The chemistry of metal–organic frameworks for CO2 conversion

Nature Reviews Materials

2,

DOI: 10.1038/natrevmats.2017.45

Citation Report

#	Article	IF	CITATIONS
1	High Hole-Mobility Molecular Layer Made from Strong Electron Acceptor Molecules with Metal Adatoms. Journal of Physical Chemistry Letters, 2017, 8, 5366-5371.	4.6	15
2	Revisiting the Aluminum Trimesate-Based MOF (MIL-96): From Structure Determination to the Processing of Mixed Matrix Membranes for CO ₂ Capture. Chemistry of Materials, 2017, 29, 10326-10338.	6.7	78
3	Direct Carboxylation of C(sp3)-H and C(sp2)-H Bonds with CO2 by Transition-Metal-Catalyzed and Base-Mediated Reactions. Catalysts, 2017, 7, 380.	3.5	33
4	Atomically Dispersed Metal Sites in MOFâ€Based Materials for Electrocatalytic and Photocatalytic Energy Conversion. Angewandte Chemie - International Edition, 2018, 57, 9604-9633.	13.8	452
5	Vacuum-Mediated Single-Crystal-to-Single-Crystal (SCSC) Transformation in Na-MOFs: Rare to Novel Topology and Activation of Nitrogen in Triazole Moieties. Crystal Growth and Design, 2018, 18, 1287-1292.	3.0	11
6	A fluorine-containing hydrophobic covalent triazine framework with excellent selective CO ₂ capture performance. Journal of Materials Chemistry A, 2018, 6, 6370-6375.	10.3	105
7	Incorporation of Imidazolium-Based Poly(ionic liquid)s into a Metal–Organic Framework for CO ₂ Capture and Conversion. ACS Catalysis, 2018, 8, 3194-3201.	11.2	379
8	Atomar dispergierte Metallzentren in Metallâ€organischen Gerüststrukturen für die elektrokatalytische und photokatalytische Energieumwandlung. Angewandte Chemie, 2018, 130, 9750-9780.	2.0	58
9	The role of reticular chemistry in the design of CO2 reduction catalysts. Nature Materials, 2018, 17, 301-307.	27.5	552
10	Synthesis and electrochemical properties of Mg-doped chromium-based metal organic framework/reduced graphene oxide composite for supercapacitor application. Journal of Materials Science: Materials in Electronics, 2018, 29, 8421-8430.	2.2	14
11	Fluorocarbon Separation in a Thermally Robust Zirconium Carboxylate Metal–Organic Framework. Chemistry - an Asian Journal, 2018, 13, 977-981.	3.3	16
12	An experimental and computational study of CO2adsorption in the sodalite-type M-BTT (M = Cr, Mn, Fe,) Tj ETQq	1 1 0.7843 7.4	314 rgBT /0
13	Tin(IV) Sulfide Greatly Improves the Catalytic Performance of UiOâ€66 for Carbon Dioxide Cycloaddition. ChemCatChem, 2018, 10, 2945-2948.	3.7	11
14	Pd@zeolitic imidazolate framework-8 derived PdZn alloy catalysts for efficient hydrogenation of CO2 to methanol. Applied Catalysis B: Environmental, 2018, 234, 143-152.	20.2	122
15	A Chemical Role for Trichloromethane: Room-Temperature Removal of Coordinated Solvents from Open Metal Sites in the Copper-Based Metal–Organic Frameworks. Inorganic Chemistry, 2018, 57, 5225-5231.	4.0	33
16	Dynamic Adsorption of CO ₂ /N ₂ on Cation-Exchanged Chabazite SSZ-13: A Breakthrough Analysis. ACS Applied Materials & Interfaces, 2018, 10, 14287-14291.	8.0	27
17	An alkaline-resistant Ag(<scp>i</scp>)-anchored pyrazolate-based metal–organic framework for chemical fixation of CO ₂ . Chemical Communications, 2018, 54, 4469-4472.	4.1	48
18	Design and synthesis of a multifunctional porous N-rich polymer containing <i>s</i> -triazine and Tr¶ger's base for CO ₂ adsorption, catalysis and sensing. Polymer Chemistry, 2018, 9, 2643-2649.	3.9	57

#	Article	IF	CITATIONS
19	Assembly of one novel coordination polymer built from rigid tricarboxylate ligand and bis(imidazole) linker: Synthesis, structure, and fluorescence sensing property. Inorganic Chemistry Communication, 2018, 96, 139-144.	3.9	6
20	Synthesis and Characterization of a Cu2(pzdc)2(bix) [pzdc: 2,3-pyrazinedicarboxylate;bix: 1,3-bis(imidazol-1-yl)benzene] Porous Coordination Pillared-Layer Network. Crystal Growth and Design, 2018, 18, 1676-1685.	3.0	10
21	Unusual Missing Linkers in an Organosulfonate-Based Primitive–Cubic (pcu)-Type Metal–Organic Framework for CO ₂ Capture and Conversion under Ambient Conditions. ACS Catalysis, 2018, 8, 2519-2525.	11.2	125
22	CO ₂ abatement using two-dimensional MXene carbides. Journal of Materials Chemistry A, 2018, 6, 3381-3385.	10.3	152
23	Morphogenesis of Metal–Organic Mesocrystals Mediated by Double Hydrophilic Block Copolymers. Journal of the American Chemical Society, 2018, 140, 2947-2956.	13.7	69
24	Tailoring the gas separation efficiency of metal organic framework ZIF-8 through metal substitution: a computational study. Physical Chemistry Chemical Physics, 2018, 20, 4879-4892.	2.8	47
25	Highly Dispersed Metal Carbide on ZIFâ€Derived Pyridinicâ€Nâ€Doped Carbon for CO ₂ Enrichment and Selective Hydrogenation. ChemSusChem, 2018, 11, 1040-1047.	6.8	59
26	Zinc Porphyrin/Imidazolium Integrated Multivariate Zirconium Metal–Organic Frameworks for Transformation of CO ₂ into Cyclic Carbonates. Inorganic Chemistry, 2018, 57, 2584-2593.	4.0	153
27	Construction of unprecedented pillar-layered metal organic frameworks via a dual-ligand strategy for dye degradation. Dalton Transactions, 2018, 47, 4032-4035.	3.3	23
28	Theoretical study on the interaction of CO ₂ and H ₂ O molecules with metal doped-fluorinated phthalocyanines. New Journal of Chemistry, 2018, 42, 3465-3472.	2.8	15
29	New Metal–Organic Frameworks for Chemical Fixation of CO ₂ . ACS Applied Materials & Interfaces, 2018, 10, 733-744.	8.0	192
30	Hydroxide Ligands Cooperate with Catalytic Centers in Metal–Organic Frameworks for Efficient Photocatalytic CO ₂ Reduction. Journal of the American Chemical Society, 2018, 140, 38-41.	13.7	322
31	Hierarchically Porous Carbon Materials for CO ₂ Capture: The Role of Pore Structure. Industrial & Engineering Chemistry Research, 2018, 57, 1262-1268.	3.7	83
32	Comparative Study on Temperature-Dependent CO ₂ Sorption Behaviors of Two Isostructural <i>N</i> -Oxide-Functionalized 3D Dynamic Microporous MOFs. Inorganic Chemistry, 2018, 57, 1455-1463.	4.0	19
33	Synthesis of zeolitic tetrazolate-imidazolate frameworks (ZTIFs) in ethylene glycol. Inorganic Chemistry Frontiers, 2018, 5, 675-678.	6.0	9
34	Solutionâ€reprocessable microporous polymeric adsorbents for carbon dioxide capture. AICHE Journal, 2018, 64, 3376-3389.	3.6	15
35	A [COF-300]-[UiO-66] composite membrane with remarkably high permeability and H ₂ /CO ₂ separation selectivity. Dalton Transactions, 2018, 47, 7206-7212.	3.3	52
36	Potential of metal–organic frameworks for adsorptive separation of industrially and environmentally relevant liquid mixtures. Coordination Chemistry Reviews, 2018, 367, 82-126.	18.8	105

#	Article	IF	CITATIONS
37	Metal coordination and metal activation abilities of commonly unreactive chloromethanes toward metal–organic frameworks. Chemical Communications, 2018, 54, 6458-6471.	4.1	42
38	Exceptionally Stable and 20-Connected Lanthanide Metal–Organic Frameworks for Selective CO ₂ Capture and Conversion at Atmospheric Pressure. Crystal Growth and Design, 2018, 18, 2432-2440.	3.0	95
39	Carbon dioxide capture in the presence of water by an amine-based crosslinked porous polymer. Journal of Materials Chemistry A, 2018, 6, 6455-6462.	10.3	39
40	Synthetic approaches for the incorporation of free amine functionalities in porous coordination polymers for enhanced CO2 sorption. Coordination Chemistry Reviews, 2018, 365, 1-22.	18.8	55
41	Triptycene-Based Porous Metal-Assisted Salphen Organic Frameworks: Influence of the Metal Ions on Formation and Gas Sorption. Chemistry of Materials, 2018, 30, 2781-2790.	6.7	27
42	Hypercrosslinked mesoporous poly(ionic liquid)s with high ionic density for efficient CO ₂ capture and conversion into cyclic carbonates. Journal of Materials Chemistry A, 2018, 6, 6660-6666.	10.3	116
43	Emerging Two-Dimensional Nanomaterials for Electrocatalysis. Chemical Reviews, 2018, 118, 6337-6408.	47.7	1,552
44	Design of iron atom modified thiophene-linked metalloporphyrin 2D conjugated microporous polymer as CO ₂ reduction photocatalyst. Physical Chemistry Chemical Physics, 2018, 20, 9536-9542.	2.8	28
45	MOFs based on ZIF-8 deposited on TiO2 nanotubes increase the surface adsorption of CO2 and its photoelectrocatalytic reduction to alcohols in aqueous media. Applied Catalysis B: Environmental, 2018, 225, 563-573.	20.2	157
46	Newly Designed Covalent Triazine Framework Based on Novel N-Heteroaromatic Building Blocks for Efficient CO ₂ and H ₂ Capture and Storage. ACS Applied Materials & Interfaces, 2018, 10, 1244-1249.	8.0	68
47	An imidazolium-functionalized mesoporous cationic metal–organic framework for cooperative CO ₂ fixation into cyclic carbonate. Chemical Communications, 2018, 54, 342-345.	4.1	142
48	Heterobimetallic metal–organic framework nanocages as highly efficient catalysts for CO ₂ conversion under mild conditions. Journal of Materials Chemistry A, 2018, 6, 2964-2973.	10.3	73
49	Advances in Porous Adsorbents for CO2 Capture and Storage. , 2018, , .		7
50	Layer-by-Layer Assembly of Metal-Organic Frameworks Based on Carboxylated Perylene on Template Monolayers of Graphene Oxide. Colloid Journal, 2018, 80, 684-690.	1.3	6
51	Electronic Tuning of Co, Niâ€Based Nanostructured (Hydr)oxides for Aqueous Electrocatalysis. Advanced Functional Materials, 2018, 28, 1804886.	14.9	87
52	Impact of the functionalization onto structure transformation and gas adsorption of MIL-68(In). Royal Society Open Science, 2018, 5, 181378.	2.4	8
53	Four new MOFs based on an imidazole-containing ligand and multicarboxylates: syntheses, structures and sorption properties. CrystEngComm, 2018, 20, 7719-7728.	2.6	5
54	Enhancing porphyrin photostability when locked in metal–organic frameworks. Dalton Transactions, 2018, 47, 15765-15771.	3.3	24

#	Article	IF	CITATIONS
55	Potential of ultramicroporous metal–organic frameworks in CO ₂ clean-up. Chemical Communications, 2018, 54, 13472-13490.	4.1	49
56	Exceptional Adsorption and Binding of Sulfur Dioxide in a Robust Zirconium-Based Metal–Organic Framework. Journal of the American Chemical Society, 2018, 140, 15564-15567.	13.7	149
57	Highly efficient conversion of CO ₂ to cyclic carbonates with a binary catalyst system in a microreactor: intensification of "electrophile–nucleophile―synergistic effect. RSC Advances, 2018, 8, 39182-39186.	3.6	15
58	Facile CO2 Cycloaddition to Epoxides by Using a Tetracarbonyl Metal Selenotungstate Derivate [{Mn(CO)3}4(Se2W11O43)]8–. Inorganic Chemistry, 2018, 57, 14632-14643.	4.0	28
59	Phase Control of Ferromagnetic Copper(II) Carbonate Coordination Polymers through Reagent Concentration. European Journal of Inorganic Chemistry, 2018, 2018, 5223-5228.	2.0	9
60	Paddlewheel SBU based Zn MOFs: Syntheses, Structural Diversity, and CO2 Adsorption Properties. Polymers, 2018, 10, 1398.	4.5	6
61	Preparation of Well-Dispersed Nanosilver in MIL-101(Cr) Using Double-Solvent Radiation Method for Catalysis. Nano, 2018, 13, 1850145.	1.0	4
62	Solvent mediated morphology control of zinc MOFs as carbon templates for application in supercapacitors. Journal of Materials Chemistry A, 2018, 6, 23521-23530.	10.3	61
63	Rationally Armoring PtCu Alloy with Metalâ€Organic Frameworks as Highly Selective Nonenzyme Electrochemical Sensor. Advanced Materials Interfaces, 2018, 5, 1801168.	3.7	19
64	Open and Hierarchical Carbon Framework with Ultralarge Pore Volume for Efficient Capture of Carbon Dioxide. ACS Applied Materials & Interfaces, 2018, 10, 36961-36968.	8.0	59
65	Covalent Organic Frameworks: Promising Materials as Heterogeneous Catalysts for C-C Bond Formations. Catalysts, 2018, 8, 404.	3.5	38
66	Novel "Turn-On―Fluorescent Probe for Highly Selectively Sensing Fluoride in Aqueous Solution Based on Tb ³⁺ -Functionalized Metal–Organic Frameworks. ACS Omega, 2018, 3, 12513-12519.	3.5	49
67	A Series of Metal–Organic Frameworks for Selective CO ₂ Capture and Catalytic Oxidative Carboxylation of Olefins. Inorganic Chemistry, 2018, 57, 13772-13782.	4.0	68
68	Metal–Organic Framework as a Microreactor for in Situ Fabrication of Multifunctional Nanocomposites for Photothermal–Chemotherapy of Tumors in Vivo. ACS Applied Materials & Interfaces, 2018, 10, 38729-38738.	8.0	42
69	Mixed Matrix Membranes for CO2 Separations. , 2018, , 103-153.		3
70	Molecularly Defined Interface Created by Porous Polymeric Networks on Gold Surface for Concerted and Selective CO ₂ Reduction. ACS Sustainable Chemistry and Engineering, 2018, 6, 17277-17283.	6.7	26
71	Adsorption and Biomass: Current Interconnections and Future Challenges. Current Sustainable/Renewable Energy Reports, 2018, 5, 247-256.	2.6	7
72	Adsorption breakthrough and cycling stability of carbon dioxide separation from CO2/N2/H2O mixture under ambient conditions using 13X and Mg-MOF-74. Applied Energy, 2018, 230, 1093-1107.	10.1	60

#	Article	IF	CITATIONS
73	ROMP for Metal–Organic Frameworks: An Efficient Technique toward Robust and High-Separation Performance Membranes. ACS Applied Materials & Interfaces, 2018, 10, 34640-34645.	8.0	42
74	Higher Symmetry Multinuclear Clusters of Metal–Organic Frameworks for Highly Selective CO ₂ Capture. Journal of the American Chemical Society, 2018, 140, 17825-17829.	13.7	98
75	Heteroatom-doped carbon materials and their composites as electrocatalysts for CO ₂ reduction. Journal of Materials Chemistry A, 2018, 6, 18782-18793.	10.3	136
76	Photodynamic Therapy Based on Nanoscale Metal–Organic Frameworks: From Material Design to Cancer Nanotherapeutics. Chemistry - an Asian Journal, 2018, 13, 3122-3149.	3.3	71
77	Amine-Functionalized Mesoporous Silica @ Reduced Graphene Sandwichlike Structure Composites for CO ₂ Adsorption. ACS Applied Nano Materials, 2018, 1, 4695-4702.	5.0	21
78	A Review on Recent Developments and Progress in Natural Gas Processing and Separating Using Nanoparticles Incorporated Membranes. , 2018, , .		2
79	Counteranion Modulated Crystal Growth and Function of One-Dimensional Homochiral Coordination Polymers: Morphology, Structures, and Magnetic Properties. Inorganic Chemistry, 2018, 57, 12143-12154.	4.0	17
80	A hybrid material composed of an amino-functionalized zirconium-based metal-organic framework and a urea-based porous organic polymer as an efficient sorbent for extraction of uranium(VI). Mikrochimica Acta, 2018, 185, 469.	5.0	53
81	Preparation of a Cu(BTC)-rGO catalyst loaded on a Pt deposited Cu foam cathode to reduce CO ₂ in a photoelectrochemical cell. RSC Advances, 2018, 8, 32296-32303.	3.6	46
82	Zwitterion threaded metal–organic framework membranes for direct methanol fuel cells. Journal of Materials Chemistry A, 2018, 6, 19547-19554.	10.3	32
83	Reticular control of interpenetration in a complex metal–organic framework. Materials Chemistry Frontiers, 2018, 2, 2063-2069.	5.9	15
84	Changing the Dress to a MOF through Fluorination and Transmetalation. Structural and Gas-Sorption Effects. Crystal Growth and Design, 2018, 18, 6824-6832.	3.0	17
85	Multistimuli-Responsive Hydrolytically Stable "Smart―Mercury(II) Coordination Polymer. Inorganic Chemistry, 2018, 57, 11369-11381.	4.0	19
86	Rational Design of a 3D Mn ^{II} â€Metal–Organic Framework Based on a Nonmetallated Porphyrin Linker for Selective Capture of CO ₂ and Oneâ€Pot Synthesis of Styrene Carbonates. Chemistry - A European Journal, 2018, 24, 16662-16669.	3.3	65
87	Efficient heterogeneous catalysis by dual ligand Zn(<scp>ii</scp>)/Cd(<scp>ii</scp>) MOFs for the Knoevenagel condensation reaction: adaptable synthetic routes, characterization, crystal structures and luminescence studies. Inorganic Chemistry Frontiers, 2018, 5, 2630-2640.	6.0	59
88	Insights into CO2 adsorption and chemical fixation properties of VPI-100 metal–organic frameworks. Journal of Materials Chemistry A, 2018, 6, 22195-22203.	10.3	17
89	Metal–Organic Frameworks and Their Derived Materials as Electrocatalysts and Photocatalysts for CO ₂ Reduction: Progress, Challenges, and Perspectives. Chemistry - A European Journal, 2018, 24, 18137-18157.	3.3	117
90	Modeling Amorphous Microporous Polymers for CO ₂ Capture and Separations. Chemical Reviews, 2018, 118, 5488-5538.	47.7	208

#	Article	IF	CITATIONS
91	Nitric Oxide Adsorption in MIL-100(Al) MOF Studied by Solid-State NMR. Journal of Physical Chemistry C, 2018, 122, 12723-12730.	3.1	30
92	Selective CO ₂ adsorption by a new metal–organic framework: synergy between open metal sites and a charged imidazolinium backbone. Dalton Transactions, 2018, 47, 10527-10535.	3.3	31
93	Catalytic Space Engineering of Porphyrin Metal–Organic Frameworks for Combined CO ₂ Capture and Conversion at a Low Concentration. ChemSusChem, 2018, 11, 2340-2347.	6.8	48
94	Present and future of MOF research in the field of adsorption and molecular separation. Current Opinion in Chemical Engineering, 2018, 20, 132-142.	7.8	152
95	Two-dimensional nitrides as highly efficient potential candidates for CO ₂ capture and activation. Physical Chemistry Chemical Physics, 2018, 20, 17117-17124.	2.8	55
96	Dual-Emitting UiO-66(Zr&Eu) Metal–Organic Framework Films for Ratiometric Temperature Sensing. ACS Applied Materials & Interfaces, 2018, 10, 20854-20861.	8.0	76
97	Lower Activation Energy for Catalytic Reactions through Host–Guest Cooperation within Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2018, 57, 10107-10111.	13.8	166
98	Lower Activation Energy for Catalytic Reactions through Host–Guest Cooperation within Metal–Organic Frameworks. Angewandte Chemie, 2018, 130, 10264-10268.	2.0	33
99	Robust Ultramicroporous Metal–Organic Frameworks with Benchmark Affinity for Acetylene. Angewandte Chemie, 2018, 130, 11137-11141.	2.0	85
100	High Propylene Selective Metalâ€Organic Framework Membranes Prepared in Confined Spaces via Convective Circulation Synthesis. Advanced Materials Interfaces, 2018, 5, 1800287.	3.7	19
101	Reducing CO2 with Stable Covalent Organic Frameworks. Joule, 2018, 2, 1030-1032.	24.0	26
102	2D networks of metallo-capsules and other coordination polymers from a hexapodal ligand. CrystEngComm, 2018, 20, 3960-3970.	2.6	10
103	Robust Ultramicroporous Metal–Organic Frameworks with Benchmark Affinity for Acetylene. Angewandte Chemie - International Edition, 2018, 57, 10971-10975.	13.8	365
104	Role of Surface Phenolic-OH Groups in N-Rich Porous Organic Polymers for Enhancing the CO ₂ Uptake and CO ₂ /N ₂ Selectivity: Experimental and Computational Studies. ACS Applied Materials & Interfaces, 2018, 10, 23813-23824.	8.0	74
105	A two-fold interpenetrated zinc–organic framework: luminescence detection of CrO42â^'/Cr2O72â^ and chemical conversion of CO2. CrystEngComm, 2018, 20, 6040-6045.	2.6	13
106	Carbon dioxide capture in MOFs: The effect of ligand functionalization. Polyhedron, 2018, 154, 236-251.	2.2	65
107	Polyethylenimine-Modified Membranes for CO ₂ Capture and in Situ Hydrogenation. ACS Applied Materials & Interfaces, 2018, 10, 29003-29009.	8.0	26
108	Recent developments and consideration issues in solid adsorbents for CO2 capture from flue gas. Chinese Journal of Chemical Engineering, 2018, 26, 2303-2317.	3.5	70

	CHATION R	LPORT	
#	Article	IF	CITATIONS
109	Green applications of metal–organic frameworks. CrystEngComm, 2018, 20, 5899-5912.	2.6	54
110	Azine-based covalent organic frameworks as metal-free visible light photocatalysts for CO2 reduction with H2O. Applied Catalysis B: Environmental, 2018, 239, 46-51.	20.2	203
111	Microporosity and CO2 Capture Properties of Amorphous Silicon Oxynitride Derived from Novel Polyalkoxysilsesquiazanes. Materials, 2018, 11, 422.	2.9	4
112	Selective reduction of CO2 by conductive MOF nanosheets as an efficient co-catalyst under visible light illumination. Applied Catalysis B: Environmental, 2018, 238, 339-345.	20.2	166
113	Facilitating Laboratory Research Experience Using Reticular Chemistry. Journal of Chemical Education, 2018, 95, 1512-1519.	2.3	38
114	First principles Monte Carlo simulations of unary and binary adsorption: CO ₂ , N ₂ , and H ₂ O in Mg-MOF-74. Chemical Communications, 2018, 54, 10816-10819.	4.1	31
115	A nanosized metal–organic framework confined inside a functionalized mesoporous polymer: an efficient CO ₂ adsorbent with metal defects. Journal of Materials Chemistry A, 2018, 6, 17220-17226.	10.3	20
116	Assembly of Zeolite-like Metal–Organic Framework: An Indium-ZMOF Possessing GIS Topology and High CO ₂ Capture. Inorganic Chemistry, 2018, 57, 10679-10684.	4.0	22
117	Tuning Gas Adsorption by Metal Node Blocking in Photoresponsive Metal–Organic Frameworks. Chemistry - A European Journal, 2018, 24, 15167-15172.	3.3	33
118	Tuning Expanded Pores in Metal–Organic Frameworks for Selective Capture and Catalytic Conversion of Carbon Dioxide. ChemSusChem, 2018, 11, 3751-3757.	6.8	47
119	CO2 adsorption under humid conditions: Self-regulated water content in CAU-10. Polyhedron, 2018, 155, 163-169.	2.2	25
120	Recent Development and Application of Conductive MOFs. Israel Journal of Chemistry, 2018, 58, 1010-1018.	2.3	50
121	Metal–Organic Framework Thin Films on High-Curvature Nanostructures Toward Tandem Electrocatalysis. ACS Applied Materials & Interfaces, 2018, 10, 31225-31232.	8.0	57
122	Photo-generated dinuclear {Eu(II)}2 active sites for selective CO2 reduction in a photosensitizing metal-organic framework. Nature Communications, 2018, 9, 3353.	12.8	195
123	Proton Conduction in Tröger's Base-Linked Poly(crown ether)s. ACS Applied Materials & Interfaces, 2018, 10, 25303-25310.	8.0	27
124	3D supramolecular networks based on hydroxyl-rich Schiff-base copper(II) complexes. Polyhedron, 2018, 152, 125-137.	2.2	4
125	Metal–Organicâ€Frameworkâ€Based Catalysts for Photoreduction of CO ₂ . Advanced Materials, 2018, 30, e1705512.	21.0	415
126	Covalent Organic Frameworks Linked by Amine Bonding for Concerted Electrochemical Reduction of CO2. CheM, 2018, 4, 1696-1709.	11.7	306

