Promises, facts and challenges for graphene in biomedie

Chemical Society Reviews 46, 4400-4416 DOI: 10.1039/c7cs00363c

Citation Report

#	Article	IF	CITATIONS
1	Supramolecular chemotherapy based on host–guest molecular recognition: a novel strategy in the battle against cancer with a bright future. Chemical Society Reviews, 2017, 46, 7021-7053.	18.7	556
2	Graphene Improves the Biocompatibility of Polyacrylamide Hydrogels: 3D Polymeric Scaffolds for Neuronal Growth. Scientific Reports, 2017, 7, 10942.	1.6	87
3	Graphene quantum dots in biomedical applications: Recent advances and future challenges. Frontiers in Laboratory Medicine, 2017, 1, 192-199.	1.7	139
4	Bioaccumulation and Toxicity of Carbon Nanoparticles Suspension Injection in Intravenously Exposed Mice. International Journal of Molecular Sciences, 2017, 18, 2562.	1.8	37
5	Combined therapies with nanostructured carbon materials: there is room still available at the bottom. Journal of Materials Chemistry B, 2018, 6, 2022-2035.	2.9	16
6	New routes to the functionalization patterning and manufacture of graphene-based materials for biomedical applications. Interface Focus, 2018, 8, 20170057.	1.5	13
7	Carbon-based hybrid nanogels: a synergistic nanoplatform for combined biosensing, bioimaging, and responsive drug delivery. Chemical Society Reviews, 2018, 47, 4198-4232.	18.7	201
8	Kaolin Alleviates Graphene Oxide Toxicity. Environmental Science and Technology Letters, 2018, 5, 295-300.	3.9	41
9	Anisotropic architecture and electrical stimulation enhance neuron cell behaviour on a tough graphene embedded PVA: alginate fibrous scaffold. RSC Advances, 2018, 8, 6381-6389.	1.7	37
10	A Highly Sensitive Strategy for Fluorescence Imaging of MicroRNA in Living Cells and in Vivo Based on Graphene Oxide-Enhanced Signal Molecules Quenching of Molecular Beacon. ACS Applied Materials & Interfaces, 2018, 10, 6982-6990.	4.0	71
11	Switching off the interactions between graphene oxide and doxorubicin using vitamin C: combining simplicity and efficiency in drug delivery. Journal of Materials Chemistry B, 2018, 6, 1251-1259.	2.9	22
12	An upconversion nanoparticle-based fluorescence resonance energy transfer system for effectively sensing caspase-3 activity. Analyst, The, 2018, 143, 761-767.	1.7	28
13	2D MoS ₂ Nanostructures for Biomedical Applications. Advanced Healthcare Materials, 2018, 7, e1701158.	3.9	135
14	Preparation of poly(lactic acid)/graphene oxide nanofiber membranes with different structures by electrospinning for drug delivery. RSC Advances, 2018, 8, 16619-16625.	1.7	43
15	Evolution of Graphene Oxide and Graphene: From Imagination to Industrialization. ChemNanoMat, 2018, 4, 598-620.	1.5	80
16	Spin transport in graphene/transition metal dichalcogenide heterostructures. Chemical Society Reviews, 2018, 47, 3359-3379.	18.7	150
17	Biocompatible hybrids based on nanographene oxide covalently linked to glycolporphyrins: Synthesis, characterization and biological evaluation. Carbon, 2018, 135, 202-214.	5.4	21
18	Fluorinated graphene as an anticancer nanocarrier: an experimental and DFT study. Journal of Materials Chemistry B, 2018, 6, 2769-2777.	2.9	38

ARTICLE IF CITATIONS # An overview of graphene materials: Properties, applications and toxicity on aquatic environments. 19 3.9 134 Science of the Total Environment, 2018, 631-632, 1440-1456. Platelets and their biomimetics for regenerative medicine and cancer therapies. Journal of Materials Chemistry B, 2018, 6, 7354-7365. Endotoxinâ€Free Preparation of Graphene Oxide and Grapheneâ€Based Materials for Biological 21 1.7 12 Applications. Current Protocols in Chemical Biology, 2018, 10, e51. A Systematic Review and Critical Analysis of the Role of Graphene-Based Nanomaterialsin Cancer 2.0 24 Theranostics. Pharmaceutics, 2018, 10, 282. Response of macrophages and neural cells in contact with reduced graphene oxide microfibers. 24 2.6 41 Biomaterials Science, 2018, 6, 2987-2997. Polysaccharides-Based Hybrids with Graphene. Springer Briefs in Molecular Science, 2018, , 69-93. 0.1 Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment. ACS 26 7.3 438 Nano, 2018, 12, 10582-10620. The Yin and Yang of carbon nanomaterials in atherosclerosis. Biotechnology Advances, 2018, 36, 6.0 2232-2247. Cellular Signaling Pathways Activated by Functional Graphene Nanomaterials. International Journal 28 1.8 26 of Molecular Sciences, 2018, 19, 3365. Graphene-based materials: The missing piece in nanomedicine?. Biochemical and Biophysical Research 1.0 Communications, 2018, 504, 686-689 Graphene-based Nano-Carrier modifications for gene delivery applications. Carbon, 2018, 140, 569-591. 30 72 5.4A Review on Graphene-Based Nanomaterials in Biomedical Applications and Risks in Environment and 14.4 259 Health. Nano-Micro Letters, 2018, 10, 53. Amino acid nanopatterning on graphite. Surface Science, 2018, 678, 143-148. 33 0.8 9 Recent developments in the synthesis and applications of graphene-family materials functionalized with cyclodextrins. Chemical Communications, 2018, 54, 8547-8562. 2.2 Biomedical Applications of Graphene Nanomaterials and Beyond. ACS Biomaterials Science and 35 2.6 161 Engineering, 2018, 4, 2653-2703. Sonochemically Assembled Photoluminescent Copper-Modified Graphene Oxide Microspheres. Langmuir, 2018, 34, 8599-8610. Insights into 2D MXenes for Versatile Biomedical Applications: Current Advances and Challenges 37 397 5.6 Ahead. Advanced Science, 2018, 5, 1800518. Facile, environmentally benign and scalable approach to produce pristine few layers graphene suitable 24 for preparing biocompatible polymer nanocomposites. Scientific Reports, 2018, 8, 11228.

#	Article	IF	CITATIONS
39	Soft Material-Enabled, Flexible Hybrid Electronics for Medicine, Healthcare, and Human-Machine Interfaces. Materials, 2018, 11, 187.	1.3	166
40	Peripheral Neuron Survival and Outgrowth on Graphene. Frontiers in Neuroscience, 2018, 12, 1.	1.4	357
41	Interfacing Graphene-Based Materials With Neural Cells. Frontiers in Systems Neuroscience, 2018, 12, 12.	1.2	98
42	High-yield graphene produced from the synergistic effect of inflated temperature and gelatin offers high stability and cellular compatibility. Physical Chemistry Chemical Physics, 2018, 20, 20096-20107.	1.3	7
43	Degradation of Singleâ€Layer and Fewâ€Layer Graphene by Neutrophil Myeloperoxidase. Angewandte Chemie, 2018, 130, 11896-11901.	1.6	9
44	Degradation of Singleâ€Layer and Fewâ€Layer Graphene by Neutrophil Myeloperoxidase. Angewandte Chemie - International Edition, 2018, 57, 11722-11727.	7.2	135
45	Graphene oxide as a stationary phase for speciation of inorganic and organic species of mercury, arsenic and selenium using HPLC with ICP-MS detection. Mikrochimica Acta, 2018, 185, 425.	2.5	38
46	Facile room temperature synthesis of large graphene sheets from simple molecules. Chemical Science, 2018, 9, 7297-7303.	3.7	25
47	Graphene Oxide Upregulates the Homeostatic Functions of Primary Astrocytes and Modulates Astrocyte-to-Neuron Communication. Nano Letters, 2018, 18, 5827-5838.	4.5	47
48	The Role of Polymer Additives in Enhancing the Response of Calcium Phosphate Cement. , 2018, , 345-379.		2
49	Occupational exposure to graphene based nanomaterials: risk assessment. Nanoscale, 2018, 10, 15894-15903.	2.8	82
50	Controlled derivatization of hydroxyl groups of graphene oxide in mild conditions. 2D Materials, 2018, 5, 035037.	2.0	42
51	Directed Grapheneâ€Based Nanoplatforms for Hyperthermia: Overcoming Multiple Drug Resistance. Angewandte Chemie - International Edition, 2018, 57, 11198-11202.	7.2	78
52	Differential effects of graphene materials on the metabolism and function of human skin cells. Nanoscale, 2018, 10, 11604-11615.	2.8	44
53	Green and continuous route to assemble lateral nanodimensional graphitic oxide composites without process interruption. Green Chemistry, 2018, 20, 2984-2989.	4.6	2
54	Directed Grapheneâ€Based Nanoplatforms for Hyperthermia: Overcoming Multiple Drug Resistance. Angewandte Chemie, 2018, 130, 11368-11372.	1.6	22
55	Grapheneâ€Based Smart Platforms for Combined Cancer Therapy. Advanced Materials, 2019, 31, e1800662.	11.1	233
56	Intrinsic photoluminescence of amine-functionalized graphene derivatives for bioimaging applications. Applied Materials Today, 2019, 17, 112-122.	2.3	25

