Visible-light-driven methane formation from CO2 with

Nature 548, 74-77 DOI: 10.1038/nature23016

Citation Report

#	Article	IF	CITATIONS
2	Visibleâ€light Homogeneous Photocatalytic Conversion of CO ₂ into CO in Aqueous Solutions with an Iron Catalyst. ChemSusChem, 2017, 10, 4447-4450.	3.6	83
3	Utilization of CO ₂ as a C1 Building Block in a Tandem Asymmetric A ³ Coupling-Carboxylative Cyclization Sequence to 2-Oxazolidinones. ACS Catalysis, 2017, 7, 8588-8593.	5.5	71
4	Oxygen vacancies induced exciton dissociation of flexible BiOCl nanosheets for effective photocatalytic CO ₂ conversion. Journal of Materials Chemistry A, 2017, 5, 24995-25004.	5.2	215
5	An Artificial Biomimetic Catalysis Converting CO2 to Green Fuels. Nanoscale Research Letters, 2017, 12, 530.	3.1	5
6	Iron Catalyzed CO2 Activation with Organosilanes. Catalysis Letters, 2018, 148, 1162-1168.	1.4	10
7	Boosting Interfacial Interaction in Hierarchical Core–Shell Nanostructure for Highly Effective Visible Photocatalytic Performance. Journal of Physical Chemistry C, 2018, 122, 6137-6143.	1.5	15
8	Design of Single-Atom Co–N ₅ Catalytic Site: A Robust Electrocatalyst for CO ₂ Reduction with Nearly 100% CO Selectivity and Remarkable Stability. Journal of the American Chemical Society, 2018, 140, 4218-4221.	6.6	945
9	High-yield synthesis of vaterite microparticles in gypsum suspension system via ultrasonic probe vibration/magnetic stirring. Journal of Crystal Growth, 2018, 492, 122-131.	0.7	22
10	Boron Carbon Nitride Semiconductors Decorated with CdS Nanoparticles for Photocatalytic Reduction of CO ₂ . ACS Catalysis, 2018, 8, 4928-4936.	5.5	413
11	Visible-Light-Driven Photoreduction of CO ₂ to CH ₄ over N,O,P-Containing Covalent Organic Polymer Submicrospheres. ACS Catalysis, 2018, 8, 4576-4581.	5.5	99
12	Recent Advances in Photocatalytic CO ₂ Reduction Using Earthâ€Abundant Metal Complexesâ€Đerived Photocatalysts. Chinese Journal of Chemistry, 2018, 36, 455-460.	2.6	37
13	Recent progress on advanced design for photoelectrochemical reduction of CO2 to fuels. Science China Materials, 2018, 61, 771-805.	3.5	172
14	Snapshots of Light Induced Accumulation of Two Charges on Methylviologen using a Sequential Nanosecond Pump–Pump Photoexcitation. Journal of Physical Chemistry Letters, 2018, 9, 1086-1091.	2.1	22
15	Electrocatalytic and Photocatalytic Reduction of CO ₂ to CO by Cobalt(II) Tripodal Complexes: Low Overpotentials, High Efficiency and Selectivity. ChemSusChem, 2018, 11, 1025-1031.	3.6	77
16	Direct CO ₂ Addition to a Ni(0)–CO Species Allows the Selective Generation of a Nickel(II) Carboxylate with Expulsion of CO. Journal of the American Chemical Society, 2018, 140, 2179-2185.	6.6	52
17	Stable and Highly Efficient Electrochemical Production of Formic Acid from Carbon Dioxide Using Diamond Electrodes. Angewandte Chemie - International Edition, 2018, 57, 2639-2643.	7.2	121
18	Highly Efficient Photocatalytic System Constructed from CoP/Carbon Nanotubes or Graphene for Visibleâ€Lightâ€Driven CO ₂ Reduction. Chemistry - A European Journal, 2018, 24, 4273-4278.	1.7	47
19	Advanced Architectures and Relatives of Air Electrodes in Zn–Air Batteries. Advanced Science, 2018, 5, 1700691.	5.6	645

#	Article	IF	CITATIONS
20	Stable and Highly Efficient Electrochemical Production of Formic Acid from Carbon Dioxide Using Diamond Electrodes. Angewandte Chemie, 2018, 130, 2669-2673.	1.6	24
21	Reaction mechanisms of catalytic photochemical CO2 reduction using Re(I) and Ru(II) complexes. Coordination Chemistry Reviews, 2018, 373, 333-356.	9.5	212
22	Reticular Electronic Tuning of Porphyrin Active Sites in Covalent Organic Frameworks for Electrocatalytic Carbon Dioxide Reduction. Journal of the American Chemical Society, 2018, 140, 1116-1122.	6.6	457
23	The synergistic catalysis effect within a dinuclear nickel complex for efficient and selective electrocatalytic reduction of CO ₂ to CO. Green Chemistry, 2018, 20, 798-803.	4.6	60
24	Zn <i>_x</i> Cd _{1â^'<i>x</i>(i>sub>S tunable band structure-directing photocatalytic activity and selectivity of visible-light reduction of CO₂into liquid solar fuels. Nanotechnology, 2018, 29, 064003.}	1.3	33
25	Ambient chemical fixation of CO ₂ using a highly efficient heterometallic helicate catalyst system. Chemical Communications, 2018, 54, 2212-2215.	2.2	83
26	Homogeneously Catalyzed Electroreduction of Carbon Dioxide—Methods, Mechanisms, and Catalysts. Chemical Reviews, 2018, 118, 4631-4701.	23.0	858
27	Undercoordinated Site-Abundant and Tensile-Strained Nickel for Low-Temperature CO _{<i>x</i>} Methanation. ACS Catalysis, 2018, 8, 1207-1211.	5.5	34
28	Photocatalytically Active Superstructures of Quantum Dots and Iron Porphyrins for Reduction of CO ₂ to CO in Water. ACS Nano, 2018, 12, 568-575.	7.3	139
29	The chemical identity, state and structure of catalytically active centers during the electrochemical CO ₂ reduction on porous Fe–nitrogen–carbon (Fe–N–C) materials. Chemical Science, 2018, 9, 5064-5073.	3.7	128
30	Photochemical CO ₂ Reduction Catalyzed by <i>Trans</i> (Cl)â€{Ru(2,2′â€bipyridine)(CO) ₂ Cl ₂] Bearing Two Methyl Groups at 4 5,5′―or 6,6′â€Positions in the Ligand. ChemPhotoChem, 2018, 2, 314-322.	,4 â €≯â€ ,	18
31	Modulation of the Reduction Potential of TiO _{2–<i>x</i>} by Fluorination for Efficient and Selective CH ₄ Generation from CO ₂ Photoreduction. Nano Letters, 2018, 18, 3384-3390.	4.5	166
32	Toward Visible-Light Photochemical CO ₂ -to-CH ₄ Conversion in Aqueous Solutions Using Sensitized Molecular Catalysis. Journal of Physical Chemistry C, 2018, 122, 13834-13839.	1.5	38
33	Two-electron oxidation of water to form hydrogen peroxide catalysed by silicon-porphyrins. Sustainable Energy and Fuels, 2018, 2, 1966-1973.	2.5	24
34	Emerging Earth-abundant (Fe, Co, Ni, Cu) molecular complexes for solar fuel catalysis. Current Opinion in Green and Sustainable Chemistry, 2018, 10, 60-67.	3.2	11
35	Twoâ€Electron Oxidation of Water Through Oneâ€Photon Excitation of Aluminium Porphyrins: Molecular Mechanism and Detection of Key Intermediates. ChemPhotoChem, 2018, 2, 240-248.	1.5	21
36	Nachhaltige Produktion von Methan aus CO ₂ mithilfe von Sonnenlicht. Angewandte Chemie, 2018, 130, 44-46.	1.6	6
37	Renewable Methane Generation from Carbon Dioxide and Sunlight. Angewandte Chemie - International Edition, 2018, 57, 44-45.	7.2	61

#	Article	IF	CITATIONS
38	CO2 methanation over ordered mesoporous NiRu-doped CaO-Al2O3 nanocomposites with enhanced catalytic performance. International Journal of Hydrogen Energy, 2018, 43, 239-250.	3.8	88
39	Methane-generating ammonia oxidizing nitrifiers within bio-filters in aquaculture tanks. AMB Express, 2018, 8, 140.	1.4	2
40	Eosinâ€Yâ€Functionalized Conjugated Organic Polymers for Visibleâ€Lightâ€Driven CO ₂ Reductic with H ₂ O to CO with High Efficiency. Angewandte Chemie, 2019, 131, 642-646.	on 1.6	19
41	Synthesis of mesoporous Fe ₃ Si aerogel as a photo-thermal material for highly efficient and stable corrosive-water evaporation. Journal of Materials Chemistry A, 2018, 6, 23263-23269.	5.2	23
42	Nickel Metal–Organic Framework Monolayers for Photoreduction of Diluted CO ₂ : Metalâ€Nodeâ€Dependent Activity and Selectivity. Angewandte Chemie, 2018, 130, 17053-17057.	1.6	54
43	Highly Efficient and Robust Photocatalytic Systems for CO ₂ Reduction Consisting of a Cu(I) Photosensitizer and Mn(I) Catalysts. Journal of the American Chemical Society, 2018, 140, 17241-17254.	6.6	141
44	Function-Integrated Ru Catalyst for Photochemical CO ₂ Reduction. Journal of the American Chemical Society, 2018, 140, 16899-16903.	6.6	60
45	Nickel Metal–Organic Framework Monolayers for Photoreduction of Diluted CO ₂ : Metalâ€Nodeâ€Dependent Activity and Selectivity. Angewandte Chemie - International Edition, 2018, 57, 16811-16815.	7.2	387
46	Sustainable Recovery of CO2 by Using Visible-Light-Responsive Crystal Cuprous Oxide/Reduced Graphene Oxide. Sustainability, 2018, 10, 4145.	1.6	9
47	Visible-Light-Driven Conversion of CO ₂ to CH ₄ with an Organic Sensitizer and an Iron Porphyrin Catalyst. Journal of the American Chemical Society, 2018, 140, 17830-17834.	6.6	150
48	A Specifically Exposed Cobalt Oxide/Carbon Nitride 2D Heterostructure for Carbon Dioxide Photoreduction. Industrial & Engineering Chemistry Research, 2018, 57, 17394-17400.	1.8	76
49	Nâ€Đoped Defective Graphene from Biomass as Catalyst for CO ₂ Hydrogenation to Methane. ChemCatChem, 2019, 11, 985-990.	1.8	39
50	Fluorine Modified Boron Carbon Nitride Semiconductors for Improved Photocatalytic CO ₂ Reduction under Visible Light. ChemCatChem, 2018, 10, 5270-5279.	1.8	56
51	Functional Conjugated Polymers for CO ₂ Reduction Using Visible Light. Chemistry - A European Journal, 2018, 24, 17454-17458.	1.7	112
52	Highly effective photoreduction of CO ₂ to CO promoted by integration of CdS with molecular redox catalysts through metal–organic frameworks. Chemical Science, 2018, 9, 8890-8894.	3.7	95
53	Photoactive Complexes with Earth-Abundant Metals. Journal of the American Chemical Society, 2018, 140, 13522-13533.	6.6	369
54	Oriented electron transmission in polyoxometalate-metalloporphyrin organic framework for highly selective electroreduction of CO2. Nature Communications, 2018, 9, 4466.	5.8	342
55	A genetically encoded photosensitizer protein facilitates the rational design of a miniature photocatalytic CO2-reducing enzyme. Nature Chemistry, 2018, 10, 1201-1206.	6.6	96

#	Article	IF	CITATIONS
56	Visible-Light Driven Overall Conversion of CO ₂ and H ₂ O to CH ₄ and O ₂ on 3D-SiC@2D-MoS ₂ Heterostructure. Journal of the American Chemical Society, 2018, 140, 14595-14598.	6.6	361
57	Alternative route to bypass the bottle-neck of water oxidation: Two-electron oxidation of water catalyzed by earth-abundant metalloporphyrins. Coordination Chemistry Reviews, 2018, 377, 64-72.	9.5	34
58	A call to (green) arms: a rallying cry for green chemistry and engineering for CO ₂ capture, utilisation and storage. Green Chemistry, 2018, 20, 5058-5081.	4.6	76
59	Highly efficient and selective visible-light driven CO2-to-CO conversion by a Co-based cryptate in H2O/CH3CN solution. Chemical Communications, 2018, 54, 11308-11311.	2.2	31
60	Carbon Dioxide Electroreduction Catalyzed by Organometallic Complexes. Advances in Organometallic Chemistry, 2018, 70, 1-69.	0.5	5
61	Dimension-matched plasmonic Au/TiO ₂ /BiVO ₄ nanocomposites as efficient wide-visible-light photocatalysts to convert CO ₂ and mechanistic insights. Journal of Materials Chemistry A, 2018, 6, 11838-11845.	5.2	72
62	Low-overpotential CO ₂ reduction by a phosphine-substituted Ru(<scp>ii</scp>) polypyridyl complex. Chemical Communications, 2018, 54, 6915-6918.	2.2	30
63	Low-Temperature CO ₂ Methanation over CeO ₂ -Supported Ru Single Atoms, Nanoclusters, and Nanoparticles Competitively Tuned by Strong Metal–Support Interactions and H-Spillover Effect. ACS Catalysis, 2018, 8, 6203-6215.	5.5	582
64	Mechanisms of catalytic reduction of CO ₂ with heme and nonheme metal complexes. Chemical Science, 2018, 9, 6017-6034.	3.7	105
65	Photocatalytic CO ₂ Transformation to CH ₄ by Ag/Pd Bimetals Supported on N-Doped TiO ₂ Nanosheet. ACS Applied Materials & Interfaces, 2018, 10, 24516-24522.	4.0	99
66	Highly Efficient and Selective Visibleâ€Light Driven CO ₂ â€toâ€CO Conversion by a Co(II) Homogeneous Catalyst in H ₂ O/CH ₃ CN Solution. ChemCatChem, 2018, 10, 3435-3440.	1.8	26
67	Photosensitized Hydrogen Evolution on a Floating Electrocatalyst Coupled to Electrochemical Recycling. Journal of the American Chemical Society, 2018, 140, 10149-10152.	6.6	16
68	Partially reduced Sn/SnO2 porous hollow fiber: A highly selective, efficient and robust electrocatalyst towards carbon dioxide reduction. Electrochimica Acta, 2018, 285, 70-77.	2.6	51
69	How does the tin(IV)-insertion to porphyrins proceed in water at ambient temperature?: Re-investigation by time dependent 1H NMR and detection of intermediates. Inorganica Chimica Acta, 2018, 482, 914-924.	1.2	9
70	Tannic acid-assisted fabrication of Fe-Pd nanoparticles for stable rapid dechlorination of two organochlorides. Chemical Engineering Journal, 2018, 352, 716-721.	6.6	20
71	Highly efficient visible-light driven solar-fuel production over tetra(4-carboxyphenyl)porphyrin iron(III) chloride using CdS/Bi2S3 heterostructure as photosensitizer. Applied Catalysis B: Environmental, 2018, 238, 656-663.	10.8	80
72	Selective reduction of CO2 by conductive MOF nanosheets as an efficient co-catalyst under visible light illumination. Applied Catalysis B: Environmental, 2018, 238, 339-345.	10.8	166
73	Study on the electronic structures and transport properties of the polyporphyrin nanoribbons with different edge configurations. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 2769-2775.	0.9	11