#	Article	IF	CITATIONS
127	Biological hierarchically structured porous materials (Bio-HSPMs) for biomedical applications. Journal of Porous Materials, 2019, 26, 655-675.	2.6	10
128	Recent Approaches to Design Electrocatalysts Based on Metal–Organic Frameworks and Their Derivatives. Chemistry - an Asian Journal, 2019, 14, 3474-3501.	3.3	34
129	Magnetic Metal–Organic Framework Composites: Solvent-Free Synthesis and Regeneration Driven by Localized Magnetic Induction Heat. ACS Sustainable Chemistry and Engineering, 2019, 7, 13627-13632.	6.7	29
130	Renal-Clearable Porphyrinic Metal–Organic Framework Nanodots for Enhanced Photodynamic Therapy. ACS Nano, 2019, 13, 9206-9217.	14.6	110
131	Spectroscopy and dynamics of a HOF and its molecular units: remarkable vapor acid sensing. Journal of Materials Chemistry C, 2019, 7, 10818-10832.	5.5	29
132	Design of cost-efficient and photocatalytically active Zn-based MOFs decorated with Cu ₂ O nanoparticles for CO ₂ methanation. Chemical Communications, 2019, 55, 10932-10935.	4.1	34
133	<i>In situ</i> bottom–up growth of metal–organic frameworks in a crosslinked poly(ethylene oxide) layer with ultrahigh loading and superior uniform distribution. Journal of Materials Chemistry A, 2019, 7, 20293-20301.	10.3	28
134	Structural Diversity in Luminescent MOFs Containing a Bent Electronâ€rich Dicarboxylate Linker and a Flexible Capping Ligand: Selective Detection of 4â€Nitroaniline in Water. Chemistry - an Asian Journal, 2019, 14, 3712-3720.	3.3	16
135	Selective Carbon Dioxide Capture Using Silicaâ€ s upported Polyaminals. ChemistrySelect, 2019, 4, 8534-8541.	1.5	5
136	Direct synthesis of robust hcp UiO-66(Zr) MOF using poly(ethylene terephthalate) waste as ligand source. Microporous and Mesoporous Materials, 2019, 290, 109674.	4.4	53
137	Facile and Rapid Preparation of Ag@ZIF-8 for Carboxylation of Terminal Alkynes with CO ₂ in Mild Conditions. ACS Applied Materials & Interfaces, 2019, 11, 28858-28867.	8.0	68
138	A naphthalenediimide-based Co-MOF as naked-eye colorimetric sensor to humidity. Journal of Solid State Chemistry, 2019, 277, 658-664.	2.9	18
139	Surface Area Determination of Porous Materials Using the Brunauer–Emmett–Teller (BET) Method: Limitations and Improvements. Journal of Physical Chemistry C, 2019, 123, 20195-20209.	3.1	130
140	A Microporous Organic Copolymer for Selective CO ₂ Capture under Humid Conditions. ACS Sustainable Chemistry and Engineering, 2019, 7, 13941-13948.	6.7	29
141	Cycloaddition of CO ₂ with an Epoxide-Bearing Oxindole Scaffold by a Metal–Organic Framework-Based Heterogeneous Catalyst under Ambient Conditions. Inorganic Chemistry, 2019, 58, 10084-10096.	4.0	65
142	Direct Imaging of Tunable Crystal Surface Structures of MOF MIL-101 Using High-Resolution Electron Microscopy. Journal of the American Chemical Society, 2019, 141, 12021-12028.	13.7	93
143	Novel Isopropoxy Group-Functionalized UiO-66 with a High Hydrogen Chloride Adsorption Capacity. Journal of Chemical & Engineering Data, 2019, 64, 3576-3584.	1.9	2
144	Target-Architecture Engineering of a Novel Two-dimensional Metal–Organic Framework for High Catalytic Performance. Crystal Growth and Design, 2019, 19, 4239-4245.	3.0	14

#	Article	IF	CITATIONS
145	Selective sacrificial metal–organic frameworks: a highly quantitative colorimetric naked-eye detector for aluminum ions in aqueous solutions. Journal of Materials Chemistry A, 2019, 7, 18634-18641.	10.3	37
146	Metal-organic framework based carbon capture and purification technologies for clean environment. , 2019, , 5-61.		21
147	A Controlled Synthesis Strategy To Enhance the CO ₂ Adsorption Capacity of MIL-88B Type MOF Crystallites by the Crucial Role of Narrow Micropores. Industrial & Engineering Chemistry Research, 2019, 58, 14058-14072.	3.7	26
148	A Ratiometric Fluorescent Nano-Probe for Rapid and Specific Detection of Tetracycline Residues Based on a Dye-Doped Functionalized Nanoscaled Metal–Organic Framework. Nanomaterials, 2019, 9, 976.	4.1	44
149	Environment-friendly, co-catalyst- and solvent-free fixation of CO ₂ using an ionic zinc(<scp>ii</scp>)–porphyrin complex immobilized in porous metal–organic frameworks. Sustainable Energy and Fuels, 2019, 3, 2977-2982.	4.9	57
150	Design strategies and applications of charged metal organic frameworks. Coordination Chemistry Reviews, 2019, 398, 113007.	18.8	72
151	Engineering of the Filler/Polymer Interface in Metal–Organic Frameworkâ€Based Mixedâ€Matrix Membranes to Enhance Gas Separation. Chemistry - an Asian Journal, 2019, 14, 3502-3514.	3.3	67
152	Chaperone-like chiral cages for catalyzing enantio-selective supramolecular polymerization. Chemical Science, 2019, 10, 8076-8082.	7.4	29
153	Metal-organic framework-derived materials for electrochemical energy applications. EnergyChem, 2019, 1, 100001.	19.1	438
154	Persistent luminescent metal-organic frameworks with long-lasting near infrared emission for tumor site activated imaging and drug delivery. Biomaterials, 2019, 217, 119332.	11.4	85
155	Recent Advances in Metal–Organic Frameworks for Photoâ€ / Electrocatalytic CO ₂ Reduction. Chemistry - A European Journal, 2019, 25, 14026-14035.	3.3	50
156	CO ₂ Behavior in a Highly Selective Ultramicroporous Framework: Insights from Single-Crystal X-ray Diffraction and Solid-State Nuclear Magnetic Resonance Spectroscopy. Journal of Physical Chemistry C, 2019, 123, 17798-17807.	3.1	16
157	Electrode Materials Engineering in Electrocatalytic CO ₂ Reduction: Energy Input and Conversion Efficiency. Advanced Materials, 2020, 32, e1903796.	21.0	87
158	Hierarchical Micro―and Mesoporous Znâ€Based Metal–Organic Frameworks Templated by Hydrogels: Their Use for Enzyme Immobilization and Catalysis of Knoevenagel Reaction. Small, 2019, 15, e1902927.	10.0	108
159	White Light Emission Properties of Defect Engineered Metal–Organic Frameworks by Encapsulation of Eu ³⁺ and Tb ³⁺ . Crystal Growth and Design, 2019, 19, 6339-6350.	3.0	35
160	Bio-based Micro-/Meso-/Macroporous Hybrid Foams with Ultrahigh Zeolite Loadings for Selective Capture of Carbon Dioxide. ACS Applied Materials & Interfaces, 2019, 11, 40424-40431.	8.0	41
161	Thermal Engineering of Metal–Organic Frameworks for Adsorption Applications: A Molecular Simulation Perspective. ACS Applied Materials & Interfaces, 2019, 11, 38697-38707.	8.0	56
162	Thermodynamic Properties for Carbon Dioxide. ACS Omega, 2019, 4, 19193-19198.	3.5	98

#	Article	IF	CITATIONS
163	Benzene-Based Hyper-Cross-Linked Polymer with Enhanced Adsorption Capacity for CO ₂ Capture. Energy & Fuels, 2019, 33, 12578-12586.	5.1	68
164	Missing-linker metal-organic frameworks for oxygen evolution reaction. Nature Communications, 2019, 10, 5048.	12.8	422
165	A MOF-templated approach for designing ruthenium–cesium catalysts for hydrogen generation from ammonia. International Journal of Hydrogen Energy, 2019, 44, 30108-30118.	7.1	22
166	Multivariate CuBTC Metal–Organic Framework with Enhanced Selectivity, Stability, Compatibility, and Processability. Chemistry of Materials, 2019, 31, 8459-8465.	6.7	24
167	Efficient thiazole-based polyimines as selective and reversible chemical absorbents for CO2 capture and separation: Synthesis, characterization and application. Polymer, 2019, 182, 121840.	3.8	5
168	Magnesium based coordination polymers: Syntheses, structures, properties and applications. Coordination Chemistry Reviews, 2019, 399, 213025.	18.8	17
169	Host–guest selectivity in a series of isoreticular metal–organic frameworks: observation of acetylene-to-alkyne and carbon dioxide-to-amide interactions. Chemical Science, 2019, 10, 1098-1106.	7.4	47
170	A robust and water-stable two-fold interpenetrated metal–organic framework containing both rigid tetrapodal carboxylate and rigid bifunctional nitrogen linkers exhibiting selective CO ₂ capture. Dalton Transactions, 2019, 48, 415-425.	3.3	20
171	Facile large-scale synthesis of macroscopic 3D porous graphene-like carbon nanosheets architecture for efficient CO2 adsorption. Carbon, 2019, 145, 751-756.	10.3	55
172	Effective CO ₂ and CO Separation Using [M ₂ (DOBDC)] (M = Mg, Co, Ni) with Unsaturated Metal Sites and Excavation of Their Adsorption Sites. ACS Applied Materials & Interfaces, 2019, 11, 7014-7021.	8.0	51
173	Tuning the Ionicity of Stable Metal–Organic Frameworks through Ionic Linker Installation. Journal of the American Chemical Society, 2019, 141, 3129-3136.	13.7	70
174	Stable Amide-Functionalized Metal–Organic Framework with Highly Selective CO2 Adsorption. Inorganic Chemistry, 2019, 58, 2729-2735.	4.0	51
175	A nano-reactor based on PtNi@metal–organic framework composites loaded with polyoxometalates for hydrogenation–esterification tandem reactions. Nanoscale, 2019, 11, 3292-3299.	5.6	31
176	Learning from Nature: Charge Transfer and Carbon Dioxide Activation at Single, Biomimetic Fe Sites in Tetrapyrroles on Graphene. Journal of Physical Chemistry C, 2019, 123, 3916-3922.	3.1	11
177	Redox-Active 1D Coordination Polymers of Iron–Sulfur Clusters. Journal of the American Chemical Society, 2019, 141, 3940-3951.	13.7	43
178	Microwave-Assisted Rapid Synthesis of Well-Shaped MOF-74 (Ni) for CO ₂ Efficient Capture. Inorganic Chemistry, 2019, 58, 2717-2728.	4.0	133
179	Two ultramicroporous metal–organic frameworks assembled from binuclear secondary building units for highly selective CO2/N2 separation. Dalton Transactions, 2019, 48, 1680-1685.	3.3	8
180	Topology and porosity control of metal–organic frameworks through linker functionalization. Chemical Science, 2019, 10, 1186-1192.	7.4	129

#	Article	IF	CITATIONS
181	Efficient catalytic conversion of terminal/internal epoxides to cyclic carbonates by porous Co(<scp>ii</scp>) MOF under ambient conditions: structure–property correlation and computational studies. Journal of Materials Chemistry A, 2019, 7, 2884-2894.	10.3	96
182	A metal–organic framework with suitable pore size and dual functionalities for highly efficient post-combustion CO ₂ capture. Journal of Materials Chemistry A, 2019, 7, 3128-3134.	10.3	124
183	Robust multivariate metal–porphyrin frameworks for efficient ambient fixation of CO ₂ to cyclic carbonates. Chemical Communications, 2019, 55, 412-415.	4.1	36
184	Effect of Triblock Copolymer on Carbon-Based Boron Nitride Whiskers for Efficient CO2 Adsorption. Polymers, 2019, 11, 913.	4.5	22
185	Lowâ€Dimensional Metalâ€Organic Frameworks and their Diverse Functional Roles in Catalysis. ChemCatChem, 2019, 11, 3138-3165.	3.7	22
186	Hybrid Ionic Liquid Capsules for Rapid CO ₂ Capture. Industrial & Engineering Chemistry Research, 2019, 58, 10503-10509.	3.7	48
187	Copper(<scp>i</scp>) iodide cluster-based lanthanide organic frameworks: synthesis and application as efficient catalysts for carboxylative cyclization of propargyl alcohols with CO ₂ under mild conditions. Dalton Transactions, 2019, 48, 11063-11069.	3.3	59
188	Solvent-Free Photoreduction of CO ₂ to CO Catalyzed by Fe-MOFs with Superior Selectivity. Inorganic Chemistry, 2019, 58, 8517-8524.	4.0	89
189	Molecular Sieving and Direct Visualization of CO ₂ in Binding Pockets of an Ultramicroporous Lanthanide Metal–Organic Framework Platform. ACS Applied Materials & Interfaces, 2019, 11, 23192-23197.	8.0	26
190	Tuning porosity in macroscopic monolithic metal-organic frameworks for exceptional natural gas storage. Nature Communications, 2019, 10, 2345.	12.8	180
191	A ruthenium porphyrin-based porous organic polymer for the hydrosilylative reduction of CO ₂ to formate. Chemical Communications, 2019, 55, 7195-7198.	4.1	39
192	Ti-Based nanoMOF as an Efficient Oral Therapeutic Agent. ACS Applied Materials & Interfaces, 2019, 11, 22188-22193.	8.0	32
193	Stability of amine-functionalized CO ₂ adsorbents: a multifaceted puzzle. Chemical Society Reviews, 2019, 48, 3320-3405.	38.1	260
194	Efficient transformation of CO ₂ to cyclic carbonates using bifunctional protic ionic liquids under mild conditions. Green Chemistry, 2019, 21, 3456-3463.	9.0	100
195	Degradation of ZIF-8 in phosphate buffered saline media. CrystEngComm, 2019, 21, 4538-4544.	2.6	186
196	Tuning the CO2 adsorption by the selection of suitable ionic liquids at ZIF-8 confinement: A DFT study. Applied Surface Science, 2019, 491, 633-639.	6.1	29
197	Computational screening of metal-substituted HKUST-1 catalysts for chemical fixation of carbon dioxide into epoxides. Journal of Materials Chemistry A, 2019, 7, 14825-14834.	10.3	57
198	Universal Scaling Law for Methane Capture Quantity in Metal–Organic Frameworks. Advanced Theory and Simulations, 2019, 2, 1800170.	2.8	2

#	Article	IF	CITATIONS
199	Challenges and opportunities for adsorption-based CO ₂ capture from natural gas combined cycle emissions. Energy and Environmental Science, 2019, 12, 2161-2173.	30.8	119
200	Poly(ionic liquid)s with high density of nucleophile /electrophile for CO2 fixation to cyclic carbonates at mild conditions. Journal of CO2 Utilization, 2019, 32, 281-289.	6.8	59
201	A Stable Mesoporous Zr-Based Metal Organic Framework for Highly Efficient CO ₂ Conversion. Inorganic Chemistry, 2019, 58, 7480-7487.	4.0	51
202	Direct Radiation Detection by a Semiconductive Metal–Organic Framework. Journal of the American Chemical Society, 2019, 141, 8030-8034.	13.7	85
203	Restricting Lattice Flexibility in Polycrystalline Metal–Organic Framework Membranes for Carbon Capture. Advanced Materials, 2019, 31, e1900855.	21.0	122
204	Ab Initio Flexible Force Field for Metal–Organic Frameworks Using Dummy Model Coordination Bonds. Journal of Chemical Theory and Computation, 2019, 15, 3666-3677.	5.3	9
205	Supported molten-salt membranes for carbon dioxide permeation. Journal of Materials Chemistry A, 2019, 7, 12951-12973.	10.3	41
206	Modified crystal structure and improved photocatalytic activity of MIL-53 via inorganic acid modulator. Applied Catalysis B: Environmental, 2019, 255, 117746.	20.2	46
207	Encapsulating a Ni(II) molecular catalyst in photoactive metal–organic framework for highly efficient photoreduction of CO2. Science Bulletin, 2019, 64, 976-985.	9.0	48
208	Charge, adsorption, water stability and bandgap tuning of an anionic Cd(<scp>ii</scp>) porphyrinic metal–organic framework. Dalton Transactions, 2019, 48, 8678-8692.	3.3	14
209	Construction of a Stable Crystalline Polyimide Porous Organic Framework for C ₂ H ₂ /C ₂ H ₄ and CO ₂ /N ₂ Separation. Chemistry - A European Journal, 2019, 25, 9045-9051.	3.3	36
210	Combining CO2 capture and catalytic conversion to methane. Waste Disposal & Sustainable Energy, 2019, 1, 53-65.	2.5	74
211	Modeling the Structural and Thermal Properties of Loaded Metal–Organic Frameworks. An Interplay of Quantum and Anharmonic Fluctuations. Journal of Chemical Theory and Computation, 2019, 15, 3237-3249.	5.3	22
212	3D derived N-doped carbon matrix from 2D ZIF-L as an enhanced stable catalyst for chemical fixation. Microporous and Mesoporous Materials, 2019, 285, 80-88.	4.4	45
213	From molecular metal complex to metal-organic framework: The CO2 reduction photocatalysts with clear and tunable structure. Coordination Chemistry Reviews, 2019, 390, 86-126.	18.8	196
214	Strategies for Improving the Performance and Application of MOFs Photocatalysts. ChemCatChem, 2019, 11, 2978-2993.	3.7	46
215	Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chemical Society Reviews, 2019, 48, 2783-2828.	38.1	1,685
216	Reversible CO2 Sequestration by Precipitation from Water via an Organic Sorbent. CheM, 2019, 5, 499-501.	11.7	2

#	Article	IF	CITATIONS
217	Nitrogen Amelioration-Driven Carbon Dioxide Capture by Nanoporous Polytriazine. Langmuir, 2019, 35, 4893-4901.	3.5	21
218	Zeolite Imidazolate Framework Membranes on Polymeric Substrates Modified with Poly(vinyl alcohol) and Alginate Composite Hydrogels. ACS Applied Materials & Interfaces, 2019, 11, 12605-12612.	8.0	32
219	Molecular Level Understanding of the Free Energy Landscape in Early Stages of Metal–Organic Framework Nucleation. Journal of the American Chemical Society, 2019, 141, 6073-6081.	13.7	23
220	Bi-metal–organic frameworks type II heterostructures for enhanced photocatalytic styrene oxidation. Nanoscale, 2019, 11, 7554-7559.	5.6	28
221	Structural Basis of CO2 Adsorption in a Flexible Metal-Organic Framework Material. Nanomaterials, 2019, 9, 354.	4.1	10
222	Stabilization of Formate Dehydrogenase in a Metal–Organic Framework for Bioelectrocatalytic Reduction of CO 2. Angewandte Chemie, 2019, 131, 7764-7768.	2.0	31
223	Stabilization of Formate Dehydrogenase in a Metal–Organic Framework for Bioelectrocatalytic Reduction of CO ₂ . Angewandte Chemie - International Edition, 2019, 58, 7682-7686.	13.8	103
224	ZIF-8@SiO2 composite nanofiber membrane with bioinspired spider web-like structure for efficient air pollution control. Journal of Membrane Science, 2019, 581, 252-261.	8.2	96
225	Metalâ^'Organic Frameworks for Highâ€Energy Lithium Batteries with Enhanced Safety: Recent Progress and Future Perspectives. Batteries and Supercaps, 2019, 2, 591-626.	4.7	45
226	Metal–organic framework-mediated strategy for enhanced methane production on copper nanoparticles in electrochemical CO2 reduction. Electrochimica Acta, 2019, 306, 28-34.	5.2	65
227	An NHC-CuCl functionalized metal–organic framework for catalyzing β-boration of α,β-unsaturated carbonyl compounds. Dalton Transactions, 2019, 48, 5144-5148.	3.3	7
228	Mesoporous adsorbent for CO2 capture application under mild condition: A review. Journal of Environmental Chemical Engineering, 2019, 7, 103022.	6.7	78
229	A Facile and Versatile "Click―Approach Toward Multifunctional Ionic Metal–organic Frameworks for Efficient Conversion of CO ₂ . ChemSusChem, 2019, 12, 2202-2210.	6.8	37
230	Specific K ⁺ Binding Sites as CO ₂ Traps in a Porous MOF for Enhanced CO ₂ 2 Selective Sorption. Small, 2019, 15, e1900426.	10.0	67
231	Calcium-looping reforming of methane realizes in situ CO ₂ utilization with improved energy efficiency. Science Advances, 2019, 5, eaav5077.	10.3	153
232	Transition from a 1D Coordination Polymer to a Mixed-Linker Layered MOF. Inorganic Chemistry, 2019, 58, 5031-5041.	4.0	13
234	Superior Performance of Mesoporous MOF MIL-100 (Fe) Impregnated with Ionic Liquids for CO ₂ Adsorption. Journal of Chemical & Engineering Data, 2019, 64, 2221-2228.	1.9	17
235	A MOF-assisted phosphine free bifunctional iron complex for the hydrogenation of carbon dioxide, sodium bicarbonate and carbonate to formate. Chemical Communications, 2019, 55, 4977-4980.	4.1	33

#	Article	IF	CITATIONS
236	Selfâ€Assembly of Spherical Organic Molecules to Form Hollow Vesicular Structures in Water for Encapsulation of an Anticancer Drug and Its Release. Chemistry - an Asian Journal, 2019, 14, 1992-1999.	3.3	2
237	Constructing and finely tuning the CO ₂ traps of stable and various-pore-containing MOFs towards highly selective CO ₂ capture. Chemical Communications, 2019, 55, 3477-3480.	4.1	29
238	Harnessing solvent effects to integrate alkylamine into metal–organic frameworks for exceptionally high CO ₂ uptake. Journal of Materials Chemistry A, 2019, 7, 7867-7874.	10.3	39
239	A Mn(II)-porphyrin based metal-organic framework (MOF) for visible-light-assisted cycloaddition of carbon dioxide with epoxides. Microporous and Mesoporous Materials, 2019, 280, 372-378.	4.4	69
240	Surface chemical-functionalization of ultrathin two-dimensional nanomaterials for electrocatalysis. Materials Today Energy, 2019, 12, 250-268.	4.7	48
241	Computational screening of metalâ~'organic frameworks for CO2 separation. Current Opinion in Green and Sustainable Chemistry, 2019, 16, 57-64.	5.9	15
242	Anchoring Co ^{II} Ions into a Thiolâ€Laced Metal–Organic Framework for Efficient Visibleâ€Lightâ€Driven Conversion of CO ₂ into CO. ChemSusChem, 2019, 12, 2166-2170.	6.8	58
243	Flexible Zn-MOF Exhibiting Selective CO ₂ Adsorption and Efficient Lewis Acidic Catalytic Activity. Crystal Growth and Design, 2019, 19, 2010-2018.	3.0	81
244	Environmentally Friendly, Co-catalyst-Free Chemical Fixation of CO ₂ at Mild Conditions Using Dual-Walled Nitrogen-Rich Three-Dimensional Porous Metal–Organic Frameworks. Inorganic Chemistry, 2019, 58, 3925-3936.	4.0	111
245	Exploring Host–Guest Interactions in the α-Zn ₃ (HCOO) ₆ Metal-Organic Framework. ACS Omega, 2019, 4, 4000-4011.	3.5	12
246	Acidity and Cd ²⁺ fluorescent sensing and selective CO ₂ adsorption by a water-stable Eu-MOF. Dalton Transactions, 2019, 48, 4489-4494.	3.3	51
247	Development of Amine-Functionalized Silica Foams with Hierarchical Pore Structure for CO ₂ Capture. Energy & amp; Fuels, 2019, 33, 3357-3369.	5.1	18
248	Overview of Carbon Capture Technology: Microalgal Biorefinery Concept and State-of-the-Art. Frontiers in Marine Science, 2019, 6, .	2.5	149
249	Design and Construction of a Chiral Cd(II)-MOF from Achiral Precursors: Synthesis, Crystal Structure and Catalytic Activity toward C–C and C–N Bond Forming Reactions. Inorganic Chemistry, 2019, 58, 3219-3226.	4.0	41
250	Metal-organic framework-based heterogeneous catalysts for the conversion of C1 chemistry: CO, CO2 and CH4. Coordination Chemistry Reviews, 2019, 387, 79-120.	18.8	298
251	Metal-organic framework based membranes for gas separation. , 2019, , 203-226.		3
252	Triphenylene: A versatile molecular receptor. Tetrahedron Letters, 2019, 60, 872-884.	1.4	16
253	Toward ideal carbon dioxide functionalization. Chemical Science, 2019, 10, 3905-3926.	7.4	137