ARTICLE IF CITATIONS # Facile fabrication of 3D ferrous ion crosslinked graphene oxide hydrogel membranes for excellent 57 2.2 18 water purification. Environmental Science: Nano, 2019, 6, 3060-3071. Synthesis of Graphene-based Materials for Surface-Enhanced Raman Scattering Applications. E-Journal 0.1 of Surface Science and Nanotechnology, 2019, 17, 71-82. Functionalized nanographene sheets with high antiviral activity through synergistic electrostatic 59 2.8 83 and hydrophobic interactions. Nanoscale, 2019, 11, 15804-15809. Graphene-based advanced nanoplatforms and biocomposites from environmentally friendly and biomimetic approaches. Green Chemistry, 2019, 21, 4887-4918. A Study on Technology Competition of Graphene Biomedical Technology Based on Patent Analysis. 61 1.3 7 Applied Sciences (Switzerland), 2019, 9, 2613. Two-Dimensional Graphene Family Material: Assembly, Biocompatibility and Sensors Applications. 2.1 Sensors, 2019, 19, 2966. Hollow Cu₂Se Nanozymes for Tumor Photothermal-Catalytic Therapy. Chemistry of 63 3.2 204 Materials, 2019, 31, 6174-6186. A Biodegradable Multifunctional Graphene Oxide Platform for Targeted Cancer Therapy. Advanced 64 54 Functional Materials, 2019, 29, 1901761. Chemical Functionalization of Nanodiamonds: Opportunities and Challenges Ahead. Angewandte 65 8 1.6 Chemie, 2019, 131, 18084-18095. Application of Ti₃C₂ MXene Quantum Dots for Immunomodulation and Regenerative Medicine. Advanced Healthcare Materials, 2019, 8, e1900569. Multifunctional two-dimensional nanocomposites for photothermal-based combined cancer therapy. 67 2.8 74 Nanoscale, 2019, 11, 15685-15708. Black phosphorus nanomaterials as multi-potent and emerging platforms against bacterial infections. 1.3 68 36 Microbial Pathogenesis, 2019, 137, 103800. Two-dimensional nanomaterials: fascinating materials in biomedical field. Science Bulletin, 2019, 64, 69 4.3 171 1707-1727. Optical and Photothermal Properties of Graphene Coated Au–Ag Hollow Nanoshells: A Modeling for Efficient Photothermal Therapy. Journal of Physical Chemistry C, 2019, 123, 28907-28918. 1.5 74 Phenylalanine Monitoring via Aptamer-Field-Effect Transistor Sensors. ACS Sensors, 2019, 4, 3308-3317. 4.0 57 Role of Substrate Surface Morphology on the Performance of Graphene Inks for Flexible Electronics. ACS Applied Electronic Materials, 2019, 1, 1909-1916. Graphene oxide arms oncolytic measles virus for improved effectiveness of cancer therapy. Journal of 77 3.528 Experimental and Clinical Cancer Research, 2019, 38, 408. SERS Sensing Properties of New Graphene/Gold Nanocomposite. Nanomaterials, 2019, 9, 1236.

	CITATION	Report	
# 79	ARTICLE Melatonin alleviates cigarette smoke-induced endothelial cell pyroptosis through inhibiting	IF 1.0	Citations
80	ROS/NLRP3 axis. Biochemical and Biophysical Research Communications, 2019, 519, 402-408. Leveraging electrochemistry to uncover the role of nitrogen in the biological reactivity of nitrogen-doped graphene. Environmental Science: Nano, 2019, 6, 3525-3538.	2.2	12
81	Graphene at Fifteen. ACS Nano, 2019, 13, 10872-10878.	7.3	92
82	Carbon nanomaterials: a new way against tuberculosis. Expert Review of Medical Devices, 2019, 16, 863-875.	1.4	16
83	Graphene oxide touches blood: <i>in vivo</i> interactions of bio-coronated 2D materials. Nanoscale Horizons, 2019, 4, 273-290.	4.1	97
84	Bio-Integrated Wearable Systems: A Comprehensive Review. Chemical Reviews, 2019, 119, 5461-5533.	23.0	822
85	Do biomedical engineers dream of graphene sheets?. Biomaterials Science, 2019, 7, 1228-1239.	2.6	10
86	Au/reduced graphene oxide composites: eco-friendly preparation method and catalytic applications for formic acid dehydrogenation. Journal of Materials Science, 2019, 54, 6991-7004.	1.7	20
87	"Ultramixingâ€! A Simple and Effective Method To Obtain Controlled and Stable Dispersions of Graphene Oxide in Cell Culture Media. ACS Applied Materials & Interfaces, 2019, 11, 7695-7702.	4.0	33
88	2D Black Phosphorus–Based Biomedical Applications. Advanced Functional Materials, 2019, 29, 1808306.	7.8	438
89	Reply to Letter to the Editor. Journal of NeuroImmune Pharmacology, 2019, 14, 7-8.	2.1	1
90	Alkynylation of graphene <i>via</i> the Sonogashira C–C cross-coupling reaction on fluorographene. Chemical Communications, 2019, 55, 1088-1091.	2.2	23
91	Graphene-based materials and their biomedical and environmental applications: Recent advances. , 2019, , 243-257.		1
92	Graphene- and Graphene Oxide-Based Nanocomposite Platforms for Electrochemical Biosensing Applications. International Journal of Molecular Sciences, 2019, 20, 2975.	1.8	96
93	Chemical Functionalization of Nanodiamonds: Opportunities and Challenges Ahead. Angewandte Chemie - International Edition, 2019, 58, 17918-17929.	7.2	83
94	Sequence-Specific Detection of Unlabeled Nucleic Acid Biomarkers Using a "One-Pot―3D Molecular Sensor. Analytical Chemistry, 2019, 91, 10016-10025.	3.2	5
95	Delivery of Oridonin and Methotrexate via PEGylated Graphene Oxide. ACS Applied Materials & Interfaces, 2019, 11, 22915-22924.	4.0	48
96	Combined Application of Grapheneâ€Family Materials and Silk Fibroin in Biomedicine. ChemistrySelect, 2019, 4, 5745-5754.	0.7	17

		CITATION REPORT	
#	Article	IF	CITATIONS
97	Graphene-Based Sensors for Human Health Monitoring. Frontiers in Chemistry, 2019, 7, 399.	1.8	218
98	The art of two-dimensional soft nanomaterials. Science China Chemistry, 2019, 62, 1145-1193.	4.2	52
99	Facile synthesis of IrO2/rGO nanocomposites with high peroxidase-like activity for sensitive colorimetric detection of low weight biothiols. Talanta, 2019, 203, 227-234.	2.9	41
100	Emerging two-dimensional monoelemental materials (Xenes) for biomedical applications. Chemica Society Reviews, 2019, 48, 2891-2912.	18.7	482
101	In Vitro Neuronal Networks. Advances in Neurobiology, 2019, , .	1.3	12
102	Neuronal Cultures and Nanomaterials. Advances in Neurobiology, 2019, 22, 51-79.	1.3	7
103	Biocompatibility Considerations in the Design of Graphene Biomedical Materials. Advanced Materia Interfaces, 2019, 6, 1900229.	als 1.9	86
104	Multifunctional nano-graphene based nanocomposites for multimodal imaging guided combined radioisotope therapy and chemotherapy. Carbon, 2019, 149, 55-62.	5.4	32
105	Graphene in Electrochemical Biosensors. , 2019, , 321-336.		2
106	Few layer graphene does not affect the function and the autophagic activity of primary lymphocyte Nanoscale, 2019, 11, 10493-10503.	es. 2.8	8
107	Graphene and Graphene Oxide for Tissue Engineering and Regeneration. , 2019, , 165-185.		22
108	Advanced carbon nanomaterials for electrochemiluminescent biosensor applications. Current Opinion in Electrochemistry, 2019, 16, 66-74.	2.5	75
109	An Increase in Membrane Cholesterol by Graphene Oxide Disrupts Calcium Homeostasis in Primary Astrocytes. Small, 2019, 15, e1900147.	5.2	37
110	Modified Nanocarbons for Catalysis. ChemCatChem, 2019, 11, 90-133.	1.8	66
111	Interface Engineering of Graphene-Supported Cu Nanoparticles Encapsulated by Mesoporous Silica Size-Dependent Catalytic Oxidative Coupling of Aromatic Amines. ACS Applied Materials & Interfaces, 2019, 11, 11722-11735.	a for 4.0	64
112	Sonochemical Formation of Copper/Ironâ€Modified Graphene Oxide Nanocomposites for Ketorola Delivery. Chemistry - A European Journal, 2019, 25, 6233-6245.	c 1.7	11
113	Graphene Nanomaterials-Based Radio-Frequency/Microwave Biosensors for Biomaterials Detection Materials, 2019, 12, 952.	. 1.3	17
114	Current Review on Synthesis, Composites and Multifunctional Properties of Graphene. Topics in Current Chemistry, 2019, 377, 10.	3.0	95