#	Article	IF	CITATIONS
74	Charge Accumulation and Multiâ€Electron Photoredox Chemistry with a Sensitizer–Catalyst–Sensitizer Triad. Chemistry - A European Journal, 2018, 24, 14084-14087.	1.7	20
75	Femtosecond infrared spectroscopy reveals the primary events of the ferrioxalate actinometer. Physical Chemistry Chemical Physics, 2018, 20, 21390-21403.	1.3	24
76	Hybrid solar-to-methane conversion system with a Faradaic efficiency of up to 96%. Nano Energy, 2018, 53, 232-239.	8.2	76
77	Photocatalytic reduction of CO ₂ to CO and formate by a novel Co(<scp>ii</scp>) catalyst containing a <i>cis</i> -oxygen atom: photocatalysis and DFT calculations. Dalton Transactions, 2018, 47, 13142-13150.	1.6	32
78	Conjugation Effect Contributes to the CO ₂ -to-CO Conversion Driven by Visible-Light. ACS Applied Energy Materials, 2018, 1, 2452-2459.	2.5	24
79	Synthesis, electrochemical and spectroelectrochemical characterization of iron(III) tetraarylporphyrins containing four β,β′-butano and β,β′-benzo fused rings. Journal of Porphyrins and Phthalocyanines, 2018, 22, 521-534.	0.4	6
80	A Carbon Nitride/Fe Quaterpyridine Catalytic System for Photostimulated CO ₂ -to-CO Conversion with Visible Light. Journal of the American Chemical Society, 2018, 140, 7437-7440.	6.6	160
81	Photoredox systems with biocatalysts for CO ₂ utilization. Sustainable Energy and Fuels, 2018, 2, 1928-1950.	2.5	45
82	Assessing the Electrocatalytic Properties of the {Cp*Rh ^{III} } ²⁺ â€Polyoxometalate Derivative [H ₂ PW ₁₁ O ₃₉ {Rh ^{III} Cp*(OH ₂ }] ^{3–towards CO₂ Reduction. European Journal of Inorganic Chemistry, 2019, 2019, 387-393.}	p ^{1.0}	22
83	Size Engineering of Metal–Organic Framework MIL-101(Cr)–Ag Hybrids for Photocatalytic CO ₂ Reduction. ACS Catalysis, 2019, 9, 8464-8470.	5.5	149
84	CO2 electrochemical catalytic reduction with a highly active cobalt phthalocyanine. Nature Communications, 2019, 10, 3602.	5.8	307
85	CO2 reforming with methane reaction over Ni@SiO2 catalysts coupled by size effect and metal-support interaction. Fuel, 2019, 256, 115954.	3.4	81
86	Frustrated Lewis pair-mediated fixation of CO ₂ within a metal–organic framework. Chemical Communications, 2019, 55, 10964-10967.	2.2	35
87	Selectivity control of CO versus HCOOâ^' production in the visible-light-driven catalytic reduction of CO2 with two cooperative metal sites. Nature Catalysis, 2019, 2, 801-808.	16.1	153
88	MgH ₂ /Cu <i>_x</i> O Hydrogen Storage Composite with Defect-Rich Surfaces for Carbon Dioxide Hydrogenation. ACS Applied Materials & Interfaces, 2019, 11, 31009-31017.	4.0	37
89	An Iron Quaterpyridine Complex as Precursor for the Electrocatalytic Reduction of CO ₂ to Methane. ChemSusChem, 2019, 12, 4500-4505.	3.6	23
90	Fundamentals and applications of photocatalytic CO2 methanation. Nature Communications, 2019, 10, 3169.	5.8	304
91	Two-Dimensional Cobaltporphyrin-based Cobalt–Organic Framework as an Efficient Photocatalyst for CO ₂ Reduction Reaction: A Computational Study. ACS Sustainable Chemistry and Engineering, 2019, 7, 14102-14110.	3.2	48

#	Article	IF	Citations
92	Using a bio-inspired copper complex to investigate reactive mass transfer around an oxygen bubble rising freely in a thin-gap cell. Chemical Engineering Science, 2019, 207, 1256-1269.	1.9	13
93	Efficient and Selective CO2 Reduction Integrated with Organic Synthesis by Solar Energy. CheM, 2019, 5, 2605-2616.	5.8	179
94	Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers. Nature Energy, 2019, 4, 690-699.	19.8	948
95	Rational design of photoelectrodes for photoelectrochemical water splitting and CO2 reduction. Frontiers of Physics, 2019, 14, 1.	2.4	16
96	Crystal phase effect of iron oxides on the aerobic oxidative coupling of alcohols and amines under mild conditions: A combined experimental and theoretical study. Journal of Catalysis, 2019, 377, 145-152.	3.1	37
97	Evaluation of the effect of the dicationic ionic liquid structure on the cycloaddition of CO2 to epoxides. Journal of CO2 Utilization, 2019, 34, 437-445.	3.3	45
98	Catalytic Mechanisms and Design Principles for Singleâ€Atom Catalysts in Highly Efficient CO ₂ Conversion. Advanced Energy Materials, 2019, 9, 1902625.	10.2	167
99	Waterâ€Tolerant Lead Halide Perovskite Nanocrystals as Efficient Photocatalysts for Visibleâ€Lightâ€Driven CO ₂ Reduction in Pure Water. ChemSusChem, 2019, 12, 4769-4774.	3.6	89
100	Examination of the Magneto-Structural Effects of Hangman Groups on Ferric Porphyrins by EPR. Inorganic Chemistry, 2019, 58, 14228-14237.	1.9	3
101	Selective Branching of Plasmonic Photosynthesis into Hydrocarbon Production and Hydrogen Generation. ACS Energy Letters, 2019, 4, 2295-2300.	8.8	44
102	Highly efficient photocatalytic reduction of CO ₂ to CO using cobalt oxide-coated spherical mesoporous silica particles as catalysts. Chemical Communications, 2019, 55, 11523-11526.	2.2	16
103	Photofunctions of iridium(iii) complexes in vesicles: long-lived excited states and visible-light sensitization for hydrogen evolution in aqueous solution. Dalton Transactions, 2019, 48, 14914-14925.	1.6	18
104	Mass production of superhydrophilic sponges for efficient and stable solar-driven highly corrosive water evaporation. Environmental Science: Water Research and Technology, 2019, 5, 2041-2047.	1.2	5
105	Molecular Catalysis for Utilizing CO2 in Fuel Electro-Generation and in Chemical Feedstock. Catalysts, 2019, 9, 760.	1.6	14
106	Relaxation process of S2 excited zinc porphyrin through interaction with a directly connected phenanthryl group. Chemical Physics Letters, 2019, 732, 136652.	1.2	6
107	Atomic Ni Anchored Covalent Triazine Framework as High Efficient Electrocatalyst for Carbon Dioxide Conversion. Advanced Functional Materials, 2019, 29, 1806884.	7.8	210
108	Adenine Components in Biomimetic Metal–Organic Frameworks for Efficient CO ₂ Photoconversion. Angewandte Chemie, 2019, 131, 5280-5285.	1.6	52
109	Topics of Environmental Sciences. , 2019, , 255-260.		0

#	Article	IF	CITATIONS
110	Polyoxometalate-based high-nuclear cobalt–vanadium–oxo cluster as efficient catalyst for visible light-driven CO2 reduction. Chinese Chemical Letters, 2019, 30, 1273-1276.	4.8	52
111	Synergistic interface phenomena between MOFs, NiPx for efficient hydrogen production. Molecular Catalysis, 2019, 467, 78-86.	1.0	34
112	The functionality of surface hydroxyls on selective CH ₄ generation from photoreduction of CO ₂ over SiC nanosheets. Chemical Communications, 2019, 55, 1572-1575.	2.2	19
113	Role of 2 nd sphere H-bonding residues in tuning the kinetics of CO ₂ reduction to CO by iron porphyrin complexes. Dalton Transactions, 2019, 48, 5965-5977.	1.6	74
114	Recent advances in bioinspired proton-coupled electron transfer. Dalton Transactions, 2019, 48, 5861-5868.	1.6	24
115	Gadolinium complexes of diethylenetriamine- <i>N</i> -oxide pentaacetic acid-bisamide: a new class of highly stable MRI contrast agents with a hydration number of 3. Dalton Transactions, 2019, 48, 1693-1699.	1.6	17
116	Hetero-metallic active sites coupled with strongly reductive polyoxometalate for selective photocatalytic CO ₂ -to-CH ₄ conversion in water. Chemical Science, 2019, 10, 185-190.	3.7	102
117	CO ₂ capture by Mn(<scp>i</scp>) and Re(<scp>i</scp>) complexes with a deprotonated triethanolamine ligand. Chemical Science, 2019, 10, 3080-3088.	3.7	35
118	Enhanced photoreduction of CO2 into methanol by facet-dependent Cu2O/reduce graphene oxide. Journal of CO2 Utilization, 2019, 33, 171-178.	3.3	62
119	Carbon dioxide photo/electroreduction with cobalt. Journal of Materials Chemistry A, 2019, 7, 16622-16642.	5.2	59
120	A review of catalytic performance of metallic glasses in wastewater treatment: Recent progress and prospects. Progress in Materials Science, 2019, 105, 100576.	16.0	209
121	Structural features of molecular electrocatalysts in multi-electron redox processes for renewable energy – recent advances. Sustainable Energy and Fuels, 2019, 3, 2159-2175.	2.5	31
122	Secondary-Sphere Effects in Molecular Electrocatalytic CO2 Reduction. Frontiers in Chemistry, 2019, 7, 397.	1.8	114
123	Co ^{II} Cryptates Convert CO ₂ into CO and CH ₄ under Visible Light. Chemistry - A European Journal, 2019, 25, 11670-11679.	1.7	11
124	Hydrophobic Polyoxometalate-Based Metal-Organic Framework for Efficient CO ₂ Photoconversion. ACS Applied Materials & Interfaces, 2019, 11, 25790-25795.	4.0	86
125	Highly Active Ruthenium CNC Pincer Photocatalysts for Visible-Light-Driven Carbon Dioxide Reduction. Inorganic Chemistry, 2019, 58, 8012-8020.	1.9	49
126	Highly Selective Photoreduction of CO ₂ with Suppressing H ₂ Evolution over Monolayer Layered Double Hydroxide under Irradiation above 600â€nm. Angewandte Chemie, 2019, 131, 11986-11993.	1.6	47
127	Highly Selective Photoreduction of CO ₂ with Suppressing H ₂ Evolution over Monolayer Layered Double Hydroxide under Irradiation above 600â€nm. Angewandte Chemie - International Edition, 2019, 58, 11860-11867.	7.2	224

#	Article	IF	CITATIONS
128	Porous nitrogen-rich g-C3N4 nanotubes for efficient photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2019, 256, 117854.	10.8	271
129	Selective light absorber-assisted single nickel atom catalysts for ambient sunlight-driven CO2 methanation. Nature Communications, 2019, 10, 2359.	5.8	185
130	Construction of TiO2 nanosheets/tetra (4-carboxyphenyl) porphyrin hybrids for efficient visible-light photoreduction of CO2. Chemical Engineering Journal, 2019, 374, 684-693.	6.6	56
131	Encapsulating Perovskite Quantum Dots in Ironâ€Based Metal–Organic Frameworks (MOFs) for Efficient Photocatalytic CO ₂ Reduction. Angewandte Chemie, 2019, 131, 9591-9595.	1.6	53
132	Encapsulating Perovskite Quantum Dots in Ironâ€Based Metal–Organic Frameworks (MOFs) for Efficient Photocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2019, 58, 9491-9495.	7.2	503
133	Design and Optimization of Catalysts Based on Mechanistic Insights Derived from Quantum Chemical Reaction Modeling. Chemical Reviews, 2019, 119, 6509-6560.	23.0	130
134	Electrocatalytic CO ₂ Reduction at Lower Overpotentials Using Iron(III) Tetra(<i>meso</i> -thienyl)porphyrins. ACS Applied Energy Materials, 2019, 2, 4022-4026.	2.5	28
135	An Unexpected Iron (II)-Based Homogeneous Catalytic System for Highly Efficient CO2-to-CO Conversion under Visible-Light Irradiation. Molecules, 2019, 24, 1878.	1.7	11
136	An Ir(III) Complex Photosensitizer With Strong Visible Light Absorption for Photocatalytic CO2 Reduction. Frontiers in Chemistry, 2019, 7, 259.	1.8	13
137	Engineering electronic structures of nanomaterials towardÂcarbon dioxide electroreduction. Current Opinion in Electrochemistry, 2019, 17, 7-15.	2.5	14
138	High-efficient synergy of piezocatalysis and photocatalysis in bismuth oxychloride nanomaterial for dye decomposition. Chemosphere, 2019, 228, 212-218.	4.2	142
139	Plasmonic photosynthesis of C1–C3 hydrocarbons from carbon dioxide assisted by an ionic liquid. Nature Communications, 2019, 10, 2022.	5.8	142
140	Silver halide-based composite photocatalysts: an updated account. Rendiconti Lincei, 2019, 30, 453-467.	1.0	7
141	From molecular metal complex to metal-organic framework: The CO2 reduction photocatalysts with clear and tunable structure. Coordination Chemistry Reviews, 2019, 390, 86-126.	9.5	196
142	A Covalent Organic Framework Bearing Single Ni Sites as a Synergistic Photocatalyst for Selective Photoreduction of CO ₂ to CO. Journal of the American Chemical Society, 2019, 141, 7615-7621.	6.6	525
143	Artificial photosynthesis: opportunities and challenges of molecular catalysts. Chemical Society Reviews, 2019, 48, 2216-2264.	18.7	629
144	Catalysts in electro-, photo- and photoelectrocatalytic CO2 reduction reactions. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2019, 40, 117-149.	5.6	101
145	Photocatalytic CO ₂ Conversion of M _{0.33} WO ₃ Directly from the Air with High Selectivity: Insight into Full Spectrum-Induced Reaction Mechanism. Journal of the American Chemical Society, 2019, 141, 5267-5274.	6.6	224

