Superâ€Strong, Superâ€Stiff Macrofibers with Aligned,

Advanced Materials 29, 1702498 DOI: 10.1002/adma.201702498

Citation Report

#	Article	IF	CITATIONS
1	Template-Guided Assembly of Silk Fibroin on Cellulose Nanofibers for Robust Nanostructures with Ultrafast Water Transport. ACS Nano, 2017, 11, 12008-12019.	14.6	107
2	Nanoporous cellulose membrane doped with silver for continuous catalytic decolorization of organic dyes. Cellulose, 2018, 25, 2547-2558.	4.9	42
3	Biofabrication of multifunctional nanocellulosic 3D structures: a facile and customizable route. Materials Horizons, 2018, 5, 408-415.	12.2	81
4	Design of reusable novel membranes based on bacterial cellulose and chitosan for the filtration of copper in wastewaters. Carbohydrate Polymers, 2018, 193, 362-372.	10.2	73
5	Effects of nanofiber orientations on the fracture toughness of cellulose nanopaper. Engineering Fracture Mechanics, 2018, 194, 350-361.	4.3	47
6	Woodâ€Based Nanotechnologies toward Sustainability. Advanced Materials, 2018, 30, 1703453.	21.0	359
7	Structure and properties of graphene oxide/cellulose hybrid fibers via divalent metal ions treatment. Cellulose, 2018, 25, 517-525.	4.9	7
8	Bioinspired Macroscopic Ribbon Fibers with a Nacre-Mimetic Architecture Based on Highly Ordered Alignment of Ultralong Hydroxyapatite Nanowires. ACS Nano, 2018, 12, 12284-12295.	14.6	46
9	Continuous Assembly of Cellulose Nanofibrils and Nanocrystals into Strong Macrofibers through Microfluidic Spinning. Advanced Materials Technologies, 2019, 4, 1800557.	5.8	47
10	NaOH/urea solution spinning of cellulose hybrid fibers embedded with Ag nanoparticles: influence of stretching on structure and properties. Cellulose, 2018, 25, 7211-7224.	4.9	10
11	Super Strong All-Cellulose Composite Filaments by Combination of Inducing Nanofiber Formation and Adding Nanofibrillated Cellulose. Biomacromolecules, 2018, 19, 4386-4395.	5.4	27
12	Bacterial-Derived, Compressible, and Hierarchical Porous Carbon for High-Performance Potassium-Ion Batteries. Nano Letters, 2018, 18, 7407-7413.	9.1	192
13	High Aspect Ratio Carboxylated Cellulose Nanofibers Cross-linked to Robust Aerogels for Superabsorption–Flocculants: Paving Way from Nanoscale to Macroscale. ACS Applied Materials & Interfaces, 2018, 10, 20755-20766.	8.0	131
14	Poly(bis[2-(methacryloyloxy)ethyl] phosphate)/Bacterial Cellulose Nanocomposites: Preparation, Characterization and Application as Polymer Electrolyte Membranes. Applied Sciences (Switzerland), 2018, 8, 1145.	2.5	37
15	Flexible Electronics Based on Micro/Nanostructured Paper. Advanced Materials, 2018, 30, e1801588.	21.0	249
16	High-Strength, High-Toughness Aligned Polymer-Based Nanocomposite Reinforced with Ultralow Weight Fraction of Functionalized Nanocellulose. Biomacromolecules, 2018, 19, 4075-4083.	5.4	37
17	Enhancing bacterial cellulose production via adding mesoporous halloysite nanotubes in the culture medium. Carbohydrate Polymers, 2018, 198, 191-196.	10.2	23
18	Nanocellulose applications in sustainable electrochemical and piezoelectric systems: A review. Carbohydrate Polymers, 2019, 224, 115149.	10.2	61

#	Article	IF	CITATIONS
19	Solid matrix-assisted printing for three-dimensional structuring of a viscoelastic medium surface. Nature Communications, 2019, 10, 4650.	12.8	47
20	Soft Bacterial Cellulose Microcapsules with Adaptable Shapes. Biomacromolecules, 2019, 20, 4437-4446.	5.4	21
21	Single-digit-micrometer thickness wood speaker. Nature Communications, 2019, 10, 5084.	12.8	45
22	Bone-Inspired Mineralization with Highly Aligned Cellulose Nanofibers as Template. ACS Applied Materials & Interfaces, 2019, 11, 42486-42495.	8.0	41
