Cardiac complications of congenital disorders of glycosy of the literature

Journal of Inherited Metabolic Disease 40, 657-672

DOI: 10.1007/s10545-017-0066-y

Citation Report

#	Article	IF	CITATIONS
1	Protein N-Glycosylation in Cardiovascular Diseases and Related Risk Factors. Current Cardiovascular Risk Reports, 2018, 12, 1.	0.8	19
2	Recognizable phenotypes in CDG. Journal of Inherited Metabolic Disease, 2018, 41, 541-553.	1.7	68
3	Keeping an eye on congenital disorders of O-glycosylation: a systematic literature review. Journal of Inherited Metabolic Disease, 2019, 42, 29.	1.7	7
4	Congenital disorders of glycosylation. Annals of Translational Medicine, 2018, 6, 477-477.	0.7	148
5	Genetic testing in pediatric cardiomyopathies: Implications for diagnosis and management. Progress in Pediatric Cardiology, 2018, 51, 24-30.	0.2	3
6	Defective mucin-type glycosylation on $\hat{l}\pm$ -dystroglycan in COG-deficient cells increases its susceptibility to bacterial proteases. Journal of Biological Chemistry, 2018, 293, 14534-14544.	1.6	3
7	CDG Therapies: From Bench to Bedside. International Journal of Molecular Sciences, 2018, 19, 1304.	1.8	69
8	An Electronic Questionnaire for Liver Assessment in Congenital Disorders of Glycosylation (LeQCDG): A Patient-Centered Study. JIMD Reports, 2018, 44, 55-64.	0.7	14
9	Reduced myocyte complex <i>N</i> â€glycosylation causes dilated cardiomyopathy. FASEB Journal, 2019, 33, 1248-1261.	0.2	14
10	Dissection of TMEM165 function in Golgi glycosylation and its Mn2+ sensitivity. Biochimie, 2019, 165, 123-130.	1.3	22
11	The congenital disorder of glycosylation in PGM1 (PGM1-CDG) can cause severe cardiomyopathy and unexpected sudden cardiac death in childhood. Forensic Science International: Genetics, 2019, 43, 102111.	1.6	12
12	Reduced hybrid/complex N-glycosylation disrupts cardiac electrical signaling and calcium handling in a model of dilated cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2019, 132, 13-23.	0.9	16
13	Mechanisms of in utero cortisol effects on the newborn heart revealed by transcriptomic modeling. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2019, 316, R323-R337.	0.9	11
14	Keeping an eye on congenital disorders of Oâ€glycosylation: A systematic literature review. Journal of Inherited Metabolic Disease, 2019, 42, 29-48.	1.7	22
15	A mutation in mannoseâ€phosphateâ€dolichol utilization defect 1 reveals clinical symptoms of congenital disorders of glycosylation type I and dystroglycanopathy. JIMD Reports, 2019, 50, 31-39.	0.7	14
16	Functional glycomics: Application to medical science and hepatology. Hepatology Research, 2020, 50, 153-164.	1.8	17
17	Vascular ring anomaly in a patient with phosphomannomutase 2 deficiency: A case report and review of the literature. JIMD Reports, 2020, 56, 27-33.	0.7	3
18	Reference glycan structure libraries of primary human cardiomyocytes and pluripotent stem cell-derived cardiomyocytes reveal cell-type and culture stage-specific glycan phenotypes. Journal of Molecular and Cellular Cardiology, 2020, 139, 33-46.	0.9	18

#	ARTICLE	IF	CITATIONS
19	Expanding the clinical and metabolic phenotype of DPM2 deficient congenital disorders of glycosylation. Molecular Genetics and Metabolism, 2021, 132, 27-37.	0.5	10
20	Deciphering the premature mortality in PIGA-CDG – An untold story. Epilepsy Research, 2021, 170, 106530.	0.8	15
21	Clinical, biochemical and molecular phenotype of congenital disorders of glycosylation: long-term follow-up. Orphanet Journal of Rare Diseases, 2021, 16, 17.	1.2	22
22	Using micro pillar array columns (μPAC) for the analysis of permethylated glycans. Analyst, The, 2021, 146, 4374-4383.	1.7	15
23	Cystic kidney diseases associated with mutations in phosphomannomutase 2 promotor: a large spectrum of phenotypes. Pediatric Nephrology, 2021, 36, 2361-2369.	0.9	5
24	Importance of evaluating protein glycosylation in pluripotent stem cell-derived cardiomyocytes for research and clinical applications. Pflugers Archiv European Journal of Physiology, 2021, 473, 1041-1059.	1.3	8
25	Spatial N-glycomics of the human aortic valve in development and pediatric endstage congenital aortic valve stenosis. Journal of Molecular and Cellular Cardiology, 2021, 154, 6-20.	0.9	16
26	Altered Glycosylation in the Aging Heart. Frontiers in Molecular Biosciences, 2021, 8, 673044.	1.6	10
27	Proteomic and Glyco(proteo)mic tools in the profiling of cardiac progenitors and pluripotent stem cell derived cardiomyocytes: Accelerating translation into therapy. Biotechnology Advances, 2021, 49, 107755.	6.0	6
28	Experiences of parents with children with congenital disorders of glycosylation: What can we learn from them?. Disability and Health Journal, 2021, 14, 101065.	1.6	11
29	Congenital Disorders of Glycosylation: What Clinicians Need to Know?. Frontiers in Pediatrics, 2021, 9, 715151.	0.9	21
31	Changes in the Expression of Renal Brush Border Membrane N-Glycome in Model Rats with Chronic Kidney Diseases. Biomolecules, 2021, 11, 1677.	1.8	4
32	Glycans and Cardiovascular Diseases. , 2021, , .		0
34	Simulation Modeling of Reduced Glycosylation Effects on Potassium Channels of Mouse Cardiomyocytes. Frontiers in Physiology, 2022, 13, 816651.	1.3	3
35	NGLY1 Deficiency, a Congenital Disorder of Deglycosylation: From Disease Gene Function to Pathophysiology. Cells, 2022, 11, 1155.	1.8	13
36	Nutrition interventions in congenital disorders of glycosylation. Trends in Molecular Medicine, 2022, 28, 463-481.	3.5	14
37	A Community-Led Approach As a Guide to Overcome Challenges for Therapy Research in Congenital Disorders of Glycosylation. International Journal of Environmental Research and Public Health, 2022, 19, 6829.	1.2	1
39	Glycosylation of a key cubilin Asn residue results in reduced binding to albumin. Journal of Biological Chemistry, 2022, 298, 102371.	1.6	0

#	Article	IF	CITATIONS
40	Alterations of the Sialylation Machinery in Brugada Syndrome. International Journal of Molecular Sciences, 2022, 23, 13154.	1.8	1
41	Successful heart transplantation in an infant with phosphoglucomutase 1 deficiency (<scp>PGM1â€CDG</scp>). JIMD Reports, 2023, 64, 123-128.	0.7	1
42	Unique clinical presentations and follow-up outcomes from experience with congenital disorders of glycosylation: PMM2-PGM1-DPAGT1-MPI-POMT2-B3GALNT2-DPM1-SRD5A3-CDG. Journal of Pediatric Endocrinology and Metabolism, 2023, .	0.4	0
47	Other Types of Cardiomyopathy. , 2023, , 351-374.		0