#	Article	IF	CITATIONS
146	Photocatalystâ€free Synthesis of Indazolones under CO ₂ Atmosphere. Chemistry - an Asian Journal, 2019, 14, 1436-1442.	1.7	12
147	Neutral boron [(L1-3)BPh2] and cationic charged boron [(L1a-3a)BPh2] complexes for chemical CO ₂ conversion to obtain cyclic carbonates under ambient conditions. Sustainable Energy and Fuels, 2019, 3, 1066-1077.	2.5	31
148	Continuous rapid dechlorination of p-chlorophenol by Fe-Pd nanoparticles promoted by procyanidin. Chemical Engineering Science, 2019, 201, 121-131.	1.9	15
149	Artificial Thylakoid for the Coordinated Photoenzymatic Reduction of Carbon Dioxide. ACS Catalysis, 2019, 9, 3913-3925.	5.5	89
150	A donor-chromophore-catalyst assembly for solar CO ₂ reduction. Chemical Science, 2019, 10, 4436-4444.	3.7	23
151	Durable Solar-Powered Systems with Ni-Catalysts for Conversion of CO ₂ or CO to CH ₄ . Journal of the American Chemical Society, 2019, 141, 6617-6622.	6.6	94
152	Facile formation of CoN ₄ active sites onto a SiO ₂ support to achieve robust CO ₂ and proton reduction in a noble-metal-free photocatalytic system. Journal of Materials Chemistry A, 2019, 7, 10475-10482.	5.2	42
153	Reduction of CO ₂ to CO by an Iron Porphyrin Catalyst in the Presence of Oxygen. ACS Catalysis, 2019, 9, 3895-3899.	5.5	68
154	Visible-light driven CO2 reduction coupled with water oxidation on Cl-doped Cu2O nanorods. Nano Energy, 2019, 60, 576-582.	8.2	115
155	Synthesis and Optimization of Ti/Li/Al Ternary Layered Double Hydroxides for Efficient Photocatalytic Reduction of CO2 to CH4. Scientific Reports, 2019, 9, 5659.	1.6	16
156	Small-molecule activation with iron porphyrins using electrons, photons and protons: some recent advances and future strategies. Dalton Transactions, 2019, 48, 5869-5878.	1.6	15
157	Ultrathin SiC Nanosheets with High Reduction Potential for Improved CH ₄ Generation from Photocatalytic Reduction of CO ₂ . ChemistrySelect, 2019, 4, 2211-2217.	0.7	15
158	Production of Solar Fuels Using CO2. Studies in Surface Science and Catalysis, 2019, , 7-30.	1.5	11
159	Porous hypercrosslinked polymer-TiO2-graphene composite photocatalysts for visible-light-driven CO2 conversion. Nature Communications, 2019, 10, 676.	5.8	278
160	A molecular noble metal-free system for efficient visible light-driven reduction of CO ₂ to CO. Dalton Transactions, 2019, 48, 9596-9602.	1.6	37
161	Photocatalytic Reverse Semiâ€Combustion Driven by Ionic Liquids. ChemSusChem, 2019, 12, 1011-1016.	3.6	17
162	Anchoring Co ^{II} lons into a Thiolâ€Laced Metal–Organic Framework for Efficient Visibleâ€Lightâ€Driven Conversion of CO ₂ into CO. ChemSusChem, 2019, 12, 2166-2170.	3.6	58
163	Proton-coupled multi-electron transfer and its relevance for artificial photosynthesis and photoredox catalysis. Chemical Communications, 2019, 55, 4004-4014.	2.2	77

#	Article	IF	Citations
164	A CO ₂ photoreduction heterogeneous cobalt-based cocatalyst constructed <i>via in situ</i> electrostatic adsorption deposition. Chemical Communications, 2019, 55, 3903-3906.	2.2	15
165	Cocatalysts for Selective Photoreduction of CO ₂ into Solar Fuels. Chemical Reviews, 2019, 119, 3962-4179.	23.0	1,591
166	Electro- and Solar-Driven Fuel Synthesis with First Row Transition Metal Complexes. Chemical Reviews, 2019, 119, 2752-2875.	23.0	615
167	Oxygen vacancy associated single-electron transfer for photofixation of CO2 to long-chain chemicals. Nature Communications, 2019, 10, 788.	5.8	222
168	Efficient Photocatalytic CO ₂ Reduction by a Ni(II) Complex Having Pyridine Pendants through Capturing a Mg ²⁺ Ion as a Lewis-Acid Cocatalyst. Journal of the American Chemical Society, 2019, 141, 20309-20317.	6.6	102
169	30. Photochemical reduction of CO2 with metal-based systems. , 2019, , 657-680.		0
170	Reduction of carbon dioxide with mesoporous SnO ₂ nanoparticles as active photocatalysts under visible light in water. Catalysis Science and Technology, 2019, 9, 6566-6569.	2.1	24
171	Pt nanoparticles embedded in flowerlike NH ₂ -UiO-68 for enhanced photocatalytic carbon dioxide reduction. Journal of Materials Chemistry A, 2019, 7, 26490-26495.	5.2	76
172	A local hydrophobic environment in a metal–organic framework for boosting photocatalytic CO ₂ reduction in the presence of water. Chemical Communications, 2019, 55, 14781-14784.	2.2	38
173	Emerging nanostructured carbon-based non-precious metal electrocatalysts for selective electrochemical CO ₂ reduction to CO. Journal of Materials Chemistry A, 2019, 7, 25191-25202.	5.2	82
174	Branch-like ZnS–DETA/CdS hierarchical heterostructures as an efficient photocatalyst for visible light CO ₂ reduction. Journal of Materials Chemistry A, 2019, 7, 26877-26883.	5.2	91
175	Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature, 2019, 575, 639-642.	13.7	658
176	Mechanistic Insights into Lightâ€Activated Catalysis for Water Oxidation. European Journal of Inorganic Chemistry, 2019, 2019, 2027-2039.	1.0	20
177	Chemical Versatility of [FeFe]-Hydrogenase Models: Distinctive Activity of [μ-C6H4-1,2-(κ2-S)2][Fe2(CO)6] for Electrocatalytic CO2Reduction. ACS Catalysis, 2019, 9, 768-774.	5.5	21
178	Persian buttercup-like BiOBrxCl1-x solid solution for photocatalytic overall CO2 reduction to CO and O2. Applied Catalysis B: Environmental, 2019, 243, 734-740.	10.8	159
179	A Waterâ€Soluble Cu Complex as Molecular Catalyst for Electrocatalytic CO ₂ Reduction on Grapheneâ€Based Electrodes. Advanced Energy Materials, 2019, 9, 1803151.	10.2	85
180	Eosinâ€Yâ€Functionalized Conjugated Organic Polymers for Visibleâ€Lightâ€Driven CO ₂ Reductio with H ₂ O to CO with High Efficiency. Angewandte Chemie - International Edition, 2019, 58, 632-636.	on 7.2	162
181	Recent Improvements in the Production of Solar Fuels: From CO2 Reduction to Water Splitting and Artificial Photosynthesis. Bulletin of the Chemical Society of Japan, 2019, 92, 178-192.	2.0	158

#	Article	IF	CITATIONS
182	Adenine Components in Biomimetic Metal–Organic Frameworks for Efficient CO ₂ Photoconversion. Angewandte Chemie - International Edition, 2019, 58, 5226-5231.	7.2	150
183	Electrochemical and Photochemical Reduction of CO ₂ Catalyzed by Re(I) Complexes Carrying Local Proton Sources. Organometallics, 2019, 38, 1351-1360.	1.1	48
184	Mo-Based Catalyst Supported on Binary Ceria–Lanthanum Solid Solution for Sulfur-Resistant Methanation: Effect of La Dopant. Industrial & Engineering Chemistry Research, 2019, 58, 1803-1811.	1.8	5
185	Modulating photoelectronic performance of metal–organic frameworks for premium photocatalysis. Coordination Chemistry Reviews, 2019, 380, 201-229.	9.5	112
186	Computational Approach to Molecular Catalysis by 3d Transition Metals: Challenges and Opportunities. Chemical Reviews, 2019, 119, 2453-2523.	23.0	260
187	Nickel Bipyridine (Ni(bpy)3Cl2) Complex Used as Molecular Catalyst for Photocatalytic CO2 Reduction. Catalysis Letters, 2019, 149, 25-33.	1.4	20
188	Electrochemistry at Deep‧ea Hydrothermal Vents: Utilization of the Thermodynamic Driving Force towards the Autotrophic Origin of Life. ChemElectroChem, 2019, 6, 1316-1323.	1.7	22
189	Ultrathin Conductor Enabling Efficient IR Light CO ₂ Reduction. Journal of the American Chemical Society, 2019, 141, 423-430.	6.6	146
190	Ferroelectric polarization promoted bulk charge separation for highly efficient CO2 photoreduction of SrBi4Ti4O15. Nano Energy, 2019, 56, 840-850.	8.2	144
191	Hydrogen bond activation strategy for cyclic carbonates synthesis from epoxides and CO ₂ : current state-of-the art of catalyst development and reaction analysis. Catalysis Reviews - Science and Engineering, 2019, 61, 214-269.	5.7	187
192	Hierarchical NiCo2O4 hollow nanocages for photoreduction of diluted CO2: Adsorption and active sites engineering. Applied Catalysis B: Environmental, 2020, 260, 118208.	10.8	101
193	Photocatalytic redox reactions with metalloporphyrins. Journal of Porphyrins and Phthalocyanines, 2020, 24, 21-32.	0.4	17
194	MOF-derived α-Fe2O3 porous spindle combined with reduced graphene oxide for improvement of TEA sensing performance. Sensors and Actuators B: Chemical, 2020, 304, 127306.	4.0	83
195	Biofuel production from microalgae: a review. Environmental Chemistry Letters, 2020, 18, 285-297.	8.3	121
196	Multielectron transportation of polyoxometalate-grafted metalloporphyrin coordination frameworks for selective CO2-to-CH4 photoconversion. National Science Review, 2020, 7, 53-63.	4.6	127
197	How does the ligands structure surrounding metal-N4 of Co-based macrocyclic compounds affect electrochemical reduction of CO2 performance?. Electrochimica Acta, 2020, 331, 135283.	2.6	15
198	Microporous polymer based on hexaazatriphenylene-fused triptycene for CO2 capture and conversion. Science China Materials, 2020, 63, 429-436.	3.5	9
199	Visible-light-driven methane formation from CO2 in hydrous solution with a dinuclear nickel catalyst. Catalysis Communications, 2020, 134, 105861.	1.6	9

#	Article	IF	CITATIONS
200	Metallocene implanted metalloporphyrin organic framework for highly selective CO2 electroreduction. Nano Energy, 2020, 67, 104233.	8.2	93
201	Effect of metal ion substitution on the catalytic activity of a pentanuclear metal complex. Dalton Transactions, 2020, 49, 1384-1387.	1.6	12
202	An artificial photosynthesis system comprising a covalent triazine framework as an electron relay facilitator for photochemical carbon dioxide reduction. Journal of Materials Chemistry C, 2020, 8, 192-200.	2.7	43
203	From bioethanol containing fuels towards a fuel economy that includes methanol derived from renewable sources and the impact on European Union decision-making on transition pathways. Renewable and Sustainable Energy Reviews, 2020, 120, 109667.	8.2	27
204	Synergistic enhancement of electrocatalytic CO2 reduction to C2 oxygenates at nitrogen-doped nanodiamonds/Cu interface. Nature Nanotechnology, 2020, 15, 131-137.	15.6	169
205	Direct Z-Scheme WO ₃ /Graphitic Carbon Nitride Nanocomposites for the Photoreduction of CO ₂ . ACS Applied Nano Materials, 2020, 3, 1298-1306.	2.4	104
206	A review on metal-organic frameworks for photoelectrocatalytic applications. Chinese Chemical Letters, 2020, 31, 1773-1781.	4.8	43
207	Electrochemical Conversion of CO 2 to Syngas with Controllable CO/H 2 Ratios over Co and Ni Singleâ€Atom Catalysts. Angewandte Chemie, 2020, 132, 3057-3061.	1.6	22
208	Bias-free solar syngas production by integrating a molecular cobalt catalyst with perovskite–BiVO4 tandems. Nature Materials, 2020, 19, 189-194.	13.3	175
209	Electrochemical Conversion of CO ₂ to Syngas with Controllable CO/H ₂ Ratios over Co and Ni Singleâ€Atom Catalysts. Angewandte Chemie - International Edition, 2020, 59, 3033-3037.	7.2	203
210	Ruthenium Complexes in Homogeneous and Heterogeneous Catalysis for Electroreduction of CO ₂ . ChemCatChem, 2020, 12, 1292-1296.	1.8	9
211	Photoâ€Assisted Electrocatalytic Reduction of CO 2 : A New Strategy for Reducing Catalytic Overpotentials. ChemCatChem, 2020, 12, 386-393.	1.8	14
212	Metal-organic framework membranes: From synthesis to electrocatalytic applications. Chinese Chemical Letters, 2020, 31, 2189-2201.	4.8	61
213	Coordinate activation in heterogeneous carbon dioxide reduction on Co-based molecular catalysts. Applied Catalysis B: Environmental, 2020, 268, 118452.	10.8	35
214	Covalent Organic Framework Nanosheets Embedding Single Cobalt Sites for Photocatalytic Reduction of Carbon Dioxide. Chemistry of Materials, 2020, 32, 9107-9114.	3.2	79
215	Proton-assisted electron transfer and hydrogen-atom diffusion in a model system for photocatalytic hydrogen production. Communications Materials, 2020, 1, 66.	2.9	28
216	Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction. Nature Catalysis, 2020, 3, 775-786.	16.1	385
217	Efficient photocatalytic CO ₂ reduction mediated by transitional metal borides: metal site-dependent activity and selectivity. Journal of Materials Chemistry A, 2020, 8, 21833-21841.	5.2	23

#	Article	IF	CITATIONS
218	CO 2 to CO: Photo―and Electrocatalytic Conversion Based on Re(I) Bisâ€Arene Frameworks: Synergisms Between Catalytic Subunits. Helvetica Chimica Acta, 2020, 103, e2000147.	1.0	2
219	Low Overpotential CO ₂ Activation by a Graphite-Adsorbed Cobalt Porphyrin. ACS Catalysis, 2020, 10, 12284-12291.	5.5	19
220	Power-to-methane, coupling CO2 capture with fuel production: An overview. Renewable and Sustainable Energy Reviews, 2020, 132, 110057.	8.2	90
221	Molecular catalysis of CO ₂ reduction: recent advances and perspectives in electrochemical and light-driven processes with selected Fe, Ni and Co aza macrocyclic and polypyridine complexes. Chemical Society Reviews, 2020, 49, 5772-5809.	18.7	233
222	Synergetic effect of hollowrization and sulfonation on improving the photocatalytic performance of covalent porphyrin polymers in the reduction of CO2. Materials Chemistry Frontiers, 2020, 4, 2754-2761.	3.2	10
223	Axial Modification of Cobalt Complexes on Heterogeneous Surface with Enhanced Electron Transfer for Carbon Dioxide Reduction. Angewandte Chemie, 2020, 132, 19324-19329.	1.6	11
224	Tuning W ₁₈ O ₄₉ /Cu ₂ O{111} Interfaces for the Highly Selective CO ₂ Photocatalytic Conversion to CH ₄ . ACS Applied Materials & Interfaces, 2020, 12, 35113-35119.	4.0	44
225	Intramolecular Electrostatic Effects on O ₂ , CO ₂ , and Acetate Binding to a Cationic Iron Porphyrin. Inorganic Chemistry, 2020, 59, 17402-17414.	1.9	20
226	Tailored self-assembled photocatalytic nanofibres for visible-light-driven hydrogen production. Nature Chemistry, 2020, 12, 1150-1156.	6.6	98
227	Bioinspired metal complexes for energy-related photocatalytic small molecule transformation. Chemical Communications, 2020, 56, 15496-15512.	2.2	22
228	Repurposing a Bio-Inspired NiFe Hydrogenase Model for CO ₂ Reduction with Selective Production of Methane as the Unique C-Based Product. ACS Energy Letters, 2020, 5, 3837-3842.	8.8	41
229	Calix[8]arene-constructed stable polyoxo-titanium clusters for efficient CO ₂ photoreduction. Green Chemistry, 2020, 22, 5325-5332.	4.6	40
230	A Mixedâ€Metal Porphyrinic Framework Promoting Gasâ€Phase CO ₂ Photoreduction without Organic Sacrificial Agents. ChemSusChem, 2020, 13, 6273-6277.	3.6	26
231	Stabilizing Atomically Dispersed Catalytic Sites on Tellurium Nanosheets with Strong Metal–Support Interaction Boosts Photocatalysis. Small, 2020, 16, e2002356.	5.2	45
232	Metalloporphyrin-based covalent organic frameworks composed of the electron donor-acceptor dyads for visible-light-driven selective CO2 reduction. Science China Chemistry, 2020, 63, 1289-1294.	4.2	73
233	Fundamentals and challenges of ultrathin 2D photocatalysts in boosting CO ₂ photoreduction. Chemical Society Reviews, 2020, 49, 6592-6604.	18.7	220
234	Spherical Mesoporous SBAâ€15â€Supported CoP Nanoparticles as Robust Selective CO 2 Reduction and H 2 â€Generating Catalyst under Visible Light. ChemCatChem, 2020, 12, 5504-5510.	1.8	6
235	Photocatalytic CO ₂ Reduction to CO over Ni Single Atoms Supported on Defectâ€Rich Zirconia. Advanced Energy Materials, 2020, 10, 2002928.	10.2	263