23	Biomimetic composites with enhanced toughening using silk-inspired triblock proteins and aligned nanocellulose reinforcements. Science Advances, 2019, 5, eaaw2541.	10.3	73
24	Superfine bacterial nanocellulose produced by reverse mutations in the bcsC gene during adaptive breeding of Komagataeibacter oboediens. Carbohydrate Polymers, 2019, 226, 115243.	10.2	11
25	The remarkable three-dimensional network structure of bacterial cellulose for tissue engineering applications. International Journal of Pharmaceutics, 2019, 566, 631-640.	5.2	59
26	Compressible, Elastic, and Pressure-Sensitive Carbon Aerogels Derived from 2D Titanium Carbide Nanosheets and Bacterial Cellulose for Wearable Sensors. Chemistry of Materials, 2019, 31, 3301-3312.	6.7	220
27	Opportunities of Bacterial Cellulose to Treat Epithelial Tissues. Current Drug Targets, 2019, 20, 808-822.	2.1	41
28	Ultrahigh Tough, Super Clear, and Highly Anisotropic Nanofiber-Structured Regenerated Cellulose Films. ACS Nano, 2019, 13, 4843-4853.	14.6	174
29	Production of bacterial cellulose from industrial wastes: a review. Cellulose, 2019, 26, 2895-2911.	4.9	194
30	High strength in combination with high toughness in robust and sustainable polymeric materials. Science, 2019, 366, 1376-1379.	12.6	162
31	Methyl cellulose/cellulose nanocrystal nanocomposite fibers with high ductility. European Polymer Journal, 2019, 112, 334-345.	5.4	34
32	Bioinspired hierarchical helical nanocomposite macrofibers based on bacterial cellulose nanofibers. National Science Review, 2020, 7, 73-83.	9.5	60
33	Lignin as a Woodâ€Inspired Binder Enabled Strong, Water Stable, and Biodegradable Paper for Plastic Replacement. Advanced Functional Materials, 2020, 30, 1906307.	14.9	208
34	Top-down peeling bacterial cellulose to high strength ultrathin films and multifunctional fibers. Chemical Engineering Journal, 2020, 391, 123527.	12.7	33
35	Biomimetic Mineralized Organic–Inorganic Hybrid Macrofiber with Spider Silk‣ike Supertoughness. Advanced Functional Materials, 2020, 30, 1908556.	14.9	79
36	<i>In Situ</i> Alignment of Bacterial Cellulose Using Wrinkling. ACS Applied Bio Materials, 2020, 3, 7898-7907.	4.6	9

#	Article	IF	CITATIONS
37	Orthogonally structured graphene nanointerface for lightweight SiC nanowire-based nanocomposites with enhanced mechanical and electromagnetic-interference shielding properties. Composites Part B: Engineering, 2020, 202, 108381.	12.0	16
38	Plant celluloses, hemicelluloses, lignins, and volatile oils for the synthesis of nanoparticles and nanostructured materials. Nanoscale, 2020, 12, 22845-22890.	5.6	108
39	Mechanics Design in Celluloseâ€Enabled Highâ€Performance Functional Materials. Advanced Materials, 2021, 33, e2002504.	21.0	77
40	Three-dimensional network structure nitramine gun propellant with nitrated bacterial cellulose. Journal of Materials Research and Technology, 2020, 9, 15094-15101.	5.8	30
41	Spiral Honeycomb Microstructured Bacterial Cellulose for Increased Strength and Toughness. ACS Applied Materials & Interfaces, 2020, 12, 50748-50755.	8.0	13
42	Bacterial cellulose: Biosynthesis, production, and applications. Advances in Microbial Physiology, 2020, 77, 89-138.	2.4	22
43	Bacterial Cellulose: Functional Modification and Wound Healing Applications. Advances in Wound Care, 2021, 10, 623-640.	5.1	32
44	Elucidating the Opportunities and Challenges for Nanocellulose Spinning. Advanced Materials, 2021, 33, e2001238.	21.0	43
45	Three-Dimensional-Percolated Ceramic Nanoparticles along Natural-Cellulose-Derived Hierarchical Networks for High Li ⁺ Conductivity and Mechanical Strength. Nano Letters, 2020, 20, 7397-7404.	9.1	37
46	Production of Bacterial Cellulose Aerogels With Improved Physico-Mechanical Properties and Antibacterial Effect. Frontiers in Bioengineering and Biotechnology, 2020, 8, 603407.	4.1	22
