 2020, 140, 104851.	1.9	15
365	Protamine sulphate coated poly (lactide-co-glycolide) nanoparticles of MUC-1 peptide improved cellular uptake and cytokine release in mouse antigen presenting cells. Journal of Microencapsulation, 2020, 37, 566-576.	1.2	4
366	Tailoring Iron Oxide Nanoparticles for Efficient Cellular Internalization and Endosomal Escape. Nanomaterials, 2020, 10, 1816.	1.9	38
367	Bilayerâ€mediated assembly of cationic nanoparticles adsorbed to lipid bilayers: Insights from molecular simulations. AICHE Journal, 2020, 66, e16993.	1.8	1
368	Efficient Cellular Internalization and Transport of Bowlâ€Shaped Polydopamine Particles. Particle and Particle Systems Characterization, 2020, 37, 2000166.	1.2	11
369	Low-cost calcium fluorometry for long-term nanoparticle studies in living cells. Scientific Reports, 2020, 10, 12568.	1.6	5
370	Particle Size of Xâ€ray Pumped UVCâ€Emitting Nanoparticles Defines Intracellular Localization and Biological Activity Against Cancer Cells. Particle and Particle Systems Characterization, 2020, 37, 2000201.	1.2	1
371	Smart stimuli-responsive biopolymeric nanomedicines for targeted therapy of solid tumors. Nanomedicine, 2020, 15, 2171-2200.	1.7	29
372	Protein-Coated Aryl Modified Gold Nanoparticles for Cellular Uptake Study by Osteosarcoma Cancer Cells. Langmuir, 2020, 36, 11765-11775.	1.6	26
373	Passive internalization and active extrusion determines PLGA-nanoparticle concentration in cancer cell lines. Nanomedicine, 2020, 15, 2229-2239.	1.7	5
374	Gold nanocarriers for transport of oligonucleotides across brain endothelial cells. PLoS ONE, 2020, 15, e0236611.	1.1	17
375	Injectable Drugâ€Releasing Microporous Annealed Particle Scaffolds for Treating Myocardial Infarction. Advanced Functional Materials, 2020, 30, 2004307.	7.8	57
376	High Dye-Loaded and Thin-Shell Fluorescent Polymeric Nanoparticles for Enhanced FRET Imaging of Protein-Specific Sialylation on the Cell Surface. Analytical Chemistry, 2020, 92, 13271-13280.	3.2	16
377	Microglia-targeting nanotherapeutics for neurodegenerative diseases. APL Bioengineering, 2020, 4, 030902.	3.3	49
378	<p>Preparation and Evaluation of Doxorubicin-Loaded PLA–PEG–FA Copolymer Containing Superparamagnetic Iron Oxide Nanoparticles (SPIONs) for Cancer Treatment: Combination Therapy with Hyperthermia and Chemotherapy</p> . International Journal of Nanomedicine, 2020, Volume 15, 6167-6182	3.3	31
379	Triamcinolone–Gold Nanoparticles Repolarize Synoviocytes and Macrophages in an Inflamed Synovium. ACS Applied Materials & Interfaces, 2020, 12, 38936-38949.	4.0	35

#	Article	IF	CITATIONS
380	Recent Advances in Polymeric Nanoparticle-Encapsulated Drugs against Intracellular Infections. Molecules, 2020, 25, 3760.	1.7	66
381	High throughput profiling drug response and apoptosis of single polar cells. Journal of Materials Chemistry B, 2020, 8, 8614-8622.	2.9	3
382	Engineering small molecule nanodrugs to overcome barriers for cancer therapy. View, 2020, 1, 20200062.	2.7	19
383	Single-cell analysis by use of ICP-MS. Journal of Analytical Atomic Spectrometry, 2020, 35, 1784-1813.	1.6	46
384	Cancer Immunotherapy and Application of Nanoparticles in Cancers Immunotherapy as the Delivery of Immunotherapeutic Agents and as the Immunomodulators. Cancers, 2020, 12, 3773.	1.7	33
385	<p>Anticancer Activity of Thymoquinone Cubic Phase Nanoparticles Against Human Breast Cancer: Formulation, Cytotoxicity and Subcellular Localization</p> . International Journal of Nanomedicine, 2020, Volume 15, 9557-9570.	3.3	45
386	A Systematic Comparative Study of the Toxicity of Semiconductor and Graphitic Carbon-Based Quantum Dots Using In Vitro Cell Models. Applied Sciences (Switzerland), 2020, 10, 8845.	1.3	5
387	Subtoxic cell responses to silica particles with different size and shape. Scientific Reports, 2020, 10, 21591.	1.6	23
388	Effect of Surface Modifications on Cellular Uptake of Gold Nanorods in Human Primary Cells and Established Cell Lines. ACS Omega, 2020, 5, 32744-32752.	1.6	20
389	Exploring the benefits of nanotechnology for cancer drugs in different stages of the drug development pipeline. Nanomedicine, 2020, 15, 2539-2542.	1.7	14
390	Selective extracellular arginine deprivation by a single injection of cellular non-uptake arginine deiminase nanocapsules for sustained tumor inhibition. Nanoscale, 2020, 12, 24030-24043.	2.8	16
391	Encapsulation of Hydrophobic Drugs in Shell-by-Shell Coated Nanoparticles for Radio—and Chemotherapy—An In Vitro Study. Bioengineering, 2020, 7, 126.	1.6	11
392	Nanoparticles for immunotherapy. Frontiers of Nanoscience, 2020, , 265-306.	0.3	8
393	<p>Enteric-Coated Strategies in Colorectal Cancer Nanoparticle Drug Delivery System</p> . Drug Design, Development and Therapy, 2020, Volume 14, 4387-4405.	2.0	26
394	Mechanisms for Tuning Engineered Nanomaterials to Enhance Radiation Therapy of Cancer. Advanced Science, 2020, 7, 2003584.	5.6	49
395	Nanocarrierâ€Mediated Cytosolic Delivery of Biopharmaceuticals. Advanced Functional Materials, 2020, 30, 1910566.	7.8	99
396	Addressing Nanomaterial Immunosafety by Evaluating Innate Immunity across Living Species. Small, 2020, 16, e2000598.	5.2	35
397	Functionalization of Cellulose Nanocrystals with POEGMA Copolymers via Copper-Catalyzed Azide–Alkyne Cycloaddition for Potential Drug-Delivery Applications. Biomacromolecules, 2020, 21, 2014-2023	2.6	14

#	Article	IF	CITATIONS
398	Comparative cytotoxic effect of citrate-capped gold nanoparticles with different sizes on noncancerous and cancerous cell lines. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	32
400	New insights into the synthesis, toxicity and applications of gold nanoparticles in CT imaging and treatment of cancer. Nanomedicine, 2020, 15, 1127-1145.	1.7	33
401	Albumin-stabilized fluorescent metal nanoclusters: fabrication, physico-chemical properties and cytotoxicity. Materials and Design, 2020, 192, 108771.	3.3	11
402	Targeted hyperthermia with plasmonic nanoparticles. Frontiers of Nanoscience, 2020, 16, 307-352.	0.3	8
403	Super-resolution Surface-Enhanced Raman Scattering Imaging of Single Particles in Cells. Analytical Chemistry, 2020, 92, 9389-9398.	3.2	29
404	Stable, concentrated, biocompatible, and defect-free graphene dispersions with positive charge. Nanoscale, 2020, 12, 12383-12394.	2.8	23
405	Cationic Magnetite Nanoparticles for Increasing siRNA Hybridization Rates. Nanomaterials, 2020, 10, 1018.	1.9	5
406	Influence of the Surface Functionalization on the Fate and Performance of Mesoporous Silica Nanoparticles. Nanomaterials, 2020, 10, 916.	1.9	43
407	Gap-enhanced resonance Raman tags for live-cell imaging. Journal of Materials Chemistry B, 2020, 8, 6944-6955.	2.9	24
408	Molecular and cellular cues governing nanomaterial–mucosae interactions: from nanomedicine to nanotoxicology. Chemical Society Reviews, 2020, 49, 5058-5100.	18.7	39
409	Selective Autophagy Pathway of Nanoparticles and Nanodrugs: Drug Delivery and Pathophysiological Effects. Advanced Therapeutics, 2020, 3, 2000085.	1.6	6
410	Progress in the therapeutic applications of polymer-decorated black phosphorus and black phosphorus analog nanomaterials in biomedicine. Journal of Materials Chemistry B, 2020, 8, 7076-7120.	2.9	34
411	Understanding fundamentals of hepatocellular carcinoma to design next-generation chitosan nano-formulations: Beyond chemotherapy stride. Journal of Drug Delivery Science and Technology, 2020, 58, 101723.	1.4	0
412	PEG-coated nanoparticles detachable in acidic microenvironments for the tumor-directed delivery of chemo- and gene therapies for head and neck cancer. Theranostics, 2020, 10, 6695-6714.	4.6	32
413	Smart Gold Nanostructures for Light Mediated Cancer Theranostics: Combining Optical Diagnostics with Photothermal Therapy. Advanced Science, 2020, 7, 1903441.	5.6	117
414	Polyelectrolyte stiffness on gold nanorods mediates cell membrane damage. Nanoscale, 2020, 12, 14021-14036.	2.8	14
415	Nanotechnology Based Repositioning of an Anti-Viral Drug for Non-Small Cell Lung Cancer (NSCLC). Pharmaceutical Research, 2020, 37, 123.	1.7	14
416	Atherosclerosis and thrombosis heart failure. , 2020, , 23-42.		0

	CITATION REI	PORT	
# 417	ARTICLE Drug-Directed Morphology Changes in Polymerization-Induced Self-Assembly (PISA) Influence the Biological Babaviar of Nanoparticles, ACS Applied Materials & amp: Interfaces, 2020, 12, 30221, 30233	IF 4.0	Citations 34
418	Controlled functionalization of carbon nanodots for targeted intracellular production of reactive oxygen species. Nanoscale Horizons, 2020, 5, 1240-1249.	4.1	36
419	Direct Conjugation of Retinoic Acid with Gold Nanoparticles to Improve Neural Differentiation of Human Adipose Stem Cells. Journal of Molecular Neuroscience, 2020, 70, 1836-1850.	1.1	3
420	Nano-bioink solutions for cardiac tissue bioprinting. , 2020, , 171-185.		3
421	Dual-Modified Liposome for Targeted and Enhanced Gene Delivery into Mice Brain. Journal of Pharmacology and Experimental Therapeutics, 2020, 374, 354-365.	1.3	31
422	Thermally self-assembled biodegradable poly(casein-g-N-isopropylacrylamide) unimers and their application in drug delivery for cancer therapy. International Journal of Biological Macromolecules, 2020, 154, 446-455.	3.6	12
423	Chitosan-based Colloidal Polyelectrolyte Complexes for Drug Delivery: A Review. Carbohydrate Polymers, 2020, 238, 116126.	5.1	146
424	<i>In Vivo</i> Imaging of Hypoxia Associated with Inflammatory Bowel Disease by a Cytoplasmic Protein-Powered Fluorescence Cascade Amplifier. Analytical Chemistry, 2020, 92, 5787-5794.	3.2	26
425	Nanoparticulate formulations of radiopharmaceuticals: Strategy to improve targeting and biodistribution properties. Journal of Labelled Compounds and Radiopharmaceuticals, 2020, 63, 333-355.	0.5	19
426	Phospholipid-Coated Guanosine Diphosphate Auxiliary CaP Active Nanoparticles Can Systematically Improve the Efficiency of Gene Therapy for Cancer Disease. ACS Biomaterials Science and Engineering, 2020, 6, 2107-2116.	2.6	5
427	ROS-Mediated Selective Killing Effect of Black Phosphorus: Mechanistic Understanding and Its Guidance for Safe Biomedical Applications. Nano Letters, 2020, 20, 3943-3955.	4.5	158
428	γâ€Butyrolactone Copolymerization with the Wellâ€Documented Polymer Drug Carrier Poly(ethylene) Tj ETQq1 1 2020, 20, 1900408.	0.78431 2.1	4 rgBT /Ove 5
429	Reversion of arterial calcification by elastin-targeted DTPA-HSA nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 150, 108-119.	2.0	8
430	Recent Progress of Stem Cell Therapy in Cancer Treatment: Molecular Mechanisms and Potential Applications. Cells, 2020, 9, 563.	1.8	116
431	Radiobiological Implications of Nanoparticles Following Radiation Treatment. Particle and Particle Systems Characterization, 2020, 37, 1900411.	1.2	14
432	Enhancing the targeting ability of nanoparticles <i>via</i> protected copolymers. Nanoscale, 2020, 12, 7804-7813.	2.8	12
433	Heparin oated Albumin Nanoparticles for Drug Combination in Targeting Inflamed Intestine. Advanced Healthcare Materials, 2020, 9, e2000536.	3.9	17
434	Block copolymers for nanoscale drug and gene delivery. , 2020, , 181-200.		10

#	Article	IF	CITATIONS
435	Sweat gland regeneration: Current strategies and future opportunities. Biomaterials, 2020, 255, 120201.	5.7	14
436	Cationic cellulose nanocrystals complexed with polymeric siRNA for efficient anticancer drug delivery. Carbohydrate Polymers, 2020, 247, 116684.	5.1	26
437	Physical study of proton therapy at CANAM laboratory on medulloblastoma cell lines DAOY. Radiation Effects and Defects in Solids, 2020, 175, 863-878.	0.4	4
438	Cellular response to nanobiomaterials. , 2020, , 473-504.		2
439	Nanotoxicology and Nanosafety: Safety-by-Design and Testing at a Glance. International Journal of Environmental Research and Public Health, 2020, 17, 4657.	1.2	114
440	Synthesis and intracellular tracing surface-functionalized calcium phosphate nanoparticles by super-resolution microscopy (STORM). Materialia, 2020, 12, 100773.	1.3	4
441	Why synthetic virus-like nanoparticles can achieve higher cellular uptake efficiency?. Nanoscale, 2020, 12, 14911-14918.	2.8	19
442	Shear Stress-Dependent Targeting Efficiency Using Self-Assembled Gelatin–Oleic Nanoparticles in a Biomimetic Microfluidic System. Pharmaceutics, 2020, 12, 555.	2.0	16
443	Strategies for High Grafting Efficiency of Functional Ligands to Lipid Nanoemulsions for RGD-Mediated Targeting of Tumor Cells <i>In Vitro</i> . ACS Applied Bio Materials, 2020, 3, 5067-5079.	2.3	3
444	Pore confinement and surface charge effects in protein-mesoporous silica nanoparticles formulation for oral drug delivery. Microporous and Mesoporous Materials, 2020, 306, 110482.	2.2	16
445	Comparative analysis of biological effects of molybdenum(IV) sulfide in the form of nano- and microparticles on human hepatoma HepG2 cells grown in 2D and 3D models. Toxicology in Vitro, 2020, 68, 104931.	1.1	8
446	A zipped-up tunable metal coordinated cationic polymer for nanomedicine. Journal of Materials Chemistry B, 2020, 8, 1350-1358.	2.9	4
447	Enhanced Uptake and Endosomal Release of LbL Microcarriers Functionalized with Reversible Fusion Proteins. ACS Applied Bio Materials, 2020, 3, 1553-1567.	2.3	5
448	Smart Tumor Microenvironmentâ€Responsive Nanotheranostic Agent for Effective Cancer Therapy. Advanced Functional Materials, 2020, 30, 2000486.	7.8	39
449	Effect of protein corona on nanoparticle–plasma membrane and nanoparticle–biomimetic membrane interactions. Environmental Science: Nano, 2020, 7, 963-974.	2.2	20
450	Using SERS Tags to Image the Threeâ€Dimensional Structure of Complex Cell Models. Advanced Functional Materials, 2020, 30, 1909655.	7.8	44
451	Influence of Core Cross-Linking and Shell Composition of Polymeric Micelles on Immune Response and Their Interaction with Human Monocytes. Biomacromolecules, 2020, 21, 1393-1406.	2.6	13
452	Nanoparticle formulated vaccines: opportunities and challenges. Nanoscale, 2020, 12, 5746-5763.	2.8	69

#	Article	IF	CITATIONS
453	Survival Mechanisms and Xenobiotic Susceptibility of Keratinocytes Exposed to Metal-Derived Nanoparticles. Chemical Research in Toxicology, 2020, 33, 536-552.	1.7	3
454	Peptide-based targeting of immunosuppressive cells in cancer. Bioactive Materials, 2020, 5, 92-101.	8.6	41
455	Chitosan nanoparticles as a delivery platform for neurotoxin II from Androctonus australis hector scorpion venom: Assessment of toxicity and immunogenicity. Acta Tropica, 2020, 205, 105353.	0.9	13
456	Surface Charge Switchable Polymer/DNA Nanoparticles Responsive to Tumor Extracellular pH for Tumor-Triggered Enhanced Gene Delivery. Biomacromolecules, 2020, 21, 1136-1148.	2.6	39
457	Mapping 2D- and 3D-distributions of metal/metal oxide nanoparticles within cleared human ex vivo skin tissues. NanoImpact, 2020, 17, 100208.	2.4	11
458	Nanovector Assembled from Natural Egg Yolk Lipids for Tumor-Targeted Delivery of Therapeutics. ACS Applied Materials & Interfaces, 2020, 12, 7984-7994.	4.0	7
459	Cell deformation and acquired drug resistance: elucidating the major influence of drug-nanocarrier delivery systems. Journal of Materials Chemistry B, 2020, 8, 1852-1862.	2.9	10
460	Drug Delivery with Polymeric Nanocarriers—Cellular Uptake Mechanisms. Materials, 2020, 13, 366.	1.3	77
461	Polyester based polymeric nano and microparticles for pharmaceutical purposes: A review on formulation approaches. Journal of Controlled Release, 2020, 320, 265-282.	4.8	105
462	Development and evaluation of polymeric nanocapsules for cirsiliol isolated from Jordanian Teucrium polium L. as a potential anticancer nanomedicine. Journal of Drug Delivery Science and Technology, 2020, 56, 101544.	1.4	14
463	Engineering Biomaterials with Micro/Nanotechnologies for Cell Reprogramming. ACS Nano, 2020, 14, 1296-1318.	7.3	39
464	Antitumor Features of Vegetal Protein-Based Nanotherapeutics. Pharmaceutics, 2020, 12, 65.	2.0	18
465	Indocyanine Green Loaded Polymeric Nanoparticles: Physicochemical Characterization and Interaction Studies with Caco-2 Cell Line by Light and Transmission Electron Microscopy. Nanomaterials, 2020, 10, 133.	1.9	10
466	Stimuli-responsive flexible Lewis pair-modified nanoparticles for fluorescence imaging. Chemical Communications, 2020, 56, 5981-5984.	2.2	2
467	Thiosemicarbazone nano-formulation for the control of Aspergillus flavus. Environmental Science and Pollution Research, 2020, 27, 20125-20135.	2.7	6
468	Drug uptake-based chemoresistance in breast cancer treatment. Biochemical Pharmacology, 2020, 177, 113959.	2.0	88
469	Stimuli-responsive self-assembly of cellulose nanocrystals (CNCs): Structures, functions, and biomedical applications. International Journal of Biological Macromolecules, 2020, 155, 456-469.	3.6	42
470	Targeted drug delivery therapies inspired by natural taxes. Journal of Controlled Release, 2020, 322, 439-456.	4.8	17

#	Article	IF	Citations
471	Intramacrophage Delivery of Dual Drug Loaded Nanoparticles for Effective Clearance of Mycobacterium tuberculosis. Journal of Pharmaceutical Sciences, 2020, 109, 2262-2270.	1.6	25
472	Small-Molecule Probe for Sensing Serum Albumin with Consequential Self-Assembly as a Fluorescent Organic Nanoparticle for Bioimaging and Drug-Delivery Applications. ACS Applied Bio Materials, 2020, 3, 3099-3113.	2.3	20
473	Controlled Synthesis and Characterization of Micrometric Single Crystalline Magnetite With Superparamagnetic Behavior and Cytocompatibility/Cytotoxicity Assessments. Frontiers in Pharmacology, 2020, 11, 410.	1.6	10
474	New Insights on Unique Features and Role of Nanostructured Materials in Cosmetics. Cosmetics, 2020, 7, 24.	1.5	63
475	Iron Oxide Nanoparticle-Induced Autophagic Flux Is Regulated by Interplay between p53-mTOR Axis and Bcl-2 Signaling in Hepatic Cells. Cells, 2020, 9, 1015.	1.8	25
476	Physics in nanomedicine: Phenomena governing the <i>in vivo</i> performance of nanoparticles. Applied Physics Reviews, 2020, 7, .	5.5	36
477	Artificial Nanoscale Erythrocytes from Clinically Relevant Compounds for Enhancing Cancer Immunotherapy. Nano-Micro Letters, 2020, 12, 90.	14.4	12
478	Assembly of amphiphilic nucleic acid-polymer conjugates into complex superaggregates: Preparation, properties, and in vitro performance. European Polymer Journal, 2020, 131, 109692.	2.6	10
479	Homotypic targeting and drug delivery in glioblastoma cells through cell membrane-coated boron nitride nanotubes. Materials and Design, 2020, 192, 108742.	3.3	69
480	Differing Affinities of Gold Nanostars and Nanospheres toward HeLa and HepG2 Cells: Implications for Cancer Therapy. ACS Applied Nano Materials, 2020, 3, 4114-4126.	2.4	10
481	Cancer Theranostics: Bridging Conventional and Nano-photodynamic Therapy. Journal of Health and Allied Sciences NU, 2020, 10, 03-08.	0.1	1
482	The Possible Uses and Challenges of Nanomaterials in Mast Cell Research. Journal of Immunology, 2020, 204, 2021-2032.	0.4	8
483	Synthetic multi-layer nanoparticles for CRISPR-Cas9 genome editing. Advanced Drug Delivery Reviews, 2021, 168, 55-78.	6.6	46
484	Afatinib-loaded inhalable PLGA nanoparticles for localized therapy of non-small cell lung cancer (NSCLC)—development and in-vitro efficacy. Drug Delivery and Translational Research, 2021, 11, 927-943.	3.0	34
485	How Can Giant Plasma Membrane Vesicles Serve as a Cellular Model for Controlled Transfer of Nanoparticles?. Biomacromolecules, 2021, 22, 106-115.	2.6	9
486	Erlotinib entrapped in cholesterol-depleting cyclodextrin nanoparticles shows improved antitumoral efficacy in 3D spheroid tumors of the lung and the liver. Journal of Drug Targeting, 2021, 29, 439-453.	2.1	14
487	Engineering precision nanoparticles for drug delivery. Nature Reviews Drug Discovery, 2021, 20, 101-124.	21.5	3,154
488	Alternating stealth polymer coatings between administrations minimizes toxic and antibody immune responses towards nanomedicine treatment regimens. Acta Biomaterialia, 2021, 121, 527-540.	4.1	10