	CITATION R	EPORT	
#	Article	IF	CITATIONS
115	Protected Amino Acid–Based Hydrogels Incorporating Carbon Nanomaterials for Near-Infrared Irradiation-Triggered Drug Release. ACS Applied Materials & Interfaces, 2019, 11, 13147-13157.	4.0	24
116	Nanoscale colloids induce metabolic disturbance of zebrafish at environmentally relevant concentrations. Environmental Science: Nano, 2019, 6, 1562-1575.	2.2	13
117	Graphene-Based Hybrid Nanomaterials for Biomedical Applications. , 2019, , 119-141.		13
118	Reduced graphene oxide aerogel membranes fabricated through hydrogen bond mediation for highly efficient oil/water separation. Journal of Materials Chemistry A, 2019, 7, 11468-11477.	5.2	54
119	"Click―Chemistry on Gold Electrodes Modified with Reduced Graphene Oxide by Electrophoretic Deposition. Surfaces, 2019, 2, 193-204.	1.0	15
120	Fourier transform infrared spectroscopy: Data interpretation and applications in structure elucidation and analysis of small molecules and nanostructures. , 2019, , 77-96.		6
121	Hybrid Catalysts for CO2 Conversion into Cyclic Carbonates. Catalysts, 2019, 9, 325.	1.6	75
122	A Safeâ€byâ€Design Strategy towards Safer Nanomaterials in Nanomedicines. Advanced Materials, 2019, 31, e1805391.	11.1	109
123	Design and preparation of organic nanomaterials using selfâ€assembled peptoids. Biopolymers, 2019, 110, e23265.	1.2	18
124	Controlled adsorption and release of amoxicillin in GO/HA composite materials. SN Applied Sciences, 2019, 1, 1.	1.5	7
125	A health concern regarding the protein corona, aggregation and disaggregation. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 971-991.	1.1	71
126	Biodegradation of graphene-based nanomaterials in blood plasma affects their biocompatibility, drug delivery, targeted organs and antitumor ability. Biomaterials, 2019, 202, 12-25.	5.7	45
127	Superparamagnetic nanoarchitectures for disease-specific biomarker detection. Chemical Society Reviews, 2019, 48, 5717-5751.	18.7	188
128	MEA Recordings and Cell–Substrate Investigations with Plasmonic and Transparent, Tunable Holey Gold. ACS Applied Materials & Interfaces, 2019, 11, 46451-46461.	4.0	13
129	Optically Active Nanomaterials for Bioimaging and Targeted Therapy. Frontiers in Bioengineering and Biotechnology, 2019, 7, 320.	2.0	44
130	Stabilization of aqueous graphene dispersions utilizing a biocompatible dispersant: a molecular dynamics study. Physical Chemistry Chemical Physics, 2019, 21, 24007-24016.	1.3	9
131	Graphene oxide and carbon dots as broad-spectrum antimicrobial agents – a minireview. Nanoscale Horizons, 2019, 4, 117-137.	4.1	204
133	Green and facile synthesis of Rh/GO nanocomposites for high catalytic performance. Applied Surface Science, 2019, 471, 929-934.	3.1	31

#	Article	IF	CITATIONS
134	Reinforcing nanomedicine using graphene nanoribbons. Journal of Drug Delivery Science and Technology, 2019, 49, 334-344.	1.4	2
135	Piezo/triboelectric nanogenerators based on 2-dimensional layered structure materials. Nano Energy, 2019, 57, 680-691.	8.2	108
136	Myelinated axons and functional blood vessels populate mechanically compliant rGO foams in chronic cervical hemisected rats. Biomaterials, 2019, 192, 461-474.	5.7	43
137	Three-Dimensional Graphene Foams: Synthesis, Properties, Biocompatibility, Biodegradability, and Applications in Tissue Engineering. ACS Biomaterials Science and Engineering, 2019, 5, 193-214.	2.6	121
138	The role of oxygen defects in magnetic properties of gamma-irradiated reduced graphene oxide. Journal of Alloys and Compounds, 2019, 784, 134-148.	2.8	22
139	Heterogeneous oxidization of graphene nanosheets damages membrane. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	2.0	16
140	Finite element analysis of titanium alloy-graphene based mandible plate. Computer Methods in Biomechanics and Biomedical Engineering, 2019, 22, 324-330.	0.9	11
141	The reactivity of reduced graphene depends on solvation. 2D Materials, 2019, 6, 025009.	2.0	12
142	Efficiency of nanoparticle reinforcement using finite element analysis of titanium alloy mandible plate. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2019, 233, 309-317.	1.0	4
143	Native nanodiscs from blood inhibit pulmonary fibrosis. Biomaterials, 2019, 192, 51-61.	5.7	8
144	The design, fabrication, and applications of flexible biosensing devices. Biosensors and Bioelectronics, 2019, 124-125, 96-114.	5.3	124
145	Functionalized reduced graphene oxide as a lateral flow immuneassay label for one-step detection of Escherichia coli O157:H7. Journal of Pharmaceutical and Biomedical Analysis, 2019, 164, 104-111.	1.4	33
146	Relevance of Plasma Processing on Polymeric Materials and Interfaces. , 2019, , 1-21.		9
147	Two-dimensional pnictogens, their chemistry and applications. FlatChem, 2019, 13, 8-24.	2.8	33
148	Adsorption of different types of surfactants on graphene oxide. Journal of Molecular Liquids, 2019, 276, 338-346.	2.3	37
149	Innovative coating based on graphene and their decorated nanoparticles for medical stent applications. Materials Science and Engineering C, 2019, 96, 708-715.	3.8	27
150	Adsorption of trans ―and cis â€Resveratrol on Graphene. Physica Status Solidi (B): Basic Research, 2019, 256, 1800335.	0.7	0
151	Facile processing for instant production of clinically-approvable nanoagents for combination cancer therapy. Chemical Engineering Journal, 2020, 383, 123177.	6.6	10

#	Article	IF	CITATIONS
152	Boronic acid functionalized graphene platforms for diabetic wound healing. Carbon, 2020, 158, 327-336.	5.4	29
153	Graphene quantum dots in biomedical applications: recent advances and future challenges. , 2020, , 493-505.		14
154	Advances in precursor system for silica-based aerogel production toward improved mechanical properties, customized morphology, and multifunctionality: A review. Advances in Colloid and Interface Science, 2020, 276, 102101.	7.0	99
155	Colorimetric determination of ascorbic acid using a polyallylamine-stabilized IrO2/graphene oxide nanozyme as a peroxidase mimic. Mikrochimica Acta, 2020, 187, 110.	2.5	32
157	Novel Sr5(PO4)2SiO4-graphene nanocomposites for applications in bone regeneration in vitro. Applied Surface Science, 2020, 507, 145176.	3.1	10
158	Enhanced synergetic antibacterial activity by a reduce graphene oxide/Ag nanocomposite through the photothermal effect. Colloids and Surfaces B: Biointerfaces, 2020, 185, 110616.	2.5	67
159	Keratinocytes are capable of selectively sensing low amounts of graphene-based materials: Implications for cutaneous applications. Carbon, 2020, 159, 598-610.	5.4	16
160	Nanocomposite Polymer Scaffolds Responding under External Stimuli for Drug Delivery and Tissue Engineering Applications. Advanced Therapeutics, 2020, 3, 1900143.	1.6	28
161	The impact of surfactants on the stability and thermal conductivity of graphene oxide de-ionized water nanofluids. Journal of Thermal Analysis and Calorimetry, 2020, 139, 1895-1902.	2.0	42
162	Edge-selectively amidated graphene for boosting H2-evolution activity of TiO2 photocatalyst. Applied Catalysis B: Environmental, 2020, 264, 118504.	10.8	61
163	A closer look at the genotoxicity of graphene based materials. JPhys Materials, 2020, 3, 014007.	1.8	10
164	Microwave reduction of graphene oxide. Carbon, 2020, 170, 277-293.	5.4	80
165	Toxicological evaluation of highly water dispersible few-layer graphene inÂvivo. Carbon, 2020, 170, 347-360.	5.4	15
166	Inorganic nanoparticles in clinical trials and translations. Nano Today, 2020, 35, 100972.	6.2	138
167	Hard Nanomaterials in Time of Viral Pandemics. ACS Nano, 2020, 14, 9364-9388.	7.3	76
168	Modeling of nucleobase/oligonucleotide interaction with graphene and graphene oxide: the role of charging and/or oxidizing the graphene surface. Molecular Crystals and Liquid Crystals, 2020, 697, 49-59.	0.4	1
169	Recent developments in carbon-based two-dimensional materials: synthesis and modification aspects for electrochemical sensors. Mikrochimica Acta, 2020, 187, 441.	2.5	64
170	Advances in synthesis of graphene derivatives using industrial wastes precursors; prospects and challenges. Journal of Materials Research and Technology, 2020, 9, 15924-15951.	2.6	74