47	Lightweight, tough, and sustainable cellulose nanofiber-derived bulk structural materials with low thermal expansion coefficient. Science Advances, 2020, 6, eaaz1114.	10.3	196
48	A Super-breathable "Woven-like―Protein Nanofabric. ACS Applied Bio Materials, 2020, 3, 2958-2964.	4.6	13
49	Structural reconstruction strategies for the design of cellulose nanomaterials and aligned wood cellulose-based functional materials $\hat{a} \in A$ review. Carbohydrate Polymers, 2020, 247, 116722.	10.2	29
50	A Synthetic Hydrogel Composite with the Mechanical Behavior and Durability of Cartilage. Advanced Functional Materials, 2020, 30, 2003451.	14.9	171
51	Robust All-Cellulose Nanofiber Composite from Stack-Up Bacterial Cellulose Hydrogels via Self-Aggregation Forces. Journal of Agricultural and Food Chemistry, 2020, 68, 2696-2701.	5.2	9
52	Critical Role of Degree of Polymerization of Cellulose in Super-Strong Nanocellulose Films. Matter, 2020, 2, 1000-1014.	10.0	106
53	A Cuboid Spider Silk: Structure–Function Relationship and Polypeptide Signature. Macromolecular Rapid Communications, 2020, 41, e1900583.	3.9	8
54	Carbon nanofibers derived from bacterial cellulose: Surface modification by polydopamine and the use of ferrous ion as electrolyte additive for collaboratively increasing the supercapacitor performance. Applied Surface Science, 2020, 519, 146252.	6.1	25

#	Article	IF	CITATIONS
55	High performances of plant fiber reinforced composites—A new insight from hierarchical microstructures. Composites Science and Technology, 2020, 194, 108151.	7.8	103
56	Nanocellulose: Recent Fundamental Advances and Emerging Biological and Biomimicking Applications. Advanced Materials, 2021, 33, e2004349.	21.0	212
57	Recent advances on the bacterial cellulose-derived carbon aerogels. Journal of Materials Chemistry C, 2021, 9, 818-828.	5.5	38
58	Microbial cellulose: biosynthesis and textile applications. , 2021, , 65-85.		1
59	A review of current physical techniques for dispersion of cellulose nanomaterials in polymer matrices. Reviews on Advanced Materials Science, 2021, 60, 325-341.	3.3	43
60	Scalable fluid-spinning nanowire-based inorganic semiconductor yarns for electrochromic actuators. Materials Horizons, 2021, 8, 1711-1721.	12.2	14
61	<i>In vivo</i> soft tissue reinforcement with bacterial nanocellulose. Biomaterials Science, 2021, 9, 3040-3050.	5.4	20
62	Developing fibrillated cellulose as a sustainable technological material. Nature, 2021, 590, 47-56.	27.8	711
63	Bottomâ€Up Ecofriendly Strategy for Construction of Sustainable Bacterial Cellulose Bioaerogel with Multifunctional Properties. Advanced Materials Interfaces, 2021, 8, 2002101.	3.7	17
64	Insights into the microstructures and reinforcement mechanism of nano-fibrillated cellulose/MXene based electromagnetic interference shielding film. Cellulose, 2021, 28, 3311-3325.	4.9	31
65	Trends on the Cellulose-Based Textiles: Raw Materials and Technologies. Frontiers in Bioengineering and Biotechnology, 2021, 9, 608826.	4.1	89
67	Towards a cellulose-based society: opportunities and challenges. Cellulose, 2021, 28, 4511-4543.	4.9	27
68	Mechanics of cellulose nanopaper using a scalable coarse-grained modeling scheme. Cellulose, 2021, 28, 3359-3372.	4.9	13
69	Scallion-Inspired Graphene Scaffold Enabled High Rate Lithium Metal Battery. Nano Letters, 2021, 21, 2347-2355.	9.1	20
70	Cellulose Nanocrystals Facilitate Needle-like Ice Crystal Growth and Modulate Molecular Targeted Ice Crystal Nucleation. Nano Letters, 2021, 21, 4868-4877.	9.1	9
71	Highly stretchable and sensitive strain sensor based on polypyrrole coated bacterial cellulose fibrous network for human motion detection. Composites Part B: Engineering, 2021, 211, 108665.	12.0	51