#	Article	IF	CITATIONS
489	Effectiveness of topical caraway essential oil loaded into nanostructured lipid carrier as a promising platform for the treatment of infected wounds. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125748.	2.3	20
490	Self-assembling a natural small molecular inhibitor that shows aggregation-induced emission and potentiates antitumor efficacy. Nanoscale Horizons, 2021, 6, 33-42.	4.1	12
491	Organ-specific toxicity of magnetic iron oxide-based nanoparticles. Nanotoxicology, 2021, 15, 167-204.	1.6	45
492	Bioactive electrospun scaffolds for wound healing applications: A comprehensive review. Polymer Testing, 2021, 93, 106952.	2.3	55
493	Imaging Cellular Aerobic Glycolysis using Carbon Dots for Early Warning of Tumorigenesis. Advanced Materials, 2021, 33, e2005096.	11.1	48
494	Sorting hidden patterns in nanoparticle performance for glioblastoma using machine learning algorithms. International Journal of Pharmaceutics, 2021, 592, 120095.	2.6	6
495	Negatively charged magnetic nanoparticles pass the blood-placenta barrier under continuous flow conditions in a time-dependent manner. Journal of Magnetism and Magnetic Materials, 2021, 521, 167535.	1.0	5
496	Amphiphilic polymeric nanoparticles encapsulating curcumin: Antioxidant, anti-inflammatory and biocompatibility studies. Materials Science and Engineering C, 2021, 121, 111793.	3.8	40
497	In vivo blockade of mononuclear phagocyte system with solid nanoparticles: Efficiency and affecting factors. Journal of Controlled Release, 2021, 330, 111-118.	4.8	44
498	Tracking endocytosis and intracellular distribution of spherical nucleic acids with correlative single-cell imaging. Nature Protocols, 2021, 16, 383-404.	5.5	16
499	Cell-bound nanoparticles for tissue targeting and immunotherapy: Engineering of the particle–membrane interface. Current Opinion in Colloid and Interface Science, 2021, 52, 101408.	3.4	16
500	Single Small Moleculeâ€Assembled Mitochondria Targeting Nanofibers for Enhanced Photodynamic Cancer Therapy In Vivo. Advanced Functional Materials, 2021, 31, 2008460.	7.8	36
501	Microemulsion-Assisted Templating of Metal-Stabilized Poly(ethylene glycol) Nanoparticles. Biomacromolecules, 2021, 22, 612-619.	2.6	6
502	Nitric Oxideâ€Driven Nanomotor for Deep Tissue Penetration and Multidrug Resistance Reversal in Cancer Therapy. Advanced Science, 2021, 8, 2002525.	5.6	93
503	Assessment of metallic nanoparticles as radioenhancers in gastric cancer therapy by Geant4 simulation and local effect model. Nuclear Instruments & Methods in Physics Research B, 2021, 488, 5-11.	0.6	7
504	Enhancing Immunity with Nanomedicine: Employing Nanoparticles to Harness the Immune System. ACS Nano, 2021, 15, 7-20.	7.3	34
505	Inducing immune tolerance with dendritic cell-targeting nanomedicines. Nature Nanotechnology, 2021, 16, 37-46.	15.6	129
506	Comparative Study of the Cellular Uptake and Intracellular Behavior of a Library of Cyclic Peptide–Polymer Nanotubes with Different Self-Assembling Properties. Biomacromolecules, 2021, 22, 710-722	2.6	9

#	Article	IF	CITATIONS
507	Enhanced Delivery of siRNA to Retinal Ganglion Cells by Intravitreal Lipid Nanoparticles of Positive Charge. Molecular Pharmaceutics, 2021, 18, 377-385.	2.3	22
508	Quantification of Cellular Drug Biodistribution Addresses Challenges in Evaluating In Vitro and In Vivo Encapsulated Drug Delivery. Advanced Therapeutics, 2021, 4, 2000125.	1.6	6
509	Synthesis, characterization, and biological applications of semiconducting polythiopheneâ€based nanoparticles. View, 2021, 2, 20200086.	2.7	22
510	Biokinetic modeling of nanoparticle interactions with lung alveolar epithelial cells: uptake, intracellular processing, and egress. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 320, R36-R43.	0.9	4
511	Impact of morphology and collagen-functionalization on the redox equilibria of nanoceria for cancer therapies. Materials Science and Engineering C, 2021, 120, 111663.	3.8	4
512	Implications of Biomolecular Corona for Molecular Imaging. Molecular Imaging and Biology, 2021, 23, 1-10.	1.3	3
513	Physical properties of nanoparticles do matter. Journal of Pharmaceutical Investigation, 2021, 51, 35-51.	2.7	41
514	Targeting Glioblastoma: Advances in Drug Delivery and Novel Therapeutic Approaches. Advanced Therapeutics, 2021, 4, 2000124.	1.6	35
515	Biopolymerâ€based Carriers for DNA Vaccine Design. Angewandte Chemie - International Edition, 2021, 60, 13225-13243.	7.2	35
516	Biopolymerâ€based Carriers for DNA Vaccine Design. Angewandte Chemie, 2021, 133, 13333-13351.	1.6	5
517	Effect of Magnesium Substitution on Structural, Magnetic and Biological Activity of Co(1-x)Mg(x)Fe2O4 Nano-colloids. Journal of Cluster Science, 2021, 32, 1003-1014.	1.7	5
518	Nanomedicines as Multifunctional Modulators of Melanoma Immune Microenvironment. Advanced Therapeutics, 2021, 4, 2000147.	1.6	2
519	Concluding Remarks and Future of Nanomedicines. , 2021, , 235-240.		0
520	Nanocarrier-based vaccine delivery systems for synthetic peptide vaccines. , 2021, , 509-535.		2
521	Nanoparticle Formulations and Delivery Strategies for Sustained Drug Release in the Lungs. , 2021, , 273-300.		0
522	Kinetics of nanoparticle uptake into and distribution in human cells. Nanoscale Advances, 2021, 3, 2196-2212.	2.2	19
523	Fabrication of polyethylene terephthalate (PET) nanoparticles with fluorescent tracers for studies in mammalian cells. Nanoscale Advances, 2021, 3, 339-346.	2.2	18
524	Transport of environmental natural organic matter coated silver nanoparticle across cell membrane based on membrane etching treatment and inhibitors. Scientific Reports, 2021, 11, 507.	1.6	2

#	Article	IF	CITATIONS
525	Nanoparticle-Mediated Adsorption of Pollutants: A Way Forward to Mitigation of Environmental Pollution. Microorganisms for Sustainability, 2021, , 317-348.	0.4	1
526	Ru(ii)/BODIPY core co-encapsulated ratiometric nanotools for intracellular O2 sensing in live cancer cells. RSC Chemical Biology, 2021, 2, 1520-1533.	2.0	6
527	Nanomaterials in Combating Plant Stress: An Approach for Future Applications. , 2021, , 561-576.		0
528	Bioprinting of Magnetically Deformable Scaffolds. ACS Biomaterials Science and Engineering, 2021, 7, 648-662.	2.6	30
529	Two-dimensional biomaterials: material science, biological effect and biomedical engineering applications. Chemical Society Reviews, 2021, 50, 11381-11485.	18.7	129
530	Phenolic-enabled nanotechnology: versatile particle engineering for biomedicine. Chemical Society Reviews, 2021, 50, 4432-4483.	18.7	163
531	Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chemical Society Reviews, 2021, 50, 5397-5434.	18.7	398
532	Supramolecular cancer nanotheranostics. Chemical Society Reviews, 2021, 50, 2839-2891.	18.7	257
533	Glyco-Nanomedicines and Their Applications in Cancer Treatment. , 2021, , 566-585.		1
534	Evidence of protein coronas around soft nanoparticles regardless of the chemical nature of the outer surface: structural features and biological consequences. Journal of Materials Chemistry B, 2021, 9, 2073-2083.	2.9	5
535	Fabrication strategies for functionalized nanomaterials. , 2021, , 55-95.		7
536	Computed tomography imaging of macrophage phagocytic activity in abdominal aortic aneurysm. Theranostics, 2021, 11, 5876-5888.	4.6	6
537	Nebulised surface-active hybrid nanoparticles of voriconazole for pulmonary Aspergillosis demonstrate clathrin-mediated cellular uptake, improved antifungal efficacy and lung retention. Journal of Nanobiotechnology, 2021, 19, 19.	4.2	23
538	Assessment of toxicity of metal oxide and hydroxide nanoparticles using the QSAR modeling approach. Environmental Science: Nano, 2021, 8, 3395-3407.	2.2	13
539	Amphiphilic Polymeric Nanoparticles Modified with a Protease-Resistant Peptide Shuttle for the Delivery of SN-38 in Diffuse Intrinsic Pontine Glioma. ACS Applied Nano Materials, 2021, 4, 1314-1329.	2.4	15
540	Selenium Nanoparticles by Moderating Oxidative Stress Promote Differentiation of Mesenchymal Stem Cells to Osteoblasts. International Journal of Nanomedicine, 2021, Volume 16, 331-343.	3.3	28
541	Elucidating the role of precursors in synthesizing single crystalline lithium niobate nanomaterials: a study of effects of lithium precursors on nanoparticle quality. Nanoscale, 2021, 13, 3214-3226.	2.8	5
542	Manipulating the interactions between the lipid bilayer and triblock Janus nanoparticles: insight from dissipative particle dynamics. Molecular Systems Design and Engineering, 2021, 6, 156-162.	1.7	1

#	Article	IF	CITATIONS
543	Delivery of Natural Agents by Means of Mesoporous Silica Nanospheres as a Promising Anticancer Strategy. Pharmaceutics, 2021, 13, 143.	2.0	30
544	Advanced drug delivery systems in blood cancer. , 2021, , 141-154.		Ο
546	The role of morphology, shell composition and protein corona formation in Au/Fe ₃ O ₄ composite nanoparticle mediated macrophage responses. Journal of Materials Chemistry B, 2021, 9, 6387-6395.	2.9	4
548	Mechanisms of Genotoxicity and Oxidative Stress Induced by Engineered Nanoparticles in Plants. , 2021, , 151-197.		1
549	Quantifying nanotherapeutic penetration using a hydrogel-based microsystem as a new 3D <i>in vitro</i> platform. Lab on A Chip, 2021, 21, 2495-2510.	3.1	15
550	Imaging of metal-based nanoparticles in tissue and cell samples by laser ablation inductively coupled plasma mass spectrometry. Comprehensive Analytical Chemistry, 2021, , 173-240.	0.7	0
551	Drug Delivery in Respiratory Diseases: Current Opportunities, Molecular and Cellular Mechanism, and Future Challenges. , 2021, , 847-902.		0
552	Nanotoxicological Approaches Towards Nanosafety. Environmental Chemistry for A Sustainable World, 2021, , 195-224.	0.3	1
553	Curcumin Loaded Polymeric vs. Lipid Nanoparticles: Antioxidant Effect on Normal and Hypoxic Olfactory Ensheathing Cells. Nanomaterials, 2021, 11, 159.	1.9	17
554	NaYbF ₄ @NaYF ₄ Nanoparticles: Controlled Shell Growth and Shape-Dependent Cellular Uptake. ACS Applied Materials & Interfaces, 2021, 13, 2327-2335.	4.0	22
555	Biological behavior of nanoparticles with Zr-89 for cancer targeting based on their distinct surface composition. Journal of Materials Chemistry B, 2021, 9, 8237-8245.	2.9	11
556	Mechanisms of toxicity of engineered nanoparticles: adverse outcome pathway for dietary silver nanoparticles in mussels. , 2021, , 39-82.		Ο
558	Layer-by-Layer technique as a versatile tool for gene delivery applications. Expert Opinion on Drug Delivery, 2021, 18, 1047-1066.	2.4	17
559	Perspectives of Nanoparticles in Male Infertility: Evidence for Induced Abnormalities in Sperm Production. International Journal of Environmental Research and Public Health, 2021, 18, 1758.	1.2	35
560	Cellular uptake of a cationic amphiphilic fluorophore in the form of assemblies via Clathrin-dependent endocytosis. Materials and Design, 2021, 200, 109464.	3.3	5
561	Frankincense, an aromatic medicinal exudate of Boswellia carterii used to mediate silver nanoparticle synthesis: Evaluation of bacterial molecular inhibition and its pathway. Journal of Drug Delivery Science and Technology, 2021, 61, 102337.	1.4	7
562	Core-Crosslinked Fluorescent Worm-Like Micelles for Glucose-Mediated Drug Delivery. Biomacromolecules, 2021, 22, 1458-1471.	2.6	13
563	Cell–Substrate Interactions Lead to Internalization and Localization of Layered MoS ₂ Nanosheets. ACS Applied Nano Materials, 2021, 4, 2002-2010.	2.4	5

#	Article	IF	CITATIONS
564	Graphene Quantum Dots Disrupt Embryonic Stem Cell Differentiation by Interfering with the Methylation Level of <i>Sox</i> 2. Environmental Science & Technology, 2021, 55, 3144-3155.	4.6	25
565	Synthesis of Polyhedral Metal–Organic Framework@Mesoporous Silica Hybrid Nanocomposites with Branched Shapes. ACS Applied Bio Materials, 2021, 4, 1221-1228.	2.3	4
566	Iron Oxide Nanoparticle Coatings Dictate Cell Outcomes Despite the Influence of Protein Coronas. ACS Applied Materials & Interfaces, 2021, 13, 7924-7944.	4.0	27
567	Quantum Dot Nanomedicine Formulations Dramatically Improve Pharmacological Properties and Alter Uptake Pathways of Metformin and Nicotinamide Mononucleotide in Aging Mice. ACS Nano, 2021, 15, 4710-4727.	7.3	12
568	pH-Sensitive Nanoparticles Developed and Optimized Using Factorial Design for Oral Delivery of Gliclazide. Journal of Pharmaceutical Innovation, 2022, 17, 638-651.	1.1	4
569	Cytoplasmic Trafficking of Nanoparticles Delivers Plasmid DNA for Macrophage Gene-editing. Current Gene Therapy, 2021, 21, 349-360.	0.9	3
570	Tailor-made oligonucleotide-loaded lipid-polymer nanosystems designed for bone gene therapy. Drug Delivery and Translational Research, 2021, 11, 598-607.	3.0	9
571	Nano–bio surface interactions, cellular internalisation in cancer cells and eâ€data portals of nanomaterials: A review. IET Nanobiotechnology, 2021, 15, 519-531.	1.9	2
572	In Vivo Production of RNA Aptamers and Nanoparticles: Problems and Prospects. Molecules, 2021, 26, 1422.	1.7	3
573	Exploring the transformability of polymer-lipid hybrid nanoparticles and nanomaterial-biology interplay to facilitate tumor penetration, cellular uptake and intracellular targeting of anticancer drugs. Expert Opinion on Drug Delivery, 2021, 18, 1-14.	2.4	10
574	High-Throughput Screening Platform for Nanoparticle-Mediated Alterations of DNA Repair Capacity. ACS Nano, 2021, 15, 4728-4746.	7.3	14
575	Optimizing the Polymer Cloak for Upconverting Nanoparticles: An Evaluation of Bioactivity and Optical Performance. ACS Applied Materials & amp; Interfaces, 2021, 13, 16142-16154.	4.0	15
576	Nanomedicine-driven molecular targeting, drug delivery, and therapeutic approaches to cancer chemoresistance. Drug Discovery Today, 2021, 26, 724-739.	3.2	25
577	Biocompatibility of nanomaterials and their immunological properties. Biomedical Materials (Bristol), 2021, 16, 042005.	1.7	54
578	Electromagnetically Stimuli-Responsive Nanoparticles-Based Systems for Biomedical Applications: Recent Advances and Future Perspectives. Nanomaterials, 2021, 11, 848.	1.9	29
579	Nearâ€infrared responsive targeted drug delivery system that offer chemoâ€photothermal therapy against bacterial infection. Nano Select, 2021, 2, 1750-1769.	1.9	14
580	A Theranostic Cellulose Nanocrystalâ€Based Drug Delivery System with Enhanced Retention in Pulmonary Metastasis of Melanoma. Small, 2021, 17, e2007705.	5.2	24
581	Nanomaterials Enhance the Immunomodulatory Effect of Molecular Targeted Therapy. International Journal of Nanomedicine, 2021, Volume 16, 1631-1661.	3.3	19

#	Article	IF	CITATIONS
582	Point-source burst of coordination polymer nanoparticles for tri-modality cancer therapy. Biomaterials, 2021, 270, 120690.	5.7	21
583	Oxygen-Carrying Polymer Nanoconstructs for Radiodynamic Therapy of Deep Hypoxic Malignant Tumors. Biomedicines, 2021, 9, 322.	1.4	11
584	Biological and Medical Applications of Calcium Phosphate Nanoparticles. Chemistry - A European Journal, 2021, 27, 7471-7488.	1.7	57
585	Chlorin e6-EGF conjugated gold nanoparticles as a nanomedicine based therapeutic agent for triple negative breast cancer. Photodiagnosis and Photodynamic Therapy, 2021, 33, 102186.	1.3	22
586	Charge onversion Strategies for Nucleic Acid Delivery. Advanced Functional Materials, 2021, 31, 2011103.	7.8	17
587	Differences in surface chemistry of iron oxide nanoparticles result in different routes of internalization. Beilstein Journal of Nanotechnology, 2021, 12, 270-281.	1.5	8
588	Anti-HER2 PLGA-PEG polymer nanoparticle containing gold nanorods and paclitaxel for laser-activated breast cancer detection and therapy. Biomedical Optics Express, 2021, 12, 2171.	1.5	9
589	Colloidal nutrition science to understand food-body interaction. Trends in Food Science and Technology, 2021, 109, 352-364.	7.8	15
590	Ultrasound Triggered Coâ€Delivery of Therapeutic MicroRNAs and a Triple Suicide Gene Therapy Vector by Using Biocompatible Polymer Nanoparticles for Improved Cancer Therapy in Mouse Models. Advanced Therapeutics, 2021, 4, 2000197.	1.6	4
591	Highway to Success—Developing Advanced Polymer Therapeutics. Advanced Therapeutics, 2021, 4, 2000285.	1.6	16
592	Chitosan Nanomedicine in Cancer Therapy: Targeted Delivery and Cellular Uptake. Macromolecular Bioscience, 2021, 21, e2100005.	2.1	24
593	Hybrid mesoporous nanoparticles with highly integrated polydopamine for pH-responsive membrane permeation and drug delivery. Colloids and Interface Science Communications, 2021, 41, 100385.	2.0	12
594	Development and immunobiological evaluation of nanoparticles containing an immunodominant epitope of herpes simplex virus. IET Nanobiotechnology, 2021, 15, 532-544.	1.9	2
595	Compressibility of Multicomponent, Charged Model Biomembranes Tunes Permeation of Cationic Nanoparticles. Langmuir, 2021, 37, 3550-3562.	1.6	3
596	Recent Progress in Pure Organic Room Temperature Phosphorescence of Small Molecular Host–Guest Systems. , 2021, 3, 379-397.		155
597	Complexity of the Nano-Bio Interface and the Tortuous Path of Metal Oxides in Biological Systems. Antioxidants, 2021, 10, 547.	2.2	5
598	miR-124: A Promising Therapeutic Target for Central Nervous System Injuries and Diseases. Cellular and Molecular Neurobiology, 2022, 42, 2031-2053.	1.7	13
599	Nanotechnology based solutions for anti-leishmanial impediments: a detailed insight. Journal of Nanobiotechnology, 2021, 19, 106.	4.2	32

#	Article	IF	CITATIONS
600	Challenge to overcome current limitations of cell-penetrating peptides. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2021, 1869, 140604.	1.1	69
601	Single-cell analysis reveals effective siRNA delivery in brain tumors with microbubble-enhanced ultrasound and cationic nanoparticles. Science Advances, 2021, 7, .	4.7	47
602	A Systematic Strategy of Combinational Blow for Overcoming Cascade Drug Resistance via NIR‣ightâ€Triggered Hyperthermia. Advanced Materials, 2021, 33, e2100599.	11.1	78
603	In vitro antiâ€inflammatory and antioxidant activities of ZnFe ₂ O ₄ and CrFe ₂ O ₄ nanoparticles synthesized using <i>Boswellia carteri</i> resin. Journal of Food Biochemistry, 2021, 45, e13730.	1.2	13
604	Au@Pt Core-Shell Nanoparticle Bioconjugates for the Therapy of HER2+ Breast Cancer and Hepatocellular Carcinoma. Model Studies on the Applicability of 193mPt and 195mPt Radionuclides in Auger Electron Therapy. Molecules, 2021, 26, 2051.	1.7	14
605	Impact of micron-sized diamond particles on barrier cells of the human small intestine. Diamond and Related Materials, 2021, 114, 108307.	1.8	4
606	Magnetoâ€conducting multifunctional Janus microbots for intracellular delivery of biomolecules. Journal of Tissue Engineering and Regenerative Medicine, 2021, 15, 625-633.	1.3	2
607	Exploration and insights into the cellular internalization and intracellular fate of amphiphilic polymeric nanocarriers. Acta Pharmaceutica Sinica B, 2021, 11, 903-924.	5.7	83
608	Live Imaging of Calciprotein Particle Clearance and Receptor Mediated Uptake: Role of Calciprotein Monomers. Frontiers in Cell and Developmental Biology, 2021, 9, 633925.	1.8	28
609	Effect of physicochemical properties on inÂvivo fate of nanoparticle-based cancer immunotherapies. Acta Pharmaceutica Sinica B, 2021, 11, 886-902.	5.7	42
610	Engineering silk sericin decorated zeolitic imidazolate framework-8 nanoplatform to enhance chemotherapy. Colloids and Surfaces B: Biointerfaces, 2021, 200, 111594.	2.5	16
611	Interactive Effects of Biosynthesized Nanocomposites and Their Antimicrobial and Cytotoxic Potentials. Nanomaterials, 2021, 11, 903.	1.9	11
612	SOD mimetic cerium oxide nanorods protect human hepatocytes from oxidative stress. Emergent Materials, 2021, 4, 1305-1317.	3.2	13
613	A general configurational strategy to quencher-free aptasensors. Biosensors and Bioelectronics, 2021, 178, 113025.	5.3	6
614	Advanced nanomedicine and cancer: Challenges and opportunities in clinical translation. International Journal of Pharmaceutics, 2021, 599, 120438.	2.6	56
615	Platinum(II) <i>N</i> -heterocyclic carbene complexes arrest metastatic tumor growth. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	14
617	Sprayable hydrogel dressing accelerates wound healing with combined reactive oxygen species-scavenging and antibacterial abilities. Acta Biomaterialia, 2021, 124, 219-232.	4.1	179
618	In vitro cytotoxicity study of superparamagnetic iron oxide and silica nanoparticles on pneumocyte organelles. Toxicology in Vitro, 2021, 72, 105071.	1.1	6

