Accommodation-invariant computational near-eye disp

ACM Transactions on Graphics 36, 1-12 DOI: 10.1145/3072959.3073594

Citation Report

#	Article	IF	CITATIONS
1	Optimizing VR for all users through adaptive focus displays. , 2017, , .		2
2	Fast gaze-contingent optimal decompositions for multifocal displays. ACM Transactions on Graphics, 2017, 36, 1-15.	4.9	41
3	Near-eye varifocal augmented reality display using see-through screens. ACM Transactions on Graphics, 2017, 36, 1-13.	4.9	86
4	Foveated Retinal Optimization for See-Through Near-Eye Multi-Layer Displays. IEEE Access, 2018, 6, 2170-2180.	2.6	43
5	User Preference for SharpView-Enhanced Virtual Text During Non-Fixated Viewing. , 2018, , .		2
6	Foveation in near-eye holographic display. , 2018, , .		1
7	An Extended Depth-at-Field Volumetric Near-Eye Augmented Reality Display. IEEE Transactions on Visualization and Computer Graphics, 2018, 24, 2857-2866.	2.9	64
8	FocusAR: Auto-focus Augmented Reality Eyeglasses for both Real World and Virtual Imagery. IEEE Transactions on Visualization and Computer Graphics, 2018, 24, 2906-2916.	2.9	54
9	From Focal Stack to Tensor Light-Field Display. IEEE Transactions on Image Processing, 2018, 27, 4571-4584.	6.0	39
10	Autofocals: Evaluating gaze-contingent eyeglasses for presbyopes. Science Advances, 2019, 5, eaav6187.	4.7	28
11	Achromatic Varifocal Metalens for the Visible Spectrum. ACS Photonics, 2019, 6, 2432-2440.	3.2	55
12	NVGaze., 2019,,.		57
13	A Design Space for Gaze Interaction on Head-mounted Displays. , 2019, , .		47
14	A Perception-driven Hybrid Decomposition for Multi-layer Accommodative Displays. IEEE Transactions on Visualization and Computer Graphics, 2019, 25, 1940-1950.	2.9	9
15	All-passive transformable optical mapping near-eye display. Scientific Reports, 2019, 9, 6064.	1.6	7
16	The Effect of Light Distribution of LED Luminaire on Human Ocular Physiological Characteristics. IEEE Access, 2019, 7, 28478-28486.	2.6	4
17	A Better Photometric Index of Photo-Biological Effect on Visual Function of Human Eye: Illuminance or Luminance?. IEEE Access, 2019, 7, 165919-165927.	2.6	1
18	Comparative Study on the Influence of Quantum Dot Display and Liquid Crystal Display on Human Visual Function. , 2019, , .		0

TION RED

# 19	ARTICLE Tomographic projector. ACM Transactions on Graphics, 2019, 38, 1-13.	IF 4.9	CITATIONS 22
20	Towards multifocal displays with dense focal stacks. ACM Transactions on Graphics, 2018, 37, 1-13.	4.9	53
21	DeepFocus. ACM Transactions on Graphics, 2018, 37, 1-13.	4.9	28
22	MSTGAR: Multioperator-Based Stereoscopic Thumbnail Generation With Arbitrary Resolution. IEEE Transactions on Multimedia, 2020, 22, 1208-1219.	5.2	8
23	5â€2: Invited Paper: Computational Eyeglasses and Nearâ€eye Displays with Focus Cues. Digest of Technical Papers SID International Symposium, 2020, 51, 41-44.	0.1	0
24	Phase-Coded Computational Imaging For Accommodation-Invariant Near-Eye Displays. , 2020, , .		1
25	VEGO: A novel design towards customizable and adjustable head-mounted display for VR. Virtual Reality & Intelligent Hardware, 2020, 2, 443-453.	1.8	3
27	Computational Multifocal Near-Eye Display with Hybrid Refractive-Diffractive Optics. , 2020, , .		2
28	Illuminated Focus: Vision Augmentation using Spatial Defocusing via Focal Sweep Eyeglasses and High-Speed Projector. IEEE Transactions on Visualization and Computer Graphics, 2020, 26, 2051-2061.	2.9	10
29	Fast Projection Defocus Correction for Multiple Projection Surface Types. IEEE Transactions on Industrial Informatics, 2021, 17, 3044-3055.	7.2	3
30	Liquid crystal technology for vergence-accommodation conflicts in augmented reality and virtual reality systems: a review. Liquid Crystals Reviews, 2021, 9, 35-64.	1.1	31
31	Multifocal Stereoscopic Projection Mapping. IEEE Transactions on Visualization and Computer Graphics, 2021, 27, 4256-4266.	2.9	2
32	Augmented reality display system using modulated moiré imaging technique. Applied Optics, 2021, 60, A306.	0.9	1
33	Towards Indistinguishable Augmented Reality. ACM Computing Surveys, 2022, 54, 1-36.	16.1	52
34	Evaluation Studies of Motion Sickness Visually Induced by Stereoscopic Films. Advances in Science, Technology and Engineering Systems, 2021, 6, 241-251.	0.4	1
35	Electrically tunable lenses – eliminating mechanical axial movements during high-speed 3D live imaging. Journal of Cell Science, 2021, 134, .	1.2	6
36	Binocular accommodative response with extended depth of focus under controlled convergences. Journal of Vision, 2021, 21, 21.	0.1	2
37	Computational Coherent Imaging For Accommodation-Invariant Near-Eye Displays. , 2021, , .		0