#	Article	IF	CITATIONS
236	In Situ Coating CsPbBr ₃ Nanocrystals with Graphdiyne to Boost the Activity and Stability of Photocatalytic CO ₂ Reduction. ACS Applied Materials & Interfaces, 2020, 12, 50464-50471.	4.0	81
237	Facile Top-Down Strategy for Direct Metal Atomization and Coordination Achieving a High Turnover Number in CO ₂ Photoreduction. Journal of the American Chemical Society, 2020, 142, 19259-19267.	6.6	128
238	Computational mechanistic insights into non-noble-metal-catalysed CO ₂ conversion. Dalton Transactions, 2020, 49, 16608-16616.	1.6	4
239	Formation of a mixed-valence Cu(<scp>i</scp>)/Cu(<scp>ii</scp>) metal–organic framework with the full light spectrum and high selectivity of CO ₂ photoreduction into CH ₄ . Chemical Science, 2020, 11, 10143-10148.	3.7	40
240	Merging an organic TADF photosensitizer and a simple terpyridine–Fe(<scp>iii</scp>) complex for photocatalytic CO ₂ reduction. Chemical Communications, 2020, 56, 12170-12173.	2.2	34
241	Synthesis and effective catalytic performance in cycloaddition reactions with CO ₂ of boronate esters <i>versus</i> N-heterocyclic carbene (NHC)-stabilized boronate esters. Sustainable Energy and Fuels, 2020, 4, 5682-5696.	2.5	30
243	Iron clusters boosted performance in electrocatalytic carbon dioxide conversion. Journal of Materials Chemistry A, 2020, 8, 21661-21667.	5.2	8
245	High-Entropy Alloys as a Platform for Catalysis: Progress, Challenges, and Opportunities. ACS Catalysis, 2020, 10, 11280-11306.	5.5	308
246	Molecularly engineered photocatalyst sheet for scalable solar formate production from carbon dioxide and water. Nature Energy, 2020, 5, 703-710.	19.8	156
247	Transition metal-based catalysts for the electrochemical CO ₂ reduction: from atoms and molecules to nanostructured materials. Chemical Society Reviews, 2020, 49, 6884-6946.	18.7	305
248	Regulating Photocatalysis by Spin-State Manipulation of Cobalt in Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 16723-16731.	6.6	333
249	Zero valent iron nanoparticles as sustainable nanocatalysts for reduction reactions. Catalysis Reviews - Science and Engineering, 2022, 64, 286-355.	5.7	20
250	Tunable Syngas Synthesis from Photocatalytic CO2 Reduction Under Visible-Light Irradiation by Interfacial Engineering. Transactions of Tianjin University, 2020, 26, 352-361.	3.3	33
251	Rational Design of FeNi Bimetal Modified Covalent Organic Frameworks for Photoconversion of Anthropogenic CO ₂ into Widely Tunable Syngas. Small, 2020, 16, e2002985.	5.2	39
252	Photocatalytic Reduction of CO ₂ to CO over Quinacridone/BiVO ₄ Nanocomposites. ChemSusChem, 2020, 13, 5565-5570.	3.6	16
253	Hierarchically structured semiconductor@noble-metal@MOF for high-performance selective photocatalytic CO2 reduction. Green Chemical Engineering, 2020, 1, 48-55.	3.3	17
254	Collisional Electron Transfer Route between Homogeneous Porphyrin Dye and Catalytic TiO ₂ /Re(I) Particles for CO ₂ Reduction. ACS Applied Energy Materials, 2020, 3, 11581-11596.	2.5	13
255	Highly Efficient and Selective Visible-Light Driven CO ₂ Reduction by Two Co-Based Catalysts in Aqueous Solution. Inorganic Chemistry, 2020, 59, 17464-17472.	1.9	18

#	Article	IF	CITATIONS
256	Tetrapyrroles at near-ambient pressure: porphyrins and phthalocyanines beyond the pressure gap. JPhys Materials, 2020, 3, 022002.	1.8	12
257	Reticular chemistry in electrochemical carbon dioxide reduction. Science China Materials, 2020, 63, 1113-1141.	3.5	30
258	Harnessing Noninnocent Porphyrin Ligand to Circumvent Fe-Hydride Formation in the Selective Fe-Catalyzed CO ₂ Reduction in Aqueous Solution. ACS Catalysis, 2020, 10, 6332-6345.	5.5	37
259	Improved photocatalytic performance of metal–organic frameworks for CO ₂ conversion by ligand modification. Chemical Communications, 2020, 56, 7637-7640.	2.2	21
260	Improving photosensitization for photochemical CO2-to-CO conversion. National Science Review, 2020, 7, 1459-1467.	4.6	44
261	Unique hole-accepting carbon-dots promoting selective carbon dioxide reduction nearly 100% to methanol by pure water. Nature Communications, 2020, 11, 2531.	5.8	168
262	Spindle-like Fe2O3/ZnFe2O4 porous nanocomposites derived from metal-organic frameworks with excellent sensing performance towards triethylamine. Sensors and Actuators B: Chemical, 2020, 317, 128205.	4.0	64
263	Direct and indirect Z-scheme heterostructure-coupled photosystem enabling cooperation of CO2 reduction and H2O oxidation. Nature Communications, 2020, 11, 3043.	5.8	200
264	Ruthenium-catalyzed hydrogenation of CO ₂ as a route to methyl esters for use as biofuels or fine chemicals. Chemical Science, 2020, 11, 6766-6774.	3.7	13
265	Synthetic Organic Design for Solar Fuel Systems. Angewandte Chemie - International Edition, 2020, 59, 17344-17354.	7.2	27
266	An NADH-Inspired Redox Mediator Strategy to Promote Second-Sphere Electron and Proton Transfer for Cooperative Electrochemical CO ₂ Reduction Catalyzed by Iron Porphyrin. Inorganic Chemistry, 2020, 59, 9270-9278.	1.9	30
267	Synthetic Organic Design for Solar Fuel Systems. Angewandte Chemie, 2020, 132, 17496-17506.	1.6	5
268	Ultrathin and Smallâ€Size Graphene Oxide as an Electron Mediator for Perovskiteâ€Based Zâ€Scheme System to Significantly Enhance Photocatalytic CO ₂ Reduction. Small, 2020, 16, e2002140.	5.2	73
269	Exploration of Advanced Electrode Materials for Approaching Highâ€Performance Nickelâ€Based Superbatteries. Small, 2020, 16, e2001340.	5.2	26
270	Computational Screening of Transition Metal–Phthalocyanines for the Electrochemical Reduction of Carbon Dioxide. Journal of Physical Chemistry C, 2020, 124, 7708-7715.	1.5	27
271	Metal-Free 2D/2D Black Phosphorus and Covalent Triazine Framework Heterostructure for CO ₂ Photoreduction. ACS Sustainable Chemistry and Engineering, 2020, 8, 5175-5183.	3.2	74
272	Inâ€situ Selfâ€transformation Synthesis of Nâ€doped Carbon Coating Paragenetic Anatase/Rutile Heterostructure with Enhanced Photocatalytic CO ₂ Reduction Activity. ChemCatChem, 2020, 12, 3274-3284.	1.8	14
273	Combined Photoredox and Iron Catalysis for the Cyclotrimerization of Alkynes. Angewandte Chemie - International Edition, 2020, 59, 13473-13478.	7.2	47

#	ARTICLE	IF	CITATIONS
274	600 nm-driven photoreduction of CO2 through the topological transformation of layered double hydroxides nanosheets. Applied Catalysis B: Environmental, 2020, 270, 118884.	10.8	46
275	Assembling ultrafine TiO2 nanoparticles on UiO-66 octahedrons to promote selective photocatalytic conversion of CO2 to CH4 at a low concentration. Applied Catalysis B: Environmental, 2020, 270, 118856.	10.8	103
276	Efficient Visible-Light-Driven CO ₂ Reduction by a Cobalt Molecular Catalyst Covalently Linked to Mesoporous Carbon Nitride. Journal of the American Chemical Society, 2020, 142, 6188-6195.	6.6	199
277	Using waste as resource to realize a circular economy: Circular use of C, N and P. Current Opinion in Green and Sustainable Chemistry, 2020, 23, 61-66.	3.2	15
278	Electrocatalytic CO ₂ Reduction by Cobalt Bis(pyridylmonoimine) Complexes: Effect of Ligand Flexibility on Catalytic Activity. ACS Catalysis, 2020, 10, 4942-4959.	5.5	24
279	Combined Photoredox and Iron Catalysis for the Cyclotrimerization of Alkynes. Angewandte Chemie, 2020, 132, 13575-13580.	1.6	3
280	N-heterocyclic carbene-functionalized metal–organic frameworks for the chemical fixation of CO2. Dalton Transactions, 2020, 49, 6548-6552.	1.6	10
281	Tracking Mechanistic Pathway of Photocatalytic CO ₂ Reaction at Ni Sites Using Operando, Time-Resolved Spectroscopy. Journal of the American Chemical Society, 2020, 142, 5618-5626.	6.6	121
282	Investigation on In–TiO2 composites as highly efficient elecctrocatalyst for CO2 reduction. Electrochimica Acta, 2020, 340, 135948.	2.6	11
283	Covalent Organic Framework Hosting Metalloporphyrinâ€Based Carbon Dots for Visibleâ€Lightâ€Driven Selective CO ₂ Reduction. Advanced Functional Materials, 2020, 30, 2002654.	7.8	125
284	Axial Modification of Cobalt Complexes on Heterogeneous Surface with Enhanced Electron Transfer for Carbon Dioxide Reduction. Angewandte Chemie - International Edition, 2020, 59, 19162-19167.	7.2	64
285	Low Temperature CO ₂ Reforming with Methane Reaction over CeO ₂ -Modified Ni@SiO ₂ Catalysts. ACS Applied Materials & Interfaces, 2020, 12, 35022-35034.	4.0	99
286	Intermolecular cascaded π-conjugation channels for electron delivery powering CO2 photoreduction. Nature Communications, 2020, 11, 1149.	5.8	147
287	The construction of novel and efficient hafnium catalysts using naturally existing tannic acid for Meerwein–Ponndorf–Verley reduction. RSC Advances, 2020, 10, 6944-6952.	1.7	12
288	In-situ hydroxyl modification of monolayer black phosphorus for stable photocatalytic carbon dioxide conversion. Applied Catalysis B: Environmental, 2020, 269, 118760.	10.8	147
289	A Z-scheme ZnFe ₂ 0 ₄ /RGO/In ₂ 0 ₃ hierarchical photocatalyst for efficient CO ₂ reduction enhancement. Journal of Materials Chemistry A, 2020, 8, 6524-6531.	5.2	51
290	Nafion-Assisted Noncovalent Assembly of Molecular Sensitizers and Catalysts for Sustained Photoreduction of CO ₂ to CO. ACS Sustainable Chemistry and Engineering, 2020, 8, 3709-3717.	3.2	10
291	Accelerating CO ₂ Electroreduction to CO Over Pd Singleâ€Atom Catalyst. Advanced Functional Materials, 2020, 30, 2000407.	7.8	173

#	Article	IF	CITATIONS
292	Photocatalytic CO2 reduction catalyzed by metalloporphyrin: Understanding of cobalt and nickel sites in activity and adsorption. Applied Surface Science, 2020, 513, 145801.	3.1	36
293	One-Step Direct Fixation of Atmospheric CO2 by Si-H Surface in Solution. IScience, 2020, 23, 100806.	1.9	3
294	Mesoporous covalent organic framework: An active photo-catalyst for formic acid synthesis through carbon dioxide reduction under visible light. Molecular Catalysis, 2020, 484, 110730.	1.0	45
295	Dinuclear metal complexes: multifunctional properties and applications. Chemical Society Reviews, 2020, 49, 765-838.	18.7	148
296	Boosting Photocatalytic CO ₂ Reduction on CsPbBr ₃ Perovskite Nanocrystals by Immobilizing Metal Complexes. Chemistry of Materials, 2020, 32, 1517-1525.	3.2	197
297	Engineering Active Ni Sites in Ternary Layered Double Hydroxide Nanosheets for a Highly Selective Photoreduction of CO ₂ to CH ₄ under Irradiation above 500 nm. Industrial & Engineering Chemistry Research, 2020, 59, 3008-3015.	1.8	52
298	Selective aerobic oxidation of sulfides by cooperative polyimide-titanium dioxide photocatalysis and triethylamine catalysis. Journal of Colloid and Interface Science, 2020, 565, 614-622.	5.0	32
299	Photocatalytic CO ₂ Reduction under Visibleâ€Light Irradiation by Ruthenium CNC Pincer Complexes. Chemistry - A European Journal, 2020, 26, 5603-5606.	1.7	16
300	Recent advances in metalloporphyrin-based catalyst design towards carbon dioxide reduction: from bio-inspired second coordination sphere modifications to hierarchical architectures. Dalton Transactions, 2020, 49, 2381-2396.	1.6	103
301	Importance of ZnTiO ₃ Phase in ZnTi-Mixed Metal Oxide Photocatalysts Derived from Layered Double Hydroxide. ACS Applied Materials & Interfaces, 2020, 12, 9169-9180.	4.0	41
302	Carbon-based single-atom catalysts for CO ₂ electroreduction: progress and optimization strategies. Journal of Materials Chemistry A, 2020, 8, 10695-10708.	5.2	86
303	Alternative Pathway of CO ₂ Hydrogenation by Lewis-Pair-Functionalized UiO-66 MOF Revealed by Metadynamics Simulations. Journal of Physical Chemistry C, 2020, 124, 10951-10960.	1.5	24
304	Synergistic performance of a sub-nanoscopic cobalt and imidazole grafted porous organic polymer for CO ₂ fixation to cyclic carbonates under ambient pressure without a co-catalyst. Journal of Materials Chemistry A, 2020, 8, 13916-13920.	5.2	14
305	Highly Selective Photoreduction of CO ₂ with Suppressing H ₂ Evolution by Plasmonic Au/CdSe–Cu ₂ O Hierarchical Nanostructures under Visible Light. Small, 2020, 16, e2000426.	5.2	53
306	A highly active and robust iron quinquepyridine complex for photocatalytic CO ₂ reduction in aqueous acetonitrile solution. Chemical Communications, 2020, 56, 6249-6252.	2.2	21
307	Encapsulation of Single Iron Sites in a Metal–Porphyrin Framework for High-Performance Photocatalytic CO ₂ Reduction. Inorganic Chemistry, 2020, 59, 6301-6307.	1.9	57
308	Nanostructures for Electrocatalytic CO ₂ Reduction. Chemistry - A European Journal, 2020, 26, 14024-14035.	1.7	26
309	Tuning of Ionic Second Coordination Sphere in Evolved Rhenium Catalyst for Efficient Visibleâ€Lightâ€Driven CO ₂ Reduction. ChemSusChem, 2020, 13, 6284-6289.	3.6	30