#	Article	IF	CITATIONS
619	pHâ€responsive zwitterionic carbon dots for detection of rituximab antibody. Luminescence, 2021, 36, 1198-1208.	1.5	7
620	Anti-Inflammatory Effect and Cellular Uptake Mechanism of Carbon Nanodots in in Human Microvascular Endothelial Cells. Nanomaterials, 2021, 11, 1247.	1.9	8
621	Morphological and biological properties of silica nanoparticles for CRTC3-siRNA delivery and downregulation of the RGS2 expression in preadipocytes. Journal of Biomaterials Applications, 2021, 36, 626-637.	1.2	0
623	Exploring quantitative cellular bioimaging and assessment of CdSe/ZnS quantum dots cellular uptake in single cells, using ns-LA-ICP-SFMS. Talanta, 2021, 227, 122162.	2.9	8
624	A participant-derived xenograft model of HIV enables long-term evaluation of autologous immunotherapies. Journal of Experimental Medicine, 2021, 218, .	4.2	9
625	All-trans retinoic acid in anticancer therapy: how nanotechnology can enhance its efficacy and resolve its drawbacks. Expert Opinion on Drug Delivery, 2021, 18, 1335-1354.	2.4	7
626	Mesoporous silica nanoparticle: Heralding a brighter future in cancer nanomedicine. Microporous and Mesoporous Materials, 2021, 319, 110967.	2.2	23
627	Role of Oxidative Stress in La2O3 Nanoparticle-Induced Cytotoxicity and Apoptosis in CHANG and HuH-7 Cells. International Journal of Nanomedicine, 2021, Volume 16, 3487-3496.	3.3	9
628	Multistage signal-interactive nanoparticles improve tumor targeting through efficient nanoparticle-cell communications. Cell Reports, 2021, 35, 109131.	2.9	6
629	Endophytic Nanotechnology: An Approach to Study Scope and Potential Applications. Frontiers in Chemistry, 2021, 9, 613343.	1.8	35
630	Non-Viral Vector-Mediated Gene Therapy for ALS: Challenges and Future Perspectives. Molecular Pharmaceutics, 2021, 18, 2142-2160.	2.3	31
631	Fucoidan/chitosan nanoparticles functionalized with anti-ErbB-2 target breast cancer cells and impair tumor growth in vivo. International Journal of Pharmaceutics, 2021, 600, 120548.	2.6	15
632	Engineering heterogeneity of precision nanoparticles for biomedical delivery and therapy. View, 2021, 2, 20200067.	2.7	29
633	Numerical analysis of the impact of cytoskeletal actin filament density alterations onto the diffusive vesicle-mediated cell transport. PLoS Computational Biology, 2021, 17, e1008784.	1.5	6
634	Nano-encapsulation of hydroxytyrosol into formulated nanogels improves therapeutic effects against hepatic steatosis: An in vitro study. Materials Science and Engineering C, 2021, 124, 112080.	3.8	12
635	Surface Functionalization of PLGA Nanoparticles to Increase Transport across the BBB for Alzheimer's Disease. Applied Sciences (Switzerland), 2021, 11, 4305.	1.3	26
636	Nano-bio interfaces effect of two-dimensional nanomaterials and their applications in cancer immunotherapy. Acta Pharmaceutica Sinica B, 2021, 11, 3447-3464.	5.7	35
637	Interdependency of influential parameters in therapeutic nanomedicine. Expert Opinion on Drug Delivery, 2021, 18, 1379-1394.	2.4	8
#	Article	IF	CITATIONS
-----	---	-----	-----------
638	Can the Shape of Nanoparticles Enable the Targeting to Cancer Cells over Healthy Cells?. Advanced Functional Materials, 2021, 31, 2007880.	7.8	20
639	Multi-functional cerium oxide nanoparticles regulate inflammation and enhance osteogenesis. Materials Science and Engineering C, 2021, 124, 112041.	3.8	35
640	Pharmacokinetic and pharmacodynamic evaluation of nasal liposome and nanoparticle based rivastigmine formulations in acute and chronic models of Alzheimer's disease. Naunyn-Schmiedeberg's Archives of Pharmacology, 2021, 394, 1737-1755.	1.4	27
641	Challenges in Oral Drug Delivery and Applications of Lipid Nanoparticles as Potent Oral Drug Carriers for Managing Cardiovascular Risk Factors. Current Pharmaceutical Biotechnology, 2021, 22, 892-905.	0.9	9
642	Supramolecular Nanosubstrateâ€Mediated Delivery for CRISPR/Cas9 Gene Disruption and Deletion. Small, 2021, 17, 2100546.	5.2	8
643	Antibody conjugated lipid nanoparticles as a targeted drug delivery system for hydrophobic pharmaceuticals. European Journal of Pharmaceutical Sciences, 2021, 161, 105777.	1.9	10
644	The Effectiveness of Nanoparticles on Gene Therapy for Glioblastoma Cells Apoptosis: A Systematic Review. Current Gene Therapy, 2021, 21, 230-245.	0.9	8
645	Intravenous Delivery of Lungâ€Targeted Nanofibers for Pulmonary Hypertension in Mice. Advanced Healthcare Materials, 2021, 10, e2100302.	3.9	10
646	Biodegradable and Peroxidaseâ€Mimetic Boron Oxynitride Nanozyme for Breast Cancer Therapy. Advanced Science, 2021, 8, e2101184.	5.6	27
647	Bioinert, Stealth or Interactive: How Surface Chemistry of Nanocarriers Determines Their Fate In Vivo. Advanced Functional Materials, 2021, 31, 2103347.	7.8	41
648	Pre-coating of protein modulate patterns of corona formation, physiological stability and cytotoxicity of silver nanoparticles. Science of the Total Environment, 2021, 772, 144797.	3.9	22
649	Multiple Blockades of the HGF/Met Signaling Pathway for Metastasis Suppression Using Nanoinhibitors. ACS Applied Materials & Interfaces, 2021, 13, 30350-30358.	4.0	5
650	A Focus on "Bio―in Bio–Nanoscience: The Impact of Biological Factors on Nanomaterial Interactions. Advanced Healthcare Materials, 2021, 10, e2100574.	3.9	23
651	Tailorable Membraneâ€Penetrating Nanoplatform for Highly Efficient Organelleâ€Specific Localization. Small, 2021, 17, 2101440.	5.2	2
652	Cell Cycle Control of Nanoplastics Internalization in Phytoplankton. ACS Nano, 2021, 15, 12237-12248.	7.3	33
653	Nanomedicine: Photo-activated nanostructured titanium dioxide, as a promising anticancer agent. , 2021, 222, 107795.		32
654	Gold nanoparticles and cancer: Detection, diagnosis and therapy. Seminars in Cancer Biology, 2021, 76, 27-37.	4.3	34
655	Boron-Rich Boron Carbide Nanoparticles as a Carrier in Boron Neutron Capture Therapy: Their Influence on Tumor and Immune Phagocytic Cells. Materials, 2021, 14, 3010.	1.3	9

#	Article	IF	CITATIONS
656	Bioactivity of Chitosan-Based Particles Loaded with Plant-Derived Extracts for Biomedical Applications: Emphasis on Antimicrobial Fiber-Based Systems. Marine Drugs, 2021, 19, 359.	2.2	23
657	Magnetic Nanoparticles in Targeted Drug Delivery: a Review. Journal of Superconductivity and Novel Magnetism, 2021, 34, 1709-1735.	0.8	100
658	Evaluation of size, shape, and charge effect on the biological interaction and cellular uptake of cerium oxide nanostructures. Nanotechnology, 2021, 32, 355101.	1.3	7
659	DNA Origami Penetration in Cell Spheroid Tissue Models is Enhanced by Wireframe Design. Advanced Materials, 2021, 33, e2008457.	11.1	39
660	A Quantitative Pharmacology Model of Exosome-Mediated Drug Efflux and Perturbation-Induced Synergy. Pharmaceutics, 2021, 13, 997.	2.0	5
661	A stable biocompatible porous coordination cage promotes in vivo liver tumor inhibition. Nano Research, 2021, 14, 3407-3415.	5.8	16
662	Nanoengineering Branched Star Polymerâ€Based Formulations: Scope, Strategies, and Advances. Macromolecular Bioscience, 2021, 21, e2100105.	2.1	15
663	Emerging Biomedical Applications Based on the Response of Magnetic Nanoparticles to Time-Varying Magnetic Fields. Annual Review of Chemical and Biomolecular Engineering, 2021, 12, 163-185.	3.3	24
664	Requirements for Designing an Effective Metallic Nanoparticle (NP)-Boosted Radiation Therapy (RT). Cancers, 2021, 13, 3185.	1.7	22
665	Formulation and optimization of bioinspired rosemary extract loaded PEGylated nanoliposomes for potential treatment of Alzheimer's disease using design of experiments. Journal of Drug Delivery Science and Technology, 2021, 63, 102434.	1.4	12
666	Boron phenyl alanine targeted ionic liquid decorated chitosan nanoparticles for mitoxantrone delivery to glioma cell line. Pharmaceutical Development and Technology, 2021, 26, 899-909.	1.1	12
667	Synergistic Effect Induced by Gold Nanoparticles with Polyphenols Shell during Thermal Therapy: Macrophage Inflammatory Response and Cancer Cell Death Assessment. Cancers, 2021, 13, 3610.	1.7	13
668	On the therapeutic targets and pharmacological treatments for pain relief following spinal cord injury: A mechanistic review. Biomedicine and Pharmacotherapy, 2021, 139, 111563.	2.5	17
669	Polymer nanoparticles-preparations, applications and future insights: a concise review. Polymer-Plastics Technology and Materials, 0, , 1-29.	0.6	14
670	In Vitro Cellular Uptake Studies of Self-Assembled Fluorinated Nanoparticles Labelled with Antibodies. Nanomaterials, 2021, 11, 1906.	1.9	1
671	Radiosensitization Effect of Gold Nanoparticles in Proton Therapy. Frontiers in Public Health, 2021, 9, 699822.	1.3	28
672	The Nanosystems Involved in Treating Lung Cancer. Life, 2021, 11, 682.	1.1	22
673	Silencing of HMGA2 by siRNA Loaded Methotrexate Functionalized Polyamidoamine Dendrimer for Human Breast Cancer Cell Therapy. Genes, 2021, 12, 1102.	1.0	15

#	Article	IF	CITATIONS
674	In vivo spectroscopic photoacoustic imaging and laserâ€induced nanoparticle vaporization for antiâ€HER2 breast cancer. Journal of Biophotonics, 2021, 14, e202100099.	1.1	5
675	Cellular Uptake Pathways of Nanoparticles: Process of Endocytosis and Factors Affecting their Fate. Current Pharmaceutical Biotechnology, 2022, 23, 679-706.	0.9	15
676	Cellular internalization and release of polystyrene microplastics and nanoplastics. Science of the Total Environment, 2021, 779, 146523.	3.9	121
677	Cerium oxide nanoparticles protect against irradiation-induced cellular damage while augmenting osteogenesis. Materials Science and Engineering C, 2021, 126, 112145.	3.8	19
678	Biomedical application of graphitic carbon nitrides: tissue deposition in vivo, induction of reactive oxygen species (ROS) and cell viability in tumor cells. Nanotechnology, 2021, 32, 435301.	1.3	5
679	Amplified antitumor efficacy by a targeted drug retention and chemosensitization strategy-based "combo―nanoagent together with PD-L1 blockade in reversing multidrug resistance. Journal of Nanobiotechnology, 2021, 19, 200.	4.2	18
680	pHâ€Triggered Aggregation of Cold Nanoparticles for Enhanced Labeling and Longâ€Term CT Imaging Tracking of Stem Cells in Pulmonary Fibrosis Treatment. Small, 2021, 17, e2101861.	5.2	23
681	Obstacles impeding the development of nanocarriers for anticancer drugs. Nanomedicine, 2021, 16, 1447-1450.	1.7	0
682	Shear stress and ROS-responsive biomimetic micelles for atherosclerosis via ROS consumption. Materials Science and Engineering C, 2021, 126, 112164.	3.8	20
683	Coating an adenovirus with functionalized gold nanoparticles favors uptake, intracellular trafficking and anti-cancer therapeutic efficacy. Acta Biomaterialia, 2021, 134, 593-604.	4.1	7
684	Degradable poly(catechin) nanoparticles as a versatile therapeutic agent. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022, 71, 1104-1115.	1.8	13
685	Nanoparticles for Stem Cell Tracking and the Potential Treatment of Cardiovascular Diseases. Frontiers in Cell and Developmental Biology, 2021, 9, 662406.	1.8	10
686	Organic Nanocarriers for Bevacizumab Delivery: An Overview of Development, Characterization and Applications. Molecules, 2021, 26, 4127.	1.7	7
687	Simulation of nanoparticles interacting with a cell membrane: probing the structural basis and potential biomedical application. NPG Asia Materials, 2021, 13, .	3.8	46
688	Uptake and Toxicity of Respirable Carbon-Rich Uranium-Bearing Particles: Insights into the Role of Particulates in Uranium Toxicity. Environmental Science & Technology, 2021, 55, 9949-9957.	4.6	10
689	Use of Nanoformulation to Target Macrophages for Disease Treatment. Advanced Functional Materials, 2021, 31, 2104487.	7.8	17
690	Study of Uptake Mechanisms of Halloysite Nanotubes in Different Cell Lines. International Journal of Nanomedicine, 2021, Volume 16, 4755-4768.	3.3	14
691	Neuroinvasiveness of the MR766 strain of Zika virus in IFNAR-/-Âmice maps to prM residues conserved amongst African genotype viruses. PLoS Pathogens, 2021, 17, e1009788.	2.1	18

#	Article	IF	CITATIONS
692	The role of sex as a biological variable in the efficacy and toxicity of therapeutic nanomedicine. Advanced Drug Delivery Reviews, 2021, 174, 337-347.	6.6	21
693	AgNP-PVP-meglumine antimoniate nanocomposite reduces Leishmania amazonensis infection in macrophages. BMC Microbiology, 2021, 21, 211.	1.3	7
694	State of the Art and Perspectives on the Biofunctionalization of Fluorescent Metal Nanoclusters and Carbon Quantum Dots for Targeted Imaging and Drug Delivery. Langmuir, 2021, 37, 9281-9301.	1.6	24
695	Characterization and toxicity evaluation of air-borne particles released by grinding from two dental resin composites in vitro. Dental Materials, 2021, 37, 1121-1133.	1.6	5
696	How can exposure to engineered nanomaterials influence our epigenetic code? A review of the mechanisms and molecular targets. Mutation Research - Reviews in Mutation Research, 2021, 788, 108385.	2.4	9
697	Glycan Nanostructures of Human Coronaviruses. International Journal of Nanomedicine, 2021, Volume 16, 4813-4830.	3.3	7
698	Uptake of Upconverting Nanoparticles by Breast Cancer Cells: Surface Coating versus the Protein Corona. ACS Applied Materials & Interfaces, 2021, 13, 39076-39087.	4.0	23
699	Evaluation of the Benefits of Microfluidic-Assisted Preparation of Polymeric Nanoparticles for DNA Delivery. Materials Science and Engineering C, 2021, 127, 112243.	3.8	17
700	Diatom-like silica–protein nanocomposites for sustained drug delivery of ruthenium polypyridyl complexes. Journal of Inorganic Biochemistry, 2021, 221, 111489.	1.5	9
701	Evaluation of Cellular Absorption and Metabolism of β-Carotene Loaded in Nanocarriers after <i>In Vitro</i> Digestion. Journal of Agricultural and Food Chemistry, 2021, 69, 9383-9394.	2.4	5
702	Tailoring drug co-delivery nanosystem for mitigating U-87 stem cells drug resistance. Drug Delivery and Translational Research, 2022, 12, 1253-1269.	3.0	12
703	Cellular Uptake of Three Different Nanoparticles in an Inflammatory Arthritis Scenario versus Normal Conditions. Molecular Pharmaceutics, 2021, 18, 3235-3246.	2.3	9
704	Addressing Particle Compositional Heterogeneities in Superâ€Resolutionâ€Enhanced Liveâ€Cell Ratiometric pH Sensing with Ultrasmall Fluorescent Core–Shell Aluminosilicate Nanoparticles. Advanced Functional Materials, 2021, 31, 2106144.	7.8	9
705	Targeting acute myeloid leukemia cells by CD33 receptor-specific MoS2-based nanoconjugates. Biomedical Materials (Bristol), 2021, 16, 055009.	1.7	1
706	In vitro cellular activity of maghemite/cerium oxide magnetic nanoparticles with antioxidant properties. Colloids and Surfaces B: Biointerfaces, 2021, 204, 111824.	2.5	10
707	Study on the bioavailability of stevioside-encapsulized lutein and its mechanism. Food Chemistry, 2021, 354, 129528.	4.2	18
708	The role of the electrokinetic charge of neurotrophis-based nanocarriers: protein distribution, toxicity, and oxidative stress in in vitro setting. Journal of Nanobiotechnology, 2021, 19, 258.	4.2	6
709	Enhanced Biomechanically Mediated "Phagocytosis―in Detached Tumor Cells. Biomedicines, 2021, 9, 947.	1.4	1

#	Article	IF	CITATIONS
710	Unmodified single nanoparticles undergo a motion-pattern transition on the plasma membrane before cellular uptake. Nano Today, 2021, 39, 101158.	6.2	4
711	Activatable luminescent probes for imaging brain diseases. Nano Today, 2021, 39, 101239.	6.2	9
712	Interaction of folate – Linked silica nanoparticles with HeLa cells: Analysis and investigation the effect of polymer length. Saudi Pharmaceutical Journal, 2021, 29, 1083-1089.	1.2	0
713	Cellulose nanocrystals in cancer diagnostics and treatment. Journal of Controlled Release, 2021, 336, 207-232.	4.8	31
714	Balancing loading, cellular uptake, and toxicity of gelatinâ€pluronic nanocomposite for drug delivery: Influence of <scp>HLB</scp> of pluronic. Journal of Biomedical Materials Research - Part A, 2022, 110, 304-315.	2.1	9
715	Quantum dots as a theranostic approach in Alzheimer's disease: a systematic review. Nanomedicine, 2021, 16, 1595-1611.	1.7	23
716	The Ocular Gene Delivery Landscape. Biomolecules, 2021, 11, 1135.	1.8	11
717	Topical cellulose nanocrystals-stabilized nanoemulgel loaded with ciprofloxacin HCl with enhanced antibacterial activity and tissue regenerative properties. Journal of Drug Delivery Science and Technology, 2021, 64, 102553.	1.4	16
718	Advances and Perspectives in the Use of Carbon Nanotubes in Vaccine Development. International Journal of Nanomedicine, 2021, Volume 16, 5411-5435.	3.3	19
719	Peptide-Assisted Nucleic Acid Delivery Systems on the Rise. International Journal of Molecular Sciences, 2021, 22, 9092.	1.8	11
720	Using Gold-Nanorod-Filled Mesoporous Silica Nanobeads for Enhanced Radiotherapy of Oral Squamous Carcinoma. Nanomaterials, 2021, 11, 2235.	1.9	13
721	Lipid nanocapsules co-encapsulating paclitaxel and salinomycin for eradicating breast cancer and cancer stem cells. Colloids and Surfaces B: Biointerfaces, 2021, 204, 111775.	2.5	24
722	Assessment of cytotoxicity profile of gadolinium oxide nanorods and the analogous surface-functionalized nanorods. Nano Futures, 0, , .	1.0	4
723	Stand-Alone CuFeSe2 (Eskebornite) Nanosheets for Photothermal Cancer Therapy. Nanomaterials, 2021, 11, 2008.	1.9	9
724	Intracellular Dynamic Assembly of Deepâ€Red Emitting Supramolecular Nanostructures Based on the Pt…Pt Metallophilic Interaction. Advanced Materials, 2021, 33, e2008613.	11.1	17
725	Engineered nanomaterials for biomedical applications and their toxicity: a review. Environmental Chemistry Letters, 2022, 20, 445-468.	8.3	32
726	A bimetallic nanocatalyst for light-free oxygen sensitization therapy. Cell Reports Physical Science, 2021, 2, 100538.	2.8	2
727	Modifications of polysaccharide-based biomaterials under structure-property relationship for biomedical applications. Carbohydrate Polymers, 2021, 266, 118097.	5.1	70

#	Article	IF	CITATIONS
728	Surface charge-dependent mitochondrial response to similar intracellular nanoparticle contents at sublethal dosages. Particle and Fibre Toxicology, 2021, 18, 36.	2.8	11
729	Multi-organ targeting of HIV-1 viral reservoirs with etravirine loaded nanostructured lipid carrier: An in-vivo proof of concept. European Journal of Pharmaceutical Sciences, 2021, 164, 105916.	1.9	17
730	Cholesterol Hinders the Passive Uptake of Amphiphilic Nanoparticles into Fluid Lipid Membranes. Journal of Physical Chemistry Letters, 2021, 12, 8583-8590.	2.1	12
731	Selenium nanoparticles with various morphology for antiangiogenesis through bFGF-mediated P13K/AKT signaling pathways. Nanotechnology, 2021, 32, 485102.	1.3	2
732	Non-spherical nanostructures in nanomedicine: From noble metal nanorods to transition metal dichalcogenide nanosheets. Applied Materials Today, 2021, 24, 101107.	2.3	16
733	Overview on toxicity of nanoparticles, it's mechanism, models used in toxicity studies and disposal methods – A review. Biocatalysis and Agricultural Biotechnology, 2021, 36, 102117.	1.5	35
734	Glimpse into the Cellular Internalization and Intracellular Trafficking of Lipid- Based Nanoparticles in Cancer Cells. Anti-Cancer Agents in Medicinal Chemistry, 2022, 22, 1897-1912.	0.9	1
735	Raman spectroscopy and silver nanoparticles for efficient detection of membrane proteins in living cells. Nanotechnology, 2021, 32, 495101.	1.3	2
736	Molecular targets and approaches to restore autophagy and lysosomal capacity in neurodegenerative disorders. Molecular Aspects of Medicine, 2021, 82, 101018.	2.7	8
737	Current approaches for the exploration of antimicrobial activities of nanoparticles. Science and Technology of Advanced Materials, 2021, 22, 885-907.	2.8	25
738	Revisiting inorganic nanoparticles as promising therapeutic agents: A paradigm shift in oncological theranostics. European Journal of Pharmaceutical Sciences, 2021, 164, 105892.	1.9	32
739	Cancer-Nano-Interaction: From Cellular Uptake to Mechanobiological Responses. International Journal of Molecular Sciences, 2021, 22, 9587.	1.8	22
740	Investigating the Effect of Particle Size on Cellular Uptake by Aggregation-Caused Quenching Probe–Encapsulating Solid Lipid Nanoparticles, Inhaled. Journal of Pharmaceutical Innovation, 2022, 17, 1109-1115.	1.1	2
741	Understanding the Adsorption of Peptides and Proteins onto PEGylated Gold Nanoparticles. Molecules, 2021, 26, 5788.	1.7	21
742	A brief insight to the role of glyconanotechnology in modern day diagnostics and therapeutics. Carbohydrate Research, 2021, 507, 108394.	1.1	4
743	Terminal Structure of Triethylene Glycol-Tethered Chains on β-Cyclodextrin-Threaded Polyrotaxanes Dominates Temperature Responsivity and Biointeractions. Langmuir, 2021, 37, 11102-11114.	1.6	6
744	Protein Corona Inhibits Endosomal Escape of Functionalized DNA Nanostructures in Living Cells. ACS Applied Materials & Interfaces, 2021, 13, 46375-46390.	4.0	20
745	A review of nanoparticle drug delivery systems responsive to endogenous breast cancer microenvironment. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 166, 30-43.	2.0	26