72	Valorization of fruit processing waste to produce high value-added bacterial nanocellulose by a novel strain Komagataeibacter xylinus IITR DKH20. Carbohydrate Polymers, 2021, 260, 117807.	10.2	32
73	Scalable bacterial production of moldable and recyclable biomineralized cellulose with tunable mechanical properties. Cell Reports Physical Science, 2021, 2, 100464.	5.6	14

C1-	ATIO		DODT
UI.	AHO	N KE	PORT

#	Article	IF	CITATIONS
74	Optimization of Moist and Oven-Dried Bacterial Cellulose Production for Functional Properties. Polymers, 2021, 13, 2088.	4.5	10
75	Laminating Delignified Wood Veneers toward High-Strength, Flame-Retardant Composites for Structural Applications. ACS Sustainable Chemistry and Engineering, 2021, 9, 10717-10726.	6.7	21
76	Nanocellulose and Its Derivatives toward Advanced Lithium Sulfur Batteries. , 2021, 3, 1130-1142.		13
77	A review of bacterial cellulose: sustainable production from agricultural waste and applications in various fields. Cellulose, 2021, 28, 8229-8253.	4.9	74
78	Superâ€Strong and Superâ€Stiff Chitosan Filaments with Highly Ordered Hierarchical Structure. Advanced Functional Materials, 2021, 31, 2104368.	14.9	39
79	Application of Bacterial Cellulose in the Textile and Shoe Industry: Development of Biocomposites. Polysaccharides, 2021, 2, 566-581.	4.8	20
80	Deconstruction and Reassembly of Renewable Polymers and Biocolloids into Next Generation Structured Materials. Chemical Reviews, 2021, 121, 14088-14188.	47.7	113
81	Thermal, Chemical and Mechanical Properties of Regenerated Bacterial Cellulose Coated Cotton Fabric. Journal of Natural Fibers, 2022, 19, 7834-7851.	3.1	2
82	Robust Silica-Bacterial Cellulose Composite Aerogel Fibers for Thermal Insulation Textile. Gels, 2021, 7, 145.	4.5	20
83	The Food–Materials Nexus: Next Generation Bioplastics and Advanced Materials from Agriâ€Food Residues. Advanced Materials, 2021, 33, e2102520.	21.0	50
84	Top-down fabrication of biodegradable multilayer tunicate cellulose films with controlled mechanical properties. Cellulose, 2021, 28, 10415.	4.9	9
85	Bacterial cellulose-based composites for biomedical and cosmetic applications: Research progress and existing products. Carbohydrate Polymers, 2021, 273, 118565.	10.2	67
86	Continuous and integrated PEDOT@Bacterial cellulose/CNT hybrid helical fiber with "reinforced cement-sand―structure for self-stretchable solid supercapacitor. Chemical Engineering Journal, 2022, 427, 131904.	12.7	35
87	High-Strength Superstretchable Helical Bacterial Cellulose Fibers with a "Self-Fiber-Reinforced Structure― ACS Applied Materials & Interfaces, 2021, 13, 1545-1554.	8.0	17
88	Alignment of Cellulose Nanofibers: Harnessing Nanoscale Properties to Macroscale Benefits. ACS Nano, 2021, 15, 3646-3673.	14.6	108
89	Bacterial cellulose and its potential for biomedical applications. Biotechnology Advances, 2021, 53, 107856.	11.7	61
90	Flexible and Robust Bacterial Celluloseâ€Based Ionogels with High Thermoelectric Properties for Lowâ€Grade Heat Harvesting. Advanced Functional Materials, 2022, 32, 2107105.	14.9	57
91	One-Step Biosynthesis of Soft Magnetic Bacterial Cellulose Spheres with Localized Nanoparticle Functionalization. ACS Applied Materials & Interfaces, 2021, 13, 55569-55576.	8.0	3

#	Article	IF	Citations
92	Molecular Origin of the Biologically Accelerated Mineralization of Hydroxyapatite on Bacterial Cellulose for More Robust Nanocomposites. Nano Letters, 2021, 21, 10292-10300.	9.1	19
93	Extremely strong and tough chitosan films mediated by unique hydrated chitosan crystal structures. Materials Today, 2021, 51, 27-38.	14.2	73
94	Recent review on synthesis, evaluation, and SWOT analysis of nanostructured cellulose in construction applications. Journal of Building Engineering, 2022, 46, 103747.	3.4	18