	Ci	CITATION REPORT	
# 310	ARTICLE Degradation of environmental contaminants by topical heterogeneous photocatalysts. , 2020, , 151-1	IF .82.	Citations 5
311	Deep and selective photoreduction of CO2 to CH4 over ultrafine Pt nanoparticles-decorated SiC nanosheets. Applied Surface Science, 2020, 515, 145952.	3.1	17
312	Iron porphyrin catalysed light driven C–H bond amination and alkene aziridination with organic azides. Chemical Science, 2020, 11, 4680-4686.	3.7	48
313	Conversion of CO2 and H2 into propane over InZrO and SSZ-13 composite catalyst. Journal of Energy Chemistry, 2021, 54, 111-117.	7.1	14
314	Photocatalytic syngas synthesis from CO2 and H2O using ultrafine CeO2-decorated layered double hydroxide nanosheets under visible-light up to 600 nm. Frontiers of Chemical Science and Engineering 2021, 15, 99-108.	g, 2.3	22
315	Selective photocatalytic reduction of CO2 to CO mediated by a [FeFe]-hydrogenase model with a 1,2-phenylene S-to-S bridge. Chinese Journal of Catalysis, 2021, 42, 310-319.	6.9	8
316	Insideâ€andâ€Out Semiconductor Engineering for CO ₂ Photoreduction: From Recent Advances to New Trends. Small Structures, 2021, 2, 2000061.	6.9	346
317	Timeâ€Resolved Xâ€Ray Absorption Spectroscopy: Visualizing the Time Evolution of Photophysics and Photochemistry in Photocatalytic Solar Energy Conversion. Solar Rrl, 2021, 5, 2000468.	3.1	11
318	Critical Aspects of Metal–Organic Frameworkâ€Based Materials for Solarâ€Driven CO 2 Reduction i Valuable Fuels. Global Challenges, 2021, 5, 2000082.	into 1.8	9
319	Iron(<scp>iii</scp>)-bipyridine incorporated metal–organic frameworks for photocatalytic reduction of CO ₂ with improved performance. Dalton Transactions, 2021, 50, 384-390.	٦ 1.6	30
320	Cu-doped Fe2O3 porous spindles derived from metal-organic frameworks with enhanced sensitivity to triethylamine. Materials Science in Semiconductor Processing, 2021, 123, 105510.) 1.9	25
321	Recent advances in visible-light-driven carbon dioxide reduction by metal-organic frameworks. Science of the Total Environment, 2021, 762, 144101.	3.9	35
322	Utility of Core–Shell Nanomaterials in the Catalytic Transformations of Renewable Substrates. Chemistry - A European Journal, 2021, 27, 12-19.	1.7	4
323	Metal-organic layers as a platform for developing single-atom catalysts for photochemical CO2 reduction. Nano Energy, 2021, 80, 105542.	8.2	77
324	Oxo-functionalised mesoionic NHC nickel complexes for selective electrocatalytic reduction of CO ₂ to formate. Green Chemistry, 2021, 23, 3365-3373.	4.6	10
325	Perspectives and state of the art in producing solar fuels and chemicals from CO2. , 2021, , 181-219.		4
326	A direct Z-scheme mechanism for selective hydrogenation of aromatic nitro compounds over a hybrid photocatalyst composed of ZnIn ₂ S ₄ and WO ₃ nanorods. New Journal of Chemistry, 2021, 45, 3298-3310.	/ 1.4	9
327	Polyoxometalate-induced â€~cage-within-cage' metal–organic frameworks with high efficiency t CO ₂ photoreduction. Sustainable Energy and Fuels, 2021, 5, 3876-3883.	cowards 2.5	12

#	Article	IF	CITATIONS
328	Mechanistic insight into photocatalytic CO ₂ reduction by a Z-scheme g-C ₃ N ₄ /TiO ₂ heterostructure. New Journal of Chemistry, 2021, 45, 11474-11480.	1.4	16
329	Photocatalytic CO ₂ reduction to CH ₄ on iron porphyrin supported on atomically thin defective titanium dioxide. Catalysis Science and Technology, 2021, 11, 6103-6111.	2.1	13
330	β-Oxochlorin cobalt(<scp>ii</scp>) complexes catalyze the electrochemical reduction of CO ₂ . Chemical Communications, 2021, 57, 4396-4399.	2.2	6
331	Metal-templated synthesis of rigid and conformationally restricted cyclic bisporphyrins: specific retention times on a cyanopropyl-modified silica gel column. Organic and Biomolecular Chemistry, 2021, 19, 3159-3172.	1.5	4
332	Stereodivergent synthesis of β-iodoenol carbamates with CO ₂ <i>via</i> photocatalysis. Chemical Science, 2021, 12, 11821-11830.	3.7	16
333	Operando systems chemistry reaction catalysis (OSCR-Cat) for visible light driven CO ₂ conversion. Journal of Materials Chemistry A, 2021, 9, 13355-13365.	5.2	4
334	Metallaphotoredox catalysis with organic dyes. Organic and Biomolecular Chemistry, 2021, 19, 3527-3550.	1.5	44
335	Hybrid artificial photosynthetic systems constructed using quantum dots and molecular catalysts for solar fuel production: development and advances. Journal of Materials Chemistry A, 2021, 9, 19346-19368.	5.2	19
336	Hydrogenation of CO ₂ to methanol by the diphosphine–ruthenium(<scp>ii</scp>) cationic complex: a DFT investigation to shed light on the decisive role of carboxylic acids as promoters. Catalysis Science and Technology, 2021, 11, 3556-3567.	2.1	11
337	Boosting charge carrier separation efficiency by constructing an intramolecular DA system towards efficient photoreduction of CO ₂ . New Journal of Chemistry, 2021, 45, 6042-6052.	1.4	7
338	Enhanced photocatalytic CO ₂ reduction by constructing an In ₂ O ₃ –CuO heterojunction with CuO as a cocatalyst. Catalysis Science and Technology, 2021, 11, 2713-2717.	2.1	18
339	Effect of Li ions doping into p-type semiconductor NiO as a hole injection/transfer medium in the CO2 reduction sensitized/catalyzed by Zn-porphyrin/Re-complex upon visible light irradiation. Research on Chemical Intermediates, 2021, 47, 269-285.	1.3	8
340	Promoted photocarrier transfer and increased active sites for optimal CO ₂ -to-CH ₄ photoconversion <i>via</i> the modification of atomically dispersed transition metal ions in CdZnS nanocrystals. Journal of Materials Chemistry A, 2021, 9, 20350-20355.	5.2	7
341	A supramolecular single-site photocatalyst based on multi-to-one Förster resonance energy transfer. Chemical Communications, 2021, 57, 4174-4177.	2.2	12
342	Photocatalytic C–C Coupling from Carbon Dioxide Reduction on Copper Oxide with Mixed-Valence Copper(I)/Copper(II). Journal of the American Chemical Society, 2021, 143, 2984-2993.	6.6	206
343	Catalytic hydrocracking of synthetic polymers into grid-compatible gas streams. Cell Reports Physical Science, 2021, 2, 100332.	2.8	28
344	Tuning Crystallinity and Surface Hydrophobicity of a Cobalt Phosphide Cocatalyst to Boost CO ₂ Photoreduction Performance. ChemSusChem, 2021, 14, 1302-1307.	3.6	32
345	An Insight into Anchoring of Cobalt Phthalocyanines onto Carbon: Efficiency of the CO ₂ Reduction Reaction. ACS Applied Energy Materials, 2021, 4, 1442-1448.	2.5	22

#	Article	IF	CITATIONS
346	Methane Generation from CO ₂ with a Molecular Rhenium Catalyst. Inorganic Chemistry, 2021, 60, 3572-3584.	1.9	19
347	Triplet Excited States Modulated by Push–Pull Substituents in Monocyclometalated Iridium(III) Photosensitizers. Inorganic Chemistry, 2021, 60, 4891-4903.	1.9	7
348	Enhancing a Molecular Electrocatalyst's Activity for CO ₂ Reduction by Simultaneously Modulating Three Substituent Effects. Journal of the American Chemical Society, 2021, 143, 3764-3778.	6.6	54
349	Ferrocene-Functionalized Polyoxo-Titanium Cluster for CO ₂ Photoreduction. ACS Catalysis, 2021, 11, 4510-4519.	5.5	57
350	BiVO ₄ Microplates with Oxygen Vacancies Decorated with Metallic Cu and Bi Nanoparticles for CO ₂ Photoreduction. ACS Applied Nano Materials, 2021, 4, 3576-3585.	2.4	43
351	Are Amines the Holy Grail for Facilitating CO 2 Reduction?. Angewandte Chemie, 2021, 133, 9258-9263.	1.6	3
352	Enhancing the Electrochemical Reduction of CO ₂ by Controlling the Flow Conditions: An Intermittent Flow Reduction System with a Boron-Doped Diamond Electrode. ACS Sustainable Chemistry and Engineering, 2021, 9, 5298-5303.	3.2	18
353	Modulation of Selfâ€Assembly Enhances the Catalytic Activity of Iron Porphyrin for CO ₂ Reduction. Small, 2021, 17, e2006150.	5.2	13
354	Promoting photocatalytic CO2 reduction with a molecular copper purpurin chromophore. Nature Communications, 2021, 12, 1835.	5.8	72
355	Heterogeneous electrocatalytic reduction of carbon dioxide with transition metal complexes. Journal of Catalysis, 2021, 395, 23-35.	3.1	15
356	Are Amines the Holy Grail for Facilitating CO ₂ Reduction?. Angewandte Chemie - International Edition, 2021, 60, 9174-9179.	7.2	48
357	Nanomaterials for adsorption and conversion of CO2 under gentle conditions. Materials Today, 2021, 50, 385-399.	8.3	21
358	Base-assisted transfer hydrogenation of CO2 to formate with ammonia borane in water under mild conditions. International Journal of Hydrogen Energy, 2021, 46, 15716-15723.	3.8	11
359	Physical properties of porphyrin-based crystalline metal‒organic frameworks. Communications Chemistry, 2021, 4, .	2.0	54
360	Efficient Electron Transfer from Electronâ€Sponge Polyoxometalate to Singleâ€Metal Site Metal–Organic Frameworks for Highly Selective Electroreduction of Carbon Dioxide. Small, 2021, 17, e2100762.	5.2	34
361	Metal-organic framework membranes with single-atomic centers for photocatalytic CO2 and O2 reduction. Nature Communications, 2021, 12, 2682.	5.8	154
362	Carbon Dioxide Reduction to Methanol with a Molecular Cobaltâ€Catalyst‣oaded Porous Carbon Electrode Assisted by a CIGS Photovoltaic Cell**. ChemPhotoChem, 2021, 5, 705-710.	1.5	4
363	Thermodynamic Trends for Reduction of CO by Molecular Complexes. Organometallics, 2021, 40, 2039-2050.	1.1	5

#	Article	IF	CITATIONS
364	Hybridization of Molecular and Graphene Materials for CO ₂ Photocatalytic Reduction with Selectivity Control. Journal of the American Chemical Society, 2021, 143, 8414-8425.	6.6	64
365	Synergistic catalysis of metalloporphyrins and phosphonium ionic liquids for the efficient transformation of CO2 under ambient conditions. Journal of CO2 Utilization, 2021, 48, 101519.	3.3	12
366	Suppressing hydrogen evolution for high selective CO2 reduction through surface-reconstructed heterojunction photocatalyst. Applied Catalysis B: Environmental, 2021, 286, 119876.	10.8	41
367	Investigation into the Re-Arrangement of Copper Foams Pre- and Post-CO2 Electrocatalysis. Chemistry, 2021, 3, 687-703.	0.9	5
368	Artificial Photosynthesis over Metal Halide Perovskites: Achievements, Challenges, and Prospects. Journal of Physical Chemistry Letters, 2021, 12, 5864-5870.	2.1	45
369	Orientational Alignment of Oxygen Vacancies: Electric-Field-Inducing Conductive Channels in TiO ₂ Film to Boost Photocatalytic Conversion of CO ₂ into CO. Nano Letters, 2021, 21, 5060-5067.	4.5	19
370	Siliconâ€Based Lithium Ion Battery Systems: Stateâ€ofâ€theâ€Art from Half and Full Cell Viewpoint. Advanced Functional Materials, 2021, 31, 2102546.	7.8	83
371	Inter-clusters synergy in iron-organic frameworks for efficient CO2 photoreduction. Applied Catalysis B: Environmental, 2022, 300, 120487.	10.8	34
372	Engineering Co/MnO heterointerface inside porous graphitic carbon for boosting the low-temperature CO2methanation. Applied Catalysis B: Environmental, 2021, 287, 119959.	10.8	36
373	Interfacial Interactions between Coâ€Based Cocatalysts and Semiconducting Light Absorbers for Solarâ€Lightâ€Driven Redox Reactions. Solar Rrl, 2021, 5, 2100234.	3.1	2
374	Greenhouse-inspired supra-photothermal CO2 catalysis. Nature Energy, 2021, 6, 807-814.	19.8	198
375	Design of Crystalline Reduction–Oxidation Cluster-Based Catalysts for Artificial Photosynthesis. Jacs Au, 2021, 1, 1288-1295.	3.6	26
376	Electrocatalytic and Photocatalytic Reduction of Carbon Dioxide by Earthâ€Abundant Bimetallic Molecular Catalysts. ChemPhysChem, 2021, 22, 1835-1843.	1.0	21
377	Photoinitiated Freeâ€Radical Polymerization of 4,5,6,7â€Tetrahalogenated Fluoresceins. Chemistry - an Asian Journal, 2021, 16, 2413-2416.	1.7	3
378	Co ^{II} –Zn ^{II} Heterometallic Dinuclear Complex with Enhanced Photocatalytic Activity for CO ₂ -to-CO Conversion in a Water-Containing System. ACS Sustainable Chemistry and Engineering, 2021, 9, 9273-9281.	3.2	16
379	Highly efficient CO2 fixation into cyclic carbonate by hydroxyl-functionalized protic ionic liquids at atmospheric pressure. Molecular Catalysis, 2021, 511, 111756.	1.0	19
380	Oriented Electrostatic Effects on O ₂ and CO ₂ Reduction by a Polycationic Iron Porphyrin. Journal of the American Chemical Society, 2021, 143, 11423-11434.	6.6	64
381	A Critical Review on Black Phosphorusâ€Based Photocatalytic CO ₂ Reduction Application. Small, 2021, 17, e2102155.	5.2	60