#	Article	IF	CITATIONS
746	Exploring ratiometric endolysosomal pH nanosensors with hydrophobic indicators responding at the nanoscale interface and multiple fluorescence resonance energy transfers. Nano Research, 2022, 15, 3471-3478.	5.8	11
747	Current State of Laser-Induced Fluorescence Spectroscopy for Designing Biochemical Sensors. Chemosensors, 2021, 9, 275.	1.8	18
748	Gold-Photodeposited Silver Nanowire Endoscopy for Cytosolic and Nuclear pH Sensing. ACS Applied Nano Materials, 2021, 4, 9886-9894.	2.4	7
750	Silica-coated calcium phosphate nanoparticles for gene silencing of NF-κB p65 by siRNA and their impact on cellular players of inflammation. Biomaterials, 2021, 276, 121013.	5.7	14
751	Zwitterionic Block Copolymer Prodrug Micelles for pH Responsive Drug Delivery and Hypoxia-Specific Chemotherapy. Molecular Pharmaceutics, 2022, 19, 1766-1777.	2.3	11
752	Nanoparticle-mediated specific elimination of soft cancer stem cells by targeting low cell stiffness. Acta Biomaterialia, 2021, 135, 493-505.	4.1	13
753	Preliminary studies on drug delivery of polymeric primaquine microparticles using the liver high uptake effect based on size of particles to improve malaria treatment. Materials Science and Engineering C, 2021, 128, 112275.	3.8	12
754	Endoplasmic reticulum-targeting nanomedicines for cancer therapy. Smart Materials in Medicine, 2021, 2, 334-349.	3.7	16
755	Current Knowledge of Silver and Gold Nanoparticles in Laboratory Research—Application, Toxicity, Cellular Uptake. Nanomaterials, 2021, 11, 2454.	1.9	47
756	Biodegradable nanoparticulate co-delivery of flavonoid and doxorubicin: Mechanistic exploration and evaluation of anticancer effect in vitro and in vivo. Biomaterials and Biosystems, 2021, 3, 100022.	1.0	7
757	Evolutionary computational platform for the automatic discovery of nanocarriers for cancer treatment. Npj Computational Materials, 2021, 7, .	3.5	12
758	Potential of nanoparticles encapsulated drugs for possible inhibition of the antimicrobial resistance development. Biomedicine and Pharmacotherapy, 2021, 141, 111943.	2.5	13
759	HALLOYSITE-BASED NANOSYSTEMS FOR BIOMEDICAL APPLICATIONS. Clays and Clay Minerals, 2021, 69, 501-521.	0.6	11
760	Evaluating the Apoptotic Cell Death Modulatory Activity of Nanoparticles in Men and Women Neutrophils and Eosinophils. Inflammation, 2022, 45, 387-398.	1.7	4
761	In vivo evaluation of biodistribution and toxicity of pH-responsive strontium nanoparticles for gene delivery. Journal of Pharmaceutical Investigation, 2022, 52, 95-107.	2.7	7
762	In vitro/vivo antitumor study of modified-chitosan/carboxymethyl chitosan "boosted― charge-reversal nanoformulation. Carbohydrate Polymers, 2021, 269, 118268.	5.1	16
763	Mineralized polyplexes for gene delivery: Improvement of transfection efficiency as a consequence of calcium incubation and not mineralization. Materials Science and Engineering C, 2021, 129, 112419.	3.8	3
764	Induction of mitochondria mediated apoptosis in human ovarian cancer cells by folic acid coated tin oxide nanoparticles. PLoS ONE, 2021, 16, e0258115.	1.1	17

#	Article	IF	CITATIONS
765	Endocytosis of abiotic nanomaterials and nanobiovectors: Inhibition of membrane trafficking. Nano Today, 2021, 40, 101279.	6.2	69
766	Green synthesis of antibacterial and cytotoxic silver nanoparticles by Piper nigrum seed extract and development of antibacterial silver based chitosan nanocomposite. International Journal of Biological Macromolecules, 2021, 189, 18-33.	3.6	56
767	Impact of metal nanoparticles on the structure and function of metabolic enzymes. International Journal of Biological Macromolecules, 2021, 188, 576-585.	3.6	6
768	In vitro and in vivo optimization of liposomal nanoparticles based brain targeted vgf gene therapy. International Journal of Pharmaceutics, 2021, 608, 121095.	2.6	16
769	Antimicrobial activity of synthetic antimicrobial peptides loaded in poly-ƕcaprolactone nanoparticles against mycobacteria and their functional synergy with rifampicin. International Journal of Pharmaceutics, 2021, 608, 121097.	2.6	12
770	Fluorescent polymeric nanoparticle for ratiometric temperature sensing allows real-time monitoring in influenza virus-infected cells. Journal of Colloid and Interface Science, 2021, 601, 825-832.	5.0	7
771	A nanophytosomes formulation based on elderberry anthocyanins and Codium lipids to mitigate mitochondrial dysfunctions. Biomedicine and Pharmacotherapy, 2021, 143, 112157.	2.5	10
772	Tailoring the hyperthermia potential of magnetite nanoparticles via gadolinium ION substitution. Ceramics International, 2021, 47, 31399-31406.	2.3	5
773	Breaking the barriers for the delivery of amikacin: Challenges, strategies, and opportunities. Life Sciences, 2021, 284, 119883.	2.0	15
774	Succinylated ferritin as a novel nanocage-like vehicle of polyphenol: Structure, stability, and absorption analysis. Food Chemistry, 2021, 361, 130069.	4.2	6
775	The in vitro and in vivo properties of ringlike polymer brushes. Nano Today, 2021, 41, 101293.	6.2	16
776	Immunomodulating polyorganophosphazene-arginine layered liposome antibiotic delivery vehicle against pulmonary tuberculosis. Journal of Drug Delivery Science and Technology, 2021, 66, 102856.	1.4	2
777	Recent innovations of nanotechnology in water treatment: A comprehensive review. Bioresource Technology, 2021, 342, 126000.	4.8	57
778	Probing TGF-β1-induced cytoskeletal rearrangement by fluorescent-labeled silica nanoparticle uptake assay. Biochemistry and Biophysics Reports, 2021, 28, 101137.	0.7	0
779	Sulfated alginate/polycaprolactone double-emulsion nanoparticles for enhanced delivery of heparin-binding growth factors in wound healing applications. Colloids and Surfaces B: Biointerfaces, 2021, 208, 112105.	2.5	14
780	Delivery of therapeutic oligonucleotides in nanoscale. Bioactive Materials, 2022, 7, 292-323.	8.6	29
781	Cellulose nanocrystals: Fundamentals and biomedical applications. Carbohydrate Polymers, 2022, 275, 118668.	5.1	80
782	CHAPTER 5. Inorganic Nanocrystals and Biointerfaces. RSC Nanoscience and Nanotechnology, 2021, , 161-208.	0.2	0

#	Article	IF	CITATIONS
783	Strategies for the design of nanoparticles: starting with long-circulating nanoparticles, from lab to clinic. Biomaterials Science, 2021, 9, 3621-3637.	2.6	12
784	Benchtop X-ray fluorescence imaging as a tool to study gold nanoparticle penetration in 3D cancer spheroids. RSC Advances, 2021, 11, 26344-26353.	1.7	3
785	Nanoscopy for endosomal escape quantification. Nanoscale Advances, 2021, 3, 10-23.	2.2	24
786	Nanomaterial Interaction and Cellular Damage: Involvement of Various Signalling Pathways. Nanotechnology in the Life Sciences, 2021, , 431-448.	0.4	0
788	Metal-phenolic networks for cancer theranostics. Biomaterials Science, 2021, 9, 2825-2849.	2.6	45
790	Delivery of Nanoconstructs in Cancer Therapy: Challenges and Therapeutic Opportunities. Advanced Therapeutics, 2021, 4, 2000206.	1.6	18
791	Strategies to promote permeation and vectorization, and reduce cytotoxicity of metal complex luminophores for bioimaging and intracellular sensing. RSC Chemical Biology, 2021, 2, 1021-1049.	2.0	21
792	Radiolabelling of nanomaterials for medical imaging and therapy. Chemical Society Reviews, 2021, 50, 3355-3423.	18.7	145
793	Self-assembly of a benzothiazolone conjugate into panchromatic fluorescent fibres and their application in cellular imaging. New Journal of Chemistry, 2021, 45, 17211-17221.	1.4	6
794	Understanding intracellular nanoparticle trafficking fates through spatiotemporally resolved magnetic nanoparticle recovery. Nanoscale Advances, 2021, 3, 2397-2410.	2.2	5
795	Leveraging Immunotherapy with Nanomedicine. Advanced Therapeutics, 2020, 3, 2000134.	1.6	2
796	Intracellular Delivery: An Overview. AAPS Advances in the Pharmaceutical Sciences Series, 2019, , 3-41.	0.2	5
797	Ecotoxicity of Nanomaterials in Aquatic Environment. Nanotechnology in the Life Sciences, 2020, , 351-377.	0.4	7
798	ADMETox: Bringing Nanotechnology Closer to Lipinski's Rule of Five. Nanotechnology in the Life Sciences, 2020, , 61-74.	0.4	3
799	Restricting mycotoxins without killing the producers: a new paradigm in nano-fungal interactions. Applied Microbiology and Biotechnology, 2020, 104, 2803-2813.	1.7	9
800	Orally administered gadolinium orthovanadate GdVO4:Eu3+ nanoparticles do not affect the hydrophobic region of cell membranes of leukocytes. Wiener Medizinische Wochenschrift, 2020, 170, 189-195.	0.5	7
801	Toxicity and cellular uptake of lipid nanoparticles of different structure and composition. Journal of Colloid and Interface Science, 2020, 576, 241-251.	5.0	49
802	Machine-Learning-Based Approach to Decode the Influence of Nanomaterial Properties on Their Interaction with Cells. ACS Applied Materials & Interfaces, 2021, 13, 1943-1955.	4.0	101

#	Article	IF	CITATIONS
803	Size-Dependent Encapsulation and Release of dsDNA from Cationic Lyotropic Liquid Crystalline Cubic Phases. ACS Biomaterials Science and Engineering, 2020, 6, 4401-4413.	2.6	13
804	Biomaterials-Based Opportunities to Engineer the Pulmonary Host Immune Response in COVID-19. ACS Biomaterials Science and Engineering, 2021, 7, 1742-1764.	2.6	16
805	Dependence of fullerene aggregation on lipid saturation due to a balance between entropy and enthalpy. Scientific Reports, 2019, 9, 1037.	1.6	14
806	Paclitaxel-terminated peptide brush polymers. Chemical Communications, 2020, 56, 6778-6781.	2.2	13
807	Self-assembled albumin decorated MoS ₂ aggregates and photo-stimuli induced geometrical switching for enhanced theranostics applications. Materials Advances, 2020, 1, 3000-3008.	2.6	3
808	Role of mesoporous silica nanoparticles for the drug delivery applications. Materials Research Express, 2020, 7, 102002.	0.8	18
809	Functionalized erythrocyte-derived optical nanoparticles to target ephrin-B2 ligands. Journal of Biomedical Optics, 2019, 24, 1.	1.4	6
810	Rhein laden pH-responsive polymeric nanoparticles for treatment of osteoarthritis. AMB Express, 2020, 10, 158.	1.4	20
811	Particle release from implantoplasty of dental implants and impact on cells. International Journal of Implant Dentistry, 2020, 6, 50.	1.1	38
812	A review on herbal drug loaded into pharmaceutical carrier techniques and its evaluation process. Future Journal of Pharmaceutical Sciences, 2020, 6, .	1.1	22
813	Discrimination of radiosensitive and radioresistant murine lymphoma cells by Raman spectroscopy and SERS. Biomedical Optics Express, 2020, 11, 388.	1.5	4
814	The effects of PEGylation on LNP based mRNA delivery to the eye. PLoS ONE, 2020, 15, e0241006.	1.1	91
815	Engineering Targeting Materials for Therapeutic Cancer Vaccines. Frontiers in Bioengineering and Biotechnology, 2020, 8, 19.	2.0	23
816	Folate-Targeted Transgenic Activity of Dendrimer Functionalized Selenium Nanoparticles In Vitro. International Journal of Molecular Sciences, 2020, 21, 7177.	1.8	19
817	Safe Nanoparticles: Are We There Yet?. International Journal of Molecular Sciences, 2021, 22, 385.	1.8	191
818	The Impact of Engineered Silver Nanomaterials on the Immune System. Nanomaterials, 2020, 10, 967.	1.9	36
819	Efavirenz Loaded Nanostructured Lipid Carriers for Efficient and Prolonged Viral Inhibition in HIV-Infected Macrophages. Pharmaceutical Sciences, 2020, 27, 418-432.	0.1	5
820	Emerging Lipid-Based Nanomaterials for Cancer Theranostics. Nanotechnology in the Life Sciences, 2021, , 125-159.	0.4	1

#	Article	IF	CITATIONS
821	Pros and Cons of Nano-Materials as Mineral Supplements in Poultry Feed. Sustainable Agriculture Reviews, 2021, , 263-315.	0.6	0
822	Recent advances in waste-recycled nanomaterials for biomedical applications: Waste-to-wealth. Nanotechnology Reviews, 2021, 10, 1662-1739.	2.6	50
823	Nanoerythrosome-Biohybrid Microswimmers for Cancer Theranostics Cargo Delivery. Nanotechnology in the Life Sciences, 2021, , 261-284.	0.4	2
824	Nucleosomes enter cells by clathrin- and caveolin-dependent endocytosis. Nucleic Acids Research, 2021, 49, 12306-12319.	6.5	4
825	Review: Development of SARS-CoV-2 immuno-enhanced COVID-19 vaccines with nano-platform. Nano Research, 2022, 15, 2196-2225.	5.8	8
826	Recent development in nanocrystal based drug delivery for neurodegenerative diseases: Scope, challenges, current and future prospects. Journal of Drug Delivery Science and Technology, 2022, 68, 102921.	1.4	3
827	Intracellular delivery of protein drugs with an autonomously lysing bacterial system reduces tumor growth and metastases. Nature Communications, 2021, 12, 6116.	5.8	63
828	Recent advancements and future submissions of silica core-shell nanoparticles. International Journal of Pharmaceutics, 2021, 609, 121173.	2.6	17
829	Biocompatibility and Cytotoxicity of Gold Nanoparticles: Recent Advances in Methodologies and Regulations. International Journal of Molecular Sciences, 2021, 22, 10952.	1.8	84
830	Modulating Protein Corona and Materials–Cell Interactions with Temperatureâ€Responsive Materials. Advanced Functional Materials, 2022, 32, .	7.8	18
831	Polysaccharide-based formulations as potential carriers for pulmonary delivery – A review of their properties and fates. Carbohydrate Polymers, 2022, 277, 118784.	5.1	22
832	Cell Membrane-Coated Mimics: A Methodological Approach for Fabrication, Characterization for Therapeutic Applications, and Challenges for Clinical Translation. ACS Nano, 2021, 15, 17080-17123.	7.3	73
833	Electrospun nanocarriers for delivering natural products for cancer therapy. Trends in Food Science and Technology, 2021, 118, 887-904.	7.8	23
834	Cyclodextrin Polymers as Delivery Systems for Targeted Anti-Cancer Chemotherapy. Molecules, 2021, 26, 6046.	1.7	15
835	Grouping Hypotheses and an Integrated Approach to Testing and Assessment of Nanomaterials Following Oral Ingestion. Nanomaterials, 2021, 11, 2623.	1.9	19
836	Influence of nanoparticles surface coating on physicochemical properties for CRISPR gene delivery. Journal of Drug Delivery Science and Technology, 2021, 66, 102910.	1.4	4
837	Antioxidant role of nanoparticles for enhancing ecological performance of plant system. Comprehensive Analytical Chemistry, 2019, 87, 159-187.	0.7	5
839	Carboxylated chitosan-mediated improved efficacy of mesoporous silica nanoparticle-based targeted drug delivery system for breast cancer therapy. Carbohydrate Polymers, 2022, 277, 118822.	5.1	59

#	Article	IF	CITATIONS
840	Mechanisms Involved in Microglial-Interceded Alzheimer's Disease and Nanocarrier-Based Treatment Approaches. Journal of Personalized Medicine, 2021, 11, 1116.	1.1	9
841	Asymmetric Silica Nanoparticles with Tailored Spiky Coverage Derived from Silica–Polymer Cooperative Assembly for Enhanced Hemocompatibility and Gene Delivery. ACS Applied Materials & Interfaces, 2021, 13, 50695-50704.	4.0	14
842	Dark-field imaging and Raman spectroscopy study of the interaction process between cells and nanoparticles. , 2021, , .		0
843	The endocytic pathway of Pt nanoclusters and their induced apoptosis of A549 and A549/Cis cells through c-Myc/p53 and Bcl-2/caspase-3 signaling pathways. Biomedicine and Pharmacotherapy, 2021, 144, 112360.	2.5	8
844	Cationic (Co)polymers Based on N-Substituted Polyacrylamides as Carriers of Bio-macromolecules: Polyplexes, Micelleplexes, and Spherical Nucleic Acidlike Structures. Biomacromolecules, 2021, 22, 971-983.	2.6	6
845	Preparation of carbon dots with orange emission for Cr(Đ [°]) detection and cellular imaging. Micro and Nano Letters, 2021, 16, 58-63.	0.6	3
847	Nanobiocatalysts: Cu/TiO2-SiO2 Nanoparticles as Tissue-Regeneration Treatment for Diabetic Foot Ulcers: In Vivo Studies. Current Biotechnology, 2020, 9, 230-239.	0.2	3
848	Laser Synthesis of Colloids: Applications. , 2021, , 1455-1479.		2
849	Nanomedicines and Nanodrug Delivery Systems: Trends and Perspectives. , 2020, , 99-141.		3
850	Challenges and Future Perspectives of Nanotoxicology. , 2020, , 451-466.		4
851	Laser Synthesis of Colloids: Applications. , 2020, , 1-25.		2
852	Synergy and Antagonism: The Criteria of the Formulation. Nanotechnology in the Life Sciences, 2020, , 31-43.	0.4	0
853	Biomedical Applications of Nanoalloys. , 2020, , 381-432.		3
854	The penetration and movement of nanoparticles on membrane. , 2020, , .		0
855	ROS-Activated homodimeric podophyllotoxin nanomedicine with self-accelerating drug release for efficient cancer eradication. Drug Delivery, 2021, 28, 2361-2372.	2.5	7
856	Nanoparticles With Affinity for α-Synuclein Sequester α-Synuclein to Form Toxic Aggregates in Neurons With Endolysosomal Impairment. Frontiers in Molecular Neuroscience, 2021, 14, 738535.	1.4	2
857	Biomimetic Nanoparticles Coated with Bacterial Outer Membrane Vesicles as a New-Generation Platform for Biomedical Applications. Pharmaceutics, 2021, 13, 1887.	2.0	30
858	Highly Efficient Biofilm Eradication by Antibacterial Two-Dimensional Supramolecular Polymers. Chemistry of Materials, 2021, 33, 8656-8665.	3.2	7

#	Article	IF	CITATIONS
859	Nature-inspired dynamic gene-loaded nanoassemblies for the treatment of brain diseases. Advanced Drug Delivery Reviews, 2022, 180, 114029.	6.6	9
863	Effects of protecting groups on luminescent metal nanoclusters: spectroscopic signatures and applications. Chemical Communications, 2021, 58, 29-47.	2.2	16
864	Cellular interactions of nanoparticles within the vasculature. , 2022, , 247-263.		0
865	Oral insulin delivery by epithelium microenvironment-adaptive nanoparticles. Journal of Controlled Release, 2022, 341, 31-43.	4.8	22
866	Antiviral and cytotoxic effects of a traditional drug KanthaRasaVillai with a cocktail of metallic nanoparticles. Journal of King Saud University - Science, 2022, 34, 101693.	1.6	0
867	NOVEL NANO THERAPEUTIC MATERIALS FOR THE EFFECTIVE TREATMENT OF RHEUMATOID ARTHRITIS-RECENT INSIGHTS. International Journal of Applied Pharmaceutics, 0, , 31-40.	0.3	1
868	A Peptide/MicroRNA-31 nanomedicine within an electrospun biomaterial designed to regenerate wounds in vivo. Acta Biomaterialia, 2022, 138, 285-300.	4.1	6
869	Eco–Friendly Peelable Active Nanocomposite Films Designed for Biological and Chemical Warfare Agents Decontamination. Polymers, 2021, 13, 3999.	2.0	7
870	Metal/metal oxide nanoparticles: Toxicity concerns associated with their physical state and remediation for biomedical applications. Toxicology Reports, 2021, 8, 1970-1978.	1.6	48
871	Strontium doped mesoporous silica nanoparticles accelerate osteogenesis and angiogenesis in distraction osteogenesis by activation of Wnt pathway. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 41, 102496.	1.7	14
872	Cytotoxic Effects of Phytomediated Silver and Gold Nanoparticles Synthesised from Rooibos (Aspalathus linearis), and Aspalathin. Plants, 2021, 10, 2460.	1.6	6
873	Macrophage-targeted nanomedicine for the diagnosis and treatment of atherosclerosis. Nature Reviews Cardiology, 2022, 19, 228-249.	6.1	171
874	Smart Nanoparticles as Advanced Anti-Akt Kinase Delivery Systems for Pancreatic Cancer Therapy. ACS Applied Materials & Interfaces, 2021, 13, 55790-55805.	4.0	8
875	Differential Collective Cell Migratory Behaviors Modulated by Phospholipid Nanocarriers. ACS Nano, 2021, 15, 17412-17425.	7.3	7
876	Biocompatibility and Antimicrobial Activity of Nanostructured Lipid Carriers for Topical Applications Are Affected by Type of Oils Used in Their Composition. Pharmaceutics, 2021, 13, 1950.	2.0	9
877	Cancer Cell-Specific Enhanced Raman Imaging and Photothermal Therapeutic Effect Based on Reversibly pH-Responsive Gold Nanoparticles. ACS Applied Bio Materials, 2021, 4, 8377-8385.	2.3	10
878	Advanced Nanoengineering Approach for Target‧pecific, Spatiotemporal, and Ratiometric Delivery of Gemcitabine–Cisplatin Combination for Improved Therapeutic Outcome in Pancreatic Cancer. Small, 2022, 18, e2104449.	5.2	18
879	Polystyrene nanoplastics and microplastics can act as Trojan horse carriers of benzo(a)pyrene to mussel hemocytes in vitro. Scientific Reports, 2021, 11, 22396.	1.6	30

#	Article	IF	Citations
880	Krüppel-homologue 1 Mediates Hormonally Regulated Dominance Rank in a Social Bee. Biology, 2021, 10, 1188.	1.3	3
881	An In Vitro and In Silico Study of the Enhanced Antiproliferative and Pro-Oxidant Potential of Olea europaea L. cv. Arbosana Leaf Extract via Elastic Nanovesicles (Spanlastics). Antioxidants, 2021, 10, 1860.	2.2	7
882	Modulating intracellular pathways to improve non-viral delivery of RNA therapeutics. Advanced Drug Delivery Reviews, 2022, 181, 114041.	6.6	26
883	Imiquimod-gemcitabine nanoparticles harness immune cells to suppress breast cancer. Biomaterials, 2022, 280, 121302.	5.7	23
884	Silica-coated magnetic-nanoparticle-induced cytotoxicity is reduced in microglia by glutathione and citrate identified using integrated omics. Particle and Fibre Toxicology, 2021, 18, 42.	2.8	10
885	Controlled pVEGF delivery via a gene-activated matrix comprised of a peptide-modified non-viral vector and a nanofibrous scaffold for skin wound healing. Acta Biomaterialia, 2022, 140, 149-162.	4.1	22
886	Toxicity of manufactured nanomaterials. Particuology, 2022, 69, 31-48.	2.0	63
887	Biocompatibility and cytotoxicity in vitro of surface-functionalized drug-loaded spinel ferrite nanoparticles. Beilstein Journal of Nanotechnology, 2021, 12, 1339-1364.	1.5	9
888	Shedding Light on DNAâ€Based Nanoprobes for Liveâ€Cell MicroRNA Imaging. Small, 2022, 18, e2106281.	5.2	9
889	Preparation and Evaluation of Charge Reversal Solid Lipid Nanoparticles. SSRN Electronic Journal, 0, ,	0.4	0
890	Bioengineering applications of black phosphorus and their toxicity assessment. Environmental Science: Nano, 2021, 8, 3452-3477.	2.2	12
892	Development of novel, biocompatible, polyester amines for microglia-targeting gene delivery. RSC Advances, 2021, 11, 36792-36800.	1.7	1
893	Particles and nanoparticles in nuclear medicine: Basic principles and instrumentation. , 2021, , .		1
894	Facilely prepared aggregation-induced emission (AIE) nanocrystals with deep-red emission for super-resolution imaging. Chemical Science, 2022, 13, 1270-1280.	3.7	24
895	Biodegradable nanoparticles combining cancer cell targeting and anti-angiogenic activity for synergistic chemotherapy in epithelial cancer. Drug Delivery and Translational Research, 2022, 12, 2488-2500.	3.0	4
896	Molecular Pathogenesis of Colorectal Cancer with an Emphasis on Recent Advances in Biomarkers, as Well as Nanotechnology-Based Diagnostic and Therapeutic Approaches. Nanomaterials, 2022, 12, 169.	1.9	34
897	Microemulsion-Confined Assembly of Magnetic Nanoclusters for pH/H ₂ O ₂ Dual-Responsive T ₂ –T ₁ Switchable MRI. ACS Applied Materials & Interfaces, 2022, 14, 2629-2637.	4.0	12
898	Superlow Dosage of Intrinsically Bioactive Zinc Metal–Organic Frameworks to Modulate Endothelial Cell Morphogenesis and Significantly Rescue Ischemic Disease. ACS Nano, 2022, 16, 1395-1408.	7.3	12