		CITATION REPORT		
#	Article		IF	Citations
171	Two-Dimensional Material-Based Biosensors for Virus Detection. ACS Sensors, 2020, 5	, 3739-3769.	4.0	73
172	Electrochemically controlled cleavage of imine bonds on a graphene platform: towards electro-responsive hybrids for drug release. Nanoscale, 2020, 12, 23824-23830.	new	2.8	12
173	<p>Applications of Graphene and Graphene Oxide in Smart Drug/Gene Delivery: Is Flat?</p> . International Journal of Nanomedicine, 2020, Volume 15, 9469-9496.	s the World Still	3.3	121
175	Detecting DNA and RNA and Differentiating Single-Nucleotide Variations via Field-Effec Nano Letters, 2020, 20, 5982-5990.	t Transistors.	4.5	47
176	Enhancing the Sensing Performance of Zigzag Graphene Nanoribbon to Detect NO, NC Sensors, 2020, 20, 3932.)2, and NH3 Gases.	2.1	39
177	Strong reinforcement effects in 2D cellulose nanofibril–graphene oxide (CNF–GO) due to GO-induced CNF ordering. Journal of Materials Chemistry A, 2020, 8, 17608-170	nanocomposites 620.	5.2	31
178	Degradation-by-design: how chemical functionalization enhances the biodegradability materials. Chemical Society Reviews, 2020, 49, 6224-6247.	and safety of 2D	18.7	61
179	Is carboxylation an efficient method for graphene oxide functionalization?. Nanoscale A 2, 4085-4092.	Advances, 2020,	2.2	26
180	Potential of Graphene–Polymer Composites for Ligament and Tendon Repair: A Revie Engineering Materials, 2020, 22, 2000492.	ew. Advanced	1.6	12
181	<p>Synthesis of Graphene Oxide Using Atmospheric Plasma for Prospective Biolo Applications</p> . International Journal of Nanomedicine, 2020, Volume 15, 5813	gical -5824.	3.3	18
182	Graphene impregnated electrospun nanofiber sensing materials: a comprehensive over bridging laboratory set-up to industry. Nano Convergence, 2020, 7, 27.	view on	6.3	52
183	Sublethal exposure of small few-layer graphene promotes metabolic alterations in hum Scientific Reports, 2020, 10, 18407.	an skin cells.	1.6	15
184	Zinc oxide nanoparticles: future therapy for cerebral ischemia. Nanomedicine, 2020, 15	5, 2729-2732.	1.7	4
185	Cytotoxicity and Immune Dysfunction of Dendritic Cells Caused by Graphene Oxide. Fr Pharmacology, 2020, 11, 1206.	ontiers in	1.6	24
186	Biodistribution of Graphene Oxide Determined through Postadministration Labeling wi DNA-Conjugated Gold Nanoparticles and ICPMS. Analytical Chemistry, 2020, 92, 1399	th 7-14005.	3.2	10
187	Interactions of Zinc Oxide Nanostructures with Mammalian Cells: Cytotoxicity and Phc Toxicity. International Journal of Molecular Sciences, 2020, 21, 6305.	otocatalytic	1.8	69
188	Exploring Graphene and MoS2 Chips Based Surface Plasmon Resonance Biosensors for Applications. Frontiers in Chemistry, 2020, 8, 728.	[.] Diagnostic	1.8	29
189	Recent advancement in biomedical applications on the surface of two-dimensional mat biosensing to tissue engineering. Nanoscale, 2020, 12, 19043-19067.	terials: from	2.8	50

#	Article	IF	CITATIONS
190	Unveiling the Synergistic Role of Oxygen Functional Groups in the Graphene-Mediated Oxidation of Glutathione. ACS Applied Materials & amp; Interfaces, 2020, 12, 45753-45762.	4.0	12
191	A high-throughput method to characterize the gut bacteria growth upon engineered nanomaterial treatment. Environmental Science: Nano, 2020, 7, 3155-3166.	2.2	2
192	Toxic impacts and industrial potential of graphene. Journal of Environmental Science and Health, Part C: Toxicology and Carcinogenesis, 2020, 38, 269-297.	0.4	5
193	Rapid label-free SERS detection of foodborne pathogenic bacteria based on hafnium ditelluride-Au nanocomposites. Journal of Innovative Optical Health Sciences, 2020, 13, .	0.5	15
194	Atomic Details of Carbon-Based Nanomolecules Interacting with Proteins. Molecules, 2020, 25, 3555.	1.7	13
195	Recent advance in near-infrared/ultrasound-sensitive 2D-nanomaterials for cancer therapeutics. Science China Materials, 2020, 63, 2397-2428.	3.5	56
196	Fabrication and characterization of mechanically competent 3D printed polycaprolactone-reduced graphene oxide scaffolds. Scientific Reports, 2020, 10, 22210.	1.6	59
198	Recent Advances in the Fabrication and Application of Graphene Microfluidic Sensors. Micromachines, 2020, 11, 1059.	1.4	24
199	Factors Influencing Private Hospitals' Participation in the Innovation of Biomedical Engineering Industry: A Perspective of Evolutionary Game Theory. International Journal of Environmental Research and Public Health, 2020, 17, 7442.	1.2	5
200	Fluorescent imaging of cytoplasmic nucleolin in live cells by a functionalized-engineered aptamer. Chemical Communications, 2020, 56, 14171-14174.	2.2	6
201	Poly(ionic liquid)-Stabilized Graphene Nanoinks for Scalable 3D Printing of Graphene Aerogels. ACS Applied Nano Materials, 2020, 3, 11608-11619.	2.4	23
202	Scalable Fabrication of Modified Graphene Nanoplatelets as an Effective Additive for Engine Lubricant Oil. Nanomaterials, 2020, 10, 877.	1.9	21
203	Kinetics of 1H–13C multiple-contact cross-polarization as a powerful tool to determine the structure and dynamics of complex materials: application to graphene oxide. Physical Chemistry Chemical Physics, 2020, 22, 12209-12227.	1.3	14
204	Lignin-graphene oxide inks for 3D printing of graphitic materials with tunable density. Nano Today, 2020, 33, 100881.	6.2	25
205	InÂVivo Disintegration and Bioresorption of a Nacre-Inspired Graphene-Silk Film Caused by the Foreign-Body Reaction. IScience, 2020, 23, 101155.	1.9	8
206	Functionalized GO Nanovehicles with Nitric Oxide Release and Photothermal Activity-Based Hydrogels for Bacteria-Infected Wound Healing. ACS Applied Materials & Interfaces, 2020, 12, 28952-28964.	4.0	70
207	3D Graphene Scaffolds for Skeletal Muscle Regeneration: Future Perspectives. Frontiers in Bioengineering and Biotechnology, 2020, 8, 383.	2.0	28
208	Enhancing the Conductivity of Cell-Laden Alginate Microfibers With Aqueous Graphene for Neural Applications. Frontiers in Materials, 2020, 7, .	1.2	20

#	Article	IF	CITATIONS
209	Copper-based ternary metal sulfide nanocrystals embedded in graphene oxide as photocatalyst in water treatment. , 2020, , 51-113.		4
210	Synthesis, characterisation and biocompatibility of graphene–L-methionine nanomaterial. Journal of Molecular Liquids, 2020, 314, 113605.	2.3	20
211	Nanomaterials and nanocomposite applications in veterinary medicine. , 2020, , 583-638.		6
212	Faradaic effects in electrochemically gated graphene sensors in the presence of redox active molecules. Nanotechnology, 2020, 31, 405201.	1.3	9
213	Graphene-based scaffolds for tissue engineering and photothermal therapy. Nanomedicine, 2020, 15, 1411-1417.	1.7	32
214	Carbon Nanomaterials Applied for the Treatment of Inflammatory Diseases: Preclinical Evidence. Advanced Therapeutics, 2020, 3, 2000051.	1.6	17
215	Graphene Oxide Microfibers Promote Regenerative Responses after Chronic Implantation in the Cervical Injured Spinal Cord. ACS Biomaterials Science and Engineering, 2020, 6, 2401-2414.	2.6	21
216	Synthesis and Physicochemical Transformations of Sizeâ€Sorted Graphene Oxide during Simulated Digestion and Its Toxicological Assessment against an In Vitro Model of the Human Intestinal Epithelium. Small, 2020, 16, e1907640.	5.2	20
217	Hemocompatibility of Carbon Nanostructures. Journal of Carbon Research, 2020, 6, 12.	1.4	19
218	Biological Interfaces, Modulation, and Sensing with Inorganic Nanoâ€Bioelectronic Materials. Small Methods, 2020, 4, 1900868.	4.6	13
219	Emerging graphitic carbon nitride-based materials for biomedical applications. Progress in Materials Science, 2020, 112, 100666.	16.0	197
220	Nano-carbons in biosensor applications: an overview of carbon nanotubes (CNTs) and fullerenes (C60). SN Applied Sciences, 2020, 2, 1.	1.5	48
221	Osteoblastic Differentiation on Graphene Oxide-Functionalized Titanium Surfaces: An In Vitro Study. Nanomaterials, 2020, 10, 654.	1.9	20
222	Disordered protein-graphene oxide co-assembly and supramolecular biofabrication of functional fluidic devices. Nature Communications, 2020, 11, 1182.	5.8	42
223	BSA- and Elastin-Coated GO, but Not Collagen-Coated GO, Enhance the Biological Performance of Alginate Hydrogels. Pharmaceutics, 2020, 12, 543.	2.0	5
224	Graphene nanoribbons: A promising nanomaterial for biomedical applications. Journal of Controlled Release, 2020, 325, 141-162.	4.8	77
225	Graphene Oxide yclic R10 Peptide Nuclear Translocation Nanoplatforms for the Surmounting of Multipleâ€Ðrug Resistance. Advanced Functional Materials, 2020, 30, 2000933.	7.8	39
226	Adsorption behaviors and mechanism of graphene oxide for silver complex anion removal. Applied Surface Science, 2020, 529, 147112.	3.1	19