#	ARTICLE	IF	CITATIONS
382	Rapid electron transfer via dynamic coordinative interaction boosts quantum efficiency for photocatalytic CO2 reduction. Nature Communications, 2021, 12, 4276.	5.8	69
383	Self-adaptive dual-metal-site pairs in metal-organic frameworks for selective CO2 photoreduction to CH4. Nature Catalysis, 2021, 4, 719-729.	16.1	406
384	Synthesis and CO ₂ Photoreduction of Lead-Free Cesium Bismuth Halide Perovskite Nanocrystals. Journal of Physical Chemistry C, 2021, 125, 18328-18333.	1.5	29
385	Radiolytic Approach for Efficient, Selective and Catalystâ€free CO 2 Conversion at Room Temperature. ChemPhysChem, 2021, 22, 1900-1906.	1.0	9
386	Automated and Continuous-Flow Platform to Analyze Semiconductor–Metal Complex Hybrid Systems for Photocatalytic CO ₂ Reduction. ACS Catalysis, 2021, 11, 11266-11277.	5.5	19
387	CO2 methanation catalyzed by a Fe-Co/Al2O3 catalyst. Journal of Environmental Chemical Engineering, 2021, 9, 105594.	3.3	18
388	A DFT study on the selectivity of CO2 reduction electrocatalyzed by heterofluorene bis-NHC Ni pincer complexes: Interplay of media and structure factor. Inorganic Chemistry Communication, 2021, 130, 108690.	1.8	3
389	Revisiting photo and electro-catalytic modalities for sustainable conversion of CO2. Applied Catalysis A: General, 2021, 623, 118248.	2.2	13
390	2D covalent organic framework: a photoactive heterogeneous catalyst for chemical fixation of CO2 over propargyl amines in water under sunlight. Materials Today Chemistry, 2021, 21, 100509.	1.7	24
391	Imbroglio at a photoredox-iron-porphyrin catalyst dyad for the photocatalytic CO <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow> <mml:mn>2</mml:mn> </mml:msub> reduction. Comptes Rendus Chimie, 2021, 24, 101-114.</mml:math 	0.2	0
392	Recent Advances and Perspectives in Photodriven Charge Accumulation in Molecular Compounds: A Mini Review. Energy & Fuels, 2021, 35, 18848-18856.	2.5	19
393	Systematic Assessment of Solvent Selection in Photocatalytic CO ₂ Reduction. ACS Energy Letters, 2021, 6, 3270-3274.	8.8	98
394	Simultaneously Enhancing the Redox Potential and Stability of Multi-Redox Organic Catholytes by Incorporating Cyclopropenium Substituents. Journal of the American Chemical Society, 2021, 143, 13450-13459.	6.6	29
395	Self-catalyzed growth of Zn/Co-N-C carbon nanotubes derived from metal-organic frameworks as efficient oxygen reduction catalysts for Zn-air battery. Science China Materials, 2022, 65, 653-662.	3.5	42
396	Catalytic valorization of CO ₂ by hydrogenation: current status and future trends. Catalysis Reviews - Science and Engineering, 2023, 65, 698-772.	5.7	8
397	Encapsulation of Pd Nanoparticles in Covalent Triazine Frameworks for Enhanced Photocatalytic CO ₂ Conversion. ACS Sustainable Chemistry and Engineering, 2021, 9, 12646-12654.	3.2	28
398	Decoration of Active Sites in Covalent–Organic Framework: An Effective Strategy of Building Efficient Photocatalysis for CO ₂ Reduction. ACS Sustainable Chemistry and Engineering, 2021, 9, 13376-13384.	3.2	34
399	Enhancement of Electrocatalytic CO ₂ Reduction to Methane by CoTMPyP when Hosted in a 3D Covalent Graphene Framework. ACS Applied Energy Materials, 2021, 4, 10033-10041.	2.5	9

ARTICLE IF CITATIONS # Mechanistic Insights Into Iron(II) Bis(pyridyl)amineâ€Bipyridine Skeleton for Selective CO2 400 1.6 2 Photoreduction. Angewandte Chemie, 0, , . Metal-Free Catalysis: A Redox-Active Donor–Acceptor Conjugated Microporous Polymer for Selective Visible-Light-Driven CO₂ Reduction to CH₄. Journal of the Ámerican Chemical 6.6 Society, 2021, 143, 16284-16292. Highly Functional Dinuclear Cu^I-Complex Photosensitizers for Photocatalytic 402 5.5 33 CO₂Reduction. ACS Catalysis, 2021, 11, 11973-11984. Synergistic Effect of Cu Single Atoms and Au–Cu Alloy Nanoparticles on TiO₂ for Efficient CO₂ Photoreduction. ACS Nano, 2021, 15, 14453-14464. Photocatalytic CO2 Reduction. Green Chemistry and Sustainable Technology, 2022, , 605-646. 404 0.4 2 Mechanistic Insights Into Iron(II) Bis(pyridyl)amineâ€Bipyridine Skeleton for Selective CO₂ Photoreduction. Angewandte Chemie - International Edition, 2021, 60, 26072-26079. Ce0.8Gd0.2O1.95-based mixed potential type triethylamine sensor utilizing La2NiFeO6 sensing electrode. 406 4.0 9 Sensors and Actuators B: Chemical, 2021, 345, 130438. Abiotic-biotic hybrid for CO2 biomethanation: From electrochemical to photochemical process. 3.9 Science of the Total Environment, 2021, 791, 148288. Doping [Ru(bpy)3]2+ into metal-organic framework to facilitate the separation and reuse of 408 noble-metal photosensitizer during CO2 photoreduction. Chinese Journal of Catalysis, 2021, 42, 6.9 20 1790-1797. Polymeric carbon nitride with internal n-p homojunctions for efficient photocatalytic CO2 reduction 409 10.8 coupled with cyclohexene oxidation. Applied Catalysis B: Environmental, 2021, 298, 120568. Construction of S-scheme 0D/2D heterostructures for enhanced visible-light-driven CO2 reduction. 410 10.8 86 Applied Catalysis B: Environmental, 2021, 298, 120521. Molybdenum phosphide coupled with highly dispersed nickel confined in porous carbon nanofibers 6.6 24 for enhanced photocatalytic CO2 reduction. Chemical Engineering Journal, 2022, 427, 131717. CuS -mediated two reaction systems enable biomimetic photocatalysis in CO2 reduction with visible 412 7.1 16 light. Journal of Energy Chemistry, 2022, 65, 497-504. Photocatalytic reduction of CO2 in hydrocarbon: A greener approach for energy production. Interface Science and Technology, 2021, , 871-915. 1.6 Naked-eye detection of Hg(<scp>ii</scp>) ions by visible light-induced polymerization initiated by a 414 1.9 8 Hg(<scp>ii</scp>)-selective photoredox catalyst. Polymer Chemistry, 2021, 12, 970-974. Amide-bridged conjugated organic polymers: efficient metal-free catalysts for visible-light-driven CO₂ reduction with H₂O to CO. Chemical Science, 2021, 12, 11548-11553. CO₂ activation by ligand-free manganese hydrides in a parahydrogen matrix. Chemical 416 2.24 Communications, 2021, 57, 2301-2304. Design of Binary Cuâ€"Fe Sites Coordinated with Nitrogen Dispersed in the Porous Carbon for 5.2 Synergistic CO₂ Electroreduction. Small, 2021, 17, e2006951.

#	Article	IF	CITATIONS
418	Transformation of CO2 into Valuable Chemicals. , 2018, , 1-38.		2
419	Transformation of CO2 into Valuable Chemicals. , 2019, , 285-322.		3
420	Biogenic Methane. Encyclopedia of Earth Sciences Series, 2017, , 1-9.	0.1	8
421	Oxygen vacancy mediated bismuth stannate ultra-small nanoparticle towards photocatalytic CO2-to-CO conversion. Applied Catalysis B: Environmental, 2020, 276, 119156.	10.8	59
422	Non-noble metal-based molecular complexes for CO2 reduction: From the ligand design perspective. EnergyChem, 2020, 2, 100034.	10.1	76
423	Elucidation of Cooperativity in CO2 Reduction Using a Xanthene-Bridged Bimetallic Rhenium(I) Complex. ACS Catalysis, 2021, 11, 390-403.	5.5	18
424	Highly efficient and selective photocatalytic CO ₂ to CO conversion in aqueous solution. Chemical Communications, 2020, 56, 3851-3854.	2.2	28
425	Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chemical Society Reviews, 2020, 49, 8584-8686.	18.7	610
426	Water nanodomains for efficient photocatalytic CO ₂ reduction to CO. Green Chemistry, 2021, 23, 9078-9083.	4.6	8
427	Electrostatic Attraction-Driven Assembly of a Metal–Organic Framework with a Photosensitizer Boosts Photocatalytic CO ₂ Reduction to CO. Journal of the American Chemical Society, 2021, 143, 17424-17430.	6.6	127
428	Black Phosphorus for Directed Molecular Assembly with Weak Electronic Coupling. Advanced Materials Interfaces, 2021, 8, 2101644.	1.9	1
429	Biogenic Methane. Encyclopedia of Earth Sciences Series, 2018, , 100-107.	0.1	0
431	A review on the state-of-the-art advances for CO2 electro-chemical reduction using metal complex molecular catalysts. Ecletica Quimica, 2019, 44, 11.	0.2	6
432	Interlayer Triplet-Sensitized Luminescence in Layered Two-Dimensional Hybrid Metal-Halide Perovskites. ACS Energy Letters, 2021, 6, 4079-4096.	8.8	22
434	Unravelling reaction selectivities via bio-inspired porphyrinoid tetradentate frameworks. Coordination Chemistry Reviews, 2022, 450, 214239.	9.5	9
435	Ferric Porphyrin-Based Porous Organic Polymers for CO ₂ Photocatalytic Reduction to Syngas with Selectivity Control. Chemistry of Materials, 2021, 33, 8863-8872.	3.2	39
436	Investigation and mitigation of degradation mechanisms in Cu2O photoelectrodes for CO2 reduction to ethylene. Nature Energy, 2021, 6, 1124-1132.	19.8	85
437	Co-porphyrin/Ru-pincer complex coupled polymer with Z-scheme molecular junctions and dual single-atom sites for visible light-responsive CO2 reduction. Chemical Engineering Journal, 2022, 431,	6.6	16

#	Article	IF	CITATIONS
438	Synergy between Confined Cobalt Centers and Oxygen Defects on αâ€Fe ₂ O ₃ Platelets for Efficient Photocatalytic CO ₂ Reduction. Solar Rrl, 2022, 6, 2100833.	3.1	6
439	Implanting Polypyrrole in Metal-Porphyrin MOFs: Enhanced Electrocatalytic Performance for CO ₂ RR. ACS Applied Materials & Interfaces, 2021, 13, 54959-54966.	4.0	45
440	Mechanism of the photoreduction of carbon dioxide catalyzed by the benchmarking rhenium dimethylbipyridine complexes; operando measurements by XAFS and FT-IR. Journal of Catalysis, 2022, 405, 508-519.	3.1	11
441	Metallaphotoredox: The Merger of Photoredox and Transition Metal Catalysis. Chemical Reviews, 2022, 122, 1485-1542.	23.0	660
442	A Highly Durable, Self-Photosensitized Mononuclear Ruthenium Catalyst for CO2 Reduction. Synlett, 2022, 33, 1137-1141.	1.0	8
443	Insight into reaction pathways of CO2 photoreduction into CH4 over hollow microsphere Bi2MoO6-supported Au catalysts. Chemical Engineering Journal, 2022, 433, 133540.	6.6	33
444	Imparting CO ₂ Electroreduction Auxiliary for Integrated Morphology Tuning and Performance Boosting in a Porphyrinâ€based Covalent Organic Framework. Angewandte Chemie - International Edition, 2022, 61, e202114648.	7.2	78
445	Construction of CuInS2/C/TiO2 hierarchical tandem heterostructures with optimized CO2 photoreduction under visible light. Chemical Engineering Journal, 2022, 433, 133679.	6.6	24
446	Imparting CO ₂ Electroreduction Auxiliary for Integrated Morphology Tuning and Performance Boosting in a Porphyrinâ€based Covalent Organic Framework. Angewandte Chemie, 2022, 134, .	1.6	20
447	Photo-induced direct alkynylation of methane and other light alkanes by iron catalysis. Green Chemistry, 2021, 23, 9406-9411.	4.6	40
448	Bioinspired spike-like double yolk–shell structured TiO ₂ @ZnIn ₂ S ₄ for efficient photocatalytic CO ₂ reduction. Catalysis Science and Technology, 2022, 12, 1092-1099.	2.1	9
449	Uncovering the synergistic photocatalytic behavior of bimetallic molecular catalysts. Chinese Chemical Letters, 2023, 34, 107146.	4.8	4
450	Dissection of Lightâ€Induced Charge Accumulation at a Highly Active Iron Porphyrin: Insights in the Photocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	27
451	Dissection of Lightâ€Induced Charge Accumulation at a Highly Active Iron Porphyrin: Insights in the Photocatalytic CO ₂ Reduction. Angewandte Chemie, 2022, 134, .	1.6	9
452	An unprecedented polyoxometalate-encapsulated organo–metallophosphate framework as a highly efficient cocatalyst for CO ₂ photoreduction. Journal of Materials Chemistry A, 2022, 10, 3469-3477.	5.2	21
453	Mechanism and selectivity of photocatalyzed CO ₂ reduction by a function-integrated Ru catalyst. Dalton Transactions, 2022, 51, 3747-3759.	1.6	4
454	Efficient CO ₂ reduction over a Ru-pincer complex/TiO ₂ hybrid photocatalyst <i>via</i> direct Z-scheme mechanism. Catalysis Science and Technology, 2022, 12, 1637-1650.	2.1	8
455	Solar Selective Absorber for Emerging Sustainable Applications. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	34

#	Article	IF	CITATIONS
456	Chromatic Fulleropyrrolidine as Longâ€Lived Metalâ€Free Catalyst for CO ₂ Photoreduction Reaction. ChemSusChem, 2022, 15, .	3.6	4
457	Recent advances in electrocatalytic CO2 reduction with molecular complexes. Advances in Inorganic Chemistry, 2022, , 301-353.	0.4	2
458	Cobalt Phthalocyanine Supported on Mesoporous CeO ₂ as an Active Molecular Catalyst for CO Oxidation. ACS Applied Materials & Interfaces, 2022, 14, 9151-9160.	4.0	9
459	High-capacity NCNT-encapsulated metal NP catalysts on carbonised loofah with dual-reaction centres over C–M bond bridges for Fenton-like degradation of antibiotics. Applied Catalysis B: Environmental, 2022, 307, 121205.	10.8	37
460	Host-guest assemblies of anchoring molecular catalysts of CO2 reduction onto CuInS2/ZnS quantum dots for robust photocatalytic syngas production in water. Molecular Catalysis, 2022, 520, 112168.	1.0	6
461	An unprecedented fully reduced {Mo ^V ₆₀ } polyoxometalate: from an all-inorganic molecular light-absorber model to improved photoelectronic performance. Chemical Science, 2022, 13, 4573-4580.	3.7	22
462	Ferroelectric Heterojunction and Bi-Ti-In Trimetallic Sites Mediated Co2 Coordination Model on the Indium-Doped Bi4ti3o12-Cuin5s8 for Controlling the Selectivity of Photoreduction of Co2. SSRN Electronic Journal, 0, , .	0.4	0
463	Enhancing mechanism of electron-deficient p states on photocatalytic activity of g-C ₃ N ₄ for CO ₂ reduction. Journal of Materials Chemistry A, 2022, 10, 9565-9574.	5.2	13
464	Metal Inorganic–Organic Complex Glass and Fiber for Photonic Applications. Chemistry of Materials, 2022, 34, 2476-2483.	3.2	21
465	Ultra-thin Two-Dimensional Trimetallic Metal–Organic Framework for Photocatalytic Reduction of CO ₂ . ACS Catalysis, 2022, 12, 3238-3248.	5.5	40
466	Strong Correlation between the Dynamic Chemical State and Product Profile of Carbon Dioxide Electroreduction. ACS Applied Materials & amp; Interfaces, 2022, 14, 22681-22696.	4.0	30
467	Regioisomer-Directed Self-Assembly of Alternating Copolymers for Highly Enhanced Photocatalytic H ₂ Evolution. ACS Macro Letters, 2022, 11, 434-440.	2.3	4
468	Design and Analysis of Metal Oxides for CO ₂ Reduction Using Machine Learning, Transfer Learning, and Bayesian Optimization. ACS Omega, 2022, 7, 10709-10717.	1.6	11
469	Towards singleâ€atom photocatalysts for future carbonâ€neutral application. SmartMat, 2022, 3, 417-446.	6.4	35
470	Ultrahigh Photocatalytic CO ₂ Reduction Efficiency and Selectivity Manipulation by Singleâ€Tungstenâ€Atom Oxide at the Atomic Step of TiO ₂ . Advanced Materials, 2022, 34, e2109074.	11.1	107
471	Emerging Ultrahighâ€Density Singleâ€Atom Catalysts for Versatile Heterogeneous Catalysis Applications: Redefinition, Recent Progress, and Challenges. Small Structures, 2022, 3, .	6.9	41
472	Tetraphenylporphyrin Enters the Ring: First Example of a Complex between Highly Bulky Porphyrins and a Protein**. ChemBioChem, 2022, 23, .	1.3	4
473	Endophytic <i>Streptomyces</i> isolated from <i>Ocimum tenuiflorum and Catharanthus roseus</i> and its efficacy test to develop antibacterial fabric for wound caring. Journal of the Textile Institute, 0, , 1-12.	1.0	0