ARTICLE IF CITATIONS Magnetic particle imaging: tracer development and the biomedical applications of a radiation-free, 899 2.8 30 sensitive, and quantitative imaging modality. Nanoscale, 2022, 14, 3658-3697. CRISPR/Cas9 ribonucleoprotein-mediated genome and epigenome editing in mammalian cells. Advanced 6.6 Drug Delivery Reviews, 2022, 181, 114087 Synergetic effect of silver nanoparticles and thiram on lipid bilayers. Journal of Molecular Liquids, 901 2.32 2022, 348, 118406. Tuberculosis drug discovery: Progression and future interventions in the wake of emerging 23 resistance. European Journal of Medicinal Chemistry, 2022, 229, 114066. Progressive cryoaggregation of gold nanoparticles: Physiochemical characterization, effect on biological interactions and use in coldness indicators. Colloids and Surfaces A: Physicochemical and 903 2.3 0 Engineering Aspects, 2022, 636, 128158. Engineering of structural and functional properties of nanotherapeutics and nanodiagnostics for intranasal brain targeting in Alzheimer's. Applied Materials Today, 2022, 26, 101303. 904 2.3 Engineering hairy cellulose nanocrystals for chemotherapy drug capture. Materials Today Chemistry, 905 1.7 6 2022, 23, 100711. Synthesis and Characterization of a Fullerenol Derivative for Potential Biological Applications. 906 0.2 Materials Proceedings, 2020, 4, . Synthesis, Characterization, and Functionalization of Chitosan and Gelatin Type B Nanoparticles to 907 0.2 2 Develop Novel Highly Biocompatible Cell-Penetrating Agents. Materials Proceedings, 2021, 4, 30. pH Responsive Biohybrid BSA-Poly(DPA) Nanoparticles for Interlysosomal Drug Delivery. SSRN 908 0.4 Electronic Journal, O, , . 909 Toxicology of nanomaterials: From toxicokinetics to toxicity mechanisms., 2023, 718-732. 2 Active targeting via ligand-anchored pH-responsive strontium nanoparticles for efficient nucleic acid 2.7 delivery into breast cancer cells. Journal of Pharmaceutical Investigation, 2022, 52, 243-257. Polymer brush coated upconverting nanoparticles with improved colloidal stability and cellular 912 2.9 7 labeling. Journal of Materials Chemistry B, 2022, 10, 625-636. Theranostic Effect of Folic Acid Functionalized MIL-100(Fe) for Delivery of Prodigiosin and Simultaneous Tracking-Combating Breast Cancer. Journal of Nanomaterials, 2022, 2022, 1-16. 1.5 Optically-manipulated multiaddressable all-ESIPT fluorescence nanomicelles prepared using a single 914 2.7 2 fluorophore. Journal of Materials Chemistry C, 2022, 10, 840-845. Engineering optimal vaccination strategies: effects of physical properties of the delivery system on functions. Biomaterials Science, 2022, 10, 1408-1422. Lactate-Loaded Nanoparticles Induce Glioma Cytotoxicity and Increase the Survival of Rats Bearing 916 2.0 6 Malignant Glioma Brain Tumor. Pharmaceutics, 2022, 14, 327. Conjugation with gold nanoparticles improves the stability of the KT2 peptide and maintains its anticancer properties. RSC Advances, 2021, 12, 319-325.

#	Article	IF	CITATIONS
918	Engineering Macrophages via Nanotechnology and Genetic Manipulation for Cancer Therapy. Frontiers in Oncology, 2021, 11, 786913.	1.3	7
919	(Bio)manufactured Solutions for Treatment of Bone Defects with an Emphasis on USâ€FDA Regulatory Science Perspective. Advanced NanoBiomed Research, 2022, 2, .	1.7	12
920	Simultaneous Exposure of Different Nanoparticles Influences Cell Uptake. Pharmaceutics, 2022, 14, 136.	2.0	8
921	Toxicity of metal–organic framework nanoparticles: from essential analyses to potential applications. Chemical Society Reviews, 2022, 51, 464-484.	18.7	144
922	Probing the Role of Charged Functional Groups on Nanoparticles Grafted with Polyglycerol in Protein Adsorption and Cellular Uptake. Advanced Functional Materials, 2022, 32, .	7.8	12
923	Transport and deposition structure of cell nano interface. , 2022, , 87-125.		0
924	Self-Assembled Inhalable Immunomodulatory Silk Fibroin Nanocarriers for Enhanced Drug Loading and Intracellular Antibacterial Activity. ACS Biomaterials Science and Engineering, 2022, 8, 708-721.	2.6	8
925	Recent Advances in the Surface Functionalization of PLGA-Based Nanomedicines. Nanomaterials, 2022, 12, 354.	1.9	35
926	RNA cancer nanomedicine: nanotechnology-mediated RNA therapy. Nanoscale, 2022, 14, 4448-4455.	2.8	28
927	Kinetically stable sub-50 nm fluorescent block copolymer nanoparticles <i>via</i> photomediated RAFT dispersion polymerization for cellular imaging. Nanoscale, 2022, 14, 534-545.	2.8	5
928	Effects of microenvironmental factors on assessing nanoparticle toxicity. Environmental Science: Nano, 2022, 9, 454-476.	2.2	5
929	Anticancer Vaccination with Immunogenic Micelles That Capture and Release Pristine CD8 ⁺ T-Cell Epitopes and Adjuvants. ACS Applied Materials & Interfaces, 2022, 14, 2510-2521.	4.0	5
930	Self-Organized Nanoparticles of Random and Block Copolymers of Sodium 2-(Acrylamido)-2-methyl-1-propanesulfonate and Sodium 11-(Acrylamido)undecanoate as Safe and Effective Zika Virus Inhibitors. Pharmaceutics, 2022, 14, 309.	2.0	3
931	Insight into carbon quantum dot–vesicles interactions: role of functional groups. RSC Advances, 2022, 12, 4382-4394.	1.7	12
932	Integrative behavioral and ecotoxicological effects of nanoparticles. , 2022, , 311-333.		0
933	Carbon Dot Therapeutic Platforms: Administration, Distribution, Metabolism, Excretion, Toxicity, and Therapeutic Potential. Small, 2022, 18, e2106342.	5.2	75
934	Assembly of Bioactive Nanoparticles via Metal–Phenolic Complexation. Advanced Materials, 2022, 34, e2108624.	11.1	34
935	Role of Gold Nanoparticles Against Multidrug Resistance (MDR) Bacteria: An Emerging Therapeutic Revolution. , 2022, , 489-511.		1

#	Article	IF	CITATIONS
936	Biomedical applications of polysaccharide nanoparticles for chronic inflammatory disorders: Focus on rheumatoid arthritis, diabetes and organ fibrosis. Carbohydrate Polymers, 2022, 281, 118923.	5.1	31
937	Impact of drug carrier shape, size, porosity and blood rheology on magnetic nanoparticle-based drug delivery in a microvessel. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 639, 128370.	2.3	29
938	Ready-to-use room temperature one-pot synthesis of surface-decorated gold nanoparticles with targeting attributes. Journal of Colloid and Interface Science, 2022, 614, 489-501.	5.0	5
939	A glutathione-responsive silica-based nanosystem capped with in-situ polymerized cell-penetrating poly(disulfide)s for precisely modulating immuno-inflammatory responses. Journal of Colloid and Interface Science, 2022, 614, 322-336.	5.0	9
940	Fabrication and Assessment of Diosgenin Encapsulated Stearic Acid Solid Lipid Nanoparticles for Its Anticancer and Antidepressant Effects Using in vitro and in vivo Models. Frontiers in Neuroscience, 2021, 15, 806713.	1.4	6
941	Nanotechnology as a Versatile Tool for 19F-MRI Agent's Formulation: A Glimpse into the Use of Perfluorinated and Fluorinated Compounds in Nanoparticles. Pharmaceutics, 2022, 14, 382.	2.0	10
942	How the Physicochemical Properties of Manufactured Nanomaterials Affect Their Performance in Dispersion and Their Applications in Biomedicine: A Review. Nanomaterials, 2022, 12, 552.	1.9	33
943	Liposome-polymer complex for drug delivery system and vaccine stabilization. Heliyon, 2022, 8, e08934.	1.4	44
944	Gene therapy: Comprehensive overview and therapeutic applications. Life Sciences, 2022, 294, 120375.	2.0	89
945	Real-space imaging of nanoparticle transport and interaction dynamics by graphene liquid cell TEM. Science Advances, 2021, 7, eabi5419.	4.7	13
946	One-pot biosynthesis of silver nanoparticles using green tea plant extract/rosemary oil and investigation of their antibacterial activity. Inorganic and Nano-Metal Chemistry, 0, , 1-10.	0.9	3
947	Highly emissive hybrid mesoporous organometallo-silica nanoparticles for bioimaging. Materials Advances, 2022, 3, 3582-3592.	2.6	4
948	C ₆₀ -β-cyclodextrin conjugates for enhanced nucleus delivery of doxorubicin. Nanoscale, 2022, 14, 4456-4462.	2.8	10
949	Factors Affecting the Clearance and Biodistribution of Polymeric Nanoparticles. , 2022, , 261-272.		4
951	Mechanisms facilitating the uptake of carboxyl–polythene glycol-functionalized gold nanoparticles into multicellular spheroids. Journal of Pharmacy and Pharmacology, 2022, 74, 1282-1295.	1.2	3
952	A comprehensive review on nanopesticides and nanofertilizers—A boon for agriculture. , 2022, , 273-290.		8
953	Combination of Cobalt, Chromium and Titanium Nanoparticles Increases Cytotoxicity <i>In Vitro</i> and Soft Tissue Inflammation <i>In Vivo</i> . SSRN Electronic Journal, 0, , .	0.4	0
954	Influencing factors and characterization methods of nanoparticles regulating amyloid aggregation. Soft Matter, 2022, 18, 3278-3290.	1.2	3

#	Article	IF	CITATIONS
955	The morphological role of ligand inhibitors in blocking receptor- and clathrin-mediated endocytosis. Soft Matter, 2022, 18, 3531-3545.	1.2	2
956	A Precise Nanoparticle Quantification Approach Using Microfluidics and Single-Particle Tracking. SSRN Electronic Journal, 0, , .	0.4	0
957	Designing Functional Bionanoconstructs for Effective <i>In Vivo</i> Targeting. Bioconjugate Chemistry, 2022, 33, 429-443.	1.8	12
958	Nontoxic Metal-Free Visible Light-Responsive Carbon Nitride Quantum Dots Cause Oxidative Stress and Cancer-Specific Membrane Damage. ACS Applied Bio Materials, 2022, 5, 1169-1178.	2.3	9
959	Self-Illuminating Triggered Release of Therapeutics from Photocleavable Nanoprodrug for the Targeted Treatment of Breast Cancer. ACS Applied Materials & Interfaces, 2022, 14, 8766-8781.	4.0	6
960	Impact of the amount of PEG on prodrug nanoassemblies for efficient cancer therapy. Asian Journal of Pharmaceutical Sciences, 2022, 17, 241-252.	4.3	13
961	Preparation and Evaluation of Charge Reversal Solid Lipid Nanoparticles. Journal of Pharmaceutical Sciences, 2022, 111, 2270-2279.	1.6	5
962	Spatiotemporal Tracing of the Cellular Internalization Process of Rod-Shaped Nanostructures. ACS Nano, 2022, 16, 4059-4071.	7.3	12
963	Advancement of nanomedicines in chronic inflammatory disorders. Inflammopharmacology, 2022, 30, 355-368.	1.9	10
964	Critical material designs for mucus- and mucosa-penetrating oral insulin nanoparticle development. International Materials Reviews, 2023, 68, 121-139.	9.4	11
965	coupled Hydrodynamic Flow Focusing (cHFF) to Engineer Lipid–Polymer Nanoparticles (LiPoNs) for Multimodal Imaging and Theranostic Applications. Biomedicines, 2022, 10, 438.	1.4	10
966	Nanoemulsion-Assisted siRNA Delivery to Modulate the Nervous Tumor Microenvironment in the Treatment of Pancreatic Cancer. ACS Applied Materials & Interfaces, 2022, 14, 10015-10029.	4.0	3
967	Fluorogen-Activating-Protein-Loaded Tantalum Oxide Nanoshells for in Vivo On-Demand Fluorescence/Photoacoustic Imaging. ACS Applied Bio Materials, 2022, 5, 1057-1063.	2.3	3
968	Magnetic Nanoparticles in Medicine: Progress, Problems, and Advances. Journal of Communications Technology and Electronics, 2022, 67, 101-116.	0.2	26
969	Liposomal Formulations Enhance the Anti-Inflammatory Effect of Eicosapentaenoic Acid in HL60 Cells. Pharmaceutics, 2022, 14, 520.	2.0	2
970	pH-sensitive chitosan-PEG-decorated hollow mesoporous silica nanoparticles could be an effective treatment for acute myeloid leukemia (AML). Journal of Nanoparticle Research, 2022, 24, 1.	0.8	3
971	Cyclic Strain Mitigates Nanoparticle Internalization by Vascular Smooth Muscle Cells. International Journal of Nanomedicine, 2022, Volume 17, 969-981.	3.3	1
972	Structural characterisation, gastrointestinal digestion stability and transepithelial transport study of casein peptide–zinc chelate. International Journal of Food Science and Technology, 2022, 57, 2770-2778.	1.3	5

#	Article	IF	CITATIONS
973	Targeted Codelivery of Prodigiosin and Simvastatin Using Smart BioMOF: Functionalization by Recombinant Anti-VEGFR1 scFv. Frontiers in Bioengineering and Biotechnology, 2022, 10, 866275.	2.0	3
974	Bone mineral: A trojan horse for bone cancers. Efficient mitochondria targeted delivery and tumor eradication with nano hydroxyapatite containing doxorubicin. Materials Today Bio, 2022, 14, 100227.	2.6	9
975	Boron clusters as broadband membrane carriers. Nature, 2022, 603, 637-642.	13.7	62
976	Harnessing the Therapeutic Potential of Biomacromolecules through Intracellular Delivery of Nucleic Acids, Peptides, and Proteins. Advanced Healthcare Materials, 2022, 11, e2102600.	3.9	15
977	Helical Nonfouling Polypeptides for Biomedical Applications. Chinese Journal of Polymer Science (English Edition), 2022, 40, 433-446.	2.0	6
978	Photothermal Reshaping of One-Dimensional Plasmonic Polymers: From Colloidal Dispersion to Living Cells. ACS Omega, 2022, 7, 11501-11509.	1.6	1
979	One-Step Synthesis of Nanoliposomal Copper Diethyldithiocarbamate and Its Assessment for Cancer Therapy. Pharmaceutics, 2022, 14, 640.	2.0	12
980	Mixed Polymeric Micelles for Rapamycin Skin Delivery. Pharmaceutics, 2022, 14, 569.	2.0	9
981	Bionanoparticles in cancer imaging, diagnosis, and treatment. View, 2022, 3, .	2.7	40
982	Double-grafted chitosans as siRNA nanocarriers: effects of diisopropylethylamine substitution and labile-PEG coating. Journal of Nanostructure in Chemistry, 0, , 1.	5.3	2
983	Microfluidic Synthesis of Block Copolymer Micelles: Application as Drug Nanocarriers and as Photothermal Transductors When Loading Pd Nanosheets. Macromolecular Bioscience, 2022, , 2100528.	2.1	4
984	Bacteria eat nanoprobes for aggregation-enhanced imaging and killing diverse microorganisms. Nature Communications, 2022, 13, 1255.	5.8	33
985	Aerosolizable Lipid-Nanovesicles Encapsulating Voriconazole Effectively Permeate Pulmonary Barriers and Target Lung Cells. Frontiers in Pharmacology, 2021, 12, 734913.	1.6	0
987	Highly fluorescent nanoparticles with perovskite core for tumor imaging. , 2022, , .		Ο
988	Wide-Field Surface-Enhanced Coherent Anti-Stokes Raman Scattering Microscopy. ACS Photonics, 2022, 9, 1042-1049.	3.2	7
989	Nonenzymatic Target-Driven DNA Nanomachine for Monitoring Malathion Contamination in Living Cells and Bioaccumulation in Foods. Analytical Chemistry, 2022, 94, 5667-5673.	3.2	17
990	Recent advances in targeted drug delivery for the treatment of pancreatic ductal adenocarcinoma. Expert Opinion on Drug Delivery, 2022, 19, 281-301.	2.4	1
991	Influence of the mechanical and geometrical parameters on the cellular uptake of nanoparticles: a stochastic approach. International Journal for Numerical Methods in Biomedical Engineering, 2022, , e3598.	1.0	0

#	Article	IF	CITATIONS
992	The Role of in silico Research in Developing Nanoparticle-Based Therapeutics. Frontiers in Digital Health, 2022, 4, 838590.	1.5	9
993	Impact of anti-PDGFRα antibody surface functionalization on LNC uptake by oligodendrocyte progenitor cells. International Journal of Pharmaceutics, 2022, 618, 121623.	2.6	6
994	A New Look at the Effects of Engineered ZnO and TiO2 Nanoparticles: Evidence from Transcriptomics Studies. Nanomaterials, 2022, 12, 1247.	1.9	13
995	Nanosphere size control by varying the ratio of poly(ester amide) block copolymer blends. Journal of Colloid and Interface Science, 2022, 623, 247-256.	5.0	4
996	The impact of engineered nanomaterials on the environment: Release mechanism, toxicity, transformation, and remediation. Environmental Research, 2022, 212, 113202.	3.7	28
997	Localization of Multi-Lamellar Vesicle Nanoparticles to Injured Brain Tissue in a Controlled Cortical Impact Injury Model of Traumatic Brain Injury in Rodents. Neurotrauma Reports, 2022, 3, 158-167.	0.5	4
998	Nanoparticle-Based Drug Delivery Systems for Induction of Tolerance and Treatment of Autoimmune Diseases. Frontiers in Bioengineering and Biotechnology, 2022, 10, 889291.	2.0	14
999	Development and In Vitro Cytotoxicity of Citrus sinensis Oil-Loaded Chitosan Electrostatic Complexes. Polysaccharides, 2022, 3, 347-355.	2.1	0
1000	Assessment of Digestion, Absorption, and Metabolism of Nanoencapsulated Phytochemicals Using <i>In Vitro</i> and <i>In Vivo</i> Models: A Perspective Paper. Journal of Agricultural and Food Chemistry, 2022, 70, 4548-4555.	2.4	1
1001	Selective Delivery of Clinically Approved Tubulin Binding Agents through Covalent Conjugation to an Active Targeting Moiety. Current Medicinal Chemistry, 2022, 29, 5179-5211.	1.2	1
1002	Two-dimensional (2D) hybrid nanomaterials for diagnosis and treatment of cancer. Journal of Drug Delivery Science and Technology, 2022, 70, 103268.	1.4	11
1003	Targeting nanoparticles to malignant tumors. Biochimica Et Biophysica Acta: Reviews on Cancer, 2022, 1877, 188703.	3.3	15
1004	Aptamer-drug conjugates: New probes for imaging and targeted therapy. Biosensors and Bioelectronics: X, 2022, 10, 100126.	0.9	3
1005	The role of the cell surface glycocalyx in drug delivery to and through the endothelium. Advanced Drug Delivery Reviews, 2022, 184, 114195.	6.6	12
1006	Optimized resting cell method for green synthesis of selenium nanoparticles from a new Rhodotorula mucilaginosa strain. Process Biochemistry, 2022, 116, 197-205.	1.8	12
1007	The endocytosis of nano-Pt into non-small cell lung cancer H1299Âcells and intravital therapeutic effect in vivo. Biochemical and Biophysical Research Communications, 2022, 606, 80-86.	1.0	3
1008	Endocytosis and intracellular RNAs imaging of nanomaterials-based fluorescence probes. Talanta, 2022, 243, 123377.	2.9	8
1009	Nanosensors: Recent perspectives on attainments and future promise of downstream applications. Process Biochemistry, 2022, 117, 153-173.	1.8	31

#	Article	IF	CITATIONS
1010	Light driven Aspergillus niger-ZnS nanobiohybrids for degradation of methyl orange. Chemosphere, 2022, 298, 134162.	4.2	18
1011	Formulation attributes, acid tunable degradability and cellular interaction of acetalated maltodextrin nanoparticles. Carbohydrate Polymers, 2022, 288, 119378.	5.1	5
1012	Lateral size homogeneous and doping degree controllable potassium-doped graphene quantum dots by mechanochemical reaction. Chemical Engineering Journal, 2022, 440, 135800.	6.6	4
1013	Green and cost-effective synthesis, characterization and DFT studying of silver nanoparticles for improving their biological properties by opium syrup as biomedical drug and good biocompatibility. Inorganic and Nano-Metal Chemistry, 0, , 1-15.	0.9	0
1014	Efficient Delivery of Hydrophilic Small Molecules to Retinal Cell Lines Using Gel Core-Containing Solid Lipid Nanoparticles. Pharmaceutics, 2022, 14, 74.	2.0	2
1015	The Emerging Role of Nanosuspensions for Drug Delivery and Stability. Current Nanomedicine, 2021, 11, 213-223.	0.2	12
1016	Uptake and toxicity of polystyrene micro/nanoplastics in gastric cells: Effects of particle size and surface functionalization. PLoS ONE, 2021, 16, e0260803.	1.1	29
1017	The Effect of Zn-Substitution on the Morphological, Magnetic, Cytotoxic, and In Vitro Hyperthermia Properties of Polyhedral Ferrite Magnetic Nanoparticles. Pharmaceutics, 2021, 13, 2148.	2.0	7
1018	Transfer of Poly(methyl methacrylate) Nanoparticles from Parents to Offspring and the Protection Mechanism in Two Marine Invertebrates. ACS Sustainable Chemistry and Engineering, 2022, 10, 37-49.	3.2	3
1019	Microfluidic-Generated Immunomodulatory Nanoparticles and Formulation-Dependent Effects on Lipopolysaccharide-Induced Macrophage Inflammation. AAPS Journal, 2022, 24, 6.	2.2	10
1020	Enhancement of Proton Therapy Efficiency by Noble Metal Nanoparticles Is Driven by the Number and Chemical Activity of Surface Atoms. Small, 2022, 18, e2106383.	5.2	13
1021	Active nanomotors surpass passive nanomedicines: current progress and challenges. Journal of Materials Chemistry B, 2022, 10, 7099-7107.	2.9	5
1022	Size-tuneable and immunocompatible polymer nanocarriers for drug delivery in pancreatic cancer. Nanoscale, 2022, 14, 6656-6669.	2.8	5
1023	Biotinylated magnetic molecularly imprinted polymer nanoparticles for cancer cell targeting and controlled drug delivery. Chemical Communications, 2022, 58, 5642-5645.	2.2	11
1024	Precision polymer nanofibers with a responsive polyelectrolyte corona designed as a modular, functionalizable nanomedicine platform. Polymer Chemistry, 2022, 13, 3009-3025.	1.9	8
1025	Unique Properties of Surface-Functionalized Nanoparticles for Bio-Application: Functionalization Mechanisms and Importance in Application. Nanomaterials, 2022, 12, 1333.	1.9	55
1026	Biogenesis of Exosomes Laden with Metallic Silver–Copper Nanoparticles Liaised by Wheat Germ Agglutinin for Targeted Delivery of Therapeutics to Breast Cancer. Advanced Biology, 2022, , 2200005.	1.4	4
1027	Origin of Metal Cluster Tuning Enzyme Activity at the Bio-Nano Interface. Jacs Au, 2022, 2, 961-971.	3.6	5