#	Article	IF	CITATIONS
254	Promoting electrocatalytic CO2 reduction to formate via sulfur-boosting water activation on indium surfaces. Nature Communications, 2019, 10, 892.	12.8	446
255	Quencherâ€Delocalized Emission Strategy of AlEgenâ€Based Metal–Organic Framework for Profiling of Subcellular Glutathione. Chemistry - A European Journal, 2019, 25, 4665-4669.	3.3	28
256	Cocatalysts for Selective Photoreduction of CO ₂ into Solar Fuels. Chemical Reviews, 2019, 119, 3962-4179.	47.7	1,591
257	Cu-MOF-Catalyzed Carboxylation of Alkynes and Epoxides. Russian Journal of Organic Chemistry, 2019, 55, 1813-1820.	0.8	6
258	Single-atom catalysts templated by metal–organic frameworks for electrochemical nitrogen reduction. Journal of Materials Chemistry A, 2019, 7, 26371-26377.	10.3	152
259	Incorporation of flexible ionic polymers into a Lewis acid-functionalized mesoporous silica for cooperative conversion of CO2 to cyclic carbonates. Chinese Journal of Catalysis, 2019, 40, 1874-1883.	14.0	18
260	lonic Liquid-Impregnated Metal–Organic Frameworks for CO ₂ /CH ₄ Separation. ACS Applied Nano Materials, 2019, 2, 7933-7950.	5.0	51
262	Triptycene-Based and Amine-Linked Nanoporous Networks for Efficient CO2 Capture and Separation. Frontiers in Energy Research, 2019, 7, .	2.3	12
263	Advancement in porous adsorbents for post-combustion CO2 capture. Microporous and Mesoporous Materials, 2019, 276, 107-132.	4.4	129
264	Emerging Carbonâ€Based Heterogeneous Catalysts for Electrochemical Reduction of Carbon Dioxide into Valueâ€Added Chemicals. Advanced Materials, 2019, 31, e1804257.	21.0	218
265	Gas adsorption and fluorescent sensing properties of two porous lanthanide metal–organic frameworks based on 3,5-bis(2-carboxy-phenoxy)-benzoic acid. Polyhedron, 2019, 165, 171-176.	2.2	5
266	Metal–Organicâ€Frameworkâ€Derived Hollow Nâ€Doped Porous Carbon with Ultrahigh Concentrations of Single Zn Atoms for Efficient Carbon Dioxide Conversion. Angewandte Chemie - International Edition, 2019, 58, 3511-3515.	13.8	474
267	In Situ Generation of an Nâ€Heterocyclic Carbene Functionalized Metal–Organic Framework by Postsynthetic Ligand Exchange: Efficient and Selective Hydrosilylation of CO ₂ . Angewandte Chemie - International Edition, 2019, 58, 2844-2849.	13.8	73
268	Metal–Organicâ€Frameworkâ€Derived Hollow Nâ€Doped Porous Carbon with Ultrahigh Concentrations of Single Zn Atoms for Efficient Carbon Dioxide Conversion. Angewandte Chemie, 2019, 131, 3549-3553.	2.0	84
269	Poly(ionic liquid)s: Platform for CO2 capture and catalysis. Current Opinion in Green and Sustainable Chemistry, 2019, 16, 39-46.	5.9	47
270	CO ₂ Capture in Metal–Organic Framework Adsorbents: An Engineering Perspective. Advanced Sustainable Systems, 2019, 3, 1800080.	5.3	217
271	Synthesis, characterization and CO2 separation performance of novel PVA/PG/ZIF-8 mixed matrix membrane. Journal of Membrane Science, 2019, 572, 198-209.	8.2	61
272	lonic porous organic polymers for CO2 capture and conversion. Current Opinion in Green and Sustainable Chemistry, 2019, 16, 20-25.	5.9	43

#	Article	IF	CITATIONS
273	A Nobleâ€Metalâ€Free Metal–Organic Framework (MOF) Catalyst for the Highly Efficient Conversion of CO ₂ with Propargylic Alcohols. Angewandte Chemie - International Edition, 2019, 58, 577-581.	13.8	140
274	A Nobleâ€Metalâ€Free Metal–Organic Framework (MOF) Catalyst for the Highly Efficient Conversion of CO ₂ with Propargylic Alcohols. Angewandte Chemie, 2019, 131, 587-591.	2.0	27
275	Indium–Organic Frameworks Based on Dual Secondary Building Units Featuring Halogen-Decorated Channels for Highly Effective CO ₂ Fixation. Chemistry of Materials, 2019, 31, 1084-1091.	6.7	142
276	Catalysis by Metal Organic Frameworks: Perspective and Suggestions for Future Research. ACS Catalysis, 2019, 9, 1779-1798.	11.2	622
277	Highly Active Cobalt/Tungsten Carbide@Nâ€Doped Porous Carbon Nanomaterials Derived from Metalâ€Organic Frameworks as Bifunctional Catalysts for Overall Water Splitting. Energy Technology, 2019, 7, 1800969.	3.8	40
278	Molecular Simulations of MOF Membranes and Performance Predictions of MOF/Polymer Mixed Matrix Membranes for CO ₂ /CH ₄ Separations. ACS Sustainable Chemistry and Engineering, 2019, 7, 2739-2750.	6.7	69
279	In Situ Generation of an Nâ€Heterocyclic Carbene Functionalized Metal–Organic Framework by Postsynthetic Ligand Exchange: Efficient and Selective Hydrosilylation of CO 2. Angewandte Chemie, 2019, 131, 2870-2875.	2.0	25
280	Versatile Processing of Metal–Organic Framework–Fluoropolymer Composite Inks with Chemical Resistance and Sensor Applications. ACS Applied Materials & Interfaces, 2019, 11, 4385-4392.	8.0	29
281	Highly Efficient Synthesis of a Moisture-Stable Nitrogen-Abundant Metal–Organic Framework (MOF) for Large-Scale CO ₂ Capture. Industrial & Engineering Chemistry Research, 2019, 58, 1773-1777.	3.7	22
282	Two-dimensional metal-organic framework and covalent-organic framework: synthesis and their energy-related applications. Materials Today Chemistry, 2019, 12, 34-60.	3.5	105
283	Monometallic Catalytic Models Hosted in Stable Metal–Organic Frameworks for Tunable CO ₂ Photoreduction. ACS Catalysis, 2019, 9, 1726-1732.	11.2	297
284	2D Transition Metal Carbides (MXenes) for Carbon Capture. Advanced Materials, 2019, 31, e1805472.	21.0	184
285	Impact of border traps in ultrathin metal-organic framework Cu3(BTC)2 based capacitors. Microporous and Mesoporous Materials, 2019, 277, 136-141.	4.4	3
286	Halloysite nanotubes: Novel and eco-friendly adsorbents for high-pressure CO2 capture. Microporous and Mesoporous Materials, 2019, 277, 229-236.	4.4	44
287	Selective lithium and magnesium adsorption by phosphonate metal-organic framework-incorporated alginate hydrogel inspired from lithium adsorption characteristics of brown algae. Separation and Purification Technology, 2019, 212, 611-618.	7.9	37
288	The Electrocatalytic Stability Investigation of a Proton Manager MOF for the Oxygen Reduction Reaction in Acidic Media. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 528-534.	3.7	14
289	Trace Carbon Dioxide Capture by Metal–Organic Frameworks. ACS Sustainable Chemistry and Engineering, 2019, 7, 82-93.	6.7	92
290	Hexaoxaadamantane-Based Solid State Carbon Oxides. ACS Applied Energy Materials, 2019, 2, 152-157.	5.1	0

#	Article	IF	CITATIONS
291	Copper benzene-1,3,5-tricarboxylate (Cu-BTC) metal-organic framework (MOF) and porous carbon composites as efficient carbon dioxide adsorbents. Journal of Colloid and Interface Science, 2019, 535, 122-132.	9.4	85
292	Metallosalen-based crystalline porous materials: Synthesis and property. Coordination Chemistry Reviews, 2019, 378, 483-499.	18.8	82
293	Improving CO2 electroreduction over ZIF-derived carbon doped with Fe-N sites by an additional ammonia treatment. Catalysis Today, 2019, 330, 252-258.	4.4	35
294	Enhanced cycloaddition of CO2 to epichlorohydrin over zeolitic imidazolate frameworks with mixed linkers under solventless and co-catalyst-free condition. Catalysis Today, 2020, 339, 337-343.	4.4	62
295	Formation of CX Bonds in CO ₂ Chemical Fixation Catalyzed by Metalâ^'Organic Frameworks. Advanced Materials, 2020, 32, e1806163.	21.0	102
296	Recent development of covalent organic frameworks (COFs): synthesis and catalytic (organic-electro-photo) applications. Materials Horizons, 2020, 7, 411-454.	12.2	291
297	A facile strategy for fabrication of HKUST-1 on a flexible polyethylene nonwoven fabric with a high MOF loading. Microporous and Mesoporous Materials, 2020, 292, 109723.	4.4	12
298	A Dye@MOF composite as luminescent sensory material for selective and sensitive recognition of Fe(III) ions in water. Inorganica Chimica Acta, 2020, 500, 119205.	2.4	34
299	Nanostructured Carbon Nitrides for CO ₂ Capture and Conversion. Advanced Materials, 2020, 32, e1904635.	21.0	188
300	Synthesis and effect of metal–organic frame works on CO ₂ adsorption capacity at various pressures: A contemplating review. Energy and Environment, 2020, 31, 367-388.	4.6	29
301	Multielectron transportation of polyoxometalate-grafted metalloporphyrin coordination frameworks for selective CO2-to-CH4 photoconversion. National Science Review, 2020, 7, 53-63.	9.5	127
302	Dual sensing of copper ion and chromium (VI) oxyanions by benzotriazole functionalized UiO-66 metal-organic framework in aqueous media. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 389, 112238.	3.9	20
303	Microporous polymer based on hexaazatriphenylene-fused triptycene for CO2 capture and conversion. Science China Materials, 2020, 63, 429-436.	6.3	9
304	Mixed-ligand strategy affording two 6-connected 3-fold interpenetrated metal-organic frameworks with binuclear Coll2/Nill2 subunits: Synthesis, crystal structures and magnetic properties. Inorganic Chemistry Communication, 2020, 111, 107624.	3.9	8
305	A Tröger's base-derived microporous organic polymers containing pyrene units for selective adsorption of CO2 over N2 and CH4. Microporous and Mesoporous Materials, 2020, 294, 109870.	4.4	20
306	High gas permselectivity in ZIFâ€302/polyimide selfâ€consistent mixedâ€matrix membrane. Journal of Applied Polymer Science, 2020, 137, 48513.	2.6	31
307	Metal-organic framework-based CO2 capture: From precise material design to high-efficiency membranes. Frontiers of Chemical Science and Engineering, 2020, 14, 188-215.	4.4	31
308	Photoelectrochemical Conversion of Carbon Dioxide (CO ₂) into Fuels and Value-Added Products. ACS Energy Letters, 2020, 5, 486-519.	17.4	361

#	Article	IF	CITATIONS
309	MOFs-Based Catalysts Supported Chemical Conversion of CO2. Topics in Current Chemistry, 2020, 378, 11.	5.8	38
310	Coordinative helix–helix association of heteroleptic metallosupramolecular helicates. Inorganic Chemistry Frontiers, 2020, 7, 905-910.	6.0	5
311	Two-dimensional materials and metal-organic frameworks for the CO2 reduction reaction. Materials Today Advances, 2020, 5, 100038.	5.2	48
312	Rational design of a high-efficiency, multivariate metal–organic framework phosphor for white LED bulbs. Chemical Science, 2020, 11, 1814-1824.	7.4	43
313	New scu topological MOF based on azolyl-carboxyl bifunctional linker: Gas adsorption and luminescence properties. Journal of Solid State Chemistry, 2020, 283, 121170.	2.9	11
314	Macrocyclic multinuclear metal complexes acting as catalysts for organic synthesis. Catalysis Science and Technology, 2020, 10, 12-34.	4.1	34
315	Zinc hydroxide nitrate nanosheets conversion into hierarchical zeolitic imidazolate frameworks nanocomposite and their application for CO2 sorption. Materials Today Chemistry, 2020, 15, 100222.	3.5	34
316	Post-combustion carbon capture by membrane separation, Review. Separation and Purification Technology, 2020, 238, 116448.	7.9	97
317	Localized Electrical Induction Heating for Highly Efficient Synthesis and Regeneration of Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2020, 12, 4097-4104.	8.0	13
318	Amino-Functionalized β-Cyclodextrin to Construct Green Metal–Organic Framework Materials for CO ₂ Capture. ACS Applied Materials & Interfaces, 2020, 12, 3032-3041.	8.0	72
319	Ten Years of Aberration Corrected Electron Microscopy for Ordered Nanoporous Materials. ChemCatChem, 2020, 12, 1248-1269.	3.7	30
320	Versatile surface modification of aerogels by click chemistry as an approach to generate model systems for CO2 adsorption features in amine-containing organosilica. Microporous and Mesoporous Materials, 2020, 294, 109879.	4.4	5
321	Microporous Metal-Organic Framework Materials for Gas Separation. CheM, 2020, 6, 337-363.	11.7	528
322	Metal–organic frameworks and their derivatives with graphene composites: preparation and applications in electrocatalysis and photocatalysis. Journal of Materials Chemistry A, 2020, 8, 2934-2961.	10.3	170
323	Photophysical and photocatalytic properties of structurally modified UiO-66. Inorganica Chimica Acta, 2020, 501, 119287.	2.4	15
324	CO2 fixation by cycloaddition of mono/disubstituted epoxides using acyl amide decorated Co(II) MOF as a synergistic heterogeneous catalyst. Applied Catalysis A: General, 2020, 590, 117375.	4.3	42
325	One-step Sb(III) decontamination using a bifunctional photoelectrochemical filter. Journal of Hazardous Materials, 2020, 389, 121840.	12.4	37
326	A Decade of UiO-66 Research: A Historic Review of Dynamic Structure, Synthesis Mechanisms, and Characterization Techniques of an Archetypal Metal–Organic Framework. Crystal Growth and Design, 2020, 20, 1347-1362.	3.0	306

ARTICLE IF CITATIONS Screening for selectivity. Nature Energy, 2020, 5, 8-9. 327 39.5 8 Epitaxial Growth of Highly Transparent Metal–Porphyrin Framework Thin Films for Efficient Bifacial 328 8.0 Dye-Sensitized Solar Čellś. ACS Applied Materials & amp; Interfaces, 2020, 12, 1078-1083. Impact of MOF-5 on Pyrrolidinium-Based Poly(ionic liquid)/Ionic Liquid Membranes for Biogas 329 3.7 29 Upgrading. Industrial & amp; Engineering Chemistry Research, 2020, 59, 308-317. A review on emerging organic-containing microporous material membranes for carbon capture and separation. Chemical Engineering Journal, 2020, 391, 123575. The syntheses, structures, magnetic and luminescent properties of five new lanthanide(III) complexes 331 3.9 10 based on tetrazole 1-acetic ligand. Inorganic Chemistry Communication, 2020, 111, 107667. Toward a Rational Design of Titanium Metal-Organic Frameworks. Matter, 2020, 2, 440-450. The synthesis strategies and photocatalytic performances of TiO2/MOFs composites: A state-of-the-art 333 12.7 155 review. Chemical Engineering Journal, 2020, 391, 123601. Electrochemical preparation of Cu/Cu2O-Cu(BDC) metal-organic framework electrodes for 334 6.8 photoelectrocatalytic reduction of CO2. Journal of CO2 Utilization, 2020, 42, 101299. Homogeneous and heterogeneous molecular catalysts for electrochemical reduction of carbon 335 3.6 24 dioxide. RSC Advances, 2020, 10, 38013-38023. Digital Reticular Chemistry. CheM, 2020, 6, 2219-2241. 11.7 Synthesis, crystal structure and magnetic properties of a heterometallic framework based on Ni4Gd 337 2 3.9 nodes and 2,2â€2-phosphinico-dibenzoate ligand. Inorganic Chemistry Communication, 2020, 119, 108138. Porous Metal–Organic Frameworks for Carbon Dioxide Adsorption and Separation at Low Pressure. ACS Sustainable Chemistry and Engineering, 2020, 8, 15378-15404. Reticular Materials for Artificial Photoreduction of CO₂. Advanced Energy Materials, 339 19.5 92 2020, 10, 2002091. Applications of Metal Organic Frameworks in Wastewater Treatment: A Review on Adsorption and 340 2.7 Photodegradation. Frontiers in Chemical Engineering, 2020, 2, . Faceâ€Directed Assembly of Molecular Cubes: In Situ Substitution of a Predetermined Concave Cluster. 341 2.0 6 Angewandte Chemie, 2020, 132, 22218-22222. Heavy chalcogenide-transition metal clusters as coordination polymer nodes. Chemical Science, 2020, 342 11, 8350-8372. Modulation of metal-azolate frameworks for the tunable release of encapsulated 343 7.4 44 glycosaminoglycans. Chemical Science, 2020, 11, 10835-10843. Ambient Chemical Fixation of CO 2 Using a Robust Ag 27 Clusterâ€Based Twoâ€Dimensional Metal–Organic 344 Framework. Angewandte Chemie, 2020, 132, 20206-20211.

#	Article	IF	CITATIONS
345	Ambient Chemical Fixation of CO ₂ Using a Robust Ag ₂₇ Clusterâ€Based Twoâ€Dimensional Metal–Organic Framework. Angewandte Chemie - International Edition, 2020, 59, 20031-20036.	13.8	109
346	Structural and CO ₂ Capture Properties of Ethylenediamine-Modified HKUST-1 Metal–Organic Framework. Crystal Growth and Design, 2020, 20, 5455-5465.	3.0	35
347	Clicking the Surface of Poly[1-(trimethylsilyl)propyne] (PTMSP) via a Thiol–Ene Reaction: Unexpected CO2/N2 Permeability. Langmuir, 2020, 36, 1768-1772.	3.5	6
348	Tetraphenylethene-Based Luminescent Metal–Organic Framework for Effective Differentiation of <i>cis/trans</i> Isomers. ACS Applied Materials & Interfaces, 2020, 12, 35266-35272.	8.0	3
349	Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon, 2020, 168, 606-623.	10.3	490
350	Preventing Undesirable Structure Flexibility in Pyromellitate Metal Organic Frameworks. European Journal of Inorganic Chemistry, 2020, 2020, 2537-2544.	2.0	2
351	Weak interactions in imidazoleâ€containing zinc(II)â€based metal–organic frameworks. Journal of the Chinese Chemical Society, 2020, 67, 2182-2188.	1.4	2
352	Gallate-Based Metal–Organic Frameworks, a New Family of Hybrid Materials and Their Applications: A Review. Crystals, 2020, 10, 1006.	2.2	14
353	The Role of Binary Mixtures of Ionic Liquids in ZIF-8 for Selective Gas Storage and Separation: A Perspective from Computational Approaches. Journal of Physical Chemistry C, 2020, 124, 26203-26213.	3.1	14
354	CO2 capture and conversion to value-added products promoted by MXene-based materials. Green Energy and Environment, 2022, 7, 394-410.	8.7	54
355	Investigation of CO2 Adsorption on Triethylenetetramine Modified Adsorbents of TETA(n)/Zr-TSCD. Australian Journal of Chemistry, 2020, 73, 1051.	0.9	0
356	Tetrathiafulvalene-Based Metal–Organic Framework as a High-Performance Anode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 52615-52623.	8.0	33
357	Co ₇ -Cluster-Based Metal–Organic Frameworks with Mixed Carboxylate and Pyrazolate Ligands: Construction and CO ₂ Adsorption and Fixation. Crystal Growth and Design, 2020, 20, 7972-7978.	3.0	16
358	Hierarchical Metalâ€Organic Framework Films with Controllable Meso/Macroporosity. Advanced Science, 2020, 7, 2002368.	11.2	32
359	Small Gas Adsorption and Separation in Small-Pore Zeolites. Structure and Bonding, 2020, , 1-30.	1.0	10
360	Evaluating UiO-66 Metal–Organic Framework Nanoparticles as Acid-Sensitive Carriers for Pulmonary Drug Delivery Applications. ACS Applied Materials & Interfaces, 2020, 12, 38989-39004.	8.0	102
361	Investigation of the carbon dioxide adsorption behavior and the heterogeneous catalytic efficiency of a novel Ni-MOF with nitrogen-rich channels. RSC Advances, 2020, 10, 29772-29779.	3.6	5
362	Engineering Porphyrin Metal–Organic Framework Composites as Multifunctional Platforms for CO ₂ Adsorption and Activation. Journal of the American Chemical Society, 2020, 142, 14548-14556.	13.7	54

#	Article	IF	CITATIONS
363	Opportunities for Cryogenic Electron Microscopy in Materials Science and Nanoscience. ACS Nano, 2020, 14, 9263-9276.	14.6	55
364	Two urea-functionalized pcu metal–organic frameworks based on a pillared-layer strategy for gas adsorption and separation. Inorganic Chemistry Frontiers, 2020, 7, 3500-3508.	6.0	23
365	A Mixedâ€Metal Porphyrinic Framework Promoting Gasâ€Phase CO ₂ Photoreduction without Organic Sacrificial Agents. ChemSusChem, 2020, 13, 6273-6277.	6.8	26
366	Defect Control in Zr-Based Metal–Organic Framework Nanoparticles for Arsenic Removal from Water. ACS Applied Nano Materials, 2020, 3, 8997-9008.	5.0	96
367	Metal-Doped Two-Dimensional Borophene Nanosheets for the Carbon Dioxide Electrochemical Reduction Reaction. Journal of Physical Chemistry C, 2020, 124, 24156-24163.	3.1	17
368	Highly Efficient Permeation and Separation of Gases with Metal–Organic Frameworks Confined in Polymeric Nanochannels. ACS Applied Materials & Interfaces, 2020, 12, 49992-50001.	8.0	49
369	One-Step Synthesized SO ₄ ^{2–} /ZrO ₂ -HZSM-5 Solid Acid Catalyst for Carbamate Decomposition in CO ₂ Capture. Environmental Science & Technology, 2020, 54, 13944-13952.	10.0	51
370	Photoinduction of Cu Single Atoms Decorated on UiO-66-NH ₂ for Enhanced Photocatalytic Reduction of CO ₂ to Liquid Fuels. Journal of the American Chemical Society, 2020, 142, 19339-19345.	13.7	373
371	Carbon capture using nanoporous adsorbents. , 2020, , 265-303.		0
372	Formation of a mixed-valence Cu(<scp>i</scp>)/Cu(<scp>ii</scp>) metal–organic framework with the full light spectrum and high selectivity of CO ₂ photoreduction into CH ₄ . Chemical Science, 2020, 11, 10143-10148.	7.4	40
373	Fe/Ni Bimetallic Organic Framework Deposited on TiO2 Nanotube Array for Enhancing Higher and Stable Photoelectrochemical Activity of Oxygen Evaluation Reaction. Nanomaterials, 2020, 10, 1688.	4.1	18
374	CO ₂ , N ₂ , and H ₂ Adsorption by Hyper-Cross-Linked Polymers and Their Selectivity Evaluation by Gas–Solid Equilibrium. Journal of Chemical & Engineering Data, 2020, 65, 4905-4913.	1.9	41
375	Building Nâ€Heterocyclic Carbene into Triazineâ€Linked Polymer for Multiple CO ₂ Utilization. ChemSusChem, 2020, 13, 5996-6004.	6.8	21
376	Natural porous nanorods used for high-efficient capture and chemical conversion of CO2. Journal of CO2 Utilization, 2020, 42, 101303.	6.8	7
377	Transferable and Extensible Machine Learning-Derived Atomic Charges for Modeling Hybrid Nanoporous Materials. Chemistry of Materials, 2020, 32, 7822-7831.	6.7	27
378	A Rare 3D Porous Inorganic–Organic Hybrid Polyoxometalate Framework Based on a Cubic Polyoxoniobate-Cupric-Complex Cage with a High Water Vapor Adsorption Capacity. Inorganic Chemistry, 2020, 59, 11925-11929.	4.0	14
379	Defect-engineering a metal–organic framework for CO ₂ fixation in the synthesis of bioactive oxazolidinones. Inorganic Chemistry Frontiers, 2020, 7, 3571-3577.	6.0	33
380	A low symmetry cluster meets a low symmetry ligand to sharply boost MOF thermal stability. Chemical Communications, 2020, 56, 11985-11988.	4.1	19