#	Article	IF	CITATIONS
474	Ordered heterogeneity of molecular photosensitizer toward enhanced photocatalysis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2118278119.	3.3	12
475	NiS Cocatalyst–Modified Znln ₂ S ₄ as Ohmicâ€Junction Photocatalyst for Efficient Conversion of CO ₂ . Energy Technology, 2022, 10, .	1.8	5
476	Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts?. Chemical Reviews, 2022, 122, 8594-8757.	23.0	118
477	Probing active sites for carbon oxides hydrogenation on Cu/TiO2 using infrared spectroscopy. Communications Chemistry, 2022, 5, .	2.0	12
478	Phenoxazine‣ensitized CO ₂ â€toâ€CO Reduction with an Iron Porphyrin Catalyst: A Redox Propertiesâ€Catalytic Performance Study. ChemPhotoChem, 2022, 6, .	1.5	8
479	Bioinspired Selfâ€Supporting Phthalocyanine@ZnIn ₂ S ₄ Foam for Photocatalytic CO ₂ Reduction Under Visible Light Irradiation. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	5
480	Mechanistic Insights of Photocatalytic CO ₂ Reduction: Experimental <i>versus</i> Computational Studies. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	10
481	Synergy between Palladium Single Atoms and Nanoparticles via Hydrogen Spillover for Enhancing CO ₂ Photoreduction to CH ₄ . Advanced Materials, 2022, 34, e2200057.	11.1	162
482	Synergy Effect between Facet and Zero-Valent Copper for Selectivity Photocatalytic Methane Formation from CO ₂ . ACS Catalysis, 2022, 12, 4526-4533.	5.5	48
483	Co-facial π–π Interaction Expedites Sensitizer-to-Catalyst Electron Transfer for High-Performance CO ₂ Photoreduction. Jacs Au, 2022, 2, 1359-1374.	3.6	24
484	Homogeneous Systems Containing Earthâ€Abundant Metal Complexes for Photoactivated CO ₂ Reduction: Recent Advances. European Journal of Organic Chemistry, 2022, 2022, .	1.2	9
485	Zinc porphyrin and rhenium complex-based donor-acceptor conjugated porous polymer for visible-light-driven conversion of CO2 to CO. Journal of CO2 Utilization, 2022, 60, 101972.	3.3	8
486	Light-Driven CO ₂ Reduction over Prussian Blue Analogues as Heterogeneous Catalysts. ACS Catalysis, 2022, 12, 89-100.	5.5	47
487	CH-ï€ interaction boosts photocatalytic CO2 reduction activity of a molecular cobalt catalyst anchored on carbon nitride. Cell Reports Physical Science, 2021, 2, 100681.	2.8	8
488	Visible Lightâ€Driven Selective Reduction of CO ₂ by Acetyleneâ€Bridged Cobalt Porphyrin Conjugated Polymers. ChemSusChem, 2022, 15, .	3.6	4
490	Highly Robust Rhenium(I) Bipyridyl Complexes Containing Dipyrrometheneâ€BF2 Chromophores for Visible Lightâ€Driven CO2 Reduction. ChemSusChem, 2022, , .	3.6	5
491	Deciphering Distinct Overpotential-Dependent Pathways for Electrochemical CO ₂ Reduction Catalyzed by an Iron–Terpyridine Complex. Inorganic Chemistry, 2022, 61, 6919-6933.	1.9	10
492	Understanding the Effect of *CO Coverage on C–C Coupling toward CO ₂ Electroreduction. Nano Letters, 2022, 22, 3801-3808.	4.5	44

28

#	Article	IF	CITATIONS
493	Oriented internal electrostatic fields: an emerging design element in coordination chemistry and catalysis. Chemical Science, 2022, 13, 5432-5446.	3.7	15
494	In-situ monitoring of dynamic behavior of catalyst materials and reaction intermediates in semiconductor catalytic processes. Journal of Semiconductors, 2022, 43, 041104.	2.0	10
495	Cu cluster embedded porous nanofibers for high-performance CO2 electroreduction. Chinese Chemical Letters, 2023, 34, 107458.	4.8	9
496	Decarboxylative tandem C-N coupling with nitroarenes via SH2 mechanism. Nature Communications, 2022, 13, 2432.	5.8	32
497	Photocatalytic CO ₂ Reduction Using an Iron–Bipyridyl Complex Supported by Two Phosphines for Improving Catalyst Durability. Organometallics, 2022, 41, 1865-1871.	1.1	7
498	Highly Selective Photocatalytic CO ₂ Methanation with Water Vapor on Singleâ€Atom Platinumâ€Decorated Defective Carbon Nitride. Angewandte Chemie - International Edition, 2022, 61, .	7.2	60
499	Highly Selective Photocatalytic CO ₂ Methanation with Water Vapor on Singleâ€Atom Platinumâ€Decorated Defective Carbon Nitride. Angewandte Chemie, 2022, 134, .	1.6	18
500	Photoinduced Catalysis of Redox Reactions. Turnover Numbers, Turnover Frequency, and Limiting Processes: Kinetic Analysis and Application to Light-Driven Hydrogen Production. ACS Catalysis, 2022, 12, 6246-6254.	5.5	6
501	Artificial Photosynthesis(AP): From Molecular Catalysts to Heterogeneous Materials. Chemical Research in Chinese Universities, 0, , 1.	1.3	0
502	Recent advances in solarâ€driven CO ₂ reduction over gâ€C ₃ N ₄ â€based photocatalysts. , 2023, 5, .		38
503	Pd(II), Ni(II), Cu(II) and Co(II) complexes bearing "SNS―pincer type Ligand: Application as catalysts for chemical CO2 conversion to obtain cyclic carbonates. Inorganica Chimica Acta, 2022, 539, 121040.	1.2	3
504	Solution-Processable Naphthalene Diimide-Based Conjugated Polymers as Organocatalysts for Photocatalytic CO ₂ Reaction with Extremely Stable Catalytic Activity for Over 330 Hours. Chemistry of Materials, 2022, 34, 4955-4963.	3.2	8
505	Porphyrins and phthalocyanines as biomimetic tools for photocatalytic H ₂ production and CO ₂ reduction. Chemical Society Reviews, 2022, 51, 6965-7045.	18.7	116
507	Exploiting consecutive photoinduced electron transfer (ConPET) in CO ₂ photoreduction. Chemical Communications, 2022, 58, 7972-7975.	2.2	15
508	CO2 Reduction Using Molecular Photocatalysts. Springer Handbooks, 2022, , 1429-1452.	0.3	1
509	Data-Driven Mapping of Inorganic Chemical Space for the Design of Transition Metal Complexes and Metal-Organic Frameworks. ACS Symposium Series, 0, , 127-179.	0.5	0
510	Conjugated ligands effect for the electrocatalytic CO2 reduction activity of Sn6O6 platform by experimental and theoretical studies. Carbon Capture Science & Technology, 2022, 4, 100055.	4.9	1
511	Bi-Ti-In trimetallic sites in the Indium-doped Bi4Ti3O12-CuIn5S8 S-scheme heterojunction for controlling the selectivity of CO2 photoreduction. Fuel, 2022, 325, 124993.	3.4	7

#	Article	IF	CITATIONS
512	Nanopatterning by Length-Dependent Self-Assembly from Fluorene-Terpyridine Derivatives. Journal of Physical Chemistry C, 2022, 126, 10833-10841.	1.5	2
513	Cadmium Chalcogenide (CdS, CdSe, CdTe) Quantum Dots for Solarâ€ŧoâ€Fuel Conversion. Advanced Photonics Research, 2022, 3, .	1.7	25
514	DhaTph Tubes and DhaTphâ€Cu Tubes with Hollow Tubular Structure and Their Photocatalytic Reduction of CO ₂ . ChemistrySelect, 2022, 7, .	0.7	2
515	Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO ₂ Reduction. ACS Catalysis, 2022, 12, 8484-8493.	5.5	12
516	Porous fixed-bed photoreactor for boosting C–C coupling in photocatalytic CO2 reduction. EScience, 2022, 2, 428-437.	25.0	70
517	An Overview of Solar-Driven Photoelectrochemical CO ₂ Conversion to Chemical Fuels. ACS Catalysis, 2022, 12, 9023-9057.	5.5	51
518	System perspective on cleaner technologies for renewable methane production and utilisation towards carbon neutrality: Principles, techno-economics, and carbon footprints. Fuel, 2022, 327, 125130.	3.4	19
519	C–Doping Induced Oxygen-Vacancy in WO ₃ Nanosheets for CO ₂ Activation and Photoreduction. ACS Catalysis, 2022, 12, 9670-9678.	5.5	71
520	Multifunctional Charge and Hydrogenâ€Bond Effects of Secondâ€Sphere Imidazolium Pendants Promote Capture and Electrochemical Reduction of CO ₂ in Water Catalyzed by Iron Porphyrins**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	20
521	Advanced Materials and Technologies toward Carbon Neutrality. Accounts of Materials Research, 2022, 3, 913-921.	5.9	8
522	Advances and challenges in developing cocatalysts for photocatalytic conversion of carbon dioxide to fuels. Nano Research, 2022, 15, 10090-10109.	5.8	21
523	Lowâ€Coordination Single Au Atoms on Ultrathin ZnIn ₂ S ₄ Nanosheets for Selective Photocatalytic CO ₂ Reduction towards CH ₄ . Angewandte Chemie, 2022, 134, .	1.6	11
524	Selective CO ₂ -to-Formate Conversion Driven by Visible Light over a Precious-Metal-Free Nonporous Coordination Polymer. ACS Catalysis, 2022, 12, 10172-10178.	5.5	13
525	Atomically Dispersed Indiumâ€Copper Dualâ€Metal Active Sites Promoting Câ^'C Coupling for CO ₂ Photoreduction to Ethanol. Angewandte Chemie, 2022, 134, .	1.6	11
526	Asymmetric Coupled Dualâ€Atom Sites for Selective Photoreduction of Carbon Dioxide to Acetic Acid. Advanced Functional Materials, 2022, 32, .	7.8	46
527	Atomically Dispersed Indiumâ€Copper Dualâ€Metal Active Sites Promoting Câ^'C Coupling for CO ₂ Photoreduction to Ethanol. Angewandte Chemie - International Edition, 2022, 61, .	7.2	104
528	Multifunctional Charge and Hydrogenâ€Bond Effects of Secondâ€5phere Imidazolium Pendants Promote Capture and Electrochemical Reduction of CO ₂ in Water Catalyzed by Iron Porphyrins**. Angewandte Chemie, 0, , .	1.6	5
529	Hexanuclear ring cobalt complex for photochemical CO2 to CO conversion. Chinese Journal of Catalysis, 2022, 43, 2414-2424.	6.9	13

#	Article	IF	CITATIONS
530	A novel tetranucleate nickel (II)-based molecular catalytic system: Beneath visible light, highly effective and selective for CO2-to-CO transformation. Catalysis Communications, 2022, 170, 106504.	1.6	0
531	Boosting photocatalytic reduction of the diluted CO2 over covalent organic framework. Chemical Engineering Journal, 2023, 451, 138745.	6.6	13
532	New insight into photocatalytic CO2 conversion with nearly 100% CO selectivity by CuO-Pd/HxMoO3â^'y hybrids. Applied Catalysis B: Environmental, 2023, 320, 121927.	10.8	17
533	Plasma induced rich oxygen vacancies fiber-like ZnO for efficient photocatalytic CO2 reduction. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 434, 114261.	2.0	7
534	High-Temperature Semiconductor-Based Catalyst for Artificial Photosynthesis. SSRN Electronic Journal, O, , .	0.4	0
535	Photochemical CO2 Reduction. , 2022, , .		0
536	Insights into the directions to increase turnover frequency and turnover number during photochemical water oxidation with molecular Ru catalysts. Energy and Environmental Science, 2022, 15, 4259-4288.	15.6	4
537	Two-Dimensional Porphyrin-Based Covalent Organic Framework with Enlarged Inter-layer Spacing for Tunable Photocatalytic CO ₂ Reduction. ACS Applied Materials & Interfaces, 2022, 14, 41122-41130.	4.0	21
538	Lowâ€Coordination Single Au Atoms on Ultrathin ZnIn ₂ S ₄ Nanosheets for Selective Photocatalytic CO ₂ Reduction towards CH ₄ . Angewandte Chemie - International Edition, 2022, 61, .	7.2	66
539	First Principles Study of Photocatalytic Reduction of CO ₂ to CH ₄ on WS ₂ -Supported Pt Clusters. Journal of Physical Chemistry C, 2022, 126, 16702-16709.	1.5	4
540	Surface and Defect Engineering Coupling of Halide Double Perovskite Cs ₂ NaBiCl ₆ for Efficient CO ₂ Photoreduction. Advanced Energy Materials, 2022, 12, .	10.2	41
541	Iron/Photosensitizer Hybrid System Enables the Synthesis of Polyaryl-Substituted Azafluoranthenes. Journal of the American Chemical Society, 2022, 144, 18450-18458.	6.6	11
542	Enhanced CO ₂ Photoreduction through Spontaneous Charge Separation in Endâ€Capping Assembly of Heterostructured Covalentâ€Organic Frameworks. Angewandte Chemie - International Edition, 2022, 61, .	7.2	51
543	Enhanced CO ₂ Photoreduction through Spontaneous Charge Separation in End apping Assembly of Heterostructured Covalentâ€Organic Frameworks. Angewandte Chemie, 2022, 134, .	1.6	3
544	Theoretical Study on the Electro-Reduction of Carbon Dioxide to Methanol Catalyzed by Cobalt Phthalocyanine. Inorganic Chemistry, 2022, 61, 16549-16564.	1.9	10
545	Ligand-free CsPbBr3 with calliandra-like nanostructure for efficient artificial photosynthesis. Journal of Energy Chemistry, 2022, , .	7.1	3
546	Layered Double Hydroxides for Photo(electro)catalytic Applications: A Mini Review. Nanomaterials, 2022, 12, 3525.	1.9	7
547	Selective Photocatalytic Reduction of CO ₂ â€toâ€CO in Water using a Polymeric Carbon Nitride Quantum Dot/Feâ€Porphyrin Hybrid Assembly. ChemCatChem, 2022, 14, .	1.8	2