#	Article	IF	CITATIONS
1028	Microplastics released from food containers can suppress lysosomal activity in mouse macrophages. Journal of Hazardous Materials, 2022, 435, 128980.	6.5	40
1029	<i>In Vitro</i> and <i>In Vivo</i> Anticancer and Genotoxicity Profiles of Green Synthesized and Chemically Synthesized Silver Nanoparticles. ACS Applied Bio Materials, 2022, 5, 2324-2339.	2.3	13
1030	Nanodelivery of nucleic acids. Nature Reviews Methods Primers, 2022, 2, .	11.8	146
1031	Pristine and artificially-aged polystyrene microplastic particles differ in regard to cellular response. Journal of Hazardous Materials, 2022, 435, 128955.	6.5	26
1032	Supramolecular nanomedicines through rational design of self-assembling prodrugs. Trends in Pharmacological Sciences, 2022, 43, 510-521.	4.0	16
1038	Exploring the impact of physicochemical properties of liposomal formulations on their in vivo fate. Life Sciences, 2022, 300, 120574.	2.0	23
1039	Radiolabeled nanomaterials for biomedical applications: radiopharmacy in the era of nanotechnology. EJNMMI Radiopharmacy and Chemistry, 2022, 7, 8.	1.8	36
1040	Synthesis and Characterization of Poly (β-amino Ester) and Applied PEGylated and Non-PEGylated Poly (β-amino ester)/Plasmid DNA Nanoparticles for Efficient Gene Delivery. Frontiers in Pharmacology, 2022, 13, 854859.	1.6	4
1041	New paradigm in combination therapy of siRNA with chemotherapeutic drugs for effective cancer therapy. Current Research in Pharmacology and Drug Discovery, 2022, 3, 100103.	1.7	12
1042	Role of nanocarriers for the effective delivery of anti-HIV drugs. , 2022, , 291-310.		0
1043	Mechanism of nanotoxicity. , 2022, , 105-121.		0
1044	Nanoparticles for diagnosis and treatment of hepatocellular carcinoma. , 2022, , 1-13.		0
1045	Optimized mobilization of MHC class I- and II- restricted immunity by dendritic cell vaccine potentiates cancer therapy. Theranostics, 2022, 12, 3488-3502.	4.6	7
1046	The safety of nanomaterials in food production and packaging. Current Research in Food Science, 2022, 5, 763-774.	2.7	71
1047	Targeted therapy of atherosclerosis by pH-sensitive hyaluronic acid nanoparticles co-delivering all-trans retinal and rapamycin. Nanoscale, 2022, 14, 8709-8726.	2.8	11
1048	Cell-surface glycosaminoglycans regulate the cellular uptake of charged polystyrene nanoparticles. Nanoscale, 2022, 14, 7350-7363.	2.8	4
1049	Nanotechnology-Assisted Cell Tracking. Nanomaterials, 2022, 12, 1414.	1.9	8
1050	pH-sensitive nanoliposomes for passive and CXCR-4-mediated marine yessotoxin delivery for cancer therapy. Nanomedicine, 2022, 17, 717-739.	1.7	3

#	Article	IF	CITATIONS
1051	Particle Safety Assessment in Additive Manufacturing: From Exposure Risks to Advanced Toxicology Testing. Frontiers in Toxicology, 2022, 4, 836447.	1.6	9
1052	Gemini surfactant-based nanoparticles T-box1 gene delivery as a novel approach to promote epithelial stem cells differentiation and dental enamel formation. , 2022, 137, 212844.		2
1053	Immunoadjuvant Nanoparticles as Trojan Horses for Enhanced Photo-Immunotherapy in the Treatment of Triple-Negative Breast Cancer. Frontiers in Pharmacology, 2022, 13, .	1.6	3
1054	Antiproliferative activity of Dioclea violacea lectin in CaCO3 particles on cancer cells after controlled release. Journal of Materials Science, 2022, 57, 8854-8868.	1.7	5
1055	Dose Rate Effects on the Selective Radiosensitization of Prostate Cells by GRPR-Targeted Gold Nanoparticles. International Journal of Molecular Sciences, 2022, 23, 5279.	1.8	6
1056	C-Phycoycanin-Doxorubicin Nanoparticles for Chemo-Photodynamic Cancer Therapy. Macromolecular Research, 2022, 30, 486-494.	1.0	1
1057	Effect of high hydrostatic pressure on the <i>in vitro</i> development and molecular quality of transgenic rabbit embryos derived from nano-transfected zygotes. Annals of Animal Science, 2022, 22, 931-943.	0.6	1
1058	Aerosol delivery of star polymer-siRNA nanoparticles as a therapeutic strategy to inhibit lung tumor growth. Biomaterials, 2022, 285, 121539.	5.7	14
1059	Curcumin-Encapsulated Chitosan-Coated Nanoformulation as an Improved Otoprotective Strategy for Ototoxic Hearing Loss. Molecular Pharmaceutics, 2022, , .	2.3	6
1060	Trends in the Design and Evaluation of Polymeric Nanocarriers: The In Vitro Nano-Bio Interactions. Advances in Experimental Medicine and Biology, 2022, 1357, 19-41.	0.8	2
1061	Endocytosis Pathway Self-Regulation for Precise Image-Guided Therapy through an Enzyme-Responsive Modular Peptide Probe. Analytical Chemistry, 2022, 94, 7960-7969.	3.2	6
1062	Advances in Nanomedicine Design: Multidisciplinary Strategies for Unmet Medical Needs. Molecular Pharmaceutics, 2022, 19, 1722-1765.	2.3	5
1063	Photosensitizer Encryption with Aggregation Enhanced Singlet Oxygen Production. Journal of the American Chemical Society, 2022, 144, 10830-10843.	6.6	19
1064	Multicharged cyclodextrin supramolecular assemblies. Chemical Society Reviews, 2022, 51, 4786-4827.	18.7	87
1065	Polarization-Sensitive Super-Resolution Phononic Reconstruction of Nanostructures. ACS Photonics, 2022, 9, 1919-1925.	3.2	3
1066	Investigation of Cellular Interactions of Lipid-Structured Nanoparticles With Oral Mucosal Epithelial Cells. Frontiers in Molecular Biosciences, 2022, 9, .	1.6	4
1067	"Proton sponge―effect and apoptotic cell death mechanism of Ag -Re6 nanocrystallites derived from the assembly of [{Re6S8}(OH)6–(H2O)]4 with Ag+ ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129312.	2.3	6
1068	Common Considerations for Genotoxicity Assessment of Nanomaterials. Frontiers in Toxicology, 2022, 4, .	1.6	8

#	Article	IF	CITATIONS
1069	Prussian blue technique is prone to yield false negative results in magnetoreception research. Scientific Reports, 2022, 12, .	1.6	4
1070	Chitosan-based oral colon-specific delivery systems for polyphenols: recent advances and emerging trends. Journal of Materials Chemistry B, 2022, 10, 7328-7348.	2.9	25
1071	Nanomedicine to deliver biological macromolecules for treating COVID-19. Vaccine, 2022, 40, 3931-3941.	1.7	9
1072	Innovations and challenges of polyphenol-based smart drug delivery systems. Nano Research, 2022, 15, 8156-8184.	5.8	15
1073	Strategic Insights into Engineering Parameters Affecting Cell Type-Specific Uptake of DNA-Based Nanomaterials. Biomacromolecules, 2022, 23, 2586-2594.	2.6	13
1074	Mineralized vectors for gene therapy. Acta Biomaterialia, 2022, , .	4.1	2
1075	Newly synthesized methionine aminopeptidase 2 inhibitor hinders tumor growth. Drug Delivery and Translational Research, 2023, 13, 1170-1182.	3.0	4
1076	A Polyplex in a Shell: The Effect of Poly(aspartic acid)-Mediated Calcium Carbonate Mineralization on Polyplexes Properties and Transfection Efficiency. Molecular Pharmaceutics, 0, , .	2.3	0
1077	PAMAM Dendritic Nanoparticle-Incorporated Hydrogel to Enhance the Immunogenic Cell Death and Immune Response of Immunochemotherapy. ACS Biomaterials Science and Engineering, 2022, 8, 2403-2418.	2.6	8
1078	Nano-priming as emerging seed priming technology for sustainable agriculture—recent developments and future perspectives. Journal of Nanobiotechnology, 2022, 20, .	4.2	84
1079	18F-FDG MicroPET and MRI Targeting Breast Cancer Mouse Model with Designed Synthesis Nanoparticles. Journal of Nanomaterials, 2022, 2022, 1-9.	1.5	0
1081	Iron oxide nanoparticle encapsulated; folic acid tethered dual metal organic framework-based nanocomposite for MRI and selective targeting of folate receptor expressing breast cancer cells. Microporous and Mesoporous Materials, 2022, 340, 112008.	2.2	15
1082	Self-assembled hydrogel nanocube for stimuli responsive drug delivery and tumor ablation by phototherapy against breast cancer. International Journal of Biological Macromolecules, 2022, 213, 435-446.	3.6	17
1083	Bladder cancer selective chemotherapy with potent NQO1 substrate co-loaded prodrug nanoparticles. Journal of Controlled Release, 2022, 347, 632-648.	4.8	10
1084	Unveiling the interplay between homogeneous and heterogeneous catalytic mechanisms in copper–iron nanoparticles working under chemically relevant tumour conditions. Chemical Science, 2022, 13, 8307-8320.	3.7	9
1085	Development of targeted micelles and polymersomes prepared from degradable RAFT-based diblock copolymers and their potential role as nanocarriers for chemotherapeutics. Polymer Chemistry, 2022, 13, 4004-4017.	1.9	3
1086	Liposomes in drug targeting to brain tumors. , 2022, , 299-327.		1
1087	Review on the applications of nanoemulsions in cancer theranostics. Journal of Materials Research, 0,	1.2	5

#	Article	IF	CITATIONS
1088	Mechanical characterization of multi-layered lipid nanoparticles using high-resolution AFM force spectroscopy. Journal of Industrial and Engineering Chemistry, 2022, 113, 283-292.	2.9	2
1089	The exploration of bio-inspired copper oxide nanoparticles: synthesis, characterization and in-vitro biological investigations. Heliyon, 2022, 8, e09726.	1.4	11
1090	(Nano)platforms in bladder cancer therapy: Challenges and opportunities. Bioengineering and Translational Medicine, 2023, 8, .	3.9	46
1091	Bioadhesive Nanoparticles as Potent Drug Delivery Carriers. Current Medicinal Chemistry, 2023, 30, 2604-2637.	1.2	1
1092	Metal nanoparticles in cancer: from synthesis and metabolism to cellular interactions. Journal of Nanostructure in Chemistry, 2023, 13, 321-348.	5.3	18
1093	Trojan Nanobacteria System for Photothermal Programmable Destruction of Deep Tumor Tissues. Angewandte Chemie, 0, , .	1.6	1
1094	Systemic Neutralizing Antibodies and Local Immune Responses Are Critical for the Control of SARS-CoV-2. Viruses, 2022, 14, 1262.	1.5	1
1095	Beyond microplastics - investigation on health impacts of submicron and nanoplastic particles after oral uptake in vitro. Microplastics and Nanoplastics, 2022, 2, .	4.1	15
1096	Characteristics of Graphene Oxide for Gene Transfection and Controlled Release in Breast Cancer Cells. International Journal of Molecular Sciences, 2022, 23, 6802.	1.8	10
1097	Development of a cancer cells selfâ€activating and miRâ€125aâ€5p expressing polyâ€pharmacological nanodru for cancer treatment. International Journal of Molecular Medicine, 2022, 50, .	g _{1.8}	0
1098	3D imaging and quantification of PLL coated fluorescent ZnO NP distribution and ROS accumulation using laser scanning confocal microscopy. AICHE Journal, 2022, 68, .	1.8	6
1099	Defined positive charge patterns created on DNA nanostructures determine cellular uptake efficiency. Nano Letters, 2022, 22, 5330-5338.	4.5	6
1100	Nanomaterials in Animal Husbandry: Research and Prospects. Frontiers in Genetics, 0, 13, .	1.1	2
1101	Reversing multi-drug resistance by polymeric metformin to enhance antitumor efficacy of chemotherapy. International Journal of Pharmaceutics, 2022, 624, 121931.	2.6	1
1102	Trojan Nanobacteria System for Photothermal Programmable Destruction of Deep Tumor Tissues. Angewandte Chemie - International Edition, 2022, 61, .	7.2	23
1103	Bi-Functional Aspects of Peptide Decorated PLGA Nanocarriers for Enhanced Translocation Across the Blood-Brain Barrier through Macropinocytosis. Macromolecular Research, 2022, 30, 557-570.	1.0	3
1104	The uptake of metal–organic frameworks: a journey into the cell. Chemical Society Reviews, 2022, 51, 6065-6086.	18.7	55
1105	Protease-activated indocyanine green nanoprobes for intraoperative NIR fluorescence imaging of primary tumors. Nanoscale Advances, 2022, 4, 4041-4050.	2.2	2

#	Article	IF	CITATIONS
1106	Mammary Leukocyteâ€Assisted Nanoparticle Transport Enhances Targeted Milk Trace Mineral Delivery. Advanced Science, 0, , 2200841.	5.6	1
1107	Hybrid Nanoparticles of Proanthocyanidins from Uncaria tomentosa Leaves: QTOF-ESI MS Characterization, Antioxidant Activity and Immune Cellular Response. Plants, 2022, 11, 1737.	1.6	2
1108	Doxorubicin-Loaded Lipid Nanoparticles Coated with Calcium Phosphate as a Potential Tool in Human and Canine Osteosarcoma Therapy. Pharmaceutics, 2022, 14, 1362.	2.0	7
1109	Dendrimer-Functionalized Nanodiamonds as Safe and Efficient Drug Carriers for Cancer Therapy: Nucleus Penetrating Nanoparticles. ACS Applied Bio Materials, 2022, 5, 3438-3451.	2.3	15
1110	Impairing proliferation of glioblastoma multiforme with CD44+ selective conjugated polymer nanoparticles. Scientific Reports, 2022, 12, .	1.6	5
1111	Microenvironmental Behaviour of Nanotheranostic Systems for Controlled Oxidative Stress and Cancer Treatment. Nanomaterials, 2022, 12, 2462.	1.9	3
1112	Microrobotic Swarms for Intracellular Measurement with Enhanced Signal-to-Noise Ratio. ACS Nano, 2022, 16, 10824-10839.	7.3	12
1113	Simulation study of the effect of the potential range interaction on the agglomeration mechanism of colloidal nanoparticles using a particle agglomeration model. Molecular Physics, 0, , .	0.8	0
1114	The Peptide/Antibody-Based Surface Decoration of Calcium Phosphate Nanoparticles Carrying siRNA Influences the p65 NF-κB Protein Expression in Inflamed Cells In Vitro. Biomedicines, 2022, 10, 1571.	1.4	2
1115	Iron Oxide Nanoparticles: The precise strategy for targeted delivery of genes, oligonucleotides and peptides in cancer therapy. Journal of Drug Delivery Science and Technology, 2022, 74, 103585.	1.4	7
1116	Oral delivery of polyester nanoparticles for brain-targeting: Challenges and opportunities. Chinese Chemical Letters, 2023, 34, 107691.	4.8	2
1117	Consequences of Noncovalent Interfacial Contacts between Nanoparticles and Giant Vesicles. Angewandte Chemie - International Edition, 2022, 61, .	7.2	3
1118	A precise nanoparticle quantification approach using microfluidics and single-particle tracking. Journal of Drug Delivery Science and Technology, 2022, 75, 103579.	1.4	0
1119	Green synthesis of nano-liposomes containing Bunium persicum and Trachyspermum ammi essential oils against Trichomonas vaginalis. Journal of Microbiology, Immunology and Infection, 2023, 56, 150-162.	1.5	7
1120	Versatile Protein Coronation Approach with Multiple Depleted Serum for Creating Biocompatible, Precision Nanomedicine. Small, 0, , 2202002.	5.2	0
1121	Consequences of Noncovalent Interfacial Contacts between Nanoparticles and Giant Vesicles. Angewandte Chemie, 0, , .	1.6	0
1122	Gold Nano-Bio-Interaction to Modulate Mechanobiological Responses for Cancer Therapy Applications. ACS Applied Bio Materials, 2022, 5, 3741-3752.	2.3	4
1123	Folic acid-mesoporous silicon nanoparticles enhance the anticancer activity of the p73-activating small molecule LEM2. International Journal of Pharmaceutics, 2022, 624, 121959.	2.6	0

#	Article	IF	CITATIONS
1124	Recent advances on the transport of microplastics/nanoplastics in abiotic and biotic compartments. Journal of Hazardous Materials, 2022, 438, 129515.	6.5	46
1125	Nanoparticle entry into cells; the cell biology weak link. Advanced Drug Delivery Reviews, 2022, 188, 114403.	6.6	31
1126	Optimum inhibition of MCF-7 breast cancer cells by efficient targeting of the macropinocytosis using optimized paclitaxel-loaded nanoparticles. Life Sciences, 2022, 305, 120778.	2.0	7
1127	An update on dual targeting strategy for cancer treatment. Journal of Controlled Release, 2022, 349, 67-96.	4.8	18
1128	Polymeric nanoparticles surface-complexed with boric acid actively target solid tumors overexpressing sialic acid. Journal of Colloid and Interface Science, 2022, 626, 916-929.	5.0	6
1130	Recent Pharmaceutical Developments in the Treatment of Cancer Using Nanosponges. , 0, , .		0
1131	Delivery of mGluR5 siRNAs by Iron Oxide Nanocages by Alternating Magnetic Fields for Blocking Proliferation of Metastatic Osteosarcoma Cells. International Journal of Molecular Sciences, 2022, 23, 7944.	1.8	3
1132	Musselâ€inspired biomaterials: From chemistry to clinic. Bioengineering and Translational Medicine, 2022, 7, .	3.9	26
1133	Thiolâ€Ðisulfide Exchange as a Route for Endosomal Escape of Polymeric Nanoparticles. Angewandte Chemie - International Edition, 2022, 61, .	7.2	20
1134	Massively parallel pooled screening reveals genomic determinants of nanoparticle delivery. Science, 2022, 377, .	6.0	72
1135	Nanoparticles Targeting and Uptake: Current Advances in Breast Cancer Research. , 2022, , 171-195.		0
1136	Thiolâ€Disulfide Exchange as a Route for Endosomal Escape of Polymeric Nanoparticles. Angewandte Chemie, 2022, 134, .	1.6	6
1137	Extracellular Vesicle Mimetics: Preparation from Topâ€Down Approaches and Biological Functions. Advanced Healthcare Materials, 2022, 11, .	3.9	6
1138	Emergence of Edible Plant-Derived Nanovesicles as Functional Food Components and Nanocarriers for Therapeutics Delivery: Potentials in Human Health and Disease. Cells, 2022, 11, 2232.	1.8	18
1139	Polymer–Metal Composite Healthcare Materials: From Nano to Device Scale. Journal of Composites Science, 2022, 6, 218.	1.4	4
1140	Nucleic acid-based supramolecular structures: vesicular spherical nucleic acids from a non-phospholipid nucleolipid. Nanoscale Advances, 2022, 4, 3793-3803.	2.2	4
1141	How can we use the endocytosis pathways to design nanoparticle drug-delivery vehicles to target cancer cells over healthy cells?. Chemical Society Reviews, 2022, 51, 7531-7559.	18.7	27
1142	The Promising Nanovectors for Gene Delivery in Plant Genome Engineering. International Journal of Molecular Sciences, 2022, 23, 8501.	1.8	18

#	Article	IF	CITATIONS
1143	Regulatory safety evaluation of nanomedical products: key issues to refine. Drug Delivery and Translational Research, 2022, 12, 2042-2047.	3.0	7
1144	Macrophage-Targeting and Complete Lysosomal Degradation of Self-assembled Two-Dimensional Poly(ε-caprolactone) Platelet Particles. ACS Applied Materials & Interfaces, 2022, 14, 35333-35343.	4.0	7
1145	Advances, challenge and prospects in cell-mediated nanodrug delivery forÂcancer therapy: a review. Journal of Drug Targeting, 2023, 31, 1-13.	2.1	5
1147	Polyamine-Based Nanostructures Share Polyamine Transport Mechanisms with Native Polyamines and Their Analogues: Significance for Polyamine-Targeted Therapy. Medical Sciences (Basel, Switzerland), 2022, 10, 44.	1.3	2
1148	Improved gliotransmission by increasing intracellular Ca2+ via TRPV1 on multi-walled carbon nanotube platforms. Journal of Nanobiotechnology, 2022, 20, .	4.2	3
1149	Controlling Size and Surface Chemistry of Cationic Nanogels by Inverse Microemulsion ATRP. Macromolecular Chemistry and Physics, 2023, 224, .	1.1	3
1150	systematic review on the applications of nanoparticles in dentistry. International Journal of Health Sciences, 0, , 4864-4876.	0.0	0
1151	Investigations on Cellular Uptake Mechanisms and Immunogenicity Profile of Novel Bio-Hybrid Nanovesicles. Pharmaceutics, 2022, 14, 1738.	2.0	9
1152	Fabrication of Nylon-6 and Nylon-11 Nanoplastics and Evaluation in Mammalian Cells. Nanomaterials, 2022, 12, 2699.	1.9	3
1153	Superparamagnetic Iron Oxide Nanoparticles for Targeted Cell Seeding: Magnetic Patterning and Magnetic 3D Cell Culture. Advanced Functional Materials, 2022, 32, .	7.8	10
1154	Fabrication and Applications of Polymeric Nanoparticles for Herbal Drug Delivery and Targeting. Current Traditional Medicine, 2022, 08, .	0.1	0
1155	In vivo and in vitro toxicity of a stainless-steel aerosol generated during thermal spray coating. Archives of Toxicology, 2022, 96, 3201-3217.	1.9	3
1156	Application of Nanomicelles in Enhancing Bioavailability and Biological Efficacy of Bioactive Nutrients. Polymers, 2022, 14, 3278.	2.0	6
1157	Ultrasensitive Reagent for Ratiometric Detection and Detoxification of iAs ^{III} in Water and Mitochondria. Inorganic Chemistry, 2022, 61, 13115-13124.	1.9	4
1158	Cell Size as a Primary Determinant in Targeted Nanoparticle Uptake. ACS Applied Bio Materials, 2022, 5, 4222-4231.	2.3	2
1159	QbD-assisted development of lipidic nanocapsules for antiestrogenic activity of exemestane in breast cancer. Journal of Liposome Research, 2023, 33, 154-169.	1.5	1
1160	Nanoparticle hybrids as efficient theranostic nanoagents with enhanced near-infrared optical absorption and scattering. AIP Advances, 2022, 12, 085105.	0.6	0
1162	Selective Targeting and Eradication of Various Human Non-Small Cell Lung Cancer Cell Lines Using Self-Assembled Aptamer-Decorated Nanoparticles. Pharmaceutics, 2022, 14, 1650.	2.0	1