#	Article	IF	CITATIONS
381	A rare 4-connected neb-type 3D chiral polyoxometalate framework based on {KNb ₂₄ O ₇₂ } clusters. Inorganic Chemistry Frontiers, 2020, 7, 3919-3924.	6.0	15
382	Faceâ€Directed Assembly of Molecular Cubes: In Situ Substitution of a Predetermined Concave Cluster. Angewandte Chemie - International Edition, 2020, 59, 22034-22038.	13.8	25
383	Rational Design of FeNi Bimetal Modified Covalent Organic Frameworks for Photoconversion of Anthropogenic CO ₂ into Widely Tunable Syngas. Small, 2020, 16, e2002985.	10.0	39
384	Paramagnetic Ionic Liquid/Metal Organic Framework Composites for CO2/CH4 and CO2/N2 Separations. Frontiers in Chemistry, 2020, 8, 590191.	3.6	22
385	Axial Cl/Br atom-mediated CO ₂ electroreduction performance in a stable porphyrin-based metal–organic framework. Chemical Communications, 2020, 56, 14817-14820.	4.1	10
386	Stepwise Assembly of Turnâ€on Fluorescence Sensors in Multicomponent Metal–Organic Frameworks for inâ€Vitro Cyanide Detection. Angewandte Chemie, 2020, 132, 9405-9409.	2.0	18
387	Reticular chemistry in electrochemical carbon dioxide reduction. Science China Materials, 2020, 63, 1113-1141.	6.3	30
388	Recent Progress in Metalâ€Free Covalent Organic Frameworks as Heterogeneous Catalysts. Small, 2020, 16, e2001070.	10.0	229
389	Machine-Learning-Guided Morphology Engineering of Nanoscale Metal-Organic Frameworks. Matter, 2020, 2, 1651-1666.	10.0	43
390	Emergence of a Radicalâ€Stabilizing Metal–Organic Framework as a Radioâ€photoluminescence Dosimeter. Angewandte Chemie - International Edition, 2020, 59, 15209-15214.	13.8	56
391	Effect of Larger Pore Size on the Sorption Properties of Isoreticular Metal–Organic Frameworks with High Number of Open Metal Sites. Chemistry - A European Journal, 2020, 26, 13523-13531.	3.3	8
392	Pyridinium-Functionalized Ionic Metal–Organic Frameworks Designed as Bifunctional Catalysts for CO ₂ Fixation into Cyclic Carbonates. ACS Applied Materials & Interfaces, 2020, 12, 24868-24876.	8.0	98
393	The function of metal–organic frameworks in the application of MOF-based composites. Nanoscale Advances, 2020, 2, 2628-2647.	4.6	136
394	Fluorescence Enhancement in the Solid State by Isolating Perylene Fluorophores in Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2020, 12, 26727-26732.	8.0	36
396	A Three-Dimensional Cu(II)-MOF with Lewis acidâ^base dual functional sites for Chemical Fixation of CO2 via Cyclic Carbonate Synthesis. Journal of CO2 Utilization, 2020, 39, 101173.	6.8	46
397	High C2 hydrocarbons capture and selective C2/C1 separation in A Tb(III)-organic framework. Journal of Solid State Chemistry, 2020, 287, 121345.	2.9	8
398	Dual-Layer MOF Composite Membranes with Tuned Interface Interaction for Postcombustion Carbon Dioxide Separation. Cell Reports Physical Science, 2020, 1, 100059.	5.6	10
399	Intercalation of laminar Cu–Al LDHs with molecular TCPP(M) (M = Zn, Co, Ni, and Fe) towards high-performance CO ₂ hydrogenation catalysts. Nanoscale, 2020, 12, 13145-13156.	5.6	25

#	Article	IF	CITATIONS
400	Mechano-assisted synthesis of an ultramicroporous metal–organic framework for trace CO ₂ capture. Chemical Communications, 2020, 56, 7726-7729.	4.1	49
401	Stable metal–organic frameworks with low water affinity built from methyl-siloxane linkers. Chemical Communications, 2020, 56, 7905-7908.	4.1	7
402	Long-lasting direct capture of xylene from air using covalent-triazine frameworks through multiple C-H…π weak interactions. Chemical Engineering Journal, 2020, 400, 125888.	12.7	8
403	Air-thermal processing of hierarchically porous metal–organic frameworks. Nanoscale, 2020, 12, 14171-14179.	5.6	7
404	Coordination Behaviors of Diphenylketene Adsorbed in the Nanocages of Zeolite NaY and AgY. Bulletin of the Chemical Society of Japan, 2020, 93, 663-670.	3.2	5
405	Ligand Functionalization in Zirconiumâ€Based Metalâ€Organic Frameworks for Enhanced Carbon Dioxide Fixation. Advanced Sustainable Systems, 2020, 4, 2000098.	5.3	9
406	Big-Data Science in Porous Materials: Materials Genomics and Machine Learning. Chemical Reviews, 2020, 120, 8066-8129.	47.7	284
407	A robust metal–organic framework for post-combustion carbon dioxide capture. Journal of Materials Chemistry A, 2020, 8, 12028-12034.	10.3	41
408	Coâ€Catalystâ€Free Chemical Fixation of CO ₂ into Cyclic Carbonates by using Metalâ€Organic Frameworks as Efficient Heterogeneous Catalysts. Chemistry - an Asian Journal, 2020, 15, 2403-2427.	3.3	68
409	Immobilization of carbonic anhydrase for facilitated CO2 capture and separation. Chinese Journal of Chemical Engineering, 2020, 28, 2817-2831.	3.5	17
410	Understanding the Photo- and Electro-Carboxylation of o-Methylbenzophenone with Carbon Dioxide. Catalysts, 2020, 10, 664.	3.5	5
411	A Microporous Metal–Organic Framework Catalyst for Solvent-free Strecker Reaction and CO ₂ Fixation at Ambient Conditions. Inorganic Chemistry, 2020, 59, 4273-4281.	4.0	47
412	Photocatalytic CO2 reduction over metal-organic framework-based materials. Coordination Chemistry Reviews, 2020, 412, 213262.	18.8	401
413	Exploiting Metal–Ligand Cooperativity to Sequester, Activate, and Reduce Atmospheric Carbon Dioxide with a Neutral Zinc Complex. Inorganic Chemistry, 2020, 59, 4835-4841.	4.0	19
414	Photocatalytic proton reduction by a computationally identified, molecular hydrogen-bonded framework. Journal of Materials Chemistry A, 2020, 8, 7158-7170.	10.3	45
415	Dual hydrogen-bond donor group-containing Zn-MOF for the highly effective coupling of CO ₂ and epoxides under mild and solvent-free conditions. Inorganic Chemistry Frontiers, 2020, 7, 1995-2005.	6.0	40
416	Two Robust In(III)-Based Metal–Organic Frameworks with Higher Gas Separation, Efficient Carbon Dioxide Conversion, and Rapid Detection of Antibiotics. Inorganic Chemistry, 2020, 59, 5231-5239.	4.0	31
417	In Silico Discovery of Covalent Organic Frameworks for Carbon Capture. ACS Applied Materials & Interfaces, 2020, 12, 21559-21568.	8.0	43

#	Article	IF	CITATIONS
418	PCN-222(Co) Metal–Organic Framework Nanorods Coated with 2D Metal–Organic Layers for the Catalytic Fixation of CO ₂ to Cyclic Carbonates. ACS Applied Nano Materials, 2020, 3, 3578-3584.	5.0	39
419	Mechanochemistry: an efficient and versatile toolbox for synthesis, transformation, and functionalization of porous metal–organic frameworks. CrystEngComm, 2020, 22, 4511-4525.	2.6	127
420	N-heterocyclic carbene-functionalized metal–organic frameworks for the chemical fixation of CO2. Dalton Transactions, 2020, 49, 6548-6552.	3.3	10
421	Synthesis and Use of Valsartan Metal Complexes as Media for Carbon Dioxide Storage. Materials, 2020, 13, 1183.	2.9	13
422	Stepwise Assembly of Turnâ€on Fluorescence Sensors in Multicomponent Metal–Organic Frameworks for inâ€Vitro Cyanide Detection. Angewandte Chemie - International Edition, 2020, 59, 9319-9323.	13.8	104
423	Strategies to Enhance Carbon Dioxide Capture in Metalâ€Organic Frameworks. ChemPlusChem, 2020, 85, 538-547.	2.8	49
424	The Origin of the Electrocatalytic Activity for CO ₂ Reduction Associated with Metalâ€Organic Frameworks. ChemSusChem, 2020, 13, 2552-2556.	6.8	17
425	Salts Induced Formation of Hierarchical Porous ZIFâ€8 and Their Applications for CO ₂ Sorption and Hydrogen Generation via NaBH ₄ Hydrolysis. Macromolecular Chemistry and Physics, 2020, 221, 2000031.	2.2	51
426	Photoelectrochemical solar fuels from carbon dioxide, water and sunlight. Catalysis Science and Technology, 2020, 10, 1967-1974.	4.1	28
427	High yield self-nitrogen-oxygen doped hydrochar derived from microalgae carbonization in bio-oil: Properties and potential applications. Bioresource Technology, 2020, 314, 123735.	9.6	25
428	Recent Advances in the Preparation and Applications of Organoâ€functionalized Porous Materials. Chemistry - an Asian Journal, 2020, 15, 2588-2621.	3.3	33
429	MOF-Based Membranes for Gas Separations. Chemical Reviews, 2020, 120, 8161-8266.	47.7	755
430	CO2 adsorption performance of CuBTC/graphene aerogel composites. Journal of Nanoparticle Research, 2020, 22, 1.	1.9	11
431	Multiscale investigation of adsorption properties of novel 3D printed UTSA-16 structures. Chemical Engineering Journal, 2020, 402, 126166.	12.7	55
432	Selectively capturing carbon dioxide from mixed gas streams using a new microporous organic copolymer. Microporous and Mesoporous Materials, 2020, 305, 110391.	4.4	6
433	Encapsulation of [bmim ⁺][Tf ₂ N ^{â[^]}] in different ZIF-8 metal analogues and evaluation of their CO ₂ selectivity over CH ₄ and N ₂ using molecular simulation. Molecular Systems Design and Engineering, 2020, 5, 1230-1238.	3.4	9
434	Chiral and SHG-Active Metal–Organic Frameworks Formed in Solution and on Surfaces: Uniformity, Morphology Control, Oriented Growth, and Postassembly Functionalization. Journal of the American Chemical Society, 2020, 142, 14210-14221.	13.7	34
435	Chargeâ€Separated and Lewis Paired Metal–Organic Framework for Anion Exchange and CO 2 Chemical Fixation. Chemistry - A European Journal, 2020, 26, 13788-13791.	3.3	7

#	Article	IF	CITATIONS
436	Two Copper(II) coordination polymers constructed from 3,3-dimethylglutarate and citrate ligands. Journal of Molecular Structure, 2020, 1220, 128695.	3.6	5
437	Highly Efficient Fixation of Carbon Dioxide at RT and Atmospheric Pressure Conditions: Influence of Polar Functionality on Selective Capture and Conversion of CO ₂ . Inorganic Chemistry, 2020, 59, 9765-9773.	4.0	49
438	Effect of ligand flexibility on dimensionality in cadmium(II)-2,2-dimethylglutarate complexes. Journal of Coordination Chemistry, 2020, 73, 404-416.	2.2	3
439	Tailoring microenvironment of adsorbents to achieve excellent <scp>CO₂</scp> uptakes from wet gases. AICHE Journal, 2020, 66, e16645.	3.6	16
440	Docking Site Modulation of Isostructural Covalent Organic Frameworks for CO ₂ Fixation. Chemistry - A European Journal, 2020, 26, 4510-4514.	3.3	37
441	The Chemistry of Reticular Framework Nanoparticles: MOF, ZIF, and COF Materials. Advanced Functional Materials, 2020, 30, 1909062.	14.9	174
442	Boosting CO ₂ adsorption and selectivity in metal–organic frameworks of MIL-96(Al) <i>via</i> second metal Ca coordination. RSC Advances, 2020, 10, 8130-8139.	3.6	36
443	Controlled synthesis of novel Z-scheme iron phthalocyanine/porous WO3 nanocomposites as efficient photocatalysts for CO2 reduction. Applied Catalysis B: Environmental, 2020, 270, 118849.	20.2	83
444	Zinc(II)–Organic Framework Films with Thermochromic and Solvatochromic Applications. Chemistry - A European Journal, 2020, 26, 4204-4208.	3.3	14
445	Pore-Space-Partition-Enabled Exceptional Ethane Uptake and Ethane-Selective Ethane–Ethylene Separation. Journal of the American Chemical Society, 2020, 142, 2222-2227.	13.7	199
446	A unique coordination-driven route for the precise nanoassembly of metal sulfides on metal–organic frameworks. Nanoscale Horizons, 2020, 5, 714-719.	8.0	33
447	Covalent triazine frameworks – a sustainable perspective. Green Chemistry, 2020, 22, 1038-1071.	9.0	138
448	Bioinspired chemistry at MOF secondary building units. Chemical Science, 2020, 11, 1728-1737.	7.4	63
449	Cyclometalation of lanthanum(<scp>iii</scp>) based MOF for catalytic hydrogenation of carbon dioxide to formate. RSC Advances, 2020, 10, 3593-3605.	3.6	35
450	Charge-Separated Metal–Organic Frameworks Derived from Boron-Centered Tetrapods. Crystal Growth and Design, 2020, 20, 1598-1608.	3.0	5
451	Metal–Organic Framework-Based Catalysts with Single Metal Sites. Chemical Reviews, 2020, 120, 12089-12174.	47.7	692
452	Hierarchically porous metal–organic frameworks: synthesis strategies, structure(s), and emerging applications in decontamination. Journal of Hazardous Materials, 2020, 397, 122765.	12.4	85
453	Local Structure Evolvement in MOF Single Crystals Unveiled by Scanning Transmission Electron Microscopy. Chemistry of Materials, 2020, 32, 4966-4972.	6.7	27

#	Article	IF	CITATIONS
454	Plasma-Modified N/O-Doped Porous Carbon for CO ₂ Capture: An Experimental and Theoretical Study. Energy & Fuels, 2020, 34, 6077-6084.	5.1	42
455	Enhancing the Separation Performance of Glassy PPO with the Addition of a Molecular Sieve (ZIF-8): Gas Transport at Various Temperatures. Membranes, 2020, 10, 56.	3.0	15
456	Insights into CO ₂ Adsorption in M–OH Functionalized MOFs. Chemistry of Materials, 2020, 32, 4257-4264.	6.7	38
457	Protic vs aprotic ionic liquid for CO2 fixation: A simulation study. Green Energy and Environment, 2020, 5, 183-194.	8.7	49
458	A Highly Water-Stable <i>meta</i> -Carborane-Based Copper Metal–Organic Framework for Efficient High-Temperature Butanol Separation. Journal of the American Chemical Society, 2020, 142, 8299-8311.	13.7	54
459	Efficient 3-aminopropyltrimethoxysilane functionalised mesoporous ceria nanoparticles for CO2 capture. Materials Today Chemistry, 2020, 16, 100273.	3.5	16
460	Improved Performance of Polysulfone Ultrafiltration Membrane Using TCPP by Post-Modification Method. Membranes, 2020, 10, 66.	3.0	7
461	High CO2 absorption capacity of metal-based ionic liquids: A molecular dynamics study. Green Energy and Environment, 2021, 6, 253-260.	8.7	60
462	Self-Assembly of Imidazolium-Functionalized Zr-Based Metal–Organic Polyhedra for Catalytic Conversion of CO ₂ into Cyclic Carbonates. Inorganic Chemistry, 2021, 60, 2112-2116.	4.0	34
463	Dual-functionalization actuated trimodal attribute in an ultra-robust MOF: exceptionally selective capture and effectual fixation of CO ₂ with fast-responsive, nanomolar detection of assorted organo-contaminants in water. Materials Chemistry Frontiers, 2021, 5, 979-994.	5.9	50
464	Recent advances in naphthalenediimide-based metal-organic frameworks: Structures and applications. Coordination Chemistry Reviews, 2021, 430, 213665.	18.8	65
465	Evaluation of different potassium salts as activators for hierarchically porous carbons and their applications in CO2 adsorption. Journal of Colloid and Interface Science, 2021, 583, 40-49.	9.4	54
466	Influence of surface modification on selective CO2 adsorption: A technical review on mechanisms and methods. Microporous and Mesoporous Materials, 2021, 312, 110751.	4.4	139
467	Hierarchically nanoporous copolymer with built-in carbene-CO2 adducts as halogen-free heterogeneous organocatalyst towards cycloaddition of carbon dioxide into carbonates. Chemical Engineering Journal, 2021, 403, 126460.	12.7	51
468	Applications of metal–organic framework composites in CO2 capture and conversion. Chinese Chemical Letters, 2021, 32, 649-659.	9.0	60
469	General approach to facile synthesis of MgO-based porous ultrathin nanosheets enabling high-efficiency CO2 capture. Chemical Engineering Journal, 2021, 404, 126459.	12.7	34
470	Insideâ€andâ€Out Semiconductor Engineering for CO ₂ Photoreduction: From Recent Advances to New Trends. Small Structures, 2021, 2, 2000061.	12.0	346
471	3D electron diffraction as an important technique for structure elucidation of metal-organic frameworks and covalent organic frameworks. Coordination Chemistry Reviews, 2021, 427, 213583.	18.8	86

#	Article	IF	CITATIONS
472	Selective capture of carbon dioxide from humid gases over a wide temperature range using a robust metal–organic framework. Chemical Engineering Journal, 2021, 405, 126937.	12.7	32
473	The Active Sites Engineering of Catalysts for CO 2 Activation and Conversion. Solar Rrl, 2021, 5, 2000443.	5.8	7

474 é~´ç¦»å功èf½åŒ−è¶...å¾®å²MOFé«~æ•^选择性æ•获低浓å°¦ CO2. Science China Materials, 2021, 6**4,**£91-69**2**8

475	PrVO4/SnD NPs as a Nanocatalyst for Carbon Dioxide Fixation to Synthesis Benzimidazoles and 2-Oxazolidinones. Catalysis Letters, 2021, 151, 1623-1632.	2.6	8
476	An overview of catalytic conversion of CO2 into fuels and chemicals using metal organic frameworks. Chemical Engineering Research and Design, 2021, 149, 67-92.	5.6	62
477	High CO2 uptake capacity and selectivity in a N-oxide-functionalized 3D Ni(II) microporous metal–organic framework. Polyhedron, 2021, 193, 114839.	2.2	3
478	Recent Progress on Carbon Nitride and Its Hybrid Photocatalysts for CO ₂ Reduction. Solar Rrl, 2021, 5, 2000478.	5.8	34
479	BNâ€Đoped Metal–Organic Frameworks: Tailoring 2D and 3D Porous Architectures through Molecular Editing of Borazines. Chemistry - A European Journal, 2021, 27, 4124-4133.	3.3	8
480	Introducing two-dimensional metal-organic frameworks with axial coordination anion into Pebax for CO2/CH4 separation. Separation and Purification Technology, 2021, 259, 118107.	7.9	36
481	Progress in layered cathode and anode nanoarchitectures for charge storage devices: Challenges and future perspective. Energy Storage Materials, 2021, 35, 443-469.	18.0	42
482	Prospects for a green methanol thermo-catalytic process from CO2 by using MOFs based materials: A mini-review. Journal of CO2 Utilization, 2021, 43, 101361.	6.8	59
483	Magnesium oxide-based adsorbents for carbon dioxide capture: Current progress and future opportunities. Journal of CO2 Utilization, 2021, 43, 101357.	6.8	61
484	Copper decorated with nanoporous gold by galvanic displacement acts as an efficient electrocatalyst for the electrochemical reduction of CO ₂ . Nanoscale, 2021, 13, 1155-1163.	5.6	15
485	Design and Property Modulation of Metal–Organic Frameworks with Aggregation-Induced Emission. , 2021, 3, 77-89.		73
486	A Physical Entangling Strategy for Simultaneous Interior and Exterior Modification of Metal–Organic Framework with Polymers. Angewandte Chemie - International Edition, 2021, 60, 7389-7396.	13.8	42
487	Electropolymerized metal-protoporphyrin electrodes for selective electrochemical reduction of CO ₂ . Catalysis Science and Technology, 2021, 11, 1580-1589.	4.1	11
488	New chemistry for enhanced carbon capture: beyond ammonium carbamates. Chemical Science, 2021, 12, 508-516.	7.4	26
489	Prospective applications of nanometer-scale pore size biomimetic and bioinspired membranes. Journal of Membrane Science, 2021, 620, 118968.	8.2	40

#	Article	IF	CITATIONS
490	Recent advances in visible-light-driven carbon dioxide reduction by metal-organic frameworks. Science of the Total Environment, 2021, 762, 144101.	8.0	35
491	Polyvinylamine-Based Facilitated Transport Membranes for Post-Combustion CO2 Capture: Challenges and Perspectives from Materials to Processes. Engineering, 2021, 7, 124-131.	6.7	28
492	Linker Defects Triggering Boosted Oxygen Reduction Activity of Co/Znâ€ZIF Nanosheet Arrays for Rechargeable Zn–Air batteries. Small, 2021, 17, e2007085.	10.0	36
493	PKU-2: An intrinsically microporous aluminoborate with the potential in selective gas separation of CO2/CH4 and C2H2/C2H4. Microporous and Mesoporous Materials, 2021, 312, 110782.	4.4	1
494	Atomistic Mechanisms of Thermal Transformation in a Zr-Metal Organic Framework, MIL-140C. Journal of Physical Chemistry Letters, 2021, 12, 177-184.	4.6	7
495	Inquiry for the multifunctional design of metal–organic frameworks: in situ equipping additional open metal sites (OMSs) inducing high CO2 capture/conversion abilities. Materials Chemistry Frontiers, 2021, 5, 1398-1404.	5.9	10
496	Evaluating the purification and activation of metal-organic frameworks from a technical and circular economy perspective. Coordination Chemistry Reviews, 2021, 428, 213578.	18.8	28
497	Natureâ€Inspired Construction of MOF@COF Nanozyme with Active Sites in Tailored Microenvironment and Pseudopodiaâ€Like Surface for Enhanced Bacterial Inhibition. Angewandte Chemie, 2021, 133, 3511-3516.	2.0	112
498	Natureâ€Inspired Construction of MOF@COF Nanozyme with Active Sites in Tailored Microenvironment and Pseudopodiaâ€Like Surface for Enhanced Bacterial Inhibition. Angewandte Chemie - International Edition, 2021, 60, 3469-3474.	13.8	203
499	A comparative gas sorption study of dicarbazole-derived microporous hyper-crosslinked polymers. Microporous and Mesoporous Materials, 2021, 311, 110727.	4.4	18
500	Rational design of silicas with meso-macroporosity as supports for high-performance solid amine CO2 adsorbents. Energy, 2021, 214, 119093.	8.8	31
501	Reticular materials for electrochemical reduction of CO2. Coordination Chemistry Reviews, 2021, 427, 213564.	18.8	29
502	Methods and Diversity in the Synthesis of Metal-Organic Frameworks. , 2021, , 976-1020.		1
503	Fluorinated MIL-101 for carbon capture utilisation and storage: uptake and diffusion studies under relevant industrial conditions. RSC Advances, 2021, 11, 13304-13310.	3.6	10
504	Cobalt(II), Zinc(II) and Cadmium(II) Coordination Polymers Assembled by Flexible 5,5′-(But-2-ene-1,4-diylbis(oxy))diisophthalic Acid and 1,2-Bis((1H-imidazol-1-yl)methyl)benzene Ligands. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 2436-2444.	3.7	4
505	Highly luminescent and catalytically active suprastructures of magic-sized semiconductor nanoclusters. Nature Materials, 2021, 20, 650-657.	27.5	42
506	Visualizing the Conversion of Metal–Organic Framework Nanoparticles into Hollow Layered Double Hydroxide Nanocages. Journal of the American Chemical Society, 2021, 143, 1854-1862.	13.7	111
507	One-Step Synthesis of Solid–Liquid Composite Microsphere for CO ₂ Capture. ACS Applied Materials & Interfaces, 2021, 13, 5814-5822.	8.0	14

#	Article	IF	CITATIONS
508	Polyoxometalate-based metal–organic frameworks for heterogeneous catalysis. Inorganic Chemistry Frontiers, 2021, 8, 1865-1899.	6.0	90
509	Double Cationization Approach toward Ionic Metal–Organic Frameworks with a High Bromide Content for CO ₂ Cycloaddition to Epoxides. ACS Sustainable Chemistry and Engineering, 2021, 9, 1880-1890.	6.7	27
510	Clobal opportunities and challenges on net-zero CO ₂ emissions towards a sustainable future. Reaction Chemistry and Engineering, 2021, 6, 2226-2247.	3.7	6
511	Encapsulation of multiple enzymes in a metal–organic framework with enhanced electro-enzymatic reduction of CO ₂ to methanol. Green Chemistry, 2021, 23, 2362-2371.	9.0	51
512	Understanding the opportunities of metal–organic frameworks (MOFs) for CO ₂ capture and gas-phase CO ₂ conversion processes: a comprehensive overview. Reaction Chemistry and Engineering, 2021, 6, 787-814.	3.7	31
513	Noble metal-free Cu(<scp>i</scp>)-anchored NHC-based MOF for highly recyclable fixation of CO ₂ under RT and atmospheric pressure conditions. Green Chemistry, 2021, 23, 5195-5204.	9.0	57
514	Vapor-assisted self-conversion of basic carbonates in metal–organic frameworks. Nanoscale, 2021, 13, 5069-5076.	5.6	5
515	Conversion of carbon dioxide to valuable compounds. , 2021, , 307-352.		0
516	A more effective catalysis of the CO ₂ fixation with aziridines: computational screening of metal-substituted HKUST-1. Nanoscale Advances, 2021, 3, 4079-4088.	4.6	5
517	Multiplexed and amplified chemiluminescence resonance energy transfer (CRET) detection of genes and microRNAs using dye-loaded hemin/G-quadruplex-modified UiO-66 metal–organic framework nanoparticles. Chemical Science, 2021, 12, 4810-4818.	7.4	36
518	Organic molecular sieve membranes for chemical separations. Chemical Society Reviews, 2021, 50, 5468-5516.	38.1	170
519	Unprecedented CO ₂ adsorption behaviour by 5A-type zeolite discovered in lower pressure region and at 300 K. Journal of Materials Chemistry A, 2021, 9, 7531-7545.	10.3	12
520	The multifunctional design of metal–organic framework by applying linker desymmetrization strategy: synergistic catalysis for high CO ₂ -epoxide conversion. Inorganic Chemistry Frontiers, 2021, 8, 4990-4997.	6.0	12
521	The key role of metal nanoparticle in metal organic frameworks of UiO family (MOFs) for the application of CO2 capture and heterogeneous catalysis. , 2021, , 369-404.		1
522	Charge separation in hybrid metal–organic framework films for enhanced catalytic CO ₂ conversion. Journal of Materials Chemistry A, 2021, 9, 2694-2699.	10.3	20
523	Zr-MOFs for CF ₄ /CH ₄ , CH ₄ /H ₂ , and CH ₄ /N ₂ separation: towards the goal of discovering stable and effective adsorbents. Molecular Systems Design and Engineering, 2021, 6, 627-642.	3.4	13
524	Metal-organic framework-based processes for water desalination: Current development and future prospects. , 2021, , 491-532.		0
525	Metal–organic framework/graphene oxide composites for CO ₂ capture by microwave swing adsorption. Journal of Materials Chemistry A, 2021, 9, 13135-13142.	10.3	34