#	Article	IF	CITATIONS
227	Strategies for the Controlled Covalent Double Functionalization of Graphene Oxide. Chemistry - A European Journal, 2020, 26, 6591-6598.	1.7	27
228	Two-Dimensional Nanosheet-Based Photonic Nanomedicine for Combined Gene and Photothermal Therapy. Frontiers in Pharmacology, 2019, 10, 1573.	1.6	20
229	Untargeted Metabolic Pathway Analysis as an Effective Strategy to Connect Various Nanoparticle Properties to Nanoparticle-Induced Ecotoxicity. Environmental Science & Technology, 2020, 54, 3395-3406.	4.6	34
230	Interactions of graphene oxide and graphene nanoplatelets with the in vitro Caco-2/HT29 model of intestinal barrier. Scientific Reports, 2020, 10, 2793.	1.6	39
231	Toxic and beneficial effects of carbon nanomaterials on human and animal health. , 2020, , 535-555.		4
232	Mass spectrometry of carbohydrate-protein interactions on a glycan array conjugated to CVD graphene surfaces. 2D Materials, 2020, 7, 024003.	2.0	10
233	Acceleration of chondrogenic differentiation of human mesenchymal stem cells by sustained growth factor release in 3D graphene oxide incorporated hydrogels. Acta Biomaterialia, 2020, 105, 44-55.	4.1	58
234	2D Covalent Organic Frameworks for Biomedical Applications. Advanced Functional Materials, 2020, 30, 2002046.	7.8	172
235	Toxicology data of graphene-family nanomaterials: an update. Archives of Toxicology, 2020, 94, 1915-1939.	1.9	55
236	Crystalline loading of lipophilic Coenzyme Q10 pharmaceuticals within conjugated carbon aerogel derivatives. Carbon, 2020, 164, 451-458.	5.4	6
237	Toward Highâ€Dimensional Singleâ€Cell Analysis of Graphene Oxide Biological Impact: Tracking on Immune Cells by Single ell Mass Cytometry. Small, 2020, 16, 2000123.	5.2	10
238	Rational Chemical Multifunctionalization of Graphene Interface Enhances Targeted Cancer Therapy. Angewandte Chemie, 2020, 132, 14138-14143.	1.6	10
239	Rational Chemical Multifunctionalization of Graphene Interface Enhances Targeted Cancer Therapy. Angewandte Chemie - International Edition, 2020, 59, 14034-14039.	7.2	25
240	Graphene-based nanostructures for biomedical applications. , 2020, , 101-135.		2
241	<i>In vivo</i> immunological response of exposure to PEGylated graphene oxide <i>via</i> intraperitoneal injection. Journal of Materials Chemistry B, 2020, 8, 6845-6856.	2.9	14
242	Bio-Nanocomposite Hydrogel Based on Zinc Alginate/Graphene Oxide: Morphology, Structural Conformation, Thermal Behavior/Degradation, and Dielectric Properties. Polymers, 2020, 12, 702.	2.0	38
243	Aligned graphene/silk fibroin conductive fibrous scaffolds for guiding neurite outgrowth in rat spinal cord neurons. Journal of Biomedical Materials Research - Part A, 2021, 109, 488-499.	2.1	14
244	2D materials in electrochemical sensors for in vitro or in vivo use. Analytical and Bioanalytical Chemistry, 2021, 413, 701-725.	1.9	39

#	Article	IF	CITATIONS
245	Environmental transformation of graphene oxide in the aquatic environment. Chemosphere, 2021, 262, 127885.	4.2	54
246	Graphene quantum dots: From efficient preparation to safe renal excretion. Nano Research, 2021, 14, 674-683.	5.8	24
247	Strategies for reduction of graphene oxide – A comprehensive review. Chemical Engineering Journal, 2021, 405, 127018.	6.6	252
248	Effects of carbon-based nanomaterials on vascular endothelia under physiological and pathological conditions: interactions, mechanisms and potential therapeutic applications. Journal of Controlled Release, 2021, 330, 945-962.	4.8	19
249	Combination Therapy of Killing Diseases by Injectable Hydrogels: From Concept to Medical Applications. Advanced Healthcare Materials, 2021, 10, e2001571.	3.9	104
250	Significance of nano-materials, designs consideration and fabrication techniques on performances of strain sensors - A review. Materials Science in Semiconductor Processing, 2021, 123, 105581.	1.9	36
251	Rapid Hardâ€īissueâ€Embedding Method for Embedding Graphene Nanomaterials: A Multilayered Graphene Hydrogel Membrane. Macromolecular Materials and Engineering, 2021, 306, .	1.7	3
252	Graphene field-effect transistors as bioanalytical sensors: design, operation and performance. Analyst, The, 2021, 146, 403-428.	1.7	101
253	Emerging Monoâ€Elemental Bismuth Nanostructures: Controlled Synthesis and Their Versatile Applications. Advanced Functional Materials, 2021, 31, 2007584.	7.8	102
254	Solution-based "bottom-up―synthesis of group VI transition metal dichalcogenides and their applications. Materials Advances, 2021, 2, 146-164.	2.6	43
255	Development of a graphene oxide-poly lactide nanocomposite as a Smart Drug Delivery System. International Journal of Biological Macromolecules, 2021, 169, 521-531.	3.6	42
256	Grapheneâ€Based Biomaterials for Bone Regenerative Engineering: A Comprehensive Review of the Field and Considerations Regarding Biocompatibility and Biodegradation. Advanced Healthcare Materials, 2021, 10, e2001414.	3.9	50
257	Interactions between Primary Neurons and Graphene Films with Different Structure and Electrical Conductivity. Advanced Functional Materials, 2021, 31, 2005300.	7.8	15
258	Patchable and Implantable 2D Nanogenerator. Small, 2021, 17, e1903519.	5.2	30
259	Notes on useful materials and synthesis through various chemical solution techniques. , 2021, , 29-78.		1
260	Carbon Nanomaterials for Neuronal Tissue Engineering. RSC Nanoscience and Nanotechnology, 2021, , 184-222.	0.2	0
261	Alginate-based nanocomposite hydrogels. , 2021, , 395-421.		0
262	A pH-responsive ultrathin Cu-based nanoplatform for specific photothermal and chemodynamic synergistic therapy. Chemical Science, 2021, 12, 2594-2603.	3.7	78

#	Article	IF	CITATIONS
263	Hydrogenated Graphene Improves Neuronal Network Maturation and Excitatory Transmission. Advanced Biology, 2021, 5, e2000177.	1.4	12
264	Gold-carbonaceous materials based heterostructures for gas sensing applications. RSC Advances, 2021, 11, 13674-13699.	1.7	6
265	Three-dimensional nitrogen-doped graphene-based metal-free electrochemical sensors for simultaneous determination of ascorbic acid, dopamine, uric acid, and acetaminophen. Analyst, The, 2021, 146, 964-970.	1.7	44
266	Chemical Sensors: Photoelectrochemical Sensors. , 2023, , 243-259.		1
267	Does black phosphorus hold potential to overcome graphene oxide? A comparative review of their promising application for cancer therapy. Nanoscale Advances, 2021, 3, 4029-4036.	2.2	6
268	Graphene nanoribbon-based supramolecular ensembles with dual-receptor targeting function for targeted photothermal tumor therapy. Chemical Science, 2021, 12, 11089-11097.	3.7	16
269	Cellulase mimicking nanomaterial-assisted cellulose hydrolysis for enhanced bioethanol fermentation: an emerging sustainable approach. Green Chemistry, 2021, 23, 5064-5081.	4.6	22
270	Polymer Functionalized Graphene in Biomedical and Bio-technological Applications. RSC Polymer Chemistry Series, 2021, , 357-425.	0.1	0
271	Adsorption of HOOO. radical on pristine and doped graphene—a first-principles study. Structural Chemistry, 2021, 32, 1171-1179.	1.0	3
272	Concluding remarks: Chemistry of 2-dimensional materials: beyond graphene. Faraday Discussions, 2021, 227, 383-395.	1.6	5
273	Carbon Nanostructures and Polysaccharides for Biomedical Materials. RSC Nanoscience and Nanotechnology, 2021, , 98-152.	0.2	0
274	Graphene glial-interfaces: challenges and perspectives. Nanoscale, 2021, 13, 4390-4407.	2.8	18
275	Reaction between Graphene Oxide and Intracellular Glutathione Affects Cell Viability and Proliferation. ACS Applied Materials & amp; Interfaces, 2021, 13, 3528-3535.	4.0	24
276	Chiral Graphene Hybrid Materials: Structures, Properties, and Chiral Applications. Advanced Science, 2021, 8, 2003681.	5.6	43
277	INTRODUCTION TO TWO-DIMENSIONAL MATERIALS. Surface Review and Letters, 2021, 28, 2140005.	0.5	14
278	Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer's Disease, Parkinson's Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chemical Reviews, 2021, 121, 2545-2647.	23.0	406
279	Graphene Roadmap Briefs (No. 1): innovation interfaces of the Graphene Flagship. 2D Materials, 2021, 8, 022004.	2.0	20
280	Fundamental aspects of graphene and its biosensing applications. Functional Composites and Structures, 2021, 3, 012001.	1.6	13