95	3D porous biomass-derived carbon materials: biomass sources, controllable transformation and microwave absorption application. Green Chemistry, 2022, 24, 647-674.	9.0	85
96	Design of architectured composite materials with an efficient, adaptive artificial neural network-based generative design method. Acta Materialia, 2022, 225, 117548.	7.9	12
97	Advanced functional materials based on bamboo cellulose fibers with different crystal structures. Composites Part A: Applied Science and Manufacturing, 2022, 154, 106758.	7.6	25
98	Designed biomass materials for "green―electronics: A review of materials, fabrications, devices, and perspectives. Progress in Materials Science, 2022, 125, 100917.	32.8	52
99	Hybrid films from plant and bacterial nanocellulose: mechanical and barrier properties. Nordic Pulp and Paper Research Journal, 2022, 37, 159-174.	0.7	8
100	Strong Bacterial Cellulose-Based Films with Natural Laminar Alignment for Highly Sensitive Humidity Sensors. ACS Applied Materials & amp; Interfaces, 2022, 14, 3165-3175.	8.0	24
101	Electrospun cellulose composite nanofibers and their biotechnological applications. , 2022, , 329-348.		2
102	Toward continuous high-performance bacterial cellulose macrofibers by implementing grading-stretching in spinning. Carbohydrate Polymers, 2022, 282, 119133.	10.2	7
103	Bacterial cellulose-based hydrogel thermocells for low-grade heat harvesting. Chemical Engineering Journal, 2022, 433, 134550.	12.7	36
104	Bacterial Cellulose Properties Fulfilling Requirements for a Biomaterial of Choice in Reconstructive Surgery and Wound Healing. Frontiers in Bioengineering and Biotechnology, 2021, 9, 805053.	4.1	12
105	Loose Pre-Cross-Linking Mediating Cellulose Self-Assembly for 3D Printing Strong and Tough Biomimetic Scaffolds. Biomacromolecules, 2022, 23, 877-888.	5.4	15
106	Obtainment of bacterial cellulose with added propolis extract for cosmetic applications. Polymer Engineering and Science, 2022, 62, 565-575.	3.1	14
107	Mechanisms of Strain-Induced Interfacial Strengthening of Wet-Spun Filaments. ACS Applied Materials & Interfaces, 2022, 14, 16809-16819.	8.0	5
108	Antimicrobial Properties of Bacterial Cellulose Films Enriched with Bioactive Herbal Extracts Obtained by Microwave-Assisted Extraction. Polymers, 2022, 14, 1435.	4.5	12
109	Mechanically Strong Electrically Insulated Nanopapers with High UV Resistance Derived from Aramid Nanofibers and Cellulose Nanofibrils. ACS Applied Materials & Interfaces, 2022, 14, 14640-14653.	8.0	25

#	Article	IF	Citations
110	Highly Flexible and Broad-Range Mechanically Tunable All-Wood Hydrogels with Nanoscale Channels via the Hofmeister Effect for Human Motion Monitoring. Nano-Micro Letters, 2022, 14, 84.	27.0	31
111	Recent advances in solid–liquid–gas threeâ€phase interfaces in electrocatalysis for energy conversion and storage. EcoMat, 2022, 4, .	11.9	25
112	Engineered Living Hydrogels. Advanced Materials, 2022, 34, e2201326.	21.0	75
113	Environmentally Benign Biosynthesis of Hierarchical MOF/Bacterial Cellulose Composite Sponge for Nerve Agent Protection. Angewandte Chemie - International Edition, 2022, 61, .	13.8	28
114	Ion transport property, structural features, and applications of cellulose-based nanofluidic platforms — A review. Carbohydrate Polymers, 2022, 289, 119406.	10.2	3
115	Environmentally Benign Biosynthesis of Hierarchical MOF/Bacterial Cellulose Composite Sponge for Nerve Agent Protection. Angewandte Chemie, 0, , .	2.0	0
116	Biological matrix composites from cultured plant cells. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119523119.	7.1	7