#	Article	IF	CITATIONS
526	Enhancing selectivity through decrypting the uncoordinated zirconium sites in MOF electrocatalysts. Chemical Communications, 2021, 57, 5191-5194.	4.1	14
527	Synergy of Dual Functional Sites for Conversion of CO ₂ in a Cycloaddition Reaction under Solvent-Free Conditions by a Zn(II)-Based Coordination Network with a Ladder Motif. Crystal Growth and Design, 2021, 21, 1833-1842.	3.0	33
528	Two-dimensional Ti ₃ C ₂ MXene-based nanostructures for emerging optoelectronic applications. Materials Horizons, 2021, 8, 2929-2963.	12.2	37
529	Stimuli-responsive metal–organic framework nanoparticles for controlled drug delivery and medical applications. Chemical Society Reviews, 2021, 50, 4541-4563.	38.1	156
530	Carbon capture Using Metal–Organic Frameworks. , 2021, , 155-204.		1
531	Magic clusters are better together. Nature Materials, 2021, 20, 580-581.	27.5	1
532	Metal-Organic Frameworks: Screening M-MOF-74 (M = Co, Cr, Cu, Fe, Mg, Mn, Ni, Ti, and Zn) Based for Carbon Dioxide Adsorption. E3S Web of Conferences, 2021, 287, 02011.	0.5	0
533	The inorganic cation-tailored "trapdoor―effect of silicoaluminophosphate zeolite for highly selective CO ₂ separation. Chemical Science, 2021, 12, 8803-8810.	7.4	32
534	Unravelling thermal stress due to thermal expansion mismatch in metal–organic frameworks for methane storage. Journal of Materials Chemistry A, 2021, 9, 4898-4906.	10.3	11
535	¹⁷ 0 NMR spectroscopy of crystalline microporous materials. Chemical Science, 2021, 12, 5016-5036.	7.4	33
536	Robust lanthanide metal–organic frameworks with "all-in-one―multifunction: efficient gas adsorption and separation, tunable light emission and luminescence sensing. Journal of Materials Chemistry C, 2021, 9, 3429-3439.	5.5	52
537	CO ₂ adsorption mechanisms on MOFs: a case study of open metal sites, ultra-microporosity and flexible framework. Reaction Chemistry and Engineering, 2021, 6, 1118-1133.	3.7	22
538	Porous liquids – Future for CO2 capture and separation?. Current Research in Green and Sustainable Chemistry, 2021, 4, 100070.	5.6	23
539	Improving Computational Assessment of Porous Materials for Water Adsorption Applications via Flat Histogram Methods. Journal of Physical Chemistry C, 2021, 125, 4253-4266.	3.1	16
540	2D Copper Tetrahydroxyquinone Conductive Metal–Organic Framework for Selective CO ₂ Electrocatalysis at Low Overpotentials. Advanced Materials, 2021, 33, e2004393.	21.0	120
541	Advances in Postâ€Combustion CO ₂ Capture by Physical Adsorption: From Materials Innovation to Separation Practice. ChemSusChem, 2021, 14, 1428-1471.	6.8	75
542	A Physical Entangling Strategy for Simultaneous Interior and Exterior Modification of Metal–Organic Framework with Polymers. Angewandte Chemie, 2021, 133, 7465-7472.	2.0	7
543	Synthesis of Polyhedral Metal–Organic Framework@Mesoporous Silica Hybrid Nanocomposites with Branched Shapes. ACS Applied Bio Materials, 2021, 4, 1221-1228.	4.6	4

#	Article	IF	CITATIONS
544	Firstâ€principles exploration of MgTi 2 O 5 and MgV 2 O 5 for CO 2 capture and conversion. International Journal of Quantum Chemistry, 2021, 121, e26637.	2.0	3
545	Three-Dimensional Electron Diffraction for Structural Analysis of Beam-Sensitive Metal-Organic Frameworks. Crystals, 2021, 11, 263.	2.2	8
546	Efficient and Highly Selective CO ₂ Capture, Separation, and Chemical Conversion under Ambient Conditions by a Polar-Group-Appended Copper(II) Metal–Organic Framework. Inorganic Chemistry, 2021, 60, 5071-5080.	4.0	23
547	Study of RHO zeolite with different cations for CO 2 /CO separation in pressure swing adsorption. Micro and Nano Letters, 2021, 16, 319-326.	1.3	4
548	Novel mixed matrix membranes based on polyethersulfone and MIL-96 (Al) for CO2 gas separation. Chemical Papers, 2021, 75, 3337-3351.	2.2	10
549	Engineered Bifunctional Luminescent Pillaredâ€Layer Frameworks for Adsorption of CO 2 and Sensitive Detection of Nitrobenzene in Aqueous Media. Chemistry - A European Journal, 2021, 27, 6529-6537.	3.3	13
550	Strategies for Integrated Capture and Conversion of CO ₂ from Dilute Flue Gases and the Atmosphere. ChemSusChem, 2021, 14, 1805-1820.	6.8	37
551	Engineering Nanoscale Metalâ€Organic Frameworks for Heterogeneous Catalysis. Small Structures, 2021, 2, 2000141.	12.0	28
552	Porphyrinic zirconium metal-organic frameworks: Synthesis and applications for adsorption/catalysis. Korean Journal of Chemical Engineering, 2021, 38, 653-673.	2.7	32
553	Study of Amine Functionalized Mesoporous Carbon as CO2 Storage Materials. Processes, 2021, 9, 456.	2.8	17
554	Reversible Protonation of Porphyrinic Metalâ€Organic Frameworks Embedded in Nanoporous Polydimethylsiloxane for Colorimetric Sensing. Advanced Materials Interfaces, 2021, 8, 2001759.	3.7	13
555	Robust metal-organic frameworks for dry and wet biogas upgrading. Applied Materials Today, 2021, 22, 100933.	4.3	13
556	Efficiency increase in hypercrosslinked polymer based on polystyrene in CO2 adsorption process. Polymer Bulletin, 2022, 79, 3681-3702.	3.3	17
557	Highâ€Throughput Electron Diffraction Reveals a Hidden Novel Metal–Organic Framework for Electrocatalysis. Angewandte Chemie - International Edition, 2021, 60, 11391-11397.	13.8	29
558	CO2 hydrogenation over functional nanoporous polymers and metal-organic frameworks. Advances in Colloid and Interface Science, 2021, 290, 102349.	14.7	36
559	Synthesis optimization of metal-organic frameworks MIL-125 and its adsorption separation on C8 aromatics measured by pulse test and simulation calculation. Journal of Solid State Chemistry, 2021, 296, 121956.	2.9	7
560	Micro/Nanoâ€Scaled Metalâ€Organic Frameworks and Their Derivatives for Energy Applications. Advanced Energy Materials, 2022, 12, 2003970.	19.5	64
561	Metalâ€Organic Frameworks Nanocomposites with Different Dimensionalities for Energy Conversion and Storage. Advanced Energy Materials, 2022, 12, 2100346.	19.5	86

#	Article	IF	CITATIONS
562	Copperâ€Based Metalâ€Organic Framework for Selective CO ₂ Adsoprtion and Catalysis Fixation of CO ₂ into Cyclic Carbonates. ChemistrySelect, 2021, 6, 4067-4073.	1.5	5
563	A Highly Efficient and Stable Composite of Polyacrylate and Metal–Organic Framework Prepared by Interface Engineering for Direct Air Capture. ACS Applied Materials & Interfaces, 2021, 13, 21775-21785.	8.0	32
564	Nanomaterials: Applications, waste-handling, environmental toxicities, and future challenges – A review. Journal of Environmental Chemical Engineering, 2021, 9, 105028.	6.7	133
565	Design, synthesis, and physicochemical study of a biomass-derived CO2 sorbent 2,5-furan-bis(iminoguanidine). IScience, 2021, 24, 102263.	4.1	3
566	Recent Advances on Nanomaterials for Electrocatalytic CO ₂ Conversion. Energy & Fuels, 2021, 35, 7485-7510.	5.1	24
567	Comparison between conventional solvothermal and aqueous solution-based production of UiO-66-NH2: Life cycle assessment, techno-economic assessment, and implications for CO2 capture and storage. Journal of Environmental Chemical Engineering, 2021, 9, 105159.	6.7	33
568	Highâ€Throughput Electron Diffraction Reveals a Hidden Novel Metal–Organic Framework for Electrocatalysis. Angewandte Chemie, 2021, 133, 11492-11498.	2.0	6
569	Porous organic frameworks for carbon dioxide capture and storage. Journal of Environmental Chemical Engineering, 2021, 9, 105090.	6.7	23
570	Cu media constructed Z-scheme heterojunction of UiO-66-NH2/Cu2O/Cu for enhanced photocatalytic induction of CO2. Applied Surface Science, 2021, 545, 148967.	6.1	40
571	Understanding Correlation Between CO ₂ Insertion Mechanism and Chain Length of Diamine in Metalâ€Organic Framework Adsorbents. ChemSusChem, 2021, 14, 2426-2433.	6.8	6
572	High-performance CO2/CH4 separation membrane fabrication with PVAm modified by the MOFs containing amine groups. Journal of Natural Gas Science and Engineering, 2021, 89, 103874.	4.4	16
573	Massive Pressure Amplification by Stimulated Contraction of Mesoporous Frameworks**. Angewandte Chemie, 2021, 133, 11841-11845.	2.0	2
574	Coating the Right Polymer: Achieving Ideal Metal–Organic Framework Particle Dispersibility in Polymer Matrixes Using a Coordinative Crosslinking Surface Modification Method. Angewandte Chemie, 2021, 133, 14257-14264.	2.0	14
575	Thiolate-based One-dimensional Flexible Pb–MOFs Exhibiting a Large Sorption Hysteresis Phenomenon. Chemistry Letters, 2021, 50, 1053-1056.	1.3	0
576	Massive Pressure Amplification by Stimulated Contraction of Mesoporous Frameworks**. Angewandte Chemie - International Edition, 2021, 60, 11735-11739.	13.8	14
577	Carbonaceous materials-supported polyethylenimine with high thermal conductivity: A promising adsorbent for CO2 capture. Composites Science and Technology, 2021, 208, 108781.	7.8	11
578	Coating the Right Polymer: Achieving Ideal Metal–Organic Framework Particle Dispersibility in Polymer Matrixes Using a Coordinative Crosslinking Surface Modification Method. Angewandte Chemie - International Edition, 2021, 60, 14138-14145.	13.8	48
579	Metal–Organic Frameworks for Photo/Electrocatalysis. Advanced Energy and Sustainability Research, 2021, 2, 2100033.	5.8	123

#	Article	IF	CITATIONS
580	Recyclable and Magnetically Functionalized Metal–Organic Framework Catalyst: IL/Fe ₃ O ₄ @HKUST-1 for the Cycloaddition Reaction of CO ₂ with Epoxides. ACS Applied Materials & Interfaces, 2021, 13, 22836-22844.	8.0	25
581	Trends and Prospects in UiOâ€66 Metalâ€Organic Framework for CO ₂ Capture, Separation, and Conversion. Chemical Record, 2021, 21, 1771-1791.	5.8	48
582	Understanding the Effect of Water on CO ₂ Adsorption. Chemical Reviews, 2021, 121, 7280-7345.	47.7	194
583	Opportunities and Challenges in Precise Synthesis of Transition Metal Singleâ€Atom Supported by 2D Materials as Catalysts toward Oxygen Reduction Reaction. Advanced Functional Materials, 2021, 31, 2103558.	14.9	51
584	Metal-organic framework composites as green/sustainable catalysts. Coordination Chemistry Reviews, 2021, 436, 213827.	18.8	105
585	Photo/electrochemical Carbon Dioxide Conversion into C ₃₊ Hydrocarbons: Reactivity and Selectivity. ChemNanoMat, 2021, 7, 969-981.	2.8	10
586	Templated interfacial synthesis of metal-organic framework (MOF) nano- and micro-structures with precisely controlled shapes and sizes. Communications Chemistry, 2021, 4, .	4.5	29
587	Net Zero and Catalysis: How Neutrons Can Help. Physchem, 2021, 1, 95-120.	1.1	3
588	Octanuclear Cobalt(II) Cluster-Based Metal–Organic Framework with Caged Structure Exhibiting the Selective Adsorption of Ethane over Ethylene. Inorganic Chemistry, 2021, 60, 10596-10602.	4.0	11
589	High Loading of Air-Sensitive Guest Molecules into Polycrystalline Metal–Organic Framework Hosts. Inorganic Chemistry, 2021, 60, 10830-10836.	4.0	1
590	Recent Development of Electrocatalytic CO ₂ Reduction Application to Energy Conversion. Small, 2021, 17, e2100323.	10.0	53
591	Polycrystalline zeolite and metal-organic framework membranes for molecular separations. Coordination Chemistry Reviews, 2021, 437, 213794.	18.8	52
592	Strong Foam-like Composites from Highly Mesoporous Wood and Metal-Organic Frameworks for Efficient CO ₂ Capture. ACS Applied Materials & Interfaces, 2021, 13, 29949-29959.	8.0	37
593	Recent Advances on Porous Materials for Synergetic Adsorption and Photocatalysis. Energy and Environmental Materials, 2022, 5, 711-730.	12.8	30
594	High-Throughput Screening of Atomic Defects in MXenes for CO ₂ Capture, Activation, and Dissociation. ACS Applied Materials & Interfaces, 2021, 13, 35585-35594.	8.0	30
595	Light-responsive adsorbents with tunable adsorbent–adsorbate interactions for selective CO2 capture. Chinese Journal of Chemical Engineering, 2022, 42, 104-111.	3.5	10
596	Impact of Pore Size and Defects on the Selective Adsorption of Acetylene in Alkyneâ€Functionalized Nickel(II)â€Pyrazolateâ€Based MOFs. Chemistry - A European Journal, 2021, 27, 11837-11844.	3.3	10
597	An Overview of Metal–Organic Frameworks for Green Chemical Engineering. Engineering, 2021, 7, 1115-1139.	6.7	94

#	Article	IF	CITATIONS
598	Cluster model of the step-shaped adsorption isotherm in metal–organic frameworks. Microporous and Mesoporous Materials, 2021, 322, 111146.	4.4	4
599	Understanding carbon dioxide capture on metal–organic frameworks from first-principles theory: The case of MIL-53(X), with X = Fe3+, Al3+, and Cu2+. Journal of Chemical Physics, 2021, 155, 024701.	3.0	6
600	Metal Microfibers Delivered Eddy Current Heating for Efficient Synthesis and Regeneration of Metal–Organic Framework Monoliths. Inorganic Chemistry, 2021, 60, 11251-11258.	4.0	3
601	Recent advances in the development of electronically and ionically conductive metal-organic frameworks. Coordination Chemistry Reviews, 2021, 439, 213915.	18.8	125
602	Highly Sensitive Colorimetric Naked-Eye Detection of Hg ^{II} Using a Sacrificial Metal–Organic Framework. Inorganic Chemistry, 2021, 60, 13588-13595.	4.0	8
603	Fine-Tuning Window Apertures in ZIF-8/67 Frameworks by Metal lons and Temperature for High-Efficiency Molecular Sieving of Xylenes. ACS Applied Materials & Interfaces, 2021, 13, 40830-40836.	8.0	28
604	Selective adsorption of CO2/N2 promoted by polar ligand functional groups of metal–organic frameworks. Journal of Porous Materials, 2022, 29, 63-71.	2.6	9
605	Low-Pressure CO ₂ Capture in Zeolite Imidazole Frameworks with Ultramicropores Studied by Positron Annihilation. ACS Applied Energy Materials, 2021, 4, 7983-7991.	5.1	11
606	Current Trends and Approaches to Boost the Performance of Metal Organic Frameworks for Carbon Dioxide Methanation through Photo/Thermal Hydrogenation: A Review. Industrial & Engineering Chemistry Research, 2021, 60, 13149-13179.	3.7	34
607	Metal–organic frameworks containing uncoordinated nitrogen: Preparation, modification, and application in adsorption. Materials Today, 2021, 51, 566-585.	14.2	50
608	Synthesis, Structures of <scp>2D</scp> Coordination Layers <scp>Metalâ€Organic</scp> Frameworks with Highly Selective <scp>CO₂</scp> Uptake ^{â€} . Chinese Journal of Chemistry, 2021, 39, 2789-2794.	4.9	11
609	Selective Conversion of CO ₂ into Cyclic Carbonate on Atom Level Catalysts. ACS Materials Au, 2021, 1, 107-115.	6.0	15
610	Development of Functional Materials via Polymer Encapsulation into Metal–Organic Frameworks. Bulletin of the Chemical Society of Japan, 2021, 94, 2139-2148.	3.2	26
611	The Review of Carbon Capture-Storage Technologies and Developing Fuel Cells for Enhancing Utilization. Energies, 2021, 14, 4978.	3.1	25
612	Four Novel d10 Metal-Organic Frameworks Incorporating Amino-Functionalized Carboxylate Ligands: Synthesis, Structures, and Fluorescence Properties. Frontiers in Chemistry, 2021, 9, 708314.	3.6	3
613	Light-mediated CO2-responsiveness of metallopolymer microgels. Chinese Chemical Letters, 2022, 33, 1445-1449.	9.0	4
614	Diamine Functionalization of a Metal–Organic Framework by Exploiting Solvent Polarity for Enhanced CO ₂ Adsorption. ACS Applied Materials & Interfaces, 2021, 13, 38358-38364.	8.0	8
615	Post-synthetic modification of tetrazine functionalized porous MOF for CO2 sorption performances modulation. Journal of Solid State Chemistry, 2021, 300, 122257.	2.9	8

#	Article	IF	CITATIONS
616	Advances on CO2 storage. Synthetic porous solids, mineralization and alternative solutions. Chemical Engineering Journal, 2021, 419, 129569.	12.7	43
617	Highâ€ŧhroughput computational screening of porous polymer networks for natural gas sweetening based on a neural network. AICHE Journal, 2022, 68, e17433.	3.6	11
618	Electrochemical-Assisted Reconstruction of Isoreticular Metal-Organic Framework-8 for Efficient Electroreduction of CO ₂ to CO. Journal of the Electrochemical Society, 2021, 168, 096503.	2.9	2
619	Near-infrared light triggered release of ethane from a photothermal metal-organic framework. Chemical Engineering Journal, 2021, 420, 130490.	12.7	17
620	Controlling metallic Co0 in ZIF-67-derived N-C/Co composite catalysts for efficient photocatalytic CO2 reduction. Science China Materials, 2022, 65, 413-421.	6.3	23
621	Isoreticular chemistry within metal–organic frameworks for gas storage and separation. Coordination Chemistry Reviews, 2021, 443, 213968.	18.8	246
622	Catching the Reversible Formation and Reactivity of Surface Defective Sites in Metal–Organic Frameworks: An Operando Ambient Pressure-NEXAFS Investigation. Journal of Physical Chemistry Letters, 2021, 12, 9182-9187.	4.6	15
623	Recent Advances and Prospects in Colloidal Nanomaterials. Jacs Au, 2021, 1, 1849-1859.	7.9	20
624	Tri-phase photocatalysis for CO2 reduction and N2 fixation with efficient electron transfer on a hydrophilic surface of transition-metal-doped MIL-88A (Fe). Applied Catalysis B: Environmental, 2021, 292, 120166.	20.2	38
625	A roadmap towards the development of superior photocatalysts for solar- driven CO2-to-fuels production. Renewable and Sustainable Energy Reviews, 2021, 148, 111298.	16.4	31
626	The future directions of synthetic chemistry. Pure and Applied Chemistry, 2021, 93, 1463-1472.	1.9	0
627	A Facile Strategy for Constructing a Carbonâ€Particleâ€Modified Metal–Organic Framework for Enhancing the Efficiency of CO ₂ Electroreduction into Formate. Angewandte Chemie - International Edition, 2021, 60, 23394-23402.	13.8	58
628	A Facile Strategy for Constructing a Carbonâ€Particleâ€Modified Metal–Organic Framework for Enhancing the Efficiency of CO ₂ Electroreduction into Formate. Angewandte Chemie, 2021, 133, 23582-23590.	2.0	16
629	Insights into Paraben Adsorption by Metal–Organic Frameworks for Analytical Applications. ACS Applied Materials & Interfaces, 2021, 13, 45639-45650.	8.0	9
630	Monte Carlo simulations for water adsorption in porous materials: Best practices and new insights. AICHE Journal, 2021, 67, e17447.	3.6	19
631	ZnIn ₂ S ₄ â€Based Photocatalysts for Energy and Environmental Applications. Small Methods, 2021, 5, e2100887.	8.6	153
632	Divergent Adsorption Behavior Controlled by Primary Coordination Sphere Anions in the Metal–Organic Framework Ni ₂ X ₂ BTDD. Journal of the American Chemical Society, 2021, 143, 16343-16347.	13.7	15
633	Facile construction of highly porous carbon materials derived from porous aromatic frameworks for greenhouse gas adsorption and separation. Microporous and Mesoporous Materials, 2021, 326, 111385.	4.4	19

ARTICLE IF CITATIONS # Syntheses, structures and Br2 uptake of Cu(I)-bipyrazole frameworks. Journal of Solid State 634 2.9 3 Chemistry, 2021, 302, 122458. Improving the performance of metal-organic frameworks for thermo-catalytic CO2 conversion: 14.0 Strategies and perspectives. Chinese Journal of Catalysis, 2021, 42, 1903-1920. Highly disordering nanoporous frameworks of lanthanide-dicarboxylates for catalysis of CO2 636 2.9 5 cycloaddition with epoxides. Journal of Solid State Chemistry, 2021, 303, 122464. A review for Metal-Organic Frameworks (MOFs) utilization in capture and conversion of carbon 6.8 dioxide into valuable products. Journal of CO2 Utilization, 2021, 53, 101715. Post-combustion CO2 capture using nontoxic iron-based amino-MIL-101(Fe). Inorganic Chemistry 638 3.9 4 Communication, 2021, 133, 108950. Highly efficient metal/solvent-free chemical fixation of CO2 at atmospheric pressure conditions using 6.8 functionalized porous covalent organic frameworks. Journal of CO2 Utilization, 2021, 53, 101716. Cyclic carbonates synthesis from epoxides and CO2 over NIIC-10 metal-organic frameworks. Journal of 640 6.8 17 CO2 Utilization, 2021, 53, 101718. High-entropy carbons: From high-entropy aromatic species to single-atom catalysts for 641 12.7 14 electrocatalýsis. Chemical Engineering Journal, 2021, 426, 131320. Crystallographic facet heterojunction of MIL-125-NH2(Ti) for carbon dioxide photoreduction. Applied 642 20.2 47 Catalysis B: Environmental, 2021, 298, 120524. Reticular chemistry approach to explore the catalytic CO2-epoxide cycloaddition reaction over 643 tetrahedral coordination Lewis acidic sites in a Rutile-type Zinc-phosphonocarboxylate framework. 12.7 Chemical Engineering Journal, 2022, 427, 131759. Breaking the linear scaling relations in MXene catalysts for efficient CO2 reduction. Chemical 644 12.7 32 Engineering Journal, 2022, 429, 132171. A perspective on the electrocatalytic conversion of carbon dioxide to methanol with 28 metallomacrocyclic catalysts. Journal of Energy Chemistry, 2022, 64, 263-275. Spent mushroom substrate is capable of physisorption-chemisorption of CO2. Environmental 646 7.5 7 Research, 2022, 204, 111945. Single- and mixed-metal–organic framework photocatalysts for carbon dioxide reduction. Inorganic Chemistry Frontiers, 2021, 8, 3178-3204. 647 6.0 MXene-supported stable adsorbents for superior CO₂ capture. Journal of Materials 648 10.3 19 Chemistry A, 2021, 9, 12763-12771. The difference in the CO₂adsorption capacities of different functionalized pillar-layered metal–organic frameworks (MOFs). Dalton Transactions, 2021, 50, 9310-9316. 650 Carbon dioxide adsorption based on porous materials. RSC Advances, 2021, 11, 12658-12681. 3.6 109 Cross-linked, porous imidazolium-based poly(ionic liquid)s for CO₂ capture and 2.8 utilisation. New Journal of Chemistry, 2021, 45, 16452-16460.