#	Article	IF	CITATIONS
548	Coupling Cu Single Atoms and Phase Junction for Photocatalytic CO ₂ Reduction with 100% CO Selectivity. ACS Catalysis, 2022, 12, 14096-14105.	5.5	28
549	Dual-metal sites CuInS2/g-C3N4 Z-scheme heterojunction with efficient photocatalytic CO2 reduction selectivity. Fuel Processing Technology, 2022, 238, 107530.	3.7	12
550	Boosting photocatalytic CO2 reduction by tuning photogenerated carrier kinetics in two-dimensional WOx/BiOCl S-scheme heterojunction with oxygen vacancies. Journal of Catalysis, 2022, 416, 1-10.	3.1	25
551	BiVO4/Bi2S3 Z-scheme heterojunction with MnOx as a cocatalyst for efficient photocatalytic CO2 conversion to methanol by pure water. Nano Energy, 2022, 104, 107925.	8.2	21
552	Function-Integrated Catalytic Systems for Small-Molecule Conversion: Advances and Perspectives. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2022, 80, 1055-1064.	0.0	0
553	Biomimetic active sites on monolayered metal–organic frameworks for artificial photosynthesis. Nature Catalysis, 2022, 5, 1006-1018.	16.1	48
554	Self-assembled supramolecular materials for photocatalytic H ₂ production and CO ₂ reduction. Materials Futures, 2022, 1, 042104.	3.1	9
555	Artificial enzymes for artificial photosynthesis. Nature Catalysis, 2022, 5, 973-974.	16.1	7
556	Self-Supporting Metal-Organic Framework-Based Nanoarrays for Electrocatalysis. ACS Nano, 2022, 16, 19913-19939.	7.3	31
557	Vitrification and Luminescence Properties of Metal–Organic Complexes. , 2022, 4, 2613-2621.		13
558	Indium-based ternary metal sulfide for photocatalytic CO2 reduction application. Chinese Journal of Catalysis, 2023, 44, 67-95.	6.9	17
559	Spherical, flower-like MnCo ₂ O ₄ with a hollow structure as the cathode for efficient Li-CO ₂ batteries. Inorganic Chemistry Frontiers, 2023, 10, 880-887.	3.0	5
560	Enhanced photocatalytic reduction of CO2 into CH4 over N, Eu co-doped TiO2: Insight into the synergistic effect of N and Eu. Applied Catalysis A: General, 2023, 650, 118977.	2.2	4
561	Merging molecular catalysts and metal–organic frameworks for photocatalytic fuel production. Nature Chemistry, 2022, 14, 1342-1356.	6.6	38
562	Recent advances in direct gas–solid-phase photocatalytic conversion of CO2 for porous photocatalysts under different CO2 atmospheres. Chemical Engineering Journal, 2023, 455, 140654.	6.6	17
563	Coâ€Dissolved Isostructural Polyoxovanadates to Construct Singleâ€Atomâ€Site Catalysts for Efficient CO ₂ Photoreduction. Angewandte Chemie - International Edition, 2023, 62, .	7.2	16
564	Coâ€Dissolved Isostructural Polyoxovanadates to Construct Singleâ€Atomâ€Site Catalysts for Efficient CO2 Photoreduction. Angewandte Chemie, 0, , .	1.6	0
565	Wurtzite CuGaS ₂ with an Inâ€Situâ€Formed CuO Layer Photocatalyzes CO ₂ Conversion to Ethylene with High Selectivity. Angewandte Chemie, 2023, 135, .	1.6	3

#	Article	IF	CITATIONS
566	Synergistic Porosity and Charge Effects in a Supramolecular Porphyrin Cage Promote Efficient Photocatalytic CO ₂ Reduction**. Angewandte Chemie, 0, , .	1.6	0
567	Tailored Persistent Radicalâ€containing Heterotrimetalâ€Organic Framework for Boosting Efficiency of Visible/NIR Lightâ€driven Photocatalytic CO ₂ Reduction. Advanced Functional Materials, 2023, 33, .	7.8	7
568	Highly efficient and highly selective CO2 reduction to CO driven by laser. Joule, 2022, 6, 2735-2744.	11.7	11
569	Metal–Organic Frameworkâ€Based Photocatalysis for Solar Fuel Production. Small Methods, 2023, 7, .	4.6	43
570	μ-Oxo Dimerization Effects on Ground- and Excited-State Properties of a Water-Soluble Iron Porphyrin CO ₂ Reduction Catalyst. Inorganic Chemistry, 2022, 61, 20493-20500.	1.9	0
571	Synergistic Porosity and Charge Effects in a Supramolecular Porphyrin Cage Promote Efficient Photocatalytic CO ₂ Reduction**. Angewandte Chemie - International Edition, 2023, 62, .	7.2	15
572	Wurtzite CuGaS ₂ with an Inâ€6ituâ€Formed CuO Layer Photocatalyzes CO ₂ Conversion to Ethylene with High Selectivity. Angewandte Chemie - International Edition, 2023, 62, .	7.2	13
573	Callium Nitrideâ€based Materials as Promising Catalysts for CO ₂ Reduction: A DFT Study on the Effect of CO ₂ Coverage and the Incorporation of Mg Doping or Substitutional In. ChemCatChem, 2023, 15, .	1.8	4
574	Reaction Intermediates in Artificial Photosynthesis with Molecular Catalysts. ACS Catalysis, 2023, 13, 308-341.	5.5	6
575	Synthesis of the CeO ₂ Support with a Honeycomb-Lantern-like Structure and Its Application in Dry Reforming of Methane Based on the Surface Spatial Confinement Strategy. Journal of Physical Chemistry C, 2023, 127, 1032-1048.	1.5	5
576	A highly efficient and stable TiO2@NH2-MIL-125 material for enhanced photocatalytic conversion of CO2 and CH4. Separation and Purification Technology, 2023, 310, 123174.	3.9	15
577	Ultrathin metalâ^'organic layers/carbon nitride nanosheet composites as 2D/2D heterojunctions for efficient CO ₂ photoreduction. Journal of Materials Chemistry A, 2023, 11, 2225-2232.	5.2	8
578	Electrocatalysis Mechanism and Structure–Activity Relationship of Atomically Dispersed Metalâ€Nitrogenâ€Carbon Catalysts for Electrocatalytic Reactions. Small Methods, 2023, 7, .	4.6	7
579	Electrochemical organic reactions: A tutorial review. Frontiers in Chemistry, 0, 10, .	1.8	11
580	Theoretical Screening of CO ₂ Electroreduction over MOF-808-Supported Self-Adaptive Dual-Metal-Site Pairs. Inorganic Chemistry, 2023, 62, 930-941.	1.9	4
581	Facilitated Photocatalytic CO2 Reduction in Aerobic Environment on a Copperâ€Porphyrin Metalâ€Organic Framework. Angewandte Chemie, 0, , .	1.6	1
582	Facilitated Photocatalytic CO ₂ Reduction in Aerobic Environment on a Copperâ€₽orphyrin Metal–Organic Framework. Angewandte Chemie - International Edition, 2023, 62, .	7.2	21
583	Engineering covalently integrated COF@CeO2 Z-scheme heterostructure for visible light driven photocatalytic CO2 conversion. Applied Surface Science, 2023, 615, 156335.	3.1	4

#	Article	IF	CITATIONS
584	Dioxygen-enhanced CO2 photoreduction on TiO2 supported Cu single-atom sites. Applied Catalysis B: Environmental, 2023, 325, 122339.	10.8	17
585	Emerging Ru-Co homogeneous-heterogeneous photocatalytic CO2 reduction systems. Materials Research Bulletin, 2023, 161, 112145.	2.7	4
586	Highly Efficient Lightâ€Ðriven CO ₂ to CO Reduction by an Appropriately Decorated Iron Porphyrin Molecular Catalyst. ChemCatChem, 2023, 15, .	1.8	1
587	Porphyrins Acting as Photosensitizers in the Photocatalytic CO2 Reduction Reaction. Catalysts, 2023, 13, 282.	1.6	8
588	Metalâ€Organic Frameworks for Photocatalytic Water Splitting and CO ₂ Reduction. Angewandte Chemie, 2023, 135, .	1.6	14
589	Efficient Visible-Light-Driven CO ₂ Methanation with Self-Regenerated Oxygen Vacancies in Co ₃ O ₄ /NiCo ₂ O ₄ Hetero-Nanocages: Vacancy-Mediated Selective Photocatalysis. ACS Catalysis, 2023, 13, 2502-2512.	5.5	40
590	Construction of graphene oxide-coated zinc tetraphenyporphyrin nanostructures for photocatalytic CO2 reduction to highly selective CH4 product. Journal of Colloid and Interface Science, 2023, 638, 123-134.	5.0	9
591	Dual-optimization strategy engineered Ti-based metal-organic framework with Fe active sites for highly-selective CO2 photoreduction to formic acid. Applied Catalysis B: Environmental, 2023, 327, 122418.	10.8	19
592	Highly Selective Photoelectroreduction of Carbon Dioxide to Ethanol over Graphene/Silicon Carbide Composites. Angewandte Chemie, 2023, 135, .	1.6	1
593	Review on Molecularly Controlled Design of Electrodes for Metal–Air Batteries: Fundamental Concepts and Future Directions. Energy & Fuels, 2023, 37, 5689-5711.	2.5	3
594	Engineering an Oxygenâ€Binding Protein for Photocatalytic CO ₂ Reductions in Water. Angewandte Chemie, 2023, 135, .	1.6	2
595	Recent developments of lead-free halide-perovskite nanocrystals: Synthesis strategies, stability, challenges, and potential in optoelectronic applications. Materials Today Physics, 2023, 34, 101079.	2.9	8
596	Red anatase TiO2 microspheres with exposed major {0 0 1} facets and boron-stabilized hydrogen-occupied oxygen vacancies for visible-light-responsive water oxidation. Journal of Colloid and Interface Science, 2023, 640, 211-219.	5.0	2
597	In-situ growing nickel phthalocyanine supramolecular structure on carbon nanotubes for efficient electrochemical CO2 conversion. Applied Catalysis B: Environmental, 2023, 327, 122446.	10.8	5
598	Spectating the proton migration on catalyst with noninnocent ligand in aqueous electrochemical CO2 reduction. Applied Catalysis B: Environmental, 2023, 329, 122542.	10.8	3
599	Enhanced Interfacial Charge Transfer/Separation By LSPRâ€Induced Defective Semiconductor Toward High Co ₂ RR Performance. Small, 2023, 19, .	5.2	7
600	Metalâ€Organic Frameworks for Photocatalytic Water Splitting and CO ₂ Reduction. Angewandte Chemie - International Edition, 2023, 62, .	7.2	81
601	Morphology Control of Supramolecular Assembly for Superior CO ₂ Photoreduction. ACS Catalysis, 2023, 13, 2086-2093.	5.5	7

#	Article	IF	CITATIONS
602	Large-scale synthesis of low-cost 2D metal-organic frameworks for highly selective photocatalytic CO2 reduction. Nano Research, 2023, 16, 7756-7760.	5.8	9
603	Deciphering the Selectivity of the Electrochemical CO ₂ Reduction to CO by a Cobalt Porphyrin Catalyst in Neutral Aqueous Solution: Insights from DFT Calculations. ChemistryOpen, 2023, 12, .	0.9	1
604	Designing Heteroatom odoped Iron Metal–Organic Framework for Promotional Photoreduction of Carbon Dioxide to Ethylene. Angewandte Chemie, 2023, 135, .	1.6	2
605	Designing Heteroatom odoped Iron Metal–Organic Framework for Promotional Photoreduction of Carbon Dioxide to Ethylene. Angewandte Chemie - International Edition, 2023, 62, .	7.2	27
606	Converting CO ₂ into Valueâ€Added Products by Cu ₂ Oâ€Based Catalysts: From Photocatalysis, Electrocatalysis to Photoelectrocatalysis. Small, 2023, 19, .	5.2	33
607	Highly Selective Photoelectroreduction of Carbon Dioxide to Ethanol over Graphene/Silicon Carbide Composites. Angewandte Chemie - International Edition, 2023, 62, .	7.2	7
608	Molecular Characteristics of Water-Insoluble Tin-Porphyrins for Designing the One-Photon-Induced Two-Electron Oxidation of Water in Artificial Photosynthesis. Molecules, 2023, 28, 1882.	1.7	5
609	Progress, challenge and significance of building a carbon industry system in the context of carbon neutrality strategy. Petroleum Exploration and Development, 2023, 50, 210-228.	3.0	13
610	Photocatalytic CO2 reduction with aminoanthraquinone organic dyes. Nature Communications, 2023, 14, .	5.8	28
611	Establishment of synergetic semiconductor (CdS)-to-heteroatom (C) electron transfer mechanism for alkaline water-to-hydrogen conversion. Renewable Energy, 2023, 206, 1180-1187.	4.3	2
612	Room-temperature photosynthesis of propane from CO2 with Cu single atoms on vacancy-rich TiO2. Nature Communications, 2023, 14, .	5.8	68
613	Spin Manipulation in a Metal–Organic Layer through Mechanical Exfoliation for Highly Selective CO ₂ Photoreduction. Angewandte Chemie - International Edition, 2023, 62, .	7.2	6
614	Spin Manipulation in a Metal–Organic Layer through Mechanical Exfoliation for Highly Selective CO ₂ Photoreduction. Angewandte Chemie, 2023, 135, .	1.6	1
615	Engineering an Oxygenâ€Binding Protein for Photocatalytic CO ₂ Reductions in Water. Angewandte Chemie - International Edition, 2023, 62, .	7.2	2
616	Integrating Dual-Metal Sites into Covalent Organic Frameworks for Enhanced Photocatalytic CO ₂ Reduction. ACS Catalysis, 2023, 13, 4316-4329.	5.5	42
617	Evaluating the Catalytic Activities of PNCNP Pincer Group 10 Metal Hydride Complexes: Pd-Catalyzed Reduction of CO ₂ to the Formic Acid Level with NH ₃ ·BH ₃ and NaBH ₄ under Ambient Conditions. Inorganic Chemistry, 2023, 62, 4971-4979.	1.9	4
618	Deep transfer learning for predicting frontier orbital energies of organic materials using small data and its application to porphyrin photocatalysts. Physical Chemistry Chemical Physics, 2023, 25, 10536-10549.	1.3	4
619	Iron/Photosensitizer-Catalyzed Directed C–H Activation Triggered by the Formation of an Iron Metallacycle. ACS Catalysis, 2023, 13, 4552-4559.	5.5	5

#	Article	IF	CITATIONS
620	Tandem Photocatalysis of CO ₂ to C ₂ H ₄ via a Synergistic Rhenium-(I) Bipyridine/Copper-Porphyrinic Triazine Framework. Journal of the American Chemical Society, 2023, 145, 8261-8270.	6.6	34
621	Photocatalytic Reduction of Carbon Dioxide in Aqueous Suspensions of a Titania Semiconductor. High Energy Chemistry, 2023, 57, 12-17.	0.2	0
622	Dinuclear metal synergistic catalysis for energy conversion. Chemical Society Reviews, 2023, 52, 3170-3214.	18.7	21
623	Nanoscale Janus Zâ€Scheme Heterojunction for Boosting Artificial Photosynthesis. Small, 2023, 19, .	5.2	6
624	Superheterojunction covalent organic frameworks: Supramolecular synergetic charge transfer for highly efficient photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2023, 333, 122782.	10.8	12
626	Sustainable Energy, Fuel and Chemicals. , 2021, , 488-588.		0
627	Coordination environment engineering of single-atom catalysts for the oxygen reduction reaction. Materials Chemistry Frontiers, 2023, 7, 3595-3624.	3.2	6
655	Introducing proton/electron mediators enhances the catalytic ability of an iron porphyrin complex for photochemical CO ₂ reduction. Chemical Communications, 2023, 59, 10741-10744.	2.2	1
689	Electrocatalysis with molecules and molecular assemblies within gas diffusion electrodes. Chemical Science, 2023, 14, 13696-13712.	3.7	0
712	Metal halide perovskites for CO ₂ photoreduction: recent advances and future perspectives. , 2024, 2, 448-474.		0
713	Green synthesis of hypercrosslinked polymers for CO ₂ capture and conversion: recent advances, opportunities, and challenges. Green Chemistry, 2024, 26, 2476-2504.	4.6	1
718	Applications in energy conversion. , 2024, , 183-213.		0