117	Bacterial Cellulose and ECM Hydrogels: An Innovative Approach for Cardiovascular Regenerative Medicine. International Journal of Molecular Sciences, 2022, 23, 3955.	4.1	17
118	High-performance cellulose nanofiber-derived composite films for efficient thermal management of flexible electronic devices. Chemical Engineering Journal, 2022, 439, 135675.	12.7	26
119	Sustainable high-strength macrofibres extracted from natural bamboo. Nature Sustainability, 2022, 5, 235-244.	23.7	113
120	A strategy to fabricate tough and strong bioinspired fiber with asymmetric structure and water-driven performance. Composites Science and Technology, 2022, 224, 109464.	7.8	3
121	Recent Advances in Chemically Modified Cellulose and Its Derivatives for Food Packaging Applications: A Review. Polymers, 2022, 14, 1533.	4.5	29
122	Oriented bacterial cellulose for achieving high carbon yield through pre-stretching. Cellulose, 2022, 29, 4323.	4.9	3
123	Carbohydrate-Binding Modules of Potential Resources: Occurrence in Nature, Function, and Application in Fiber Recognition and Treatment. Polymers, 2022, 14, 1806.	4.5	9
124	Biodegradable, Super-Strong, and Conductive Cellulose Macrofibers for Fabric-Based Triboelectric Nanogenerator. Nano-Micro Letters, 2022, 14, 115.	27.0	74
125	Fiber plasticity and loss of ellipticity in soft composites under non-monotonic loading. International Journal of Solids and Structures, 2022, 249, 111628.	2.7	1
126	Scalable Nano Building Blocks of Waterborne Polyurethane and Nanocellulose for Tough and Strong Bioinspired Nanocomposites by a Self-Healing and Shape-Retaining Strategy. ACS Applied Materials & Interfaces, 2022, 14, 24787-24797.	8.0	12
127	Spinning from Nature: Engineered Preparation and Application of High-Performance Bio-Based Fibers. Engineering, 2022, 14, 100-112.	6.7	24

#	Article	IF	CITATIONS
128	The effects of temperature, pressure, and time on lignin incorporation in bacterial cellulose materials. MRS Communications, 2022, 12, 394-402.	1.8	4
129	Biological composite fibers with extraordinary mechanical strength and toughness mediated by multiple intermolecular interacting networks. Nano Research, 2022, 15, 9192-9198.	10.4	19
130	Anisotropic Alignment of Bacterial Nanocellulose Ionogels for Unconventionally High Combination of Stiffness and Damping. ACS Applied Materials & amp; Interfaces, 2022, 14, 30056-30066.	8.0	5
131	One-step double network hydrogels of photocurable monomers and bacterial cellulose fibers. Carbohydrate Polymers, 2022, 294, 119778.	10.2	9
132	Highly Aligned Bacterial Nanocellulose Films Obtained During Static Biosynthesis in a Reproducible and Straightforward Approach. Advanced Science, 2022, 9, .	11.2	11
133	Crosslinked bacterial cellulose hydrogels for biomedical applications. European Polymer Journal, 2022, 177, 111438.	5.4	20
134	Assembling nanocelluloses into fibrous materials and their emerging applications. Carbohydrate Polymers, 2023, 299, 120008.	10.2	10
135	Fabrication of a Transparent and Biodegradable Cellulose Film from Kraft Pulp via Cold Alkaline Swelling and Mechanical Blending. ACS Sustainable Chemistry and Engineering, 2022, 10, 10560-10569.	6.7	14
136	Cheap, high yield, and strong corn husk-based textile bio-fibers with low carbon footprint via green alkali retting-splicing-twisting strategy. Industrial Crops and Products, 2022, 188, 115699.	5.2	11
137	Recent progress in regenerated fibers for "green―textile products. Journal of Cleaner Production, 2022, 376, 134226.	9.3	9
138	Wetâ€Adhesive On‣kin Sensors Based on Metal–Organic Frameworks for Wireless Monitoring of Metabolites in Sweat. Advanced Materials, 2022, 34, .	21.0	50
139	Implantable versatile oxidized bacterial cellulose membrane for postoperative HNSCC treatment via photothermal-boosted immunotherapy. Nano Research, 2023, 16, 951-963.	10.4	11