#	Article	IF	Citations
652	Computational Screening of MOFs for CO2 Capture. , 2021, , 205-238.		0
653	A pyridyl-decorated Zr-organic framework for enhanced gas separation and CO ₂ transformation. Dalton Transactions, 2021, 50, 3848-3853.	3.3	6
654	Copolymerization of lactide, epoxides and carbon dioxide: a highly efficient heterogeneous ternary catalyst system. Polymer Chemistry, 2021, 12, 1700-1706.	3.9	18
655	Emergence of a Radicalâ€Stabilizing Metal–Organic Framework as a Radioâ€photoluminescence Dosimeter. Angewandte Chemie, 2020, 132, 15321-15326.	2.0	14
656	Photophysical Properties and Electrochromism of Viologen Encapsulated Viologen@ <scp>InBTB Metal–Organic</scp> Framework. Bulletin of the Korean Chemical Society, 2021, 42, 326-332.	1.9	8
657	Design of Binary Cu–Fe Sites Coordinated with Nitrogen Dispersed in the Porous Carbon for Synergistic CO ₂ Electroreduction. Small, 2021, 17, e2006951.	10.0	63
658	Non-noble metal-based molecular complexes for CO2 reduction: From the ligand design perspective. EnergyChem, 2020, 2, 100034.	19.1	76
659	Recent progress and remaining challenges in post-combustion CO2 capture using metal-organic frameworks (MOFs). Progress in Energy and Combustion Science, 2020, 80, 100849.	31.2	235
660	Highly Efficient Capture of Postcombustion Generated CO ₂ through a Copper-Based Metal–Organic Framework. Energy & Fuels, 2021, 35, 610-617.	5.1	14
661	Synthesis of UiO-66 in Supercritical CO ₂ and Its Application in Dye Adsorption. Industrial & amp; Engineering Chemistry Research, 2021, 60, 771-780.	3.7	14
662	Positional Installation of Unsymmetrical Fluorine Functionalities onto Metal–Organic Frameworks for Efficient Carbon Dioxide Separation under Humid Conditions. Inorganic Chemistry, 2020, 59, 18048-18054.	4.0	14
663	Ruthenium Complex-Incorporated Two-Dimensional Metal–Organic Frameworks for Cocatalyst-Free Photocatalytic Proton Reduction from Water. Inorganic Chemistry, 2020, 59, 2379-2386.	4.0	24
664	Application of Metal–Organic Frameworks in CO2 Capture and Conversion. RSC Catalysis Series, 2019, , 455-478.	0.1	1
665	Recent Advances in Photocatalytic Materials for Solar Fuel Production from Water and Carbon Dioxide. RSC Energy and Environment Series, 2020, , 80-115.	0.5	2
666	Enhancement of photocatalytic hydrogen evolution with catalysts based on carbonized MOF-5 and g-C ₃ N ₄ . RSC Advances, 2020, 10, 4032-4039.	3.6	21
667	Nanosheet-assembled microflower-like coordination polymers by surfactant-assisted assembly with enhanced catalytic activity. CrystEngComm, 2020, 22, 7858-7863.	2.6	3
668	From isolated Ti-oxo clusters to infinite Ti-oxo chains and sheets: recent advances in photoactive Ti-based MOFs. Journal of Materials Chemistry A, 2020, 8, 15245-15270.	10.3	209
669	Water nanodomains for efficient photocatalytic CO ₂ reduction to CO. Green Chemistry, 2021, 23, 9078-9083.	9.0	8

ARTICLE IF CITATIONS 3D atomic imaging of low-coordinated active sites in solid-state dealloyed hierarchical nanoporous 670 10.3 3 gold. Journal of Materials Chemistry A, 2021, 9, 25513-25521. Unlocking active metal site of Ti-MOF for boosted heterogeneous catalysis via a facile coordinative 671 2.6 reconstruction. Nanotechnology, 2022, 33, 025401. Ionothermal Synthesis of Imidazolium and Triazine Integrated Porous Organic Frameworks for Efficient CO₂ Adsorption and Synergetic Conversion into Cyclic Carbonates. Industrial 672 3.7 9 & amp; Engineering Chemistry Research, 2021, 60, 15027-15036. Cobalt Catalysts Enable Selective Hydrogenation of CO₂ toward Diverse Products: Recent Progress and Perspective. Journal of Physical Chemistry Letters, 2021, 12, 10486-10496. Synthesis of MgO nanostructures through simple hydrogen peroxide treatment for carbon capture. 674 5.6 6 Chemical Engineering Research and Design, 2021, 156, 361-372. Tetrathiafulvalene–Cobalt Metal–Organic Frameworks for Lithium-Ion Batteries with Superb Rate Capability. Inorganic Chemistry, 2021, 60, 17074-17082. 4.0 Design and synthesis of noble metalâ€"based electrocatalysts using metalâ€"organic frameworks and 676 4.6 17 derivatives. Materials Today Nano, 2022, 17, 100144. A survey on application of MOFs in chemistry. Current Chemistry Letters, 2019, 8, 97-116. 1.6 Hybrids of Metal–Organic Frameworks as Organized Supramolecular Nano-reactors. RSC Catalysis 678 0.1 0 Séries, 2019, , 479-502. Application of Metal Organic Frameworks in Carbon Dioxide Conversion to Methanol. Environmental 679 Chemistry for A Sustainable World, 2020, , 75-89. Wearable membranes from zirconium-oxo clusters cross-linked polymer networks for ultrafast 681 9.0 6 chemical warfare agents decontamination. Chinese Chemical Letters, 2022, 33, 3241-3244. Recent Advances in Molten-Carbonate Membranes for Carbon Dioxide Separation: Focus on Material 2.1 Selection, Geometry, and Surface Modification. Scientific World Journal, The, 2021, 2021, 1-22. Unraveling the Origins of Strong and Reversible Chemisorption of Carbon Dioxide in a Green 683 3.1 9 Metal–Örganic Framework. Journal of Physical Chemistry C, 2021, 125, 24719-24727. Metal-Organic Frameworks (MOFs). Engineering Materials, 2021, , 105-146. 684 Mixed component metal-organic frameworks: Heterogeneity and complexity at the service of 685 18.8 70 application performances. Coordination Chemistry Reviews, 2022, 451, 214273. The Carbonic Anhydrase Promoted Carbon Dioxide Capture. Environmental Chemistry for A Sustainable World, 2020, , 1-44. Closing the Anthropogenic Chemical Carbon Cycle toward a Sustainable Future via CO₂ 688 19.5 35 Valorization. Advanced Energy Materials, 2021, 11, 2102767. Constructing Schottky junctions via Pd nanosheets on DUT-67 surfaces to accelerate charge transfer. 690 9.4 Journal of Colloid and Interface Science, 2022, 608, 3022-3029.

#	Article	IF	CITATIONS
691	Intrinsic-Unsaturation-Enriched Biporous and Chemorobust Cu(II) Framework for Efficient Catalytic CO ₂ Fixation and Pore-Fitting Actuated Size-Exclusive Hantzsch Condensation with Mechanistic Validation. ACS Applied Materials & Interfaces, 2021, 13, 55123-55135.	8.0	40
692	A series of three dimensional lanthanoid(III)-metal-organic frameworks with zwitterionic linker. Journal of Coordination Chemistry, 2021, 74, 2657-2669.	2.2	2
693	Advanced Strategies in Metalâ€Organic Frameworks for CO ₂ Capture and Separation. Chemical Record, 2022, 22, .	5.8	42
694	Constructing novel hyper-crosslinked conjugated polymers through molecular expansion for enhanced gas adsorption performance. Journal of Hazardous Materials, 2022, 426, 127850.	12.4	16
695	Low-dimensional non-metal catalysts: principles for regulating p-orbital-dominated reactivity. Npj Computational Materials, 2021, 7, .	8.7	41
696	A novel Zn-based-MOF for efficient CO2 adsorption and conversion under mild conditions. Catalysis Today, 2022, 390-391, 230-236.	4.4	10
697	Gas sorption and selectivity study of N,N,N′,N′-tetraphenyl-1,4-phenylenediamine based microporous hyper-crosslinked polymers. Microporous and Mesoporous Materials, 2022, 330, 111567.	4.4	8
698	Water adsorption in ideal and defective UiO-66 structures. Microporous and Mesoporous Materials, 2022, 330, 111555.	4.4	28
699	Novel composite materials consisting of polypyrrole and metal organic frameworks for supercapacitor applications. Journal of Energy Storage, 2022, 48, 103699.	8.1	23
700	Efficient ionic functionalization of metal-organic frameworks for efficient addition of carbon dioxide to epoxides. Microporous and Mesoporous Materials, 2022, 330, 111601.	4.4	4
701	An overview of the materials and methodologies for CO ₂ capture under humid conditions. Journal of Materials Chemistry A, 2021, 9, 26498-26527.	10.3	29
703	Recent advances on cobalt metal organic frameworks (MOFs) for photocatalytic CO2 reduction to renewable energy and fuels: A review on current progress and future directions. Energy Conversion and Management, 2022, 253, 115180.	9.2	64
704	Copper nanoparticles decorated N-doped mesoporous carbon with bimodal pores for selective gas separation and energy storage applications. Chemical Engineering Journal, 2022, 431, 134056.	12.7	12
705	High-index facets exposed on metal–organic framework for boosting photocatalytic carbon dioxide reduction. Chemical Engineering Journal, 2022, 431, 134125.	12.7	19
706	Conversion of CO ₂ into Cyclic Carbonates Under Atmospheric by Halogen/Cocatalyst/Metal/Solvent-Free Poly (Ionic Liquid)S. SSRN Electronic Journal, 0, , .	0.4	0
707	Photoresponsive Metalâ€Organic Frameworks: Tailorable Platforms of Photoswitches for Advanced Functions. ChemNanoMat, 2022, 8, .	2.8	7
708	Optimizing the mobility of active species in ionic liquid/MIL-101 composites for boosting carbon dioxide conversion. New Journal of Chemistry, 2021, 46, 44-48.	2.8	5
709	Insight into the computational modeling and reaction mechanism of the catalytic cycle of benzyl-dichalcogenide compounds in capture and release of carbon dioxide. Molecular Catalysis, 2022, 517, 112045.	2.0	0

#	Article	IF	CITATIONS
710	Carboxylateâ€Functionalized Zeolitic Imidazolate Framework Enables Catalytic Nâ€Formylation Using Ambient CO ₂ . Advanced Sustainable Systems, 2022, 6, .	5.3	9
711	Large π-Conjugated Metal–Organic Frameworks for Infrared-Light-Driven CO ₂ Reduction. Journal of the American Chemical Society, 2022, 144, 1218-1231.	13.7	63
712	Lanthanide metal–organic frameworks for the fixation of CO ₂ under aqueous-rich and mixed-gas conditions. Journal of Materials Chemistry A, 2022, 10, 1442-1450.	10.3	26
713	Novel triazine carbonyl polymer with large surface area and its polyethylimine functionalization for CO2 capture. Journal of Industrial and Engineering Chemistry, 2022, 108, 188-194.	5.8	9
714	Guanidyl-implanted UiO-66 as an efficient catalyst for the enhanced conversion of carbon dioxide into cyclic carbonates. Dalton Transactions, 2022, 51, 2567-2576.	3.3	15
715	Atom manufacturing of photocatalyst towards solar CO ₂ reduction. Reports on Progress in Physics, 2022, 85, 026501.	20.1	8
716	Metal organic frameworks for antibacterial applications. Chemical Engineering Journal, 2022, 435, 134975.	12.7	52
717	A metal-organic framework (MOF)-based temperature swing adsorption cycle for postcombustion CO2 capture from wet flue gas. Chemical Engineering Science, 2022, 250, 117399.	3.8	23
718	Gas sensing based on metal-organic frameworks: Concepts, functions, and developments. Journal of Hazardous Materials, 2022, 429, 128321.	12.4	43
719	Research progress in metal–organic frameworks (MOFs) in CO ₂ capture from post-combustion coal-fired flue gas: characteristics, preparation, modification and applications. Journal of Materials Chemistry A, 2022, 10, 5174-5211.	10.3	54
720	Multiple Construction of a Hierarchical Nanoporous Manganese(II)-Based Metal–Organic Framework with Active Sites for Regulating N ₂ and CO ₂ Trapping. Crystal Growth and Design, 2022, 22, 1654-1664.	3.0	14
721	A High-Throughput Imagery Protocol to Predict Functionality upon Fractality of Carbon-Capturing Biointerfaces. Agronomy, 2022, 12, 446.	3.0	1
722	Nanostructure@metal-organic frameworks (MOFs) for catalytic carbon dioxide (CO2) conversion in photocatalysis, electrocatalysis, and thermal catalysis. Nano Research, 2022, 15, 2834-2854.	10.4	52
723	Recent Progress in the Synthesis and Applications of Composite Photocatalysts: A Critical Review. Small Methods, 2022, 6, e2101395.	8.6	69
724	A scalable metal-organic framework as a durable physisorbent for carbon dioxide capture. Science, 2021, 374, 1464-1469.	12.6	308
725	Direct air capture: process technology, techno-economic and socio-political challenges. Energy and Environmental Science, 2022, 15, 1360-1405.	30.8	176
726	Large refractive index changes in ZIF-8 thin films of optical quality. RSC Advances, 2022, 12, 5807-5815.	3.6	24
727	Electrochemical activation of CO ₂ by MOF-(Fe, Ni, Mn) derivatives of 5-aminoisophthalic actid and the thiazole group influence on its catalytic activity. New Journal of Chemistry, 2022, 46, 6060-6067.	2.8	1

#	Article	IF	CITATIONS
728	On the mineralization of nanocellulose to produce functional hybrid materials. Journal of Materials Chemistry A, 2022, 10, 9248-9276.	10.3	7
729	Liquefiable biomass-derived porous carbons and their applications in CO ₂ capture and conversion. Green Chemistry, 2022, 24, 3376-3415.	9.0	20
730	Ultra-thin Two-Dimensional Trimetallic Metal–Organic Framework for Photocatalytic Reduction of CO ₂ . ACS Catalysis, 2022, 12, 3238-3248.	11.2	40
731	Flexible Metal–Organic Frameworks as CO ₂ Adsorbents en Route to Energyâ€Efficient Carbon Capture. Small Structures, 2022, 3, .	12.0	15
732	Unraveling the Molecular Details of the "Gate Opening―Phenomenon in ZIF-8 with X-ray Absorption Spectroscopy. Journal of Physical Chemistry C, 2022, 126, 5935-5943.	3.1	11
733	Carboxylated carbon quantum dot-induced binary metal–organic framework nanosheet synthesis to boost the electrocatalytic performance. Materials Today, 2022, 54, 42-51.	14.2	76
734	Activation of CO2 on the Surfaces of Bare, Ti-Adsorbed and Ti-Doped C60. Fuels, 2022, 3, 176-183.	2.7	1
735	COFâ€5/CoAl‣DH Nanocomposite Heterojunction for Enhanced Visible‣ightâ€Driven CO ₂ Reduction. ChemSusChem, 2022, 15, .	6.8	10
736	Visualizing Pore Packing and Topology in MOFs. Journal of Chemical Education, 2022, 99, 1998-2004.	2.3	11
737	Surface Modification of 2D Photocatalysts for Solar Energy Conversion. Advanced Materials, 2022, 34, e2200180.	21.0	184
738	3D-printed activated carbon for post-combustion CO2 capture. Microporous and Mesoporous Materials, 2022, 335, 111818.	4.4	8
739	Heterostructured ZIF-8/lamellar talc composites incorporated polydimethylsiloxane membrane with enhanced separation performance for butanol recovery. Journal of Membrane Science, 2022, 650, 120433.	8.2	12
740	Bimetallic ZIFs based on Ce/Zn and Ce/Co combinations for stable and enhanced carbon capture. Journal of Cleaner Production, 2022, 350, 131478.	9.3	8
741	Metal-organic frameworks as heterogeneous catalysts for the chemical conversion of carbon dioxide. Fuel, 2022, 320, 123904.	6.4	33
742	Porous aromatic frameworks with metallized catecholate ligands for CO2 capture from gas mixtures: A molecular simulation study. Fuel, 2022, 319, 123768.	6.4	7
743	Mixed Matrix Membranes Based on Torlon® and ZIF-8 for High-Temperature, Size-Selective Gas Separations. Membranes, 2021, 11, 982.	3.0	3
744	Evaluation of Schiff-Base Covalent Organic Frameworks for CO ₂ Capture: Structure–Performance Relationships, Stability, and Performance under Wet Conditions. ACS Sustainable Chemistry and Engineering, 2022, 10, 332-341.	6.7	35
745	Application of Porous Materials for CO2 Reutilization: A Review. Energies, 2022, 15, 63.	3.1	13

#	Article	IF	CITATIONS
747	Tailoring Amine-Functionalized Ti-MOFs via a Mixed Ligands Strategy for High-Efficiency CO2 Capture. Nanomaterials, 2021, 11, 3348.	4.1	10
748	Hydrogenâ€Bonded Organic Frameworks: Functionalized Construction Strategy by Nitrogenâ€Containing Functional Group. Chemistry - A European Journal, 2022, 28, .	3.3	20
749	Review—Metal-Organic Frameworks Composites for Electrochemical Detection of Heavy Metal Ions in Aqueous Medium. Journal of the Electrochemical Society, 2022, 169, 047525.	2.9	6
750	CO2 capture-driven thermal battery using functionalized solvents for plus energy building application. Energy Conversion and Management, 2022, 260, 115606.	9.2	5
753	Metal-organic frameworks for nanogenerators. , 2022, , 699-707.		1
754	Photoexcited charge manipulation in conjugated polymers bearing a Ru(<scp>ii</scp>) complex catalyst for visible-light CO ₂ reduction. Journal of Materials Chemistry A, 2022, 10, 19821-19828.	10.3	3
755	Regeneration and Reconstruction of Metal-Organic Frameworks: Opportunities for Industrial Usage. SSRN Electronic Journal, 0, , .	0.4	0
756	Characterization of Chemisorbed Species and Active Adsorption Sites in Mg–Al Mixed Metal Oxides for High-Temperature CO ₂ Capture. Chemistry of Materials, 2022, 34, 3893-3901.	6.7	10
757	Effective Dual-Functional Metal–Organic Framework (DF-MOF) as a Catalyst for the Solvent-Free Cycloaddition Reaction. Inorganic Chemistry, 2022, 61, 6725-6732.	4.0	5
758	Review on covalent organic frameworks and derivatives for electrochemical and photocatalytic CO2 reduction. Catalysis Today, 2023, 409, 103-118.	4.4	17
759	Azo-Linked Porous Organic Polymers for Selective Carbon Dioxide Capture and Metal Ion Removal. ACS Omega, 2022, 7, 14535-14543.	3.5	13
760	Design and prediction of metal organic framework-based mixed matrix membranes for CO2 capture via machine learning. Cell Reports Physical Science, 2022, 3, 100864.	5.6	29
761	Constructing the separation pathway for photo-generated carriers by diatomic sites decorated on MIL-53-NH2(Al) for enhanced photocatalytic performance. Nano Research, 0, , .	10.4	8
762	Development of soluble UiO-66 to improve photocatalytic CO2 reduction. Catalysis Today, 2023, 410, 282-288.	4.4	17
763	Porous materials for capture and catalytic conversion of CO2 at low concentration. Coordination Chemistry Reviews, 2022, 465, 214576.	18.8	74
764	Carbon Dioxide Capture at Nucleophilic Hydroxide Sites in Oxidationâ€Resistant Cyclodextrinâ€Based Metal–Organic Frameworks**. Angewandte Chemie, 2022, 134, .	2.0	1
765	Three in one: Rational engineering of multifunctional MIL-101-based ionic catalysts for carbon dioxide-epoxide cycloaddition. Microporous and Mesoporous Materials, 2022, 339, 111984.	4.4	3
766	Cobalt-based MOF nanoribbons with abundant O/N species for cycloaddition of carbon dioxide to epoxides. Journal of Colloid and Interface Science, 2022, 623, 752-761.	9.4	17

#	ARTICLE	IF	CITATIONS
767	Two–dimensional metal organic nanosheet as promising electrocatalysts for carbon dioxide reduction: A computational study. Applied Surface Science, 2022, 597, 153724.	6.1	10
768	Research progress in AIE-based crystalline porous materials for biomedical applications. Biomaterials, 2022, 286, 121583.	11.4	9
769	Carbon Dioxide Capture at Nucleophilic Hydroxide Sites in Oxidationâ€Resistant Cyclodextrinâ€Based Metal–Organic Frameworks**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	22
770	Synergetic and Cooperative Effects in Multimetallic Macrocyclic Complexes for Biological, Catalytic and Magnetic Activity. Asian Journal of Chemistry, 2022, 34, 1333-1346.	0.3	0
771	Benzene and triazine-based porous organic polymers with azo, azoxy and azodioxy linkages: a computational study. CrystEngComm, 2022, 24, 4748-4763.	2.6	4
772	Silver nanoparticles-loaded copper (II)-terephthalate framework nanocomposite as a screen-printed carbon electrode modifier for amperometric nitrate detection. Journal of Electroanalytical Chemistry, 2022, 918, 116440.	3.8	8
773	Fabricating defect-rich metal-organic frameworks via mixed-linker induced crystal transformation. Chemical Communications, 0, , .	4.1	3
774	Deep learning neural network potential for simulating gaseous adsorption in metal–organic frameworks. Materials Advances, 2022, 3, 5299-5303.	5.4	4
775	One-Pot Method Synthesis of Bimetallic MgCu-MOF-74 and Its CO ₂ Adsorption under Visible Light. ACS Omega, 2022, 7, 19920-19929.	3.5	15
776	Reverse-selective metal–organic framework materials for the efficient separation and purification of light hydrocarbons. Coordination Chemistry Reviews, 2022, 468, 214628.	18.8	48
777	Emerging Dual-Functional 2D transition metal oxides for carbon capture and Utilization: A review. Fuel, 2022, 324, 124706.	6.4	15
778	Electrochemical Applications of Metalâ^'Organic Frameworks: Overview, Challenges, and Perspectives. ACS Symposium Series, 0, , 395-453.	0.5	0
779	Metalâ^'Organic Frameworks for Photoreduction of CO ₂ . ACS Symposium Series, 0, , 173-202.	0.5	0
780	MOF: A Heterogeneous Platform for CO ₂ Capture and Catalysis. ACS Symposium Series, 0, , 315-354.	0.5	1
781	Metalâ^'Organic Frameworks for Water Treatment. ACS Symposium Series, 0, , 125-154.	0.5	1
782	Amine-functionalized porous organic polymers for carbon dioxide capture. Materials Advances, 2022, 3, 6668-6686.	5.4	17
783	Covalent Functionalization of Zif-90 for Improved Co2 Separation by Mixed Matrix Membrane. SSRN Electronic Journal, 0, , .	0.4	1
784	Construction and application of base-stable MOFs: a critical review. Chemical Society Reviews, 2022, 51, 6417-6441.	38.1	147

#	ARTICLE		IF	CITATIONS
785	Microalgal adsorption of carbon dioxide: a green approach. , 2022, , 227-246.			1
786	Chalcopyrite UiO-67 metal-organic framework composite for CO2 fixation as cyclic carbonates. Journal of Environmental Chemical Engineering, 2022, 10, 108061.		6.7	12
787	Synthesis of Hierarchically Ordered Porous Silica Materials for CO2 Capture: The Role of Pore Structure and Functionalized Amine. Inorganics, 2022, 10, 87.		2.7	5
788	Potential Applications of Nickelâ€Based Metalâ€Organic Frameworks and their Derivatives. Chemic Record, 2022, 22, .	cal	5.8	38
789	CO ₂ Capture by Hybrid Ultramicroporous TIFSIXâ€3â€Ni under Humid Conditions Us Nonâ€Equilibrium Cycling. Angewandte Chemie - International Edition, 2022, 61, .	ing	13.8	17
790	Enhanced visible-light-driven heterogeneous photocatalytic CO2 methanation using a Cu2O@Cu-MOF-74 thin film. ChemPhysMater, 2023, 2, 126-133.		2.8	4
791	CO2 Capture by Hybrid Ultramicroporous TIFSIXâ€3â€Ni under Humid Conditions Using Nonâ€Equ Cycling. Angewandte Chemie, 0, , .	uilibrium	2.0	3
792	Efficient conversion of CO2 into cyclic carbonates under atmospheric by halogen and metal-free poly(ionic liquid)s. Chinese Journal of Chemical Engineering, 2023, 55, 202-211.		3.5	12
793	N-doped nanocarbon embedded in hierarchically porous metal-organic frameworks for highly efficient CO2 fixation. Science China Chemistry, 2022, 65, 1411-1419.		8.2	15
794	Cu2-cluster-based MOF with open metal sites and Lewis basic sites: Construction, CO2 adsorption fixation. Journal of Solid State Chemistry, 2022, 313, 123332.	and	2.9	2
795	An Excellent 3d Cu-Mof with Exposed Lewis Acidic Cu Sites for Co2 Adsorption and Catalytic Fixati Via Cyclic Carbonate Synthesis. SSRN Electronic Journal, 0, , .	on	0.4	0
796	The unique opportunities of mechanosynthesis in green and scalable fabrication of metal–organi frameworks. Journal of Materials Chemistry A, 2022, 10, 15332-15369.	ic	10.3	9
797	Evaluating solvothermal and mechanochemical routes towards the metal–organic framework Mg ₂ (<i>m</i> -dobdc). CrystEngComm, 2022, 24, 7292-7297.		2.6	3
798	Recent advances in metal-organic frameworks for catalytic CO2 hydrogenation to diverse products Nano Research, 2022, 15, 10110-10133.	5.	10.4	28
799	Electrochemical CO ₂ reduction to C ₂₊ products using Cu-based electrocatalysts: A review. , 2022, 1, e9120021.			112
800	Highly Efficient and Direct Ultralong Allâ€Phosphorescence from Metal–Organic Framework Pho Glasses. Angewandte Chemie - International Edition, 2022, 61, .	tonic	13.8	66
801	Zeolite NPOâ€Type Azolate Frameworks. Angewandte Chemie, 0, , .		2.0	1
802	Ti(IV)-MOF with Specific Facet–Ag Nanoparticle Composites for Enhancing the Photocatalytic Ac and Selectivity of CO ₂ Reduction. ACS Applied Materials & Interfaces, 2022, 14, 32350-32359.	ctivity	8.0	26