#	Article	IF	CITATIONS
1163	An overview of the intracellular localization of high-Z nanoradiosensitizers. Progress in Biophysics and Molecular Biology, 2022, 175, 14-30.	1.4	6
1164	Pollen: A Potential Explant for Genetic Transformation in Wheat (Triticum aestivum L.). Agronomy, 2022, 12, 2009.	1.3	2
1165	Tracking the Endosomal Escape: A Closer Look at Calcein and Related Reporters. Macromolecular Bioscience, 2022, 22, .	2.1	6
1166	Recent Advances of Magnetic Nanomaterials for Bioimaging, Drug Delivery, and Cell Therapy. ACS Applied Nano Materials, 2022, 5, 10118-10136.	2.4	11
1167	Nanotechnology-Based Combinatorial Anti-Glioblastoma Therapies: Moving from Terminal to Treatable. Pharmaceutics, 2022, 14, 1697.	2.0	7
1168	Dual Rifampicin and Isoniazid Mannose-Decorated Lipopolysaccharide Nanospheres for Macrophage-Targeted Lung Delivery. Current Drug Delivery, 2022, 19, .	0.8	0
1169	3D bioprinting of nanoparticle-laden hydrogel scaffolds with enhanced antibacterial and imaging properties. IScience, 2022, 25, 104947.	1.9	8
1170	Nanotherapies from an oncologist doctor's view. Smart Materials in Medicine, 2023, 4, 183-198.	3.7	1
1171	pH responsive biohybrid BSA-poly(DPA) nanoparticles for interlysosomal drug delivery. Journal of Drug Delivery Science and Technology, 2022, 75, 103591.	1.4	1
1172	Engineering nanosystems to overcome barriers to cancer diagnosis and treatment. Advanced Drug Delivery Reviews, 2022, 189, 114482.	6.6	25
1173	Surface chemistry driven selective anticancer potential of functional silver nanoparticles toward lung cancer cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 652, 129809.	2.3	4
1174	A review on the impacts of nanomaterials on neuromodulation and neurological dysfunction using a zebrafish animal model. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2022, 261, 109428.	1.3	5
1175	Protein-coated microplastics corona complex: An underestimated risk of microplastics. Science of the Total Environment, 2022, 851, 157948.	3.9	13
1176	Nanocarriers as a Delivery Platform for Anticancer Treatment: Biological Limits and Perspectives in B-Cell Malignancies. Pharmaceutics, 2022, 14, 1965.	2.0	4
1177	Particle surface functionalization affects mechanism of endocytosis and adverse effects of silver nanoparticles in mammalian kidney cells. Journal of Applied Toxicology, 2023, 43, 416-430.	1.4	4
1178	A concise review on implications of silver nanoparticles in bone tissue engineering. , 2022, 141, 213099.		10
1179	A proposed mathematical description of in vivo nanoparticle delivery. Advanced Drug Delivery Reviews, 2022, 189, 114520.	6.6	10
1180	Colonic delivery of surface charge decorated nanocarrier for IBD therapy. Journal of Drug Delivery Science and Technology, 2022, 76, 103754.	1.4	7

#	Article	IF	Citations
1181	Stealth nanoparticles in oncology: Facing the PEG dilemma. Journal of Controlled Release, 2022, 351, 22-36.	4.8	59
1182	Design of functionalized magnetic silica multi-core composite nanoparticles for synergistic magnetic hyperthermia/radiotherapy in cancer cells. Colloids and Surfaces B: Biointerfaces, 2022, 219, 112814.	2.5	11
1183	Nanomedicine approaches to reduce cytokine storms in severe infections. Drug Discovery Today, 2022, 27, 103355.	3.2	1
1184	Comparative pulmonary toxicity assessment of tungsten trioxide and tungsten trioxide hydrate nanoparticles. Science of the Total Environment, 2023, 855, 158885.	3.9	4
1185	A study involving PC-3 cancer cells and novel carbamate gemini surfactants: Is zeta potential the key to control adhesion to cells?. Smart Materials in Medicine, 2023, 4, 123-133.	3.7	5
1186	Overview of nanotechnology and their toxicities. AIP Conference Proceedings, 2022, , .	0.3	1
1187	The electrostatic confinement of aquated monocationic Gd(<scp>iii</scp>) complex-molecules within the inner core of porous silica nanoparticles creates a highly efficient <i>T</i> ₁ contrast agent for magnetic resonance imaging. Dalton Transactions, 2022, 51, 14138-14149.	1.6	0
1188	Nanoparticle-assisted oral delivery of small and large peptides. , 2022, , 131-166.		0
1189	Applications of metal–phenolic networks in nanomedicine: a review. Biomaterials Science, 2022, 10, 5786-5808.	2.6	8
1190	Nanotechnology Advances in the Detection and Treatment of Cancer: An Overview. Nanotheranostics, 2022, 6, 400-423.	2.7	43
1191	Quantum Dots: Potential Cell Imaging Agent. , 2022, , 191-207.		1
1192	Red emitting fluorescent carbon nanoparticles to track spatio-temporal dynamics of endocytic pathways in model neuroblastoma neurons. Nanoscale, 2023, 15, 1154-1171.	2.8	1
1193	Caveolae-dependent endocytosis mediates the cellular uptake of CdTe quantum dots in ovarian cancer cell lines. Research in Pharmaceutical Sciences, 2022, 17, 527.	0.6	0
1194	Tuning the Mechanical Properties of Colloid Particles for Drug Delivery. Acta Chimica Sinica, 2022, 80, 1010.	0.5	0
1195	Recent advances in nanoparticle-based drug delivery systems for rheumatoid arthritis treatment. Nanoscale Advances, 2022, 4, 3479-3494.	2.2	23
1196	Polymeric micelles in dermal and transdermal drug delivery. , 2022, , 147-174.		0
1197	Cationic lipopolymeric nanoplexes containing the CRISPR/Cas9 ribonucleoprotein for genome surgery. Journal of Materials Chemistry B, 2022, 10, 7634-7649.	2.9	4
1198	Nanocosmeceuticals: Concept, opportunities, and challenges. , 2022, , 31-69.		2

#	Article	IF	Citations
1199	A Toxicologic Review of Quantum Dots: Recent Insights and Future Directions. , 2022, , 67-90.		0
1200	Polymeric micelles for oral drug delivery. , 2022, , 89-113.		0
1201	Surface functionalization of nanoparticles: Structure determines function. , 2023, , 203-248.		1
1202	Dual-strategy semi-supervised learning method based on GAN for recognition of tomato leaf diseases. International Journal of Remote Sensing, 2022, 43, 5025-5039.	1.3	0
1203	Design of Smart Nanodiamonds: Introducing pH Sensitivity to Improve Nucleic Acid Carrier Efficiency of Diamoplexes. Pharmaceutics, 2022, 14, 1794.	2.0	1
1204	Orthogonal Covalent Entrapment of Cargo into Biodegradable Polymeric Micelles via Native Chemical Ligation. Biomacromolecules, 0, , .	2.6	3
1205	Exploration of novel drug delivery systems in topical management of osteoarthritis. Drug Delivery and Translational Research, 2023, 13, 531-546.	3.0	5
1206	PEG Conjugated Zein Nanoparticles for In Vivo Use. Pharmaceutics, 2022, 14, 1831.	2.0	2
1207	Engineering nano-drug biointerface to overcome biological barriers toward precision drug delivery. Journal of Nanobiotechnology, 2022, 20, .	4.2	45
1208	pH-Driven Intracellular Nano-to-Molecular Disassembly of Heterometallic [Au2L2]{Re6Q8} Colloids (L) Tj ETQq1 1	0.784314 1.9	rggBT /Over
1209	Peptide-based assembled nanostructures that can direct cellular responses. Biomedical Materials (Bristol), 2022, 17, 062002.	1.7	1
1210	Green Synthesis of Near-Infrared Copper-Doped Carbon Dots from <i>Alcea</i> for Cancer Photothermal Therapy. ACS Omega, 2022, 7, 34573-34582.	1.6	15
1211	Antiproliferative and Apoptotic Effects of Graphene Oxide @AlFu MOF Based Saponin Natural Product on OSCC Line. Pharmaceuticals, 2022, 15, 1137.	1.7	15
1212	Enhanced sucrose-mediated cryoprotection of siRNA-loaded poly (lactic-co-glycolic acid) nanoparticles. Colloids and Surfaces B: Biointerfaces, 2022, , 112880.	2.5	0
1213	Effect of graphene oxide nanoparticles on viability of BAP3 hybridoma cells. Russian Journal of Immunology: RJI: Official Journal of Russian Society of Immunology, 2022, 25, 245-250.	0.2	0
1214	An overview of the role of metallic and nonmetallic nanoparticles and their salts during sperm cryopreservation and <i>in vitro</i> embryo manipulation. Nucleosides, Nucleotides and Nucleic Acids, 2023, 42, 262-279.	0.4	1
1215	The Mucoadhesive Nanoparticle-Based Delivery System in the Development of Mucosal Vaccines. International Journal of Nanomedicine, 0, Volume 17, 4579-4598.	3.3	9
1216	The Trend of Organic Based Nanoparticles in the Treatment of Diabetes and Its Perspectives. Biomolecules and Therapeutics, 2023, 31, 16-26.	1.1	5

#	Article	IF	CITATIONS
1217	pH-sensitive bovine serum albumin nanoparticles for paclitaxel delivery and controlled release to cervical cancer. Applied Nanoscience (Switzerland), 0, , .	1.6	1
1218	Polymer nanocarriers for targeted local delivery of agents in treating brain tumors. Nanotechnology, 2023, 34, 072001.	1.3	3
1219	Charge-Converting Nanoemulsions as Promising Retinal Drug and Gene Delivery Systems. ACS Applied Materials & Interfaces, 2022, 14, 44981-44991.	4.0	4
1222	Nonviral nanoparticle gene delivery into the <scp>CNS</scp> for neurological disorders and brain cancer applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 0, , .	3.3	4
1223	Zwitterionic Biomaterials. Chemical Reviews, 2022, 122, 17073-17154.	23.0	140
1224	De novo engineering of both an omega-3 fatty acid-derived nanocarrier host and a prodrug guest to potentiate drug efficacy against colorectal malignancies. Biomaterials, 2022, 290, 121814.	5.7	9
1225	Enabling continuous flow manufacturing of magnetic nanoparticles with a millifluidic system. Journal of Magnetism and Magnetic Materials, 2022, 563, 169985.	1.0	3
1226	Enhancing the photoluminescence and cellular uptake of fluorescent carbon nanodots <i>via</i> cubosome lipid nanocarriers. Nanoscale, 2022, 14, 17940-17954.	2.8	5
1227	Sustained release of drug-loaded nanoparticles from injectable hydrogels enables long-term control of macrophage phenotype. Biomaterials Science, 2022, 10, 6951-6967.	2.6	13
1228	Targeted gene delivery to the brain using CDX-modified chitosan nanoparticles. BioImpacts, 0, , .	0.7	2
1229	Molecularly Targeted Photothermal Ablation of Epidermal Growth Factor Receptor-Expressing Cancer Cells with a Polypyrrole–Iron Oxide–Afatinib Nanocomposite. Cancers, 2022, 14, 5043.	1.7	5
1230	Transfer Phenomena of Nanoliposomes by Live Imaging of Primary Cultures of Cortical Neurons. Pharmaceutics, 2022, 14, 2172.	2.0	2
1231	Cytotoxicity of Hybrid Noble Metal-Polymer Composites. BioMed Research International, 2022, 2022, 1-12.	0.9	4
1232	Precise Design Strategies of Nanotechnologies for Controlled Drug Delivery. Journal of Functional Biomaterials, 2022, 13, 188.	1.8	2
1233	Development of WRAP5 Peptide Complexes for Targeted Drug/Gene Co-Delivery toward Glioblastoma Therapy. Pharmaceutics, 2022, 14, 2213.	2.0	6
1234	Enhanced Tumor Accumulation of Multimodal Magnetoâ€Plasmonic Nanoparticles via an Implanted Micromagnetâ€Assisted Delivery Strategy. Advanced Healthcare Materials, 2023, 12, .	3.9	2
1235	Nanoparticle-mediated selective Sfrp-1 silencing enhances bone density in osteoporotic mice. Journal of Nanobiotechnology, 2022, 20, .	4.2	6
1236	The feasibility of oral targeted drug delivery: Gut immune to particulates?. Acta Pharmaceutica Sinica B, 2023, 13, 2544-2558.	5.7	8

#	Article	IF	CITATIONS
1237	Length-Controlled Nanofiber Micelleplexes as Efficient Nucleic Acid Delivery Vehicles. Journal of the American Chemical Society, 2022, 144, 19799-19812.	6.6	7
1238	Contaminating transfection complexes can masquerade as small extracellular vesicles and impair their delivery of RNA. Journal of Extracellular Vesicles, 2022, 11, .	5.5	9
1239	Harvestable tumour spheroids initiated in a gelatin-carboxymethyl cellulose hydrogel for cancer targeting and imaging with fluorescent gold nanoclusters. In Vitro Models, 2022, 1, 437-446.	1.0	1
1240	Smart and Multi-Functional Magnetic Nanoparticles for Cancer Treatment Applications: Clinical Challenges and Future Prospects. Nanomaterials, 2022, 12, 3567.	1.9	14
1241	Novel MR imaging nanoprobe for hepatocellular carcinoma detection based on manganese–zinc ferrite nanoparticles: in vitro and in vivo assessments. Journal of Cancer Research and Clinical Oncology, 2023, 149, 4939-4957.	1.2	4
1242	CD44 and CD221 directed magnetic cubosomes for the targeted delivery of helenalin to rhabdomyosarcoma cells. Nano Research, 0, , .	5.8	2
1243	Endoplasmic Reticulum Stress Underlies Nanosilver-Induced Neurotoxicity in Immature Rat Brain. International Journal of Molecular Sciences, 2022, 23, 13013.	1.8	7
1244	Biological Response of Human Cancer Cells to Ionizing Radiation in Combination with Gold Nanoparticles. Cancers, 2022, 14, 5086.	1.7	3
1245	A Nanomedicine Structure–Activity Framework for Research, Development, and Regulation of Future Cancer Therapies. ACS Nano, 2022, 16, 17497-17551.	7.3	10
1246	Hydroxyapatite nanoparticles-cell interaction: New approaches to disclose the fate of membrane-bound and internalised nanoparticles. , 2022, 142, 213148.		10
1247	Nanoparticles targeting hematopoietic stem and progenitor cells: Multimodal carriers for the treatment of hematological diseases. Frontiers in Genome Editing, 0, 4, .	2.7	3
1248	Pazopanib-laden lipid based nanovesicular delivery with augmented oral bioavailability and therapeutic efficacy against non-small cell lung cancer. International Journal of Pharmaceutics, 2022, 628, 122287.	2.6	8
1249	Macromolecular assembly of bioluminescent protein nanoparticles for enhanced imaging. Materials Today Bio, 2022, 17, 100455.	2.6	2
1250	Synthesis of albumin nanoparticles in a water-miscible ionic liquid system, and their applications for chlorambucil delivery to cancer cells. Journal of Molecular Liquids, 2022, 367, 120575.	2.3	9
1251	Encapsulation and colloidal systems as a way to deliver functionality in foods. , 2023, , 63-111.		1
1252	Biophysicochemical transformation of ENMs at root level. , 2023, , 177-200.		0
1253	Optimization of Physicochemical Properties of Polymeric Nanoparticles for Targeting Solid Tumors. Environmental Chemistry for A Sustainable World, 2022, , 103-125.	0.3	0
1254	Cellular Internalization and Toxicity of Polymeric Nanoparticles. Environmental Chemistry for A Sustainable World, 2022, , 473-488.	0.3	3

#	Article	IF	CITATIONS
1255	Ligand Targeted Polymeric Nanoparticles for Cancer Chemotherapy. Environmental Chemistry for A Sustainable World, 2022, , 251-272.	0.3	0
1256	Surface-engineered nanoparticles in cancer immune response and immunotherapy: Current status and future prospects. Biomedicine and Pharmacotherapy, 2023, 157, 113998.	2.5	5
1257	Unrevealing the role of metal oxide nanoparticles on biohydrogen production by Lactobacillus delbrueckii. Bioresource Technology, 2023, 367, 128260.	4.8	4
1258	Combination of cobalt, chromium and titanium nanoparticles increases cytotoxicity in vitro and pro-inflammatory cytokines in vivo. Journal of Orthopaedic Translation, 2023, 38, 203-212.	1.9	9
1261	Gallic Acid–Triethylene Glycol Aptadendrimers Synthesis, Biophysical Characterization and Cellular Evaluation. Pharmaceutics, 2022, 14, 2456.	2.0	2
1262	Responsive Accumulation of Nanohybrids to Boost NIRâ€Phototheranostics for Specific Tumor Imaging and Glutathione Depletionâ€Enhanced Synergistic Therapy. Advanced Science, 2023, 10, .	5.6	8
1263	Effect of surface functionalization and loading on the mechanical properties of soft polymeric nanoparticles prepared by nano-emulsion templating. Colloids and Surfaces B: Biointerfaces, 2023, 222, 113019.	2.5	3
1264	An Antitumor Dualâ€Responsive Hostâ€Guest Supramolecular Polymer Based on Hypoxiaâ€Cleavable Azocalix[4]arene. Angewandte Chemie, 2023, 135, .	1.6	2
1265	An Antitumor Dualâ€Responsive Hostâ€Guest Supramolecular Polymer Based on Hypoxiaâ€Cleavable Azocalix[4]arene. Angewandte Chemie - International Edition, 2023, 62, .	7.2	20
1266	Nanobubble technology applications in environmental and agricultural systems: Opportunities and challenges. Critical Reviews in Environmental Science and Technology, 2023, 53, 1378-1403.	6.6	14
1267	Apoptotic-based topotecan-loaded superparamagnetic drug delivery system: an in vitro study in MCF7. Bioinspired, Biomimetic and Nanobiomaterials, 0, , 1-10.	0.7	0
1268	Ligand-switchable nanoparticles resembling viral surface for sequential drug delivery and improved oral insulin therapy. Nature Communications, 2022, 13, .	5.8	23
1269	Recent advances of bioresponsive polymeric nanomedicine for cancer therapy. Nano Research, 2023, 16, 2660-2671.	5.8	16
1270	BSA-magnetite nanotorpedo for safe and efficient delivery of chemotherapy drugs. Chemical Engineering Journal, 2023, 454, 140440.	6.6	8
1271	Antimicrobial Activity of Azithromycin Encapsulated into PLGA NPs: A Potential Strategy to Overcome Efflux Resistance. Antibiotics, 2022, 11, 1623.	1.5	12
1272	Hydrogel Microtumor Arrays to Evaluate Nanotherapeutics. Advanced Healthcare Materials, 2023, 12, .	3.9	1
1273	Relative risk reduction: Misinformative measure in clinical trials and COVID-19 vaccine efficacy. , 2022, 1, 100074.		2
1274	Could artificial intelligence revolutionize the development of nanovectors for gene therapy and mRNA vaccines?. Nano Today, 2022, 47, 101665.	6.2	11

#	Article	IF	CITATIONS
1275	Nanoparticle-Based Delivery Systems for Vaccines. Vaccines, 2022, 10, 1946.	2.1	42
1276	Cationic lipid modification of DNA tetrahedral nanocages enhances their cellular uptake. Nanoscale, 2023, 15, 1099-1108.	2.8	5
1277	Antimicrobial evaluation of bismuth subsalicylate nanoparticles synthesized by laser ablation against clinical oral microorganisms. Optics and Laser Technology, 2023, 158, 108930.	2.2	4
1278	Engineering discrete synthetic macromolecules for biomedical applications. Nano Today, 2023, 48, 101728.	6.2	9
1279	Tumor acidic environment directs nanoparticle impacts on cancer cells. Journal of Colloid and Interface Science, 2023, 634, 684-692.	5.0	3
1280	Silica Nanoparticles with Virus-Mimetic Spikes Enable Efficient siRNA Delivery In Vitro and In Vivo. Research, 2022, 2022, .	2.8	5
1281	Iron oxide nanoparticles: Magnetic and biological properties. , 2022, , .		0
1282	Mechanistic Observation of Interactions between Macrophages and Inorganic Particles with Different Densities. Small, 2023, 19, .	5.2	5
1283	Nanotechnologyâ€Assisted Immunoengineering for Cancer Vaccines. Advanced NanoBiomed Research, 2023, 3, .	1.7	2
1284	Quantifying fluorescent nanoparticle uptake in mammalian cells using a plate reader. Scientific Reports, 2022, 12, .	1.6	4
1285	Recent Advances in Nanomaterials of Group XIV Elements of Periodic Table in Breast Cancer Treatment. Pharmaceutics, 2022, 14, 2640.	2.0	1
1286	Lipid Giant Vesicles Engulf Living Bacteria Triggered by Minor Enhancement in Membrane Fluidity. Nano Letters, 2023, 23, 371-379.	4.5	0
1287	Manoeuvering amid nanoparticle overload: A microbial perspective. Materials Today: Proceedings, 2022, , .	0.9	0
1288	Nanotechnologyâ€based electrochemical biosensors for monitoring breast cancer biomarkers. Medicinal Research Reviews, 2023, 43, 464-569.	5.0	13
1289	Cellular Uptake, Transport, and Organelle Response After Exposure to Microplastics and Nanoplastics: Current Knowledge and Perspectives for Environmental and Health Risks. Reviews of Environmental Contamination and Toxicology, 2022, 260, .	0.7	3
1290	Intelligent nanotherapeutic strategies for the delivery of CRISPR system. Acta Pharmaceutica Sinica B, 2023, 13, 2510-2543.	5.7	4
1291	A Detailed Review on Synthesis, Functionalization, Application, Challenges, and Current Status of Magnetic Nanoparticles in the Field of Drug Delivery and Gene Delivery System. AAPS PharmSciTech, 2023, 24, .	1.5	8
1292	Umbelliprenin-loaded nanostructured lipid: A novel approach for inducing cytotoxicity and apoptosis in colorectal cancer cells by altering the p53, survivin, and Bax/Bcl2 ratio. Gene Reports, 2022, , 101732.	0.4	0