140	Bamboo-Inspired Renewable, Lightweight, and Vibration-Damping Laminated Structural Materials for the Floor of a Railroad Car. ACS Applied Materials & Interfaces, 2022, 14, 42645-42655.	8.0	9
141	Formation of Robust and Adaptive Biopolymers via Nonâ€Covalent Supramolecular Interactions. Macromolecular Rapid Communications, 2023, 44, .	3.9	0
142	Bio-based and Nanostructured Hybrids for Green and Active Food Packaging. Food Chemistry, Function and Analysis, 2022, , 81-128.	0.2	2
143	Nanocellulose-Based Materials with Superior Mechanical Performance. Nanoscience and Technology, 2023, , 141-178.	1.5	1
144	Controlling superstructure formation and macro-scale adhesion via confined evaporation of cellulose nanocrystals. Cellulose, 2023, 30, 741-751.	4.9	2
145	Bacterial Cellulose Cultivations Containing Gelatin Form Tunable, Highly Ordered, Laminae Structures with Fourfold Enhanced Productivity. ACS Omega, 2022, 7, 47709-47719.	3.5	1

#	Article	IF	CITATIONS
146	Strengthening and toughening mechanisms induced by metal ion cross-linking in wet-drawn bacterial cellulose films. Materials and Design, 2022, 224, 111431.	7.0	3
147	Structurally Tailoring Clay Nanosheets to Design Emerging Macrofibers with Tunable Mechanical Properties and Thermal Behavior. ACS Applied Materials & Interfaces, 2023, 15, 3141-3151.	8.0	2
148	One-pot preparation of superhydrophobic lignocellulose composites and their oil-water separation properties. Composite Interfaces, 2023, 30, 771-786.	2.3	1
149	High wet-strength, durable composite film with nacre-like structure for moisture-driven actuators. Chemical Engineering Journal, 2023, 457, 141353.	12.7	10
150	Robust and flexible bacterial cellulose-based thermogalvanic cells for low-grade heat harvesting in extreme environments. Chemical Engineering Journal, 2023, 457, 141274.	12.7	10
151	Bacteria Cellulose and Resin Stabilization in Densified Veneer. Trends in Sciences, 2023, 20, 6400.	0.5	0
152	Insights into Hierarchical Structure–Property–Application Relationships of Advanced Bacterial Cellulose Materials. Advanced Functional Materials, 2023, 33, .	14.9	19
153	Robust, Flexible, and High-Barrier Films from Bacterial Cellulose Modified by Long-Chain Alkenyl Succinic Anhydrides. ACS Sustainable Chemistry and Engineering, 2023, 11, 2486-2498.	6.7	6
154	Bacterial cellulose aerogel enriched in nanofibers obtained from Kombucha SCOBY byproduct. Materials Today Communications, 2023, 35, 105975.	1.9	0
155	Multifunctional Bacterial Cellulose Films Enabled by Deep Eutectic Solvent-Extracted Lignin. ACS Omega, 2023, 8, 7430-7437.	3.5	0
156	Advanced Flexible Materials from Nanocellulose. Advanced Functional Materials, 2023, 33, .	14.9	24
157	Vacuum-assisted multi-layer bacterial cellulose/polydopamine-modified Mxene film for joule heating, photo thermal, and humidity sensing. Cellulose, 2023, 30, 4373-4385.	4.9	4
158	Fabrication of Advanced Cellulosic TriboelectricÂMaterials via Dielectric Modulation. Advanced Science, 2023, 10, .	11.2	37
159	Ultrastrong and fatigue-resistant bioinspired conductive fibers via the in situ biosynthesis of bacterial cellulose. NPG Asia Materials, 2023, 15, .	7.9	1
160	Progress in Sustainable Polymers from Biological Matter. Annual Review of Materials Research, 2023, 53, 81-104.	9.3	5
161	Sustainable Management of Sewage Sludge Using Dhaincha (Sesbania bispinosa (Jacq.) W.Wight) Cultivation: Studies on Heavy Metal Uptake and Characterization of Fibers. Agronomy, 2023, 13, 1066.	3.0	4
162	Hierarchical biopolymerâ€based materials and composites. Journal of Polymer Science, 2023, 61, 2585-2632.	3.8	2