#	Article	IF	CITATIONS
803	Highly Efficient and Direct Ultralong Allâ€Phosphorescence from Metalâ^'Organic Framework Photonic Glasses. Angewandte Chemie, 0, , .	2.0	4
804	Zeolite NPOâ€Type Azolate Frameworks. Angewandte Chemie - International Edition, 2022, 61, .	13.8	11
805	Anion-regulation engineering toward Cu/In/MOF bimetallic electrocatalysts for selective electrochemical reduction of CO2 to CO/formate. Materials Reports Energy, 2022, 2, 100139.	3.2	6
806	Polyimide/Cu-doped TiO2 Janus membranes for direct capture and photocatalytic reduction of carbon dioxide from air. Chemical Engineering Journal, 2022, 450, 138008.	12.7	20
807	Single-crystal structure determination of nanosized metal–organic frameworks by three-dimensional electron diffraction. Nature Protocols, 2022, 17, 2389-2413.	12.0	28
808	Hydrosilylative Reduction of CO ₂ to Formate and Methanol Using a Cobalt Porphyrinâ€Based Porous Organic Polymer. ChemCatChem, 2022, 14, .	3.7	4
809	Mof@Sugarcane and Peanut Shell Magnetic Composite for Greenhouse Gases Capture by an Adsorption Mechanism. SSRN Electronic Journal, 0, , .	0.4	0
810	Precise Introduction of Single Vanadium Site into Indium–Organic Framework for CO ₂ Capture and Photocatalytic Fixation. Inorganic Chemistry, 2022, 61, 14131-14139.	4.0	13
811	sp arbon Incorporated Conductive Metalâ€Organic Framework as Photocathode for Photoelectrochemical Hydrogen Generation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	17
812	Eine spâ€Kohlenstoffhaltige Leitfäige Metallorganische Gerüstverbindung als Photokathode für die Photoelektrochemische Wasserstoffentwicklung. Angewandte Chemie, 2022, 134, .	2.0	0
813	Upcycling Mask Waste to Carbon Capture Sorbents: A Combined Experimental and Computational Study. , 2023, 1, 165-174.		12
814	Impact of urea-based deep eutectic solvents on Mg-MOF-74 morphology and sorption properties. Microporous and Mesoporous Materials, 2022, 343, 112148.	4.4	5
815	The role of surface and structural functionalisation on graphene adsorbent nanomaterial for CO2 adsorption application: Recent progress and future prospects. Renewable and Sustainable Energy Reviews, 2022, 167, 112840.	16.4	11
816	CoN2O2 sites in carbon nanosheets by template-pyrolysis of COFs for CO2RR. Chemical Engineering Journal, 2022, 450, 138427.	12.7	14
817	The mechanism for in-situ conversion of captured CO2 by CaO to CO in presence of H2 during calcium looping process based on DFT study. Fuel, 2022, 329, 125402.	6.4	11
818	Recent progress on adsorption of cadmium ions from water systems using metal-organic frameworks (MOFs) as an efficient class of porous materials. Environmental Research, 2022, 214, 114113.	7.5	65
819	Two-dimensional metal-organic frameworks: From synthesis to biomedical, environmental, and energy conversion applications. Coordination Chemistry Reviews, 2022, 473, 214817.	18.8	22
820	Regeneration and reconstruction of metal-organic frameworks: Opportunities for industrial usage. Coordination Chemistry Reviews, 2022, 472, 214776.	18.8	15

#	Article	IF	CITATIONS
821	Enhanced transformation of CO ₂ over microporous Ce-doped Zr metal–organic frameworks. RSC Advances, 2022, 12, 26307-26318.	3.6	6
822	Constructing a built-in electric field by anchoring highly dispersed Zn single atoms on UiO-66-NH ₂ for efficient CO ₂ photoreduction. Journal of Materials Chemistry A, 2022, 10, 23666-23674.	10.3	14
823	Analysing the role of anions in the synthesis of catalytically active urea-based MOFs. Dalton Transactions, 2022, 51, 16316-16324.	3.3	3
824	"Uncapped―metal–organic framework (MOF) dispersions driven by O ₂ plasma towards superior oxygen evolution electrocatalysis. Journal of Materials Chemistry A, 2022, 10, 20813-20818.	10.3	5
825	Metal–organic frameworks and MOF-derived materials for electrochemical CO2 reduction. , 2022, , 95-116.		0
826	Chemical conversion of metal–organic frameworks into hemi-covalent organic frameworks. Inorganic Chemistry Frontiers, 2022, 9, 4776-4784.	6.0	4
827	Discovery of a low-temperature Fe ₂ O ₃ reduction route to Fe with carbon <i>via</i> Fe-MOF-74 decomposition. Chemical Communications, 2022, 58, 11296-11299.	4.1	1
828	Construction of Acylamide-Functionalized Mofs for Efficient Catalysis on the Conversion of Co2. SSRN Electronic Journal, 0, , .	0.4	0
829	Computational investigation of multifunctional MOFs for adsorption and membrane-based separation of CF ₄ /CH ₄ , CH ₄ /H ₂ , CH ₄ /N ₂ , and N ₂ /H ₂ mixtures. Molecular Systems Design and Engineering, 2022, 7, 1707-1721.	3.4	4
830	Novel bimetallic MOF derived N-doped carbon supported Ru nanoparticles for efficient reduction of nitro aromatic compounds and rhodamine B. New Journal of Chemistry, 2022, 46, 17004-17015.	2.8	4
831	Electrocatalytic Reduction of Carbon Dioxide to High-Value Multicarbon Products with Metal–Organic Frameworks and Their Derived Materials. , 2022, 4, 2058-2079.		35
832	Extremely Stable Thoriumâ€MOF Assembly of Tetraphenylethylene Derivative With Tunable AIE Property and Highly Selective Detection of Nitro Aromatic Compounds. Advanced Materials Interfaces, 2022, 9, .	3.7	8
834	Self-Assembly Bifunctional Tetranuclear Ln ₂ Ni ₂ Clusters: Magnetic Behaviors and Highly Efficient Conversion of CO ₂ under Mild Conditions. Inorganic Chemistry, 2022, 61, 15098-15107.	4.0	15
835	An anthracene-9-carboxylic acid-based [Cu ₂₀] cluster templated by a bromine anion for heterogeneous catalytic chemical fixation of carbon dioxide. Journal of Materials Chemistry A, O, , .	10.3	1
836	Hydrophobicized cum amine-grafted robust cellulose-based aerogel for CO2 capture. Biomass Conversion and Biorefinery, 0, , .	4.6	3
837	Interfacial engineering of SnO2/Bi2O2CO3 heterojunction on heteroatoms-doped carbon for high-performance CO2 electroreduction to formate. Nano Research, 2023, 16, 2278-2285.	10.4	12
838	Hexagonal Cages and Lewis Acid–Base Sites in a Metal–Organic Framework for Synergistic CO ₂ Capture and Conversion under Mild Conditions. Inorganic Chemistry, 2022, 61, 17937-17942.	4.0	5
839	Acetic acid-assisted polyhydroxy acid modification of a zirconium-based MOF for synergistic CO2 fixation. Journal of Environmental Chemical Engineering, 2022, 10, 108739.	6.7	9

		CITATION RI	EPORT	
#	Article		IF	CITATIONS
840	Hierarchical ZnO arrays engineered hollow carbon nanofibers derived from metal-orgar frameworks for flexible supercapacitors. Journal of Power Sources, 2022, 551, 232183		7.8	9
841	Mixed-matrix membranes based on novel hydroxamate metal–organic frameworks w two-dimensional layers for CO2/N2 separation. Separation and Purification Technology 122476.		7.9	26
842	Facile synthesis behavior and CO2 adsorption capacities of Zn-based metal organic fra prepared via a microchannel reactor. Chemical Engineering Journal, 2023, 454, 140078		12.7	2
843	Insights into CO2 capture in porous carbons from machine learning, experiments and r simulation. Separation and Purification Technology, 2023, 306, 122521.	nolecular	7.9	19
844	Triazole Appended Metal–Organic Framework for CO2 Fixation as Cyclic Carbonates Solvent-Free Ambient Conditions. Catalysis Letters, 2023, 153, 2883-2891.	Under	2.6	2
845	Computer simulation of the early stages of self-assembly and thermal decomposition c of Chemical Physics, 2022, 157, .	f ZIF-8. Journal	3.0	7
846	Carbon Capture Beyond Amines: CO ₂ Sorption at Nucleophilic Oxygen Sit ChemNanoMat, 2023, 9, .	es in Materials.	2.8	1
847	Simultaneous amino-functionalization and Fe-doping modification of ZIF-8 for efficient adsorption and cycloaddition reaction. Microporous and Mesoporous Materials, 2023,		4.4	8
848	Rational design and engineering of efficient metal organic framework for visible light-d photocatalytic carbon-di-oxide reduction. Inorganica Chimica Acta, 2023, 546, 121287	riven '.	2.4	4
849	Aqueous Two-Phase Interfacial Assembly of COF Membranes for Water Desalination. N Letters, 2022, 14, .	ano-Micro	27.0	29
850	Recent progress in metal-organic frameworks (MOFs) for CO2 capture at different pres of Environmental Chemical Engineering, 2022, 10, 108930.	ssures. Journal	6.7	28
851	Construction of Acylamide-functionalized MOFs for efficient catalysis on the conversio Molecular Catalysis, 2022, 533, 112786.	n of CO2.	2.0	2
852	Highly Water-Stable Zn ₅ Cluster-Based Metal–Organic Framework for E Storage and Organic Dye Adsorption. Inorganic Chemistry, 2022, 61, 19642-19648.	:fficient Gas	4.0	7
853	Two-Dimensional (2D) TM-Tetrahydroxyquinone Metal–Organic Framework for Selec Electrocatalysis: A DFT Investigation. Nanomaterials, 2022, 12, 4049.	tive CO2	4.1	4
854	High-Selective CO2 Capture in Amine-Decorated Al-MOFs. Nanomaterials, 2022, 12, 40)56.	4.1	5
855	Conducting Polymer Based Ammonia and Hydrogen Sulfide Chemical Sensors and Thei Detecting Food Spoilage. Advanced Materials Technologies, 2023, 8, .	r Suitability for	5.8	11
856	Metal–organic framework-derived advanced oxygen electrocatalysts as air-cathodes batteries: recent trends and future perspectives. Materials Horizons, 2023, 10, 745-78		12.2	24
857	Tunning the optical properties of a photocatalytic metal–organic framework by mea modelling. New Journal of Chemistry, 2023, 47, 3430-3444.	ns of molecular	2.8	2

#	Article	IF	CITATIONS
858	2-Mercaptoimidazole selectively etching and thiol-functionalized ZIF-8 metal–organic framework to serve as a multifaceted platform for radical scavenging and Au loading. Materials Today Chemistry, 2023, 27, 101259.	3.5	2
859	Crown ether-based covalent organic frameworks for CO ₂ fixation. New Journal of Chemistry, 2023, 47, 2040-2044.	2.8	7
860	Organic molecules involved in Cu-based electrocatalysts for selective CO2 reduction to C2+ products. Materials Today Chemistry, 2023, 27, 101328.	3.5	5
861	Exploration of metal organic frameworks and covalent organic frameworks for energy-related applications. Coordination Chemistry Reviews, 2023, 477, 214968.	18.8	77
862	An overview of the use of water-stable metal-organic frameworks in the removal of cadmium ion. Journal of Environmental Chemical Engineering, 2023, 11, 109131.	6.7	13
863	Tailored interfacial microenvironment of mixed matrix membranes based on deep eutectic solvents for efficient CO2 separation. Separation and Purification Technology, 2023, 307, 122753.	7.9	6
864	DFT and COSMO-RS studies on dicationic ionic liquids (DILs) as potential candidates for CO ₂ capture: the effects of alkyl side chain length and symmetry in cations. RSC Advances, 2022, 12, 35418-35435.	3.6	2
865	Multiscale Computational Approaches toward the Understanding of Materials. Advanced Theory and Simulations, 2023, 6, .	2.8	4
866	Permselective MOF-Based Gas Diffusion Electrode for Direct Conversion of CO ₂ from Quasi Flue Gas. ACS Energy Letters, 2023, 8, 107-115.	17.4	13
867	Reticular Chemistry with Art: A Case Study of Olympic Rings-Inspired Metal–Organic Frameworks. Journal of the American Chemical Society, 2022, 144, 22170-22177.	13.7	12
868	Seeding Layer Approach for the Synthesis of Co-ZIF-90 Thin Films of Optical Quality. Crystal Growth and Design, 2022, 22, 7008-7020.	3.0	2
869	Unconventional CO ₂ -Binding and Catalytic Activity of Urea-Derived Histidines. ACS Sustainable Chemistry and Engineering, 2022, 10, 15813-15823.	6.7	5
870	Synergistic Porosity and Charge Effects in a Supramolecular Porphyrin Cage Promote Efficient Photocatalytic CO ₂ Reduction**. Angewandte Chemie, 0, , .	2.0	0
871	Sustainable energy harvesting from post-combustion CO2 capture using amine-functionalized solvents. Energy, 2023, 267, 126532.	8.8	16
872	Metalâ€Organic Frameworks for Greenhouse Gas Applications. Small, 2023, 19, .	10.0	17
873	Improving CO ₂ capture in porous 3D-graphene by cationic nitrogen doping. Journal of Applied Physics, 2022, 132, 214901.	2.5	1
875	Facile fabrication of metalâ€organic frameworks with peroxidaseâ€like activity for the colorimetric detection of <i>Alicyclobacillus acidoterrestris</i> . Food Frontiers, 0, , .	7.4	0
876	Computational Characterization of Zr-Oxide MOFs for Adsorption Applications. ACS Applied Materials & amp; Interfaces, 2022, 14, 56938-56947.	8.0	10

#	Article	IF	CITATIONS
877	Synergistic Porosity and Charge Effects in a Supramolecular Porphyrin Cage Promote Efficient Photocatalytic CO ₂ Reduction**. Angewandte Chemie - International Edition, 2023, 62, .	13.8	15
878	Kovinsko-organski porozni materiali – Quo vadis?. Alternator, 0, , .	0.0	0
879	Carbon neutral via catalytic transformation of CO2 into cyclic carbonates by an imidazolium-based ionic zeolitic imidazolate frameworks. Applied Surface Science, 2023, 614, 156250.	6.1	7
880	Direct CO ₂ Capture by Alkaliâ€Dissolved Cellulose and Sequestration in Building Materials and Artificial Reef Structures. Advanced Materials, 2023, 35, .	21.0	8
881	Porous framework materials for energy & environment relevant applications: A systematic review. Green Energy and Environment, 2024, 9, 217-310.	8.7	12
882	Highly efficient and tunable catalytic addition of CO2 with epoxides over 2D Co-TCPP nanosheet at ambient condition. Molecular Catalysis, 2023, 536, 112901.	2.0	0
883	Effective enhancement of performances on photo-assisted dye degradation using a Zn coordination polymer and its post-modified Cu/Zn bimetallic analogue under natural environments. Journal of Environmental Chemical Engineering, 2023, 11, 109258.	6.7	3
884	Effect of Spatial Heterogeneity on the Unusual Uptake Behavior of Multivariate-Metal–Organic Frameworks. Journal of the American Chemical Society, 2023, 145, 3101-3107.	13.7	4
885	Metal–organic frameworks embedded with nanoparticles for CO2 capture and conversion. , 2023, , 261-275.		0
886	Functional wood for carbon dioxide capture. Cell Reports Physical Science, 2023, 4, 101269.	5.6	1
887	Mixing ligands to enhance gas uptake in polyMOFs. Molecular Systems Design and Engineering, 0, , .	3.4	2
888	Tuning the topology of a 2D metal–organic framework from 2D to 3D using modulator assisted synthesis. CrystEngComm, 2023, 25, 1486-1494.	2.6	1
889	A robust and porous titanium metal–organic framework for gas adsorption, CO ₂ capture and conversion. Dalton Transactions, 2023, 52, 3896-3906.	3.3	3
890	Highly (2 2 2)-oriented flexible hollow fiber-supported metal-organic framework membranes for ultra-permeable and selective H2/CO2 separation. Chemical Engineering Journal, 2023, 461, 141976.	12.7	6
891	Roadmap to the sustainable synthesis of polymers: From the perspective of CO2 upcycling. Progress in Materials Science, 2023, 135, 101103.	32.8	5
892	Metal-organic frameworks-based advanced catalysts for anthropogenic CO2 conversion toward sustainable future. Fuel Processing Technology, 2023, 244, 107705.	7.2	8
893	Recent advances in computational modeling of MOFs: From molecular simulations to machine learning. Coordination Chemistry Reviews, 2023, 484, 215112.	18.8	22
894	In-situ grafted amine functionalized metal-organic frameworks for CO2 capture: Preparation and bench-scale performance evaluation. Materials Today Communications, 2023, 35, 105927.	1.9	0

#	Article	IF	CITATIONS
895	Selective adsorption of volatile organic compounds in metal-organic frameworks (MOFs). Coordination Chemistry Reviews, 2023, 485, 215119.	18.8	24
896	Reduction of energy consumption in post-combustion carbon capture process via amine-functionalized metal-organic frameworks. Journal of Environmental Chemical Engineering, 2023, 11, 109723.	6.7	2
897	Dynamic structural and microstructural responses of a metal–organic framework type material to carbon dioxide under dual gas flow and supercritical conditions. Journal of Applied Crystallography, 2023, 56, 222-236.	4.5	2
898	Large-scale synthesis of low-cost 2D metal-organic frameworks for highly selective photocatalytic CO2 reduction. Nano Research, 2023, 16, 7756-7760.	10.4	9
899	Bimetallic Metal-Organic Framework Derived Nanocatalyst for CO2 Fixation through Benzimidazole Formation and Methanation of CO2. Catalysts, 2023, 13, 357.	3.5	10
900	Catalyst controlled synthesis of porous organic polymers and their SWCNT composites for high performance supercapacitor applications. Reactive and Functional Polymers, 2023, 185, 105534.	4.1	2
901	Influence of divalent metal ions on CO2 valorization at room temperature by isostructural MOF-74 materials. Journal of Environmental Chemical Engineering, 2023, 11, 109497.	6.7	2
902	Rational construction of noble metal-free Cu(I) anchored Zr-MOF for efficient fixation of CO2 from dilute gas at ambient conditions. Microporous and Mesoporous Materials, 2023, 351, 112494.	4.4	7
903	Application of a Novel Au@ZIF-8 Composite in the Detection of Bisphenol A by Surface-Enhanced Raman Spectroscopy. Foods, 2023, 12, 813.	4.3	2
904	A Simple, Transition Metal Catalystâ€Free Method for the Design of Complex Organic Building Blocks Used to Construct Porous Metal–Organic Frameworks. Angewandte Chemie, 2023, 135, .	2.0	0
905	A Simple, Transition Metal Catalystâ€Free Method for the Design of Complex Organic Building Blocks Used to Construct Porous Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2023, 62, .	13.8	2
906	Bimetallic Be/Cu Pillared-Layered Porous Coordination Polymer for Selective CO ₂ Removal via Adsorption. Crystal Growth and Design, 2023, 23, 1888-1897.	3.0	Ο
907	Promotion of MXene (Ti3C2Tx) as a robust electrocatalyst for oxygen evolution reaction via active sites of ZIF-67 - In situ mechanism investigations. International Journal of Hydrogen Energy, 2023, 48, 18696-18707.	7.1	5
908	Insertion of CO ₂ in metal ion-doped two-dimensional covalent organic frameworks. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	5
909	[HDBU]Br@P-DD as Porous Organic Polymer-Supported Ionic Liquid Catalysts for Chemical Fixation of CO ₂ into Cyclic Carbonates. ACS Sustainable Chemistry and Engineering, 2023, 11, 4248-4257.	6.7	9
910	How Segmental Dynamics and Mesh Confinement Determine the Selective Diffusivity of Molecules in Cross-Linked Dense Polymer Networks. ACS Central Science, 2023, 9, 508-518.	11.3	9
911	A review of piezoelectric MEMS sensors and actuators for gas detection application. , 2023, 18, .		15
912	Near-Infrared Light Driven ZnIn2S4-Based Photocatalysts for Environmental and Energy Applications: Progress and Perspectives. Molecules, 2023, 28, 2142.	3.8	6

#	Article	IF	CITATIONS
913	Stereospecific Single-Pot Route to Chiral Imidazolidines from Aziridines Using a 2D Cu Metal–Organic Framework. Inorganic Chemistry, 2023, 62, 4540-4549.	4.0	0
914	Quantum Informed Machine-Learning Potentials for Molecular Dynamics Simulations of CO ₂ 's Chemisorption and Diffusion in Mg-MOF-74. ACS Nano, 2023, 17, 5579-5587.	14.6	13
915	Theoretical Screening and experimental validation of M3(2,3,6,7,10,11-hexahydroxytriphenylene)2 for electrocatalytic CO2 reduction. Molecular Catalysis, 2023, 540, 113033.	2.0	5
917	Pure Silica with Ordered Silanols for Propylene/Propane Adsorptive Separation Unraveled by Three-Dimensional Electron Diffraction. Journal of the American Chemical Society, 2023, 145, 6853-6860.	13.7	7
918	A generalizable strategy based on the rule of "like dissolves like―to construct porous liquids with low viscosity for CO2 capture. Nano Research, 2023, 16, 10369-10380.	10.4	11
919	Bifunctional Gas Diffusion Electrode Enables In Situ Separation and Conversion of CO ₂ to Ethylene from Dilute Stream. Advanced Materials, 2023, 35, .	21.0	2
920	Monomer Symmetry-Regulated Defect Engineering: In Situ Preparation of Functionalized Covalent Organic Frameworks for Highly Efficient Capture and Separation of Carbon Dioxide. ACS Applied Materials & Interfaces, 2023, 15, 16975-16983.	8.0	7
921	Water-stable MOFs and hydrophobically encapsulated MOFs for CO2 capture from ambient air and wet flue gas. Materials Today, 2023, 65, 207-226.	14.2	18
922	Integrating Molecular Simulations with Machine Learning Guides in the Design and Synthesis of [BMIM][BF ₄]/MOF Composites for CO ₂ /N ₂ Separation. ACS Applied Materials & Interfaces, 2023, 15, 17421-17431.	8.0	10
923	Metal Oxide-Derived MOF-74 Polymer Composites through Pickering Emulsion-Templating: Interfacial Recrystallization, Hierarchical Architectures, and CO ₂ Capture Performances. ACS Applied Materials & Interfaces, 2023, 15, 18354-18361.	8.0	7
925	Computational Screening of Twoâ€Dimensional Metalâ€Organic Frameworks as Efficient Singleâ€Atom Catalysts for Oxygen Reduction Reaction. Chemistry - A European Journal, 2023, 29, .	3.3	2
926	A stable nanotubular metal–organic framework as heterogeneous catalyst for efficient chemical fixation of CO ₂ . Inorganic Chemistry Frontiers, 2023, 10, 3007-3014.	6.0	2
927	CO ₂ Activation on Cu/TiO ₂ Nanostructures: Importance of Dual Binding Site. Chemistry - A European Journal, 2023, 29, .	3.3	2
928	Preserving Macroporosity in Type III Porous Liquids. Angewandte Chemie - International Edition, 2023, 62, .	13.8	8
929	PreservingÂMacroporosityÂin Type IIIÂPorous Liquids. Angewandte Chemie, 0, , .	2.0	1
930	Metallacycle/metallacage-cored supramolecular networks. Progress in Polymer Science, 2023, 141, 101680.	24.7	4
931	Construction of Water Vapor Stable Ultramicroporous Copper-Based Metal–Organic Framework for Efficient CO2 Capture. Processes, 2023, 11, 1387.	2.8	0
932	Strategic CO ₂ Storage Material toward a Selective Control of Calcium Carbonate Polymorphs as Additives in Ester Oil Reinforcement. ACS Engineering Au, 0, , .	5.1	Ο