CITATION REPORT

#	Article	IF	CITATIONS
38	Effects of Dynamic Disparity on Visual Fatigue Caused by Watching 2D Videos in HMDs. Communications in Computer and Information Science, 2019, , 310-321.	0.4	3
39	Minimizing cybersickness in head-mounted display systems: causes and strategies review. , 2020, , .		15
40	Eye-box extended retinal projection type near-eye display with multiple independent viewpoints [Invited]. Applied Optics, 2021, 60, A268.	0.9	26
41	Systematic method for modeling and characterizing multilayer light field displays. Optics Express, 2020, 28, 1014.	1.7	14
42	Retinal projection type lightguide-based near-eye display with switchable viewpoints. Optics Express, 2020, 28, 3116.	1.7	41
43	Foveated display system based on a doublet geometric phase lens. Optics Express, 2020, 28, 23690.	1.7	23
44	Aberration-corrected full-color holographic augmented reality near-eye display using a Pancharatnam-Berry phase lens. Optics Express, 2020, 28, 30836.	1.7	28
45	Revelation and addressing of accommodation shifts in microlens array-based 3D near-eye light field displays. Optics Letters, 2020, 45, 228.	1.7	14
46	Toward the next-generation VR/AR optics: a review of holographic near-eye displays from a human-centric perspective. Optica, 2020, 7, 1563.	4.8	216
47	Design of Hybrid Refractive/Diffractive Lenses for Wearable Reality Displays. Balkan Journal of Electrical and Computer Engineering, 0, , 94-98.	0.4	2
48	Accommodation-Free Head Mounted Display with Comfortable 3D Perception and an Enlarged Eye-box. Research, 2019, 2019, 9273723.	2.8	16
49	Approximated super multi-view head-mounted display to reduce visual fatigue. Optics Express, 2020, 28, 14134.	1.7	6
50	Light field editing in the gradient domain. IET Image Processing, 2021, 15, 1072-1082.	1.4	1
51	Augmented and Virtual Reality. The Frontiers Collection, 2020, , 467-499.	0.1	1
52	Design and Characterization of Light Field and Holographic Near-Eye Displays. Lecture Notes in Computer Science, 2020, , 244-271.	1.0	0
53	State of the Art in Perceptual VR Displays. Lecture Notes in Computer Science, 2020, , 221-243.	1.0	3
54	Identifying cybersickness causes in virtual reality games using symbolic machine learning algorithms. Entertainment Computing, 2022, 41, 100473.	1.8	9
55	The Trend of Three Dimensional Image Technology. Kyokai Joho Imeji Zasshi/Journal of the Institute of Image Information and Television Engineers, 2019, 73, 90-95.	0.0	0

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
56	Holographic techniques for augmented reality and virtual reality near-eye displays. Light Advanced Manufacturing, 2022, 3, 1.	2.2	34
57	Lightâ€field headâ€mounted displays reduce the visual effort: A user study. Journal of the Society for Information Display, 2022, 30, 319-334.	0.8	4
58	A cybersickness review: causes, strategies, and classification methods. Journal on Interactive Systems, 2021, 12, 269-282.	0.5	11
59	Cross-talk elimination for lenslet array near eye display based on eye-gaze tracking. Optics Express, 2022, 30, 16196.	1.7	2
60	The Effect of the Vergence-Accommodation Conflict on Virtual Hand Pointing in Immersive Displays. , 2022, , .		14
61	The Statistics of Eye Movements and Binocular Disparities during VR Gaming: Implications for Headset Design. ACM Transactions on Graphics, 2023, 42, 1-15.	4.9	8
62	Accommodative holography. ACM Transactions on Graphics, 2022, 41, 1-15.	4.9	7
63	A guideline proposal for minimizing cybersickness in VR-based serious games and applications. , 2022, , .		3
64	Impact of correct and simulated focus cues on perceived realism. , 2022, , .		3
65	HoloBeam: Paper-Thin Near-Eye Displays. , 2023, , .		2