#	Article	IF	CITATIONS
281	Graphene: A Disruptive Opportunity for COVIDâ€19 and Future Pandemics?. Advanced Materials, 2021, 33, e2007847.	11.1	34
282	Enhancing the analytical performance of paper lateral flow assays: From chemistry to engineering. TrAC - Trends in Analytical Chemistry, 2021, 136, 116200.	5.8	64
283	Synthesis of paraffin@PS/reduced graphene oxide microcapsules via Pickering emulsion for multi-protective coatings. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 613, 126054.	2.3	14
284	The Evaluation of Drug Delivery Nanocarrier Development and Pharmacological Briefing for Metabolic-Associated Fatty Liver Disease (MAFLD): An Update. Pharmaceuticals, 2021, 14, 215.	1.7	7
285	Preparation and Optimization of PEGylated Nano Graphene Oxide-Based Delivery System for Drugs with Different Molecular Structures Using Design of Experiment (DoE). Molecules, 2021, 26, 1457.	1.7	8
287	Functionalized Reduced Graphene Oxide as a Versatile Tool for Cancer Therapy. International Journal of Molecular Sciences, 2021, 22, 2989.	1.8	82
288	A review on threeâ€dimensional graphene: Synthesis, electronic and biotechnology applicationsâ€The Unknown Riddles. IET Nanobiotechnology, 2021, 15, 348-357.	1.9	10
289	Green Approaches to Carbon Nanostructure-Based Biomaterials. Applied Sciences (Switzerland), 2021, 11, 2490.	1.3	26
290	Lateral size of graphene oxide determines differential cellular uptake and cell death pathways in Kupffer cells, LSECs, and hepatocytes. Nano Today, 2021, 37, 101061.	6.2	46
291	Graphene Oxide: Opportunities and Challenges in Biomedicine. Nanomaterials, 2021, 11, 1083.	1.9	64
292	A theoretical analysis on sensitivity improvement of an SPR refractive index sensor with graphene and barium titanate nanosheets. Optik, 2021, 231, 166378.	1.4	68
293	Advances on the biosensor based on nanotechnology. Journal of Physics: Conference Series, 2021, 1885, 022023.	0.3	Ο
294	Graphene-Based Nanosystems: Versatile Nanotools for Theranostics and Bioremediation. , 0, , .		2
295	Quantum Plasmonics: Energy Transport Through Plasmonic Gap. Advanced Materials, 2021, 33, e2006606.	11.1	19
296	An Overview on Recent Progress of Metal Oxide/Graphene/CNTs-Based Nanobiosensors. Nanoscale Research Letters, 2021, 16, 65.	3.1	37
297	e-Graphene: A Computational Platform for the Prediction of Graphene-Based Drug Delivery System by Quantum Genetic Algorithm and Cascade Protocol. Frontiers in Chemistry, 2021, 9, 664355.	1.8	4
298	Silver Covalently Bound to Cyanographene Overcomes Bacterial Resistance to Silver Nanoparticles and Antibiotics. Advanced Science, 2021, 8, 2003090.	5.6	27
299	Deep exploration of random forest model boosts the interpretability of machine learning studies of complicated immune responses and lung burden of nanoparticles. Science Advances, 2021, 7, .	4.7	71

#	Article	IF	Citations
300	Magnetic reduced graphene oxide as a nano-vehicle for loading and delivery of curcumin. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 252, 119471.	2.0	4
301	Biomedical Catheters With Integrated Miniature Piezoresistive Pressure Sensors: A Review. IEEE Sensors Journal, 2021, 21, 10241-10290.	2.4	27
302	Shedding plasma membrane vesicles induced by graphene oxide nanoflakes in brain cultured astrocytes. Carbon, 2021, 176, 458-469.	5.4	8
303	Visual pH Sensors: From a Chemical Perspective to New Bioengineered Materials. Molecules, 2021, 26, 2952.	1.7	34
304	Smart Hydrogels Meet Carbon Nanomaterials for New Frontiers in Medicine. Biomedicines, 2021, 9, 570.	1.4	34
305	Recent advances in porous nanostructures for cancer theranostics. Nano Today, 2021, 38, 101146.	6.2	24
306	Grapheneâ€Based Hybrid Functional Materials. Small, 2021, 17, e2100514.	5.2	31
307	Graphene-based hemostatic sponge. Chinese Chemical Letters, 2022, 33, 703-713.	4.8	12
308	Application of Nanomaterials for Chemical and Biological Sensors: A Review. IEEE Sensors Journal, 2021, 21, 12407-12425.	2.4	17
309	Development of Nanosensors Based Intelligent Packaging Systems: Food Quality and Medicine. Nanomaterials, 2021, 11, 1515.	1.9	21
310	A Review on Synthesis, Functionalization, Processing and Applications of Graphene Based High Performance Polymer Nanocomposites. Current Nanoscience, 2022, 18, 167-181.	0.7	5
311	Nanoparticles with Multiple Enzymatic Activities Purified from Groundwater Efficiently Cross the Blood–Brain Barrier, Improve Memory, and Provide Neuroprotection. ACS Applied Bio Materials, 2021, 4, 5503-5519.	2.3	2
312	Enhanced Apoptosis by Functionalized Highly Reduced Graphene Oxide and Gold Nanocomposites in MCF-7 Breast Cancer Cells. ACS Omega, 2021, 6, 15147-15155.	1.6	11
313	Tamoxifen-loaded functionalized graphene nanoribbons for breast cancer therapy. Journal of Drug Delivery Science and Technology, 2021, 63, 102499.	1.4	11
314	A three-dimensional nerve guide conduit based on graphene foam/polycaprolactone. Materials Science and Engineering C, 2021, 126, 112110.	3.8	20
315	Surface Functionalization of Grapheneâ€Based Materials: Biological Behavior, Toxicology, and Safeâ€Byâ€Design Aspects. Advanced Biology, 2021, 5, e2100637.	1.4	34
316	Recent Advances in the Application of Two-Dimensional Nanomaterials for Neural Tissue Engineering and Regeneration. ACS Biomaterials Science and Engineering, 2021, 7, 3503-3529.	2.6	57
317	Stimulation of Innate and Adaptive Immune Cells with Graphene Oxide and Reduced Graphene Oxide Affect Cancer Progression. Archivum Immunologiae Et Therapiae Experimentalis, 2021, 69, 20.	1.0	8

#	Article	IF	Citations
318	The Magic Kingdom of imperfect graphene. MRS Bulletin, 2021, 46, 650-654.	1.7	0
319	Definition of CVD Graphene Micro Ribbons with Lithography and Oxygen Plasma Ashing. Carbon Trends, 2021, 4, 100056.	1.4	4
320	Overview of Nano-Fiber Mats Fabrication via Electrospinning and Morphology Analysis. Textiles, 2021, 1, 206-226.	1.8	43
321	Graphene nanoribbon: An emerging and efficient flat molecular platform for advanced biosensing. Biosensors and Bioelectronics, 2021, 184, 113245.	5.3	31
322	Broad-Spectrum Polymeric Nanoquencher as an Efficient Fluorescence Sensing Platform for Biomolecular Detection. ACS Sensors, 2021, 6, 3102-3111.	4.0	7
323	A review of CO ₂ adsorbents performance for different carbon capture technology processes conditions. , 2021, 11, 1076-1117.		61
324	Targeting B Lymphocytes Using Proteinâ€Functionalized Graphene Oxide. Advanced NanoBiomed Research, 2021, 1, 2100060.	1.7	3
325	Design and fabrication of sulfonic acid functionalized graphene oxide for enriched fluoride adsorption. Diamond and Related Materials, 2021, 117, 108446.	1.8	11
326	Radiolabeled carbon-based nanostructures: New radiopharmaceuticals for cancer therapy?. Coordination Chemistry Reviews, 2021, 440, 213974.	9.5	22
327	Graphene promotes lung cancer metastasis through Wnt signaling activation induced by DAMPs. Nano Today, 2021, 39, 101175.	6.2	6
328	Fabrication of the amphiphilic hyperbranched poly(ether amine)@graphene (hPEAâ€AN@G) hybrid assemblies by ball milling. Polymer International, 0, , .	1.6	1
329	Graphene and its derivatives: understanding the main chemical and medicinal chemistry roles for biomedical applications. Journal of Nanostructure in Chemistry, 2022, 12, 693-727.	5.3	85
330	Small percentage reinforcement of carbon nanotubes (CNTs) in epoxy(bisphenol-A) for enhanced mechanical performance. Materials Today: Proceedings, 2022, 61, 275-279.	0.9	12
331	Graphene and its Derivatives for Bone Tissue Engineering: In Vitro and In Vivo Evaluation of Graphene-Based Scaffolds, Membranes and Coatings. Frontiers in Bioengineering and Biotechnology, 2021, 9, 734688.	2.0	20
332	Haemostatic materials for wound healing applications. Nature Reviews Chemistry, 2021, 5, 773-791.	13.8	371
333	Introduction of Carbon Nanostructures. Springer Series in Materials Science, 2022, , 1-26.	0.4	0
334	Navigating recent advances in monoelemental materials (Xenes)-fundamental to biomedical applications. Progress in Solid State Chemistry, 2021, 63, 100326.	3.9	20
335	Folic acid-conjugated raloxifene-loaded graphene-based nanocarrier: Fabrication, characterization and antitumor screening. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 625, 126971.	2.3	5