#	Article	IF	CITATIONS
933	Bioinspired Design of a Giant [Mn ₈₆] Nanocageâ€Based Metalâ€Organic Framework with Specific CO ₂ Binding Pockets for Highly Selective CO ₂ Separation. Angewandte Chemie, 2023, 135, .	2.0	0
934	Self-recovering passive cooling utilizing endothermic reaction of NH4NO3/H2O driven by water sorption for photovoltaic cell. Nature Communications, 2023, 14, .	12.8	6
935	Implementation of a Core–Shell Design Approach for Constructing MOFs for CO ₂ Capture. ACS Applied Materials & Interfaces, 2023, 15, 23337-23342.	8.0	2
936	Guiding Principles for the Rational Design of Hybrid Materials: Use of DFT Methodology for Evaluating Nonâ€Covalent Interactions in a Uranyl Tetrahalide Model System. Angewandte Chemie, 2023, 135, .	2.0	2
937	Guiding Principles for the Rational Design of Hybrid Materials: Use of DFT Methodology for Evaluating Nonâ€Covalent Interactions in a Uranyl Tetrahalide Model System. Angewandte Chemie - International Edition, 2023, 62, .	13.8	6
938	Design and Synthesis of N-Doped Porous Carbons for the Selective Carbon Dioxide Capture under Humid Flue Gas Conditions. Polymers, 2023, 15, 2475.	4.5	3
939	Carboxamide functionality grafted entangled Co(<scp>ii</scp>) framework as a unique hydrogen-bond-donor catalyst in solvent-free tandem deacetalization-Knoevenagel condensation with pore-fitting-mediated size-selectivity. Dalton Transactions, 2023, 52, 8661-8669.	3.3	2
940	<i>Closo</i> â€{B ₁₂ H ₁₂] ^{2â^'} Derivatives with Polar Groups As Promising Building Blocks in Metalâ€Organic Frameworks for Gas Separation. ChemSusChem, 2023, 16, .	6.8	3
941	Deep eutectic solvent-modified mesoporous silica for CO2 capture: A new generation of hybrid sorbents. Journal of Molecular Liquids, 2023, 384, 122203.	4.9	4
942	Bioinspired Design of a Giant [Mn ₈₆] Nanocageâ€Based Metalâ€Organic Framework with Specific CO ₂ Binding Pockets for Highly Selective CO ₂ Separation. Angewandte Chemie - International Edition, 2023, 62, .	13.8	2
943	Recent progress on integrated CO2 capture and electrochemical upgrading. , 2023, 2, 100006.		2
944	Liquidâ€inâ€Aerogel Porous Composite Allows Efficient CO ₂ Capture and CO ₂ /N ₂ Separation. Small, 2023, 19, .	10.0	3
945	From metal-organic frameworks (MOFs) to metal-doped MOFs (MDMOFs): Current and future scenarios in environmental catalysis and remediation applications. Microchemical Journal, 2023, 192, 108954.	4.5	11
946	Novel Core/Shell Nylon 6,6/La-TMA MOF Electrospun Nanocomposite Membrane and CO ₂ Capture Assessments of the Membrane and Pure La-TMA MOF. ACS Omega, 2023, 8, 22742-22751.	3.5	1
947	Role of microbial carbon capture cells in carbon sequestration and energy generation during wastewater treatment: A sustainable solution for cleaner environment. International Journal of Hydrogen Energy, 2024, 52, 799-820.	7.1	1
948	Amine functionalized lignin-based mesoporous cellular carbons for CO2 capture. Fuel, 2023, 351, 128886.	6.4	5
949	Effect of Surface Organo-Silanization on SBA-15 Mesoporous Silicas in CO ₂ Adsorption Processes: Design, Synthesis, and Computational Studies. Industrial & Engineering Chemistry Research, 2023, 62, 11001-11015.	3.7	3
950	Chemistry of CO2-philic materials in enzyme-based hybrid interfacial systems: Implications, strategies and applications. Fuel Processing Technology, 2023, 250, 107905.	7.2	1

#	Article	IF	CITATIONS
951	The role of morphology on the electrochemical CO2 reduction performance of transition metal-based catalysts. Journal of Energy Chemistry, 2023, 85, 198-219.	12.9	11
952	Continuous Covalent Organic Frameworks Membranes: From Preparation Strategies to Applications. Small, 2023, 19, .	10.0	10
953	Boosting Lean Electrolyte Lithium–Sulfur Battery Performance with Transition Metals: A Comprehensive Review. Nano-Micro Letters, 2023, 15, .	27.0	15
954	Nano-engineered 2D Materials for CO2 Capture. Springer Series in Materials Science, 2023, , 409-439.	0.6	0
955	Porous carbon materials for CO2 capture, storage and electrochemical conversion. Materials Reports Energy, 2023, 3, 100199.	3.2	4
956	Engineering Metal-Organic-Framework (MOF)-Based Membranes for Gas and Liquid Separation. Membranes, 2023, 13, 480.	3.0	6
957	Porosity as a Design Element for Developing Catalytic Molecular Materials for Electrochemical and Photochemical Carbon Dioxide Reduction. Advanced Materials, 2023, 35, .	21.0	4
958	Hydrogen and oxygen evolution reactions on single atom catalysts stabilized by a covalent organic framework. Energy Advances, 2023, 2, 1022-1029.	3.3	4
959	Silver-Doped Zeolitic Imidazolate Framework (Ag@ZIF-8): An Efficient Electrocatalyst for CO2 Conversion to Syngas. Catalysts, 2023, 13, 867.	3.5	2
960	The current scope and stand of carbon capture storage and utilization â^¼ A comprehensive review. Case Studies in Chemical and Environmental Engineering, 2023, 8, 100368.	6.1	10
961	Continuous carbon capture in an electrochemical solid-electrolyte reactor. Nature, 2023, 618, 959-966.	27.8	27
962	CO2 capture from wet flue gas using a water-stable and cost-effective metal-organic framework. Cell Reports Physical Science, 2023, 4, 101470.	5.6	6
963	Atomic layer deposition meets metal–organic frameworks. Progress in Materials Science, 2023, 138, 101159.	32.8	5
964	Simulation study of the effects of polymer network dynamics and mesh confinement on the diffusion and structural relaxation of penetrants. Journal of Chemical Physics, 2023, 159, .	3.0	4
965	Template free synthesis of CuO nanocomposite for catalytic hydrogenation of CO2. Journal of Environmental Management, 2023, 344, 118592.	7.8	0
966	Three dimensional cyclic trinuclear units based metal–covalent organic frameworks for electrochemical CO ₂ RR. Chemical Communications, 2023, 59, 9615-9617.	4.1	3
967	Zirconium fumarate-based sorbents for CO2 capture: synthesis, characterization and performance evaluation. Bulletin of Materials Science, 2023, 46, .	1.7	0
968	Exploitation of pomelo peel developing porous biochar by N, P co-doping and KOH activation for efficient CO2 adsorption. Separation and Purification Technology, 2023, 324, 124595.	7.9	6

#	Article	IF	CITATIONS
969	CO2 adsorption. , 2023, , 133-161.		0
970	Co-grafting of polyethyleneimine on mesocellular silica foam for highly efficient CO2 capture. Separation and Purification Technology, 2023, 325, 124608.	7.9	5
971	Confining charge-transfer complex in a metal-organic framework for photocatalytic CO2 reduction in water. Nature Communications, 2023, 14, .	12.8	19
972	Incorporating Catalytic Units into Nanomaterials: Rational Design of Multipurpose Catalysts for CO ₂ Valorization. Accounts of Chemical Research, 2023, 56, 2225-2240.	15.6	18
973	Robust and highly efficient electrocatalyst based on ZIF-67 and Ni2+ dimers for oxygen evolution reaction: In situ mechanistic insight. Journal of Energy Chemistry, 2023, 86, 263-276.	12.9	2
974	Suitability of a diamine functionalized metal–organic framework for direct air capture. Chemical Science, 2023, 14, 9380-9388.	7.4	4
975	Scalable Biomass-Derived Hydrogels for Sustainable Carbon Dioxide Capture. Nano Letters, 2023, 23, 9697-9703.	9.1	1
976	Integrated 3D pore architecture design of bio-based engineered catalysts and adsorbents: preparation, chemical doping, and environmental applications. Environmental Science Advances, 2023, 2, 1167-1188.	2.7	1
977	Machine learning-assisted selection of adsorption-based carbon dioxide capture materials. Journal of Environmental Chemical Engineering, 2023, 11, 110732.	6.7	1
978	Theoretical Prediction of Electrocatalytic Reduction of CO ₂ Using a 2D Catalyst Composed of 3 d Transition Metal and Hexaamine Dipyrazino Quinoxaline. Chemistry - A European Journal, 2023, 29, .	3.3	0
979	Recent studies on aqueous-phase reforming: Catalysts, reactors, hybrid processes and techno-economic analysis. International Journal of Hydrogen Energy, 2023, , .	7.1	0
980	A computational investigation on the roles of binding affinity and pore size on CO2/N2 overall adsorption process performance of MOFs through modifying MIL-101 structure. Sustainable Materials and Technologies, 2023, 38, e00701.	3.3	0
981	Photo/electrocatalytic Reduction of CO ₂ to C2+ Products on MOFâ€Based Catalysts. ChemNanoMat, 2023, 9, .	2.8	0
982	Transmission Porosimetry Study on Highâ€quality Zrâ€fumâ€MOF Thin Films. Chemistry - an Asian Journal, 2023, 18, .	3.3	0
983	Reticular Chemistry for Optical Sensing of Anions. International Journal of Molecular Sciences, 2023, 24, 13045.	4.1	0
984	Screening and Experimental Validation for Selection of Open Metal Sites Metal-Organic Framework (M-CPO-27, M = Co, Mg, Ni and Zn) to Capture CO2. Separations, 2023, 10, 434.	2.4	0
985	Recent research progress of metal-organic frameworks (MOFs) based catalysts for CO2 cycloaddition reaction. Molecular Catalysis, 2023, 550, 113608.	2.0	1
986	Platinum-Assisted Bimetallic Ru–Eu/Pr MOFs for Photocatalytic H ₂ Evolution from Water Splitting. ACS Applied Nano Materials, 2023, 6, 16826-16836.	5.0	0

#	Article	IF	CITATIONS
987	Unlocking the Separation Capacities of a 3D-Iron-Based Metal Organic Framework Built from Scarce Fe ₄ O ₂ Core for Upgrading Natural Gas. Chemistry of Materials, 2023, 35, 8261-8271.	6.7	1
988	Metal-Organic Frame Works (MOFs) for Smart Applications. , 2023, , 144-181.		0
989	Use of CO2 for electrosynthesis. Current Opinion in Electrochemistry, 2023, 42, 101392.	4.8	0
990	Challenges and Opportunities: Metal–Organic Frameworks for Direct Air Capture. Advanced Functional Materials, 0, , .	14.9	4
991	Shapeâ€Memory Effect Enabled by Ligand Substitution and CO ₂ Affinity in a Flexible SIFSIX Coordination Network. Angewandte Chemie, 2023, 135, .	2.0	0
992	Shapeâ€Memory Effect Enabled by Ligand Substitution and CO ₂ Affinity in a Flexible SIFSIX Coordination Network. Angewandte Chemie - International Edition, 2023, 62, .	13.8	0
993	Ammonia-assisted ZnO support-induced conversion approach to prepare oriented Zn2(blm)4 membrane for hydrogen separation. Journal of Membrane Science, 2024, 689, 122128.	8.2	0
994	An Ongoing Futuristic Career of Metal–Organic Frameworks and Ionic Liquids, A Magical Gateway to Capture CO ₂ ; A Critical Review. Energy & Fuels, 2023, 37, 15394-15428.	5.1	1
995	Dataâ€Driven Analysis of Amineâ€Based Sorbents for CO ₂ Removal from the Atmosphere. Chemical Engineering and Technology, 0, , .	1.5	1
996	Relative Local Electron Density Tuning in Metalâ€Covalent Organic Frameworks for Boosting CO ₂ Photoreduction. Angewandte Chemie, 2023, 135, .	2.0	0
997	Relative Local Electron Density Tuning in Metalâ€Covalent Organic Frameworks for Boosting CO ₂ Photoreduction. Angewandte Chemie - International Edition, 2023, 62, .	13.8	6
998	Recent Advances in the Catalytic Conversion of Methane to Methanol: From the Challenges of Traditional Catalysts to the Use of Nanomaterials and Metal-Organic Frameworks. Nanomaterials, 2023, 13, 2754.	4.1	1
999	Highly Efficient CO ₂ Capture from Wet–Hot Flue Gas by a Robust Trap-and-Flow Crystal. ACS Applied Materials & Interfaces, 2023, 15, 39606-39613.	8.0	0
1000	Synthesizing Interpenetrated Triazineâ€based Covalent Organic Frameworks from CO ₂ . Angewandte Chemie - International Edition, 2023, 62, .	13.8	2
1001	Physicochemical characterization and anticancer activity of the new imipramine based Co(II), Pd(II) and Mn(II) compounds. Polyhedron, 2023, 246, 116638.	2.2	0
1002	Enhancing photosynthetic CO2 fixation by assembling metal-organic frameworks on Chlorella pyrenoidosa. Nature Communications, 2023, 14, .	12.8	1
1003	Development of ceramic-MOF filters from aluminum saline slags for capturing CO2. Powder Technology, 2023, 429, 118962.	4.2	1
1006	Solid-electrolyte reactors enable efficient electrochemical carbon capture. , 2023, 1, 100062.		0

#	Article	IF	CITATIONS
1007	Synthesizing Interpenetrated Triazineâ€based Covalent Organic Frameworks from CO ₂ . Angewandte Chemie, 2023, 135, .	2.0	0
1008	Adsorption of CO2/CH4/N2 by different functional groups in coal doped with N, S, and Na atoms: A DFT and GCMC study. Fuel, 2024, 357, 129846.	6.4	0
1009	Investigation of Thin Film Nanocomposite (TFN) Membrane with NH2-CuBTC for CO2/N2 Separation. Chemistry Africa, 2024, 7, 865-876.	2.4	0
1010	Catalyst Engineering for the Selective Reduction of CO ₂ to CH ₄ : A Firstâ€Principles Study on Xâ€MOFâ€74 (X=Mg, Mn, Fe, Co, Ni, Cu, Zn). ChemPhysChem, 2023, 24, .	2.1	1
1011	Harvesting Water in the Classroom. Journal of Chemical Education, 2023, 100, 4482-4487.	2.3	1
1012	Ligand-Mediated Regulation of the Chemical/Thermal Stability and Catalytic Performance of Isostructural Cobalt(II) Coordination Polymers. Inorganic Chemistry, 0, , .	4.0	0
1013	Engineered Catalyst Based on MIL-68(Al) with High Stability for Hydrogenation of Carbon Dioxide and Carbon Monoxide at Low Temperature. Inorganic Chemistry, 0, , .	4.0	0
1014	Metal–carbon bond metal-organic frameworks with permanent porosity. CheM, 2024, 10, 557-566.	11.7	3
1015	UiO-66-based metal-organic frameworks for CO2 catalytic conversion, adsorption and separation. Separation and Purification Technology, 2024, 331, 125456.	7.9	1
1016	Uncoordinated amino groups of MIL-101 anchoring cobalt porphyrins for highly selective CO2 electroreduction. Journal of Colloid and Interface Science, 2023, , .	9.4	0
1017	Selective Metal-Free CO ₂ Photoreduction in Water Using Porous Nanostructures with Internal Molecular Free Volume. Journal of the American Chemical Society, 2023, 145, 23802-23813.	13.7	2
1018	Hydrogen production and CO2 capture from Linz-Donawitz converter gas via a chemical looping concept. Chemical Engineering Journal, 2023, 477, 146870.	12.7	0
1019	A Microporous Ni(II) Metal–Organic Framework Nanostructure with an Aspartate-Derived Tricarboxylate for Gas/Vapor Sorption and Size-Selective CO ₂ Chemical Fixation under Solvent-Free Conditions. ACS Applied Nano Materials, 2023, 6, 19756-19766.	5.0	1
1020	Recent advances on core-shell metal-organic frameworks for energy storage applications: Controlled assemblies and design strategies. Coordination Chemistry Reviews, 2024, 499, 215497.	18.8	1
1021	Water vapour induced structural flexibility in a square lattice coordination network. Chemical Communications, 2023, 59, 13867-13870.	4.1	0
1022	Tuning the Catalytic Activity of Covalent Metalâ€Organic Frameworks for CO ₂ Cycloaddition Reactions. Chemistry - an Asian Journal, 2023, 18, .	3.3	1
1023	Recent Advances in Reticular Chemistry for Clean Energy, Global Warming, and Water Shortage Solutions. Advanced Functional Materials, 0, , .	14.9	2
1024	Pore engineering of metal–organic frameworks for boosting low-pressure CO ₂ capture. Journal of Materials Chemistry A, 2023, 11, 25784-25802.	10.3	0

#	Article	IF	CITATIONS
1025	Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2023, , 109257.	9.0	1
1026	Ligand-Oxidation-Based Anodic Synthesis of Oriented Films of Conductive M-Catecholate Metal–Organic Frameworks with Controllable Thickness. Journal of the American Chemical Society, 2023, 145, 25570-25578.	13.7	0
1027	Efficient production of tunable syngas through multistage sorption-enhanced steam gasification of corncob. International Journal of Hydrogen Energy, 2024, 55, 1242-1253.	7.1	1
1028	Enhanced CO ₂ Electroreduction Selectivity toward Ethylene on Pyrazolate-Stabilized Asymmetric Ni–Cu Hybrid Sites. Journal of the American Chemical Society, 2023, 145, 26444-26451.	13.7	2
1029	Carbon dioxide capturing activities of porous metal-organic frameworks (MOFs). Microporous and Mesoporous Materials, 2024, 366, 112932.	4.4	0
1030	Molecular insights into the CO2 absorption mechanism by superbase protic ionic liquids by a combined density functional theory and molecular dynamics approach. Journal of Molecular Liquids, 2024, 394, 123683.	4.9	0
1031	Endogenous metal-ion dynamic nuclear polarization for NMR signal enhancement in metal organic frameworks. Chemical Science, 2023, 15, 336-348.	7.4	0
1032	Synthesis of Water-Stable Ferrocene-Encapsulated Ni-MOF Nanoadsorbents for Enhanced Removal Capacity for Arsenites As(III) Ions at Neutral pH. ACS ES&T Water, 2023, 3, 4082-4091.	4.6	0
1033	A simulation study of linker vacancy distribution and its effect on UiO-66 stability. Microporous and Mesoporous Materials, 2024, 366, 112922.	4.4	1
1034	MOF-GRU: A MOFid-Aided Deep Learning Model for Predicting the Gas Separation Performance of Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 0, , .	8.0	0
1035	Smart Home Sleep Respiratory Monitoring System Based on a Breath-Responsive Covalent Organic Framework. ACS Nano, 0, , .	14.6	0
1036	Research progress in CO2 capture technology. , 0, 73, 345-350.		0
1037	Importance of Bridging Molecular and Process Modeling to Design Optimal Adsorbents for Large-Scale CO ₂ Capture. Accounts of Chemical Research, 0, , .	15.6	0
1038	Synthesis of glutamic acid-based coordination polymer for dye removal from aqueous solution. Journal of Molecular Liquids, 2024, 395, 123964.	4.9	0
1039	Terahertz spectroscopy of MOFs reveals dynamic structure and contact free ultrafast photoconductivity. APL Materials, 2024, 12, .	5.1	0
1040	<i>In Silico</i> Screening of Metal–organic Frameworks for Water Harvesting. Journal of Physical Chemistry C, 2024, 128, 384-395.	3.1	0
1041	Multidisciplinary high-throughput screening of metal–organic framework for ammonia-based green hydrogen production. Renewable and Sustainable Energy Reviews, 2024, 192, 114275.	16.4	0
1042	Fabrication of Metal–Organic Framework-Based Mixed-Matrix Membranes by "Soft Spray―Technique. Inorganic Chemistry, 2024, 63, 1102-1108.	4.0	0

#	Article	IF	CITATIONS
1043	Ni/CaO-based dual-functional materials for calcium-looping CO2 capture and dry reforming of methane: Progress and challenges. Chemical Engineering Journal, 2024, 482, 148476.	12.7	2
1044	Investigation of porous coordination polymers for gas storage and separation. , 2024, , 137-176.		0
1045	A single site catalyst supported in mesoporous UiO-66 for catalytic conversion of carbon dioxide to formate. Sustainable Energy and Fuels, 2024, 8, 777-788.	4.9	0
1046	Maximizing the utilization of Calcium species in the supercages of CaNa-FAU zeolite for efficient CO2 capture. Chemical Engineering Journal, 2024, 481, 148661.	12.7	0
1047	Integrated CO ₂ capture and utilization: a review of the synergistic effects of dual function materials. Catalysis Science and Technology, 2024, 14, 790-819.	4.1	0
1049	Carbon dioxide capture using diaminoalkane-grafted MIL-101(Cr)s: Critical role of geometric configuration of loaded amines. Separation and Purification Technology, 2024, 337, 126445.	7.9	0
1050	Improved CO ₂ Photoreduction Activity and Selectivity Using an Indirect Z-Scheme Heterojunction of ZIF-67 and Bi ₄ O ₅ Br ₂ Nanostructures. ACS Applied Nano Materials, 0, , .	5.0	0
1051	Hydrocarbon Sorption in Flexible MOFs—Part III: Modulation of Gas Separation Mechanisms. Nanomaterials, 2024, 14, 241.	4.1	0
1052	Rational construction of MOF-on-MOF heterojunction with an array of flexible two-dimensional microsheets for efficient CO2 photoreduction. Chemical Engineering Journal, 2024, 482, 149000.	12.7	0
1053	Improving CO2 capture in UTSA-16(Zn) via alkali and alkaline earth metal Introduction: GCMC and MD simulations study. Separation and Purification Technology, 2024, 338, 126534.	7.9	0
1054	Tailoring Hydrophobicity and Pore Environment in Physisorbents for Improved Carbon Dioxide Capture under High Humidity. Journal of the American Chemical Society, 2024, 146, 3943-3954.	13.7	1
1055	Finely Tuning Metal Ion Valences of [Fe _{3–<i>x</i>} M _{<i>x</i>} (μ ₃ –OH)(Carboxyl) ₆ (pyridyl)< Cluster-Based <i>ant</i> -MOFs for Highly Improved CO ₂ Capture Performances. ACS Applied Materials & amp: Interfaces. 2024. 16. 8077-8085.	sub>2 <td>[کمr</td>	[کمr
1057	Porous coordination polymers in energy storage and conversion. , 2024, , 207-235.		0
1058	Building the future: the research frontiers and industrial prospects in framework chemistry. Scientia Sinica Chimica, 2024, , .	0.4	0
1059	Molecular modulation of nickel–salophen organic frameworks enables the selective photoreduction of CO ₂ at varying concentrations. Energy and Environmental Science, 2024, 17, 2260-2268.	30.8	0
1060	Zirconium-Based Nanoscale Metal–Organic Framework with Metal-Bridged Cationic Linkers for the Selective Removal of Anionic Dyes. ACS Applied Nano Materials, 2024, 7, 4349-4354.	5.0	0
1061	lonic Liquid-Functionalized Metal–Organic Frameworks/Covalent–Organic Frameworks for CO ₂ Capture and Conversion. Industrial & Engineering Chemistry Research, 2024, 63, 3443-3464.	3.7	0
1062	Hybrid oxide coatings generate stable Cu catalysts for CO2 electroreduction. Nature Materials, 2024, 23, 680-687.	27.5	1

#	Article	IF	CITATIONS
1063	Breakthrough Study of CO ₂ Adsorption and Regeneration Performance of Mn―and Ceâ€Doped Ni–Al Layered Double Hydroxides Derived Mixed Oxides in Packedâ€Bed Column. Advanced Sustainable Systems, 0, , .	5.3	0
1064	High-Capacity, Cooperative CO ₂ Capture in a Diamine-Appended Metal–Organic Framework through a Combined Chemisorptive and Physisorptive Mechanism. Journal of the American Chemical Society, 2024, 146, 6072-6083.	13.7	0
1065	Strategies to Improve Electrical Conductivity in Metal–Organic Frameworks: A Comparative Study. Crystal Growth and Design, 2024, 24, 2235-2265.	3.0	0
1066	Mechanochemical Encapsulation of Caffeine in UiO-66 and UiO-66-NH2 to Obtain Polymeric Composites by Extrusion with Recycled Polyamide 6 or Polylactic Acid Biopolymer. Polymers, 2024, 16, 637.	4.5	0
1067	Unveiling a new chain-based two-dimensional zinc-organic framework with thiadiazolyl dicarboxylic acid ligands and their characterization. Journal of Molecular Structure, 2024, 1306, 137910.	3.6	0
1068	Modeling Tools for Evaluating Materials in CO2 Capture. Advances in Chemical and Materials Engineering Book Series, 2024, , 316-333.	0.3	0
1069	Comprehensive investigation of isotherm, RSM, and ANN modeling of CO2 capture by multi-walled carbon nanotube. Scientific Reports, 2024, 14, .	3.3	0
1070	CCU technologies as a tool to achieve Scope and ESG goals. E3S Web of Conferences, 2024, 498, 01015.	0.5	0
1071	Adsorption of CO ₂ by Amine-Functionalized Metal–Organic Frameworks Using GCMC and ReaxFF-Based Metadynamics Simulations. Journal of Physical Chemistry C, 2024, 128, 5257-5270.	3.1	0
1072	Red blood cell (RBC)-like Ni@N–C composites for efficient electrochemical CO ₂ reduction and Zn–CO ₂ batteries. Journal of Materials Chemistry A, 2024, 12, 9462-9468.	10.3	0
1073	Rapid coating of polyamide, polyurea, and polythiourea on metal–organic framework surfaces. APL Materials, 2024, 12, .	5.1	0
1074	Solar Chimney Power Plants for Sustainable Air Quality Management Integrating Photocatalysis and Particulate Filtration: A Comprehensive Review. Sustainability, 2024, 16, 2334.	3.2	0
1075	Design and application of metal organic frameworks for heavy metals adsorption in water: a review. RSC Advances, 2024, 14, 9365-9390.	3.6	0