163	Dynamic covalent bond enabled strong Bio-based polyimide materials with Thermally-driven Adaptivity, healability and recycling. Chemical Engineering Journal, 2023, 465, 143017.	12.7	12

#	Article	IF	CITATIONS
164	Biomass-derived carbon for supercapacitors electrodes – A review of recent advances. Inorganic Chemistry Communication, 2023, 153, 110768.	3.9	10
165	Harvesting energy from extreme environmental conditions with cellulosic triboelectric materials. Materials Today, 2023, 66, 348-370.	14.2	19
166	Molecular arrangement of cellulose bio-nanofibers in formation of higherorder assemblies. Journal of Polymer Research, 2023, 30, .	2.4	0
167	Recent advances in bacterial cellulose-based antibacterial composites for infected wound therapy. Carbohydrate Polymers, 2023, 316, 121082.	10.2	11
168	Sustainable cellulose and its derivatives for promising biomedical applications. Progress in Materials Science, 2023, 138, 101152.	32.8	22
169	Durability of Plant Fiber Composites for Structural Application: A Brief Review. Materials, 2023, 16, 3962.	2.9	3
170	Superior Strong and Stiff Alginate Fibers by Entanglement-Enhanced Stretching. Macromolecules, 2023, 56, 6305-6315.	4.8	0
171	Macrofibers with tunable mechanical performance and reversible rotational motion based on a bacterial cellulose hydrogel film. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 676, 132195.	4.7	0
172	Sustainable upcycling of plastic waste and wood fibers into high-performance laminated wood-polymer composite via one-step cell collapse and chemical bonding approach. Advanced Composites and Hybrid Materials, 2023, 6, .	21.1	3
173	Lignocellulose Nanoparticles Extracted from Cattle Dung as Pickering Emulsifiers for Microencapsulating Phase Change Materials. ACS Sustainable Chemistry and Engineering, 2023, 11, 14255-14266.	6.7	Ο
174	Biocompatible optical fiber for photomedical application. Giant, 2023, 16, 100195.	5.1	0
175	Reshaping Zinc Plating/Stripping Behavior by Interfacial Water Bonding for Highâ€Utilizationâ€Rate Zinc Batteries. Advanced Materials, 2023, 35, .	21.0	9
176	Role of atomistic modeling in bioinspired materials design: A review. Computational Materials Science, 2024, 232, 112667.	3.0	0
177	Plasmonic metasurfaces of cellulose nanocrystal matrices with quadrants of aligned gold nanorods for photothermal anti-icing. Nature Communications, 2023, 14, .	12.8	1
178	Force-Induced Alignment of Nanofibrillated Bacterial Cellulose for the Enhancement of Cellulose Composite Macrofibers. International Journal of Molecular Sciences, 2024, 25, 69.	4.1	0
179	Strong and Tough Biofibers Designed by Dual Crosslinking for Sutures. Advanced Functional Materials, 2024, 34, .	14.9	0
180	Superelastic and superflexible cellulose aerogels for thermal insulation and oil/water separation. International Journal of Biological Macromolecules, 2024, 260, 129245.	7.5	0
181	Analysis of morphological changes leading to the enhancement of tensile properties of yarns from Manila hemp fiber. International Journal of Modern Physics B, 2024, 38, .	2.0	0

#	Article	IF	CITATIONS
182	Bacterial nanocellulose membrane with opposite surface charges for large-scale and large-area osmotic energy harvesting and ion transport. International Journal of Biological Macromolecules, 2024, 260, 129461.	7.5	0
183	Reversible Deacidification and Preventive Conservation of Paper-Based Cultural Relics by Mineralized Bacterial Cellulose. ACS Applied Materials & Interfaces, 2024, 16, 13091-13102.	8.0	Ο
184	Efficient fabrication of anisotropic regenerated cellulose films from bamboo via a facile wet extrusion strategy. International Journal of Biological Macromolecules, 2024, 265, 130966.	7.5	0
185	Delivery of Probiotics with Cellulose-Based Films and Their Food Applications. Polymers, 2024, 16, 794.	4.5	0