#	Article	IF	CITATIONS
336	Recent advances in the development of nanomedicines for the treatment of ischemic stroke. Bioactive Materials, 2021, 6, 2854-2869.	8.6	41
337	Emerging graphene-based sensors for the detection of food adulterants and toxicants – A review. Food Chemistry, 2021, 355, 129547.	4.2	27
338	Advances in Nanotechnology-Based Biosensing of Immunoregulatory Cytokines. Biosensors, 2021, 11, 364.	2.3	9
339	Ambient energy dispersion and long-term stabilisation of large graphene sheets from graphite using a surface energy matched ionic liquidâ€. Journal of Ionic Liquids, 2021, 1, 100001.	1.0	6
340	Removal of bovine serum albumin and methylene blue using a hybrid membrane of single walled carbon nanotube-banana peel protein: Fabrication and characterization. Environmental Technology and Innovation, 2021, 24, 101880.	3.0	1
341	MoS2-based nanocomposites for cancer diagnosis and therapy. Bioactive Materials, 2021, 6, 4209-4242.	8.6	129
342	Divalent cations accelerate aggregation of Black phosphorus nanodots. Journal of Molecular Liquids, 2021, 341, 117331.	2.3	2
343	Laser-scribed graphene sensor based on gold nanostructures and molecularly imprinted polymers: Application for Her-2 cancer biomarker detection. Sensors and Actuators B: Chemical, 2021, 347, 130556.	4.0	37
344	Detection of necrotrophic DNA marker of anthracnose causing Colletotrichum gloeosporioides fungi in harvested produce using surface plasmon resonance. Talanta, 2021, 235, 122776.	2.9	8
345	Nanomaterials-based Cell Osteogenic Differentiation and Bone Regeneration. Current Stem Cell Research and Therapy, 2021, 16, 36-47.	0.6	9
346	Towards engineering in memristors for emerging memory and neuromorphic computing: A review. Journal of Semiconductors, 2021, 42, 013101.	2.0	56
347	Biodegradation of graphene materials catalyzed by human eosinophil peroxidase. Faraday Discussions, 2021, 227, 189-203.	1.6	30
348	Nanocomposite scaffolds for accelerating chronic wound healing by enhancing angiogenesis. Journal of Nanobiotechnology, 2021, 19, 1.	4.2	382
349	Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Materials Advances, 2021, 2, 1821-1871.	2.6	1,049
350	Dispersant-assisted liquid-phase exfoliation of 2D materials beyond graphene. Nanoscale, 2021, 13, 460-484.	2.8	69
351	Comparative Study on Tribological Behavior of Graphene/Polyimide and Carbon Fibers/Polyimide Composites: A Review. World Journal of Engineering and Technology, 2021, 09, 26-50.	0.3	3
352	Interactions Between 2D Materials and Living Matter: A Review on Graphene and Hexagonal Boron Nitride Coatings. Frontiers in Bioengineering and Biotechnology, 2021, 9, 612669.	2.0	21
353	2D MXene-Based Materials for Electrocatalysis. Transactions of Tianjin University, 2020, 26, 149-171.	3.3	65

#	Article	IF	Citations
354	Interaction modes between nanosized graphene flakes and liposomes: Adsorption, insertion and membrane fusion. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 723-731.	1.1	13
355	Graphene nanoparticles: The super material of future. Materials Today: Proceedings, 2020, 28, 1290-1294.	0.9	9
356	Silica-gold nanoshell@graphene: a novel class of plasmonic nanoagents for photothermal cancer therapy. Journal Physics D: Applied Physics, 2020, 53, 405401.	1.3	11
357	Hybrid optical security system using photonic crystals and MEMS devices. , 2017, , .		1
358	Advances in Carbon Based Nanomaterials for Bio-Medical Applications. Current Medicinal Chemistry, 2019, 26, 6851-6877.	1.2	82
359	A Comprehensive Insight Towards Pharmaceutical Aspects of Graphene Nanosheets. Current Pharmaceutical Biotechnology, 2020, 21, 1016-1027.	0.9	18
360	Antimicrobial Mechanisms and Effectiveness of Graphene and Graphene-Functionalized Biomaterials. A Scope Review. Frontiers in Bioengineering and Biotechnology, 2020, 8, 465.	2.0	165
361	Chitosan-Based Hydrogels for Tissue Engineering. , 2021, , 519-571.		2
362	Biodegradation of Carbonâ€Based Nanomaterials: The Importance of "Biomolecular Corona― Consideration. Advanced Functional Materials, 2022, 32, 2105649.	7.8	9
363	Recent progress on adsorption and membrane separation for organic contaminants on multi-dimensional graphene. Materials Today Chemistry, 2021, 22, 100603.	1.7	7
364	Graphene Plasmonics: A Powerful Sensor and Pharmaceutical Analytical Tool. Journal of Analytical & Pharmaceutical Research, 2017, 6, .	0.3	0
365	Nanotechnology-Based Stem Cell Tissue Engineering with a Focus on Regeneration of Cardiovascular Systems. , 2019, , 1-67.		1
366	Therapeutic Implications of Nanopharmaceuticals in Skin Delivery. Environmental Chemistry for A Sustainable World, 2021, , 205-272.	0.3	0
367	Emerging 2D-Nanostructured materials for electrochemical and sensing Application-A review. International Journal of Hydrogen Energy, 2022, 47, 1371-1389.	3.8	34
368	Interfacial Interactions within Amyloid Protein Corona Based on 2D MoS ₂ Nanosheets. ChemBioChem, 2022, 23, .	1.3	4
369	Effect of ultrasound on nonsteroidal anti-inflammatory drugs complexed with copper, iron, zinc and graphene oxides. Doklady BGUIR, 2020, 18, 69-76.	0.1	0
371	Nanomaterials and Stem Cells for Bone Tissue Engineering. , 2021, , 1-36.		0
372	Cutting-edge polymer/graphene nanocomposites for biomedical applications. , 2022, , 245-268.		0

#	Article	IF	CITATIONS
373	Design principles for bacteria-responsive antimicrobial nanomaterials. Materials Today Chemistry, 2022, 23, 100606.	1.7	20
374	Interactions Between Grapheneâ€Based Materials and Biological Surfaces: A Review of Underlying Molecular Mechanisms. Advanced Materials Interfaces, 2021, 8, 2101132.	1.9	15
375	Recent advances in biological applications of nanomaterials through defect engineering. Science of the Total Environment, 2022, 816, 151647.	3.9	4
376	Localized drug delivery graphene bioscaffolds for cotransplantation of islets and mesenchymal stem cells. Science Advances, 2021, 7, eabf9221.	4.7	10
377	Self-Assembly of Graphene Oxide Nanoflakes in a Lipid Monolayer at the Air–Water Interface. ACS Applied Materials & Interfaces, 2021, 13, 57023-57035.	4.0	9
378	Self-assembly synthesis of 3D graphene/nano-Fe3O4 hybrid aerogels with improved mechanical and thermal properties. Journal of Alloys and Compounds, 2022, 902, 163718.	2.8	5
379	Biosensing with Fluorescent Carbon Nanotubes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	90
380	Bidirectional Modulation of Neuronal Cells Electrical and Mechanical Properties Through Pristine and Functionalized Graphene Substrates. Frontiers in Neuroscience, 2021, 15, 811348.	1.4	3
381	Intelligent Packaging Systems: Food Quality and Intelligent Medicine Box Based on Nano-sensors. Nanotechnology in the Life Sciences, 2021, , 555-587.	0.4	2
382	Biosensing with Fluorescent Carbon Nanotubes. Angewandte Chemie, 0, , .	1.6	2
383	Impact of Graphene Derivatives as Artificial Extracellular Matrices on Mesenchymal Stem Cells. Molecules, 2022, 27, 379.	1.7	10
384	Determination of Graphene Oxide Adsorption Space by Lysozyme Uptake─Mechanistic Studies. Journal of Physical Chemistry B, 2022, 126, 928-933.	1.2	5
385	Understanding Nanomaterial–Liver Interactions to Facilitate the Development of Safer Nanoapplications. Advanced Materials, 2022, 34, e2106456.	11.1	51
386	Preliminary In Vitro Cytotoxicity, Mutagenicity and Antitumoral Activity Evaluation of Graphene Flake and Aqueous Graphene Paste. Life, 2022, 12, 242.	1.1	3
387	Editorial for "Properties and Applications of Graphene and Its Derivatives― Nanomaterials, 2022, 12, 602.	1.9	0
388	Fine-tuning the functionality of reduced graphene oxide via bipolar electrochemistry in freestanding 2D reaction layers. Carbon, 2022, 191, 439-447.	5.4	8
389	Applications of nanogenerators for biomedical engineering and healthcare systems. InformaÄ n Ã- Materiály, 2022, 4, .	8.5	45
390	Defective Carbon Nanostructures for Biomedical Application. Advances in Material Research and Technology, 2022, , 1-34.	0.3	1