#	Article	IF	CITATIONS
1293	Cancer nanomedicine toward clinical translation: Obstacles, opportunities, and future prospects. Med, 2023, 4, 147-167.	2.2	47
1294	Modulating the tumor immune microenvironment with nanoparticles: A sword for improving the efficiency of ovarian cancer immunotherapy. Frontiers in Immunology, 0, 13, .	2.2	3
1295	Repurposing Antimalarial Pyronaridine as a DNA Repair Inhibitor to Exploit the Full Potential of Gold-Nanoparticle-Mediated Radiation Response. Pharmaceutics, 2022, 14, 2795.	2.0	0
1296	Use of nanocellulose in the intracellular delivery of biological and non-biological drugs: a review. Cellulose, 2023, 30, 1335-1354.	2.4	4
1297	Metalâ€Based Nanozymes with Multienzymeâ€Like Activities as Therapeutic Candidates: Applications, Mechanisms, and Optimization Strategy. Small, 2023, 19, .	5.2	18
1298	Exploring the impact of PEGylation on the cell-nanomicelle interactions by AFM-based single-molecule force spectroscopy and force tracing. Acta Biomaterialia, 2023, 157, 310-320.	4.1	4
1299	The Role of Nanotechnology in Spinal Cord Tumors. Advances in Experimental Medicine and Biology, 2023, , 193-207.	0.8	0
1300	Novel Injectable Fluorescent Polymeric Nanocarriers for Intervertebral Disc Application. Journal of Functional Biomaterials, 2023, 14, 52.	1.8	2
1301	pH-triggered cancer-targeting polymers: From extracellular accumulation to intracellular release. Nano Research, 2023, 16, 5155-5168.	5.8	9
1302	ε-Poly(-lysine)-based bioreducible nanogels for mitochondria-targeted delivery and release: Hydrophobicity-tuned nucleus-to-mitochondria organelle-targeting switch and slow disulfide cleavage. Chemical Engineering Journal, 2023, 456, 141090.	6.6	0
1303	Application of Nanomaterials in Stem Cellâ€Based Therapeutics for Cardiac Repair and Regeneration. Small, 2023, 19, .	5.2	5
1304	A Novel Nanosafety Approach Using Cell Painting, Metabolomics, and Lipidomics Captures the Cellular and Molecular Phenotypes Induced by the Unintentionally Formed Metal-Based (Nano)Particles. Cells, 2023, 12, 281.	1.8	7
1305	Protein nanoparticle cellular fate and responses in murine macrophages. NPG Asia Materials, 2023, 15, .	3.8	1
1306	Drawbacks in the efficient monitoring of gold nanoparticle-based cisplatin delivery systems formation by HPLCâ ϵ "ICP-MS. Metallomics, 2023, 15, .	1.0	0
1307	Mucopenetrating Janus Nanoparticles For Field-Coverage Oral Cancer Chemoprevention. Pharmaceutical Research, 2023, 40, 749-764.	1.7	5
1308	Are We There Yet? Intracellular Sensing with Luminescent Nanoparticles and FRET. Analytical Chemistry, 0, , .	3.2	1
1309	Nucleic acid drug vectors for diagnosis and treatment of brain diseases. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	19
1310	Photoreactive Mercury-Containing Metallosupramolecular Nanoparticles with Tailorable Properties That Promote Enhanced Cellular Uptake for Effective Cancer Chemotherapy. Biomacromolecules, 2023, 24, 943-956.	2.6	5
# 1311	ARTICLE Using magnetic mesoporous silica nanoparticles armed with EpCAM aptamer as an efficient platform for specific delivery of 5-fluorouracil to colorectal cancer cells. Frontiers in Bioengineering and	IF 2.0	CITATIONS
-----------	--	-----------	-----------
1312	Non-viral nucleic acid delivery approach: A boon for state-of-the-art gene delivery. Journal of Drug Delivery Science and Technology, 2023, 80, 104152.	1.4	1
1313	Polyphenol Supplementation and Antioxidant Status in Athletes: A Narrative Review. Nutrients, 2023, 15, 158.	1.7	7
1314	Surface-Enhanced Raman Spectroscopic Probing in Digital Microfluidics through a Microspray Hole. Analytical Chemistry, 0, , .	3.2	0
1315	Aptamer-functionalized liposomes for targeted cancer therapy. , 2023, , 141-172.		8
1316	Nanosized metal–organic frameworks as unique platforms for bioapplications. Chemical Communications, 2023, 59, 2869-2887.	2.2	12
1317	The toxicity of nanoparticles and their interaction with cells: an <i>in vitro</i> metabolomic perspective. Nanoscale Advances, 2023, 5, 2674-2723.	2.2	19
1318	Polymeric micelles–mediated photodynamic therapy. , 2023, , 105-139.		0
1319	Silver Nanoparticle Surface Chemistry Determines Interactions with Human Serum Albumin and Cytotoxic Responses in Human Liver Cells. ACS Omega, 2023, 8, 3310-3318.	1.6	7
1320	Metal Nanoparticles to Combat Candida albicans Infections: An Update. Microorganisms, 2023, 11, 138.	1.6	11
1321	Nanosized Drug Delivery Systems to Fight Tuberculosis. Pharmaceutics, 2023, 15, 393.	2.0	4
1322	Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nature Reviews Materials, 2023, 8, 282-300.	23.3	88
1323	PLGA Nanoparticles Containing VCAM-1 Inhibitor Succinobucol and Chemotherapeutic Doxorubicin as Therapy against Primary Tumors and Their Lung Metastases. Pharmaceutics, 2023, 15, 349.	2.0	2
1324	Zwitterionic polymers: Addressing the barriers for drug delivery. Chinese Chemical Letters, 2023, 34, 108177.	4.8	8
1325	Design of Calixareneâ€Based ICD Inducer for Efficient Cancer Immunotherapy. Advanced Functional Materials, 2023, 33, .	7.8	18
1326	Intracellularly Self-Assembled 2D Materials Induce Apoptotic Cell Death by Impeding Cytosolic Transport. ACS Nano, 2023, 17, 3055-3063.	7.3	1
1327	Clinical progress in genome-editing technology and in vivo delivery techniques. Trends in Genetics, 2023, 39, 208-216.	2.9	10
1328	Hyaluronan-Cyclodextrin Conjugates as Doxorubicin Delivery Systems. Pharmaceutics, 2023, 15, 374.	2.0	2

#	Article	IF	CITATIONS
1329	Engineering of Tripeptide-Stabilized Gold Nanoclusters with Inherent Photosensitizing Property for Bioimaging and Photodynamic Therapy. ACS Sustainable Chemistry and Engineering, 2023, 11, 2102-2114.	3.2	8
1330	In vitro-in vivo correlation in nanocarriers: From protein corona to therapeutic implications. Journal of Controlled Release, 2023, 354, 794-809.	4.8	6
1331	Emerging ultrasmall luminescent nanoprobes for <i>in vivo</i> bioimaging. Chemical Society Reviews, 2023, 52, 1672-1696.	18.7	27
1332	Lipid-based nanoparticles: Enhanced cellular uptake via surface thiolation. International Journal of Pharmaceutics, 2023, 635, 122753.	2.6	9
1333	Lactoferrin-Based Ternary Composite Nanoparticles with Enhanced Dispersibility and Stability for Curcumin Delivery. ACS Applied Materials & Interfaces, 2023, 15, 18166-18181.	4.0	13
1334	Brain targeting based nanocarriers loaded with resveratrol in Alzheimer's disease: A review. IET Nanobiotechnology, 2023, 17, 154-170.	1.9	4
1335	Targeted dexamethasone nano-prodrug for corneal neovascularization management. Biomedical Journal, 2024, 47, 100592.	1.4	2
1336	Three-Dimensional Nucleic Acid Nanostructures Based on Self-Assembled Polymer-Oligonucleotide Conjugates of Comblike and Coil-Comb Chain Architectures. Biomacromolecules, 2023, 24, 2213-2224.	2.6	1
1337	Barium sulphate microparticles are taken up by three different cell types: HeLa, THP-1, and hMSC. Acta Biomaterialia, 2023, 164, 577-587.	4.1	1
1338	Nanozyme can substitute a natural Ogataea polymorpha catalase enzyme in vivo. Mikrochimica Acta, 2023, 190, .	2.5	1
1339	Live Imaging of Monocyte/Macrophage Differentiation with Cationized Gelatin Nanospheres Incorporating a Molecular Beacon. ACS Biomaterials Science and Engineering, 0, , .	2.6	0
1340	Antireproductive changes instigated by efficient drug delivery via papaya seed chloroform extract-based nanoparticles in male rat Bandicota bengalensis. Pesticide Biochemistry and Physiology, 2023, 192, 105408.	1.6	1
1341	Antimicrobial particles based on Cu2ZnSnS4 monograins. Colloids and Surfaces B: Biointerfaces, 2023, 225, 113275.	2.5	5
1342	Nanocarrier design–function relationship: The prodigious role of properties in regulating biocompatibility for drug delivery applications. Chemico-Biological Interactions, 2023, 377, 110466.	1.7	7
1343	Pre-exposure to titanium or iron oxide nanoparticles suppresses the subsequent cellular uptake of gold nanoparticles. Science of the Total Environment, 2023, 875, 162491.	3.9	2
1344	An EGCG-mediated self-assembled micellar complex acts as a bioactive drug carrier. Food Chemistry, 2023, 418, 135939.	4.2	0
1345	Microfluidic formulation of anticancer peptide loaded ZIF-8 nanoparticles for the treatment of breast cancer. Journal of Colloid and Interface Science, 2023, 642, 810-819.	5.0	14
1346	Combination of nanoparticle green tea extract in tris-egg yolk extender and 39 °c thawing temperatures improve the sperm quality of post-thawed Kacang goat semen. Animal Reproduction, 2022, 19, .	0.4	2

#	Article	IF	CITATIONS
1347	Tenofovir-tethered gold nanoparticles as a novel multifunctional long-acting anti-HIV therapy to overcome deficient drug delivery-: an in vivo proof of concept. Journal of Nanobiotechnology, 2023, 21, .	4.2	7
1348	Therapeutic potential of tolerance-based peptide vaccines in autoimmune diseases. International Immunopharmacology, 2023, 116, 109740.	1.7	5
1349	Advances and opportunities inÂnanoimagingÂagents for the diagnosis of inflammatory lung diseases. Nanomedicine, 2022, 17, 1981-2005.	1.7	2
1350	Advanced Drug Delivery Systems for Renal Disorders. Gels, 2023, 9, 115.	2.1	6
1351	PolyIC-coated Prussian blue nanoparticles as a dual-mode HIV latency reversing agent. Nanomedicine, 2022, 17, 2159-2171.	1.7	0
1352	Blocking Spatiotemporal Crosstalk between Subcellular Organelles for Enhancing Anticancer Therapy with Nanointercepters. Advanced Materials, 2023, 35, .	11.1	6
1353	A Review of Different Types of Liposomes and Their Advancements as a Form of Gene Therapy Treatment for Breast Cancer. Molecules, 2023, 28, 1498.	1.7	13
1354	Magnetic Ion Channel Activation (MICA)-Enabled Screening Assay: A Dynamic Platform for Remote Activation of Mechanosensitive Ion Channels. International Journal of Molecular Sciences, 2023, 24, 3364.	1.8	0
1355	Advances in transgene delivery for the generation of transgenic livestock. , 2023, , 29-59.		0
1356	How Does the Study MD of pH-Dependent Exposure of Nanoparticles Affect Cellular Uptake of Anticancer Drugs?. International Journal of Molecular Sciences, 2023, 24, 3479.	1.8	1
1357	Effects of Shape on Interaction Dynamics of Tetrahedral Nanoplastics and the Cell Membrane. Journal of Physical Chemistry B, 2023, 127, 1652-1663.	1.2	3
1358	Rare-earth orthovanadate nanoparticles trigger Ca ²⁺ -dependent eryptosis. Nanotechnology, 2023, 34, 205101.	1.3	3
1359	Review on Multifunctional Nanotherapeutics for Drug Delivery, Tumor Imaging, and Selective Tumor Targeting By Hyaluronic Acid Coupled Graphene Quantum Dots. Current Nanoscience, 2023, 19, .	0.7	0
1360	Biomimetic nanotherapeutics for targeted drug delivery to glioblastoma multiforme. Bioengineering and Translational Medicine, 2023, 8, .	3.9	1
1361	Lipid-based colloidal nanoparticles for applications in targeted vaccine delivery. Nanoscale Advances, 2023, 5, 1853-1869.	2.2	8
1362	A review on microfluidic-assisted nanoparticle synthesis, and their applications using multiscale simulation methods. , 2023, 18, .		16
1363	Reactive Oxygen Species-Responsive Transformable and Triple-Targeting Butylphthalide Nanotherapy for Precision Treatment of Ischemic Stroke by Normalizing the Pathological Microenvironment. ACS Nano, 2023, 17, 4813-4833.	7.3	16
1365	Cellular Uptake of Silica Particles Influences EGFR Signaling Pathway and is Affected in Response to EGF. International Journal of Nanomedicine, 0, Volume 18, 1047-1061.	3.3	3

#	Article	IF	CITATIONS
1366	Boron nanoparticles in chemotherapy and radiotherapy: the synthesis, state-of-the-art, and prospects. Russian Chemical Bulletin, 2022, 71, 2533-2560.	0.4	2
1367	Noninfectious tissue interactions at periprosthetic interfaces. , 2023, 52, 186-195.		3
1368	All-natural-molecule, bioluminescent photodynamic therapy results in complete tumor regression and prevents metastasis. Biomaterials, 2023, 296, 122079.	5.7	7
1369	Effect of CdSTe QDs' Crystal Size on Viability and Cytochrome P450 Activity of CHO-K1 and HEP-G2 Cells. Micro, 2023, 3, 308-319.	0.9	0
1370	lfosfamide-Loaded Cubosomes: An Approach to Potentiate Cytotoxicity against MDA-MB-231 Breast Cancer Cells. , 0, , .		0
1371	Drug-Loading Content Influences Cellular Uptake of Polymer-Coated Nanocellulose. Molecular Pharmaceutics, 2023, 20, 2017-2028.	2.3	1
1372	An Adjuvanted Inactivated SARS-CoV-2 Microparticulate Vaccine Delivered Using Microneedles Induces a Robust Immune Response in Vaccinated Mice. Pharmaceutics, 2023, 15, 895.	2.0	6
1373	Effectiveâ€byâ€method for the preparation of folic acidâ€coated TiO ₂ nanoparticles with high targeting potential for apoptosis induction against bladder cancer cells (T24). Biotechnology and Applied Biochemistry, 2023, 70, 1597-1615.	1.4	6
1374	2D MoS ₂ Nanosheets Induce Ferroptosis by Promoting NCOA4â€Dependent Ferritinophagy and Inhibiting Ferroportin. Small, 2023, 19, .	5.2	8
1375	Plasmonic nanorod probes' journey inside plant cells for <i>in vivo</i> SERS sensing and multimodal imaging. Nanoscale, 0, , .	2.8	0
1376	Effect of Cell Membraneâ€cloaked Nanoparticle Elasticity on Nanoâ€Bio Interaction. Small Methods, 2023, 7, .	4.6	3
1377	Disulfide Bond-Based SN38 Prodrug Nanoassemblies with High Drug Loading and Reduction-Triggered Drug Release for Pancreatic Cancer Therapy. International Journal of Nanomedicine, 0, Volume 18, 1281-1298.	3.3	5
1378	Effect of Wear-Corrosion of Reduced Graphene Oxide Functionalized with Hyaluronic Acid on Inflammatory and Proteomic Response of J774A.1 Macrophages. Metals, 2023, 13, 598.	1.0	0
1379	Polystyrene Microplastics of Varying Sizes and Shapes Induce Distinct Redox and Mitochondrial Stress Responses in a Caco-2 Monolayer. Antioxidants, 2023, 12, 739.	2.2	2
1380	Biofate and cellular interactions of PLGA nanoparticles. , 2023, , 87-119.		0
1381	Polymeric Micellar Systems—A Special Emphasis on "Smart―Drug Delivery. Pharmaceutics, 2023, 15, 976.	2.0	20
1382	Mechanism of Nanotoxicity. , 2023, , 37-53.		0
1383	Caveolin-Mediated Internalization of Fmoc-FF Nanogels in Breast Cancer Cell Lines. Pharmaceutics, 2023, 15, 1026.	2.0	5

#	Article	IF	CITATIONS
1385	Research Progress of Nanomedicine-Based Mild Photothermal Therapy in Tumor. International Journal of Nanomedicine, 0, Volume 18, 1433-1468.	3.3	9
1386	The protein corona from nanomedicine to environmental science. Nature Reviews Materials, 2023, 8, 422-438.	23.3	76
1387	Casein-based nanosystems for therapeutic applications. , 2023, , 621-655.		0
1388	Antiviral Lipid Nanocarrier Loaded with Remdesivir Effective Against SARS-CoV-2 in vitro Model. International Journal of Nanomedicine, 0, Volume 18, 1561-1575.	3.3	3
1389	Development of glycan-targeted nanoparticles as a novel therapeutic opportunity for gastric cancer treatment. Cancer Nanotechnology, 2023, 14, .	1.9	0
1390	Defect-free graphene enhances enzyme delivery to fibroblasts derived from patients with lysosomal storage disorders. Nanoscale, 2023, 15, 9348-9364.	2.8	2
1391	Tumorâ€Targeted Poly(ArgGlyAsp) Nanocapsules for Personalized Cancer Therapy – In Vivo Study. Advanced Therapeutics, 0, , .	1.6	1
1393	Management of infectious disease and biotoxin elimination using nanomaterials. , 2023, , 149-174.		0
1394	Safety of Gold Nanoparticles: From In Vitro to In Vivo Testing Array Checklist. Pharmaceutics, 2023, 15, 1120.	2.0	7
1395	Particle carriers for controlled release of peptides. Journal of Controlled Release, 2023, 360, 953-968.	4.8	1
1396	Key Design Features of Lipid Nanoparticles and Electrostatic Charge-Based Lipid Nanoparticle Targeting. Pharmaceutics, 2023, 15, 1184.	2.0	4
1397	Multifunctional ZnO nanostructures: a next generation nanomedicine for cancer therapy, targeted drug delivery, bioimaging, and tissue regeneration. Nanotechnology, 2023, 34, 282003.	1.3	2
1398	Design, physicochemical characterisation, and in vitro cytotoxicity of cisplatin-loaded PEGylated chitosan injectable nano / sub-micron crystals. Saudi Pharmaceutical Journal, 2023, 31, 861-873.	1.2	4
1399	Nanoparticles-Based Delivery Systems for Salicylic Acid as Plant Growth Stimulator and Stress Alleviation. Plants, 2023, 12, 1637.	1.6	3
1400	Comparison of the Anti-inflammatory Activity and Cellular Interaction of Brush Polymer– <i>N</i> -Acetyl Cysteine Conjugates in Human and Murine Microglial Cell Lines. Molecular Pharmaceutics, 0, , .	2.3	0
1401	Lysosomal nanotoxicity: Impact of nanomedicines on lysosomal function. Advanced Drug Delivery Reviews, 2023, 197, 114828.	6.6	7
1402	Use of titanium dioxide nanoparticles for cancertreatment: A comprehensive review and bibliometric analysis. Biocatalysis and Agricultural Biotechnology, 2023, 50, 102710.	1.5	6
1403	Rational engineering of nucleic acid probe system for enhanced intracellular MicroRNA detection. Coordination Chemistry Reviews, 2023, 487, 215157.	9.5	3

ARTICLE IF CITATIONS Nanoâ€"bio interactions of upconversion nanoparticles at subcellular level: biodistribution and 1404 1.7 1 cytotoxicity. Nanomedicine, 2023, 18, 233-258. Nanoparticulates., 2023,, 797-838. 1405 Design and assembly of a nanoparticle, antibody, phthalocyanine scaffold for intracellular delivery 1406 of photosensitizer to human papillomavirus-transformed cancer cells. Artificial Cells, Nanomedicine 1.9 2 and Biotechnology, 2023, 51, 205-216. Prospects of Safe Use of Nanomaterials in Biomedical Applications., 2023, , 83-101. Translating Nanomaterials from Laboratory to Clinic: Barriers Ahead., 2023, , 381-405. 1449 1 Drug delivery: The conceptual perspectives and therapeutic applications., 2023, , 1-38. Artificial Photosynthesis Using Nanotechnology., 2023, , 639-667. 1483 0 Herbal nanomedicines and cellular uptake mechanism., 2023, , 63-99. 1487 1488 Advanced Technologies in Health and Neurodegenerative Diseases., 2023, , 629-653. 0 1495 Nanoliposomes as safe and efficient drug delivery nanovesicles., 2023, 159-197. Review on iron nanoparticles for cancer theranostics: synthesis, modification, characterization and 1497 0.8 0 applications. Journal of Nanoparticle Research, 2023, 25, . Advanced nanostructured materials in solar interfacial steam generation and desalination against pathogens: combatting microbial-contaminants in water – a critical review. Journal of Materials 1499 5.2 Chemistry A, 2023, 11, 18046-18080. High atomic number nanoparticles to enhance spectral CT imaging aspects. Materials Advances, 2023, 4, 1504 2.6 1 3967-3988. Nanostructured biocatalysis for biotechnological applications., 2023, , 397-418. 1509 Targeting Macrophages Through Gold Nanoparticle-Induced Immunomodulation: A Therapeutic 1510 0 Approach in Inflammation and Cancer., 2023, , 161-175. General justification in terms of effectiveness and toxicities for the use of nanocarriers. Journal of 1524 0.8 Nanoparticle Research, 2023, 25, . Toxicology of nanoformulations and materials in tissue engineering., 2023, 281-316. 1534 0 Past, Present and Possible Future Application of Nanoparticle in Contaminated Soil Remediation. , 2023, 1551 , 43-57.

#	Article	IF	CITATIONS
1556	Potential of Biotechnology in Cancer Management. , 2023, , 9-44.		0
1568	A selenoureido-iminoglycolipid transported by zeolitic-imidazolate framework nanoparticles: a novel antioxidant therapeutic approach. Nanoscale Horizons, 0, , .	4.1	0
1581	Role of the nanoparticle core and capping on the interaction with lipid monolayers. Advances in Biomembranes and Lipid Self-Assembly, 2023, , 63-102.	0.3	0
1585	Nanoparticle-Based Approaches for Treatment of Hematological Malignancies: a Comprehensive Review. AAPS PharmSciTech, 2023, 24, .	1.5	3
1586	The Curie temperature: a key playmaker in self-regulated temperature hyperthermia. Journal of Materials Chemistry B, O, , .	2.9	1
1603	Biological Interaction and Imaging of Ultrasmall Gold Nanoparticles. Nano-Micro Letters, 2024, 16, .	14.4	0
1616	Complex Study of Foliar Application of Inorganic Nanofertilizers in Field Conditions: Impact on Crop Production and Environmental–Ecological Assessment. Nanotechnology in the Life Sciences, 2024, , 507-560.	0.4	0
1636	Quantum Nanoscience in Targeted Drug Delivery. Advances in Medical Diagnosis, Treatment, and Care, 2023, , 249-276.	0.1	0
1639	Nanoparticles in plant resistance against bacterial pathogens: current status and future prospects. Molecular Biology Reports, 2024, 51, .	1.0	0
1648	Phyto-Metallic Nanoparticles: Biosynthesis, Mechanism, Therapeutics, and Cytotoxicity. , 0, , .		0
1655	Synthetic strategies of short peptide-modified nanomaterials for diagnostics and phototherapy. , 2024, , 65-80.		0
1663	Environmental concern, health and safety aspects of polymer nanocomposite films and coatings. , 2024, , 817-842.		0
1695	Molecular mechanisms of nanomaterial interaction with plants. , 2024, , 77-93.		0
1696	Seed priming with engineered nanomaterials for mitigating abiotic stress in plants. , 2024, , 229-247.		0
1703	Nanoparticle-Organism Interactions: Cellular Uptake and Biodistribution. , 2024, , 79-101.		0
1706	In vivo and in vitro toxicity of nanomaterials in animal systems. , 2024, , 159-169.		0