#	Article	IF	CITATIONS
391	Principles and Biomedical Application of Graphene Family Nanomaterials. Advances in Experimental Medicine and Biology, 2022, 1351, 3-22.	0.8	0
393	Covalent Coupling of Porphyrins with Monolayer Graphene for Low-Voltage Synaptic Transistors. ACS Applied Materials & Interfaces, 2022, 14, 11699-11707.	4.0	10
394	Graphene-Based Nanomaterials for Dental Applications: Principles, Current Advances, and Future Outlook. Frontiers in Bioengineering and Biotechnology, 2022, 10, 804201.	2.0	15
395	Carbon Nanostructures As Antibacterials and Active Food-Packaging Materials: A Review. ACS Omega, 2022, 7, 11555-11559.	1.6	21
396	SAFETY PROFILE AND PREVENTION OF COGNITIVE DEFICIT IN ALZHEIMER'S DISEASE MODEL OF GRAPHENE FAMILY NANOMATERIALS, TUCUMA OIL (Astrocaryum vulgare) AND ITS SYNERGISMS. International Journal for Innovation Education and Research, 2022, 10, 267-303.	0.0	0
397	Aggregation of graphene oxide and its environmental implications in the aquatic environment. Chinese Chemical Letters, 2023, 34, 107327.	4.8	15
398	Potential Directions in the Use of Graphene Nanomaterials in Pharmacology and Biomedicine (Review). Pharmaceutical Chemistry Journal, 0, , 1.	0.3	5
399	Recent advances in <scp>MXene</scp> as electrocatalysts for sustainable energy generation: A review on surface engineering and compositing of <scp>MXene</scp> . International Journal of Energy Research, 2022, 46, 8625-8656.	2.2	26
400	Synthesis of graphene via in-liquid discharge plasma: A green, novel strategy and new insight. Colloids and Interface Science Communications, 2022, 47, 100605.	2.0	6
402	Visibleâ€Light Assisted Covalent Surface Functionalization of Reduced Graphene Oxide Nanosheets with Arylazo Sulfones. Chemistry - A European Journal, 2022, 28, e202200333.	1.7	16
403	The geometry-dependent regulation of hepatic stellate cells by graphene oxide nanomaterials. Biochemical and Biophysical Research Communications, 2022, 604, 179-184.	1.0	2
404	Potential of graphene based photocatalyst for antiviral activity with emphasis on COVID-19: A review. Journal of Environmental Chemical Engineering, 2022, 10, 107527.	3.3	14
405	Enhanced Anticancer Efficacy of Chemotherapy by Amphiphilic Y-Shaped Polypeptide Micelles. Frontiers in Bioengineering and Biotechnology, 2021, 9, 817143.	2.0	2
406	Application of Graphene in Tissue Engineering of the Nervous System. International Journal of Molecular Sciences, 2022, 23, 33.	1.8	18
407	Graphene-Based Scaffolds: Fundamentals and Applications for Cardiovascular Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 2021, 9, 797340.	2.0	21
408	Advanced graphene oxide-based paper sensor for colorimetric detection of miRNA. Mikrochimica Acta, 2022, 189, 35.	2.5	15
409	Self-assembly of amphiphilic amino acid derivatives for biomedical applications. Chemical Society Reviews, 2022, 51, 3535-3560.	18.7	29
410	Sustainable membranes with FNMs for biomedical applications. , 2022, , 205-244.		0

#	Article	IF	CITATIONS
411	Differential modulation of endothelial cytoplasmic protrusions after exposure to graphene-family nanomaterials. NanoImpact, 2022, 26, 100401.	2.4	3
412	Dynamic and fluctuation properties of a graphene disk levitated by a diamagnetic force in air. Journal Physics D: Applied Physics, 2022, 55, 285002.	1.3	3
415	Electrochemical modification of carbon nanotube fibres. Nanoscale, 2022, 14, 9313-9322.	2.8	2
416	Next Steps in Epidermal Computing: Opportunities and Challenges for Soft On-Skin Devices. , 2022, , .		9
417	The era of nano-bionic: 2D materials for wearable and implantable body sensors. Advanced Drug Delivery Reviews, 2022, 186, 114315.	6.6	18
418	Exploration of phosphorene as doxorubicin nanocarrier: An atomistic view from DFT calculations and MD simulations. Colloids and Surfaces B: Biointerfaces, 2022, 215, 112513.	2.5	13
419	The marriage of biochemistry and nanotechnology for non-invasive real-time health monitoring. Materials Science and Engineering Reports, 2022, 149, 100681.	14.8	7
420	Reduction in Graphene Oxide by Sodium Borohydride for Enhanced BR13 Dye and Cu2+ Adsorption. Arabian Journal for Science and Engineering, 2023, 48, 8387-8399.	1.7	5
421	Sustainable Approach for Developing Graphene-Based Materials from Natural Resources and Biowastes for Electronic Applications. ACS Applied Electronic Materials, 2022, 4, 2146-2174.	2.0	22
422	Development and Characterizations of Pullulan and Maltodextrin-Based Oral Fast-Dissolving Films Employing a Box–Behnken Experimental Design. Materials, 2022, 15, 3591.	1.3	5
423	Fabricating flexible conductive structures by printing techniques and printable conductive materials. Journal of Materials Chemistry C, 2022, 10, 9441-9464.	2.7	22
424	A triphenylphosphine coordinated cinnamaldehyde-derived copper(<scp>i</scp>) Fenton-like agent with mitochondrial aggregation damage for chemodynamic therapy. Journal of Materials Chemistry B, 0, , .	2.9	8
425	SERS-Based Methodology for the Quantification of Ultratrace Graphene Oxide in Water Samples. Environmental Science & Technology, 2022, 56, 9527-9535.	4.6	3
426	Hybrid Nanobioengineered Nanomaterial-Based Electrochemical Biosensors. Molecules, 2022, 27, 3841.	1.7	11
427	Nonmonotonic Relationship between the Oxidation State of Graphene-Based Materials and Its Cell Membrane Damage Effects. ACS Applied Materials & Interfaces, 2022, 14, 30306-30314.	4.0	4
428	Effective regulation of the electronic properties of a biphenylene network by hydrogenation and halogenation. RSC Advances, 2022, 12, 20088-20095.	1.7	7
430	Recent advances and challenges in grapheneâ€based nanocomposite scaffolds for tissue engineering application. Journal of Biomedical Materials Research - Part A, 2022, 110, 1695-1721.	2.1	15
431	Flexible Graphene Sheet Loaded Curved Patch Applicator for Superficial Hyperthermia Treatment Planning Utilizing Ripple Effect of Armchair and Zigzag Bending. Current Nanoscience, 2023, 19, 589-600.	0.7	0

#	Article	IF	CITATIONS
432	Graphene/Graphene Derivatives from Coal, Biomass, and Wastes: Synthesis, Energy Applications, and Perspectives. Energy & Fuels, 2022, 36, 12847-12874.	2.5	17
433	A molecular dynamics simulation study on the role of graphene in enhancing the arc erosion resistance of Cu metal matrix. Computational Materials Science, 2022, 212, 111549.	1.4	4
434	Synergistic Effect of Reinforced Multiwalled Carbon Nanotubes and Boron Nitride Nanosheet-Based Hybrid Piezoelectric PLLA Scaffold for Efficient Bone Tissue Regeneration. ACS Biomaterials Science and Engineering, 2022, 8, 3542-3556.	2.6	10
435	Eco-friendly and mechanochemically functionalised graphene with quick and high water dispersibility. Materials Chemistry Frontiers, 2022, 6, 2718-2728.	3.2	3
436	Advancements and Applications in the Composites of Silk Fibroin and Graphene-Based Materials. Polymers, 2022, 14, 3110.	2.0	3
437	High performance copper-tungsten @graphene composites materials. Journal of Physics: Conference Series, 2022, 2321, 012010.	0.3	1
438	The design, construction and application of graphene family composite nanocoating on dental metal surface. , 2022, 140, 213087.		4
439	Liposomes containing nanoparticles: preparation and applications. Colloids and Surfaces B: Biointerfaces, 2022, 218, 112737.	2.5	39
440	Synthesis, surface modifications, and biomedical applications of carbon nanofibers: Electrospun vs vapor-grown carbon nanofibers. Coordination Chemistry Reviews, 2022, 472, 214770.	9.5	17
441	Effective Method for a Graphene Oxide with Impressive Selectivity in Carboxyl Groups. Nanomaterials, 2022, 12, 3112.	1.9	3
442	MXenes: promising 2D materials for wound dressing applications – a perspective review. Materials Advances, 2022, 3, 7445-7462.	2.6	4
443	Design, biomimetic synthesis, and tumor photothermal therapy of peptide-based two-dimensional photothermal conversion nanomaterials. Molecular Systems Design and Engineering, 2022, 7, 1549-1560.	1.7	5
444	Analysis and characterization of graphene. , 2022, , 67-89.		1
445	Comparative analysis of Boron, nitrogen, and phosphorous doping in monolayer of semi-metallic Xenes (Graphene, Silicene, and Germanene) - A first principle calculation based approach. Materials Science in Semiconductor Processing, 2023, 153, 107121.	1.9	11
447	Manufacturing of electrochemical sensors via carbon nanomaterials novel applications: a systematic review. Journal of Nanoparticle Research, 2022, 24, .	0.8	18
448	2D Van der Waals Heterostructures for Chemical Sensing. Advanced Functional Materials, 2022, 32, .	7.8	34
449	Recent development of graphene-based composite for multifunctional applications: energy, environmental and biomedical sciences. Critical Reviews in Solid State and Materials Sciences, 2024, 49, 72-140.	6.8	15
451	Recent Advances in the Characterized Identification of Mono-to-Multi-Layer Graphene and Its Biomedical Applications: A Review. Electronics (Switzerland), 2022, 11, 3345.	1.8	9

	Cı	tation Report	
#	ARTICLE	IF	CITATIONS
452	Laser-Induced Graphene from SU-8 Photoresist: Toward Functional Micromolding. , 2023, 1, 222-228.		4
453	Graphene oxide induced dynamic changes of autophagy-lysosome pathway and cell apoptosis via TFE dysregulation in F98 cells. Ecotoxicology and Environmental Safety, 2022, 246, 114172.	B 2.9	1
454	2D Materials towards sensing technology: From fundamentals to applications. Sensing and Bio-Sensing Research, 2022, 38, 100540.	2.2	27
455	Recent advances in chemical vapour deposition techniques for graphene-based nanoarchitectures: From synthesis to contemporary applications. Coordination Chemistry Reviews, 2023, 475, 214910.	9.5	41
456	Polysaccharide-based hydrogel with photothermal effect for accelerating wound healing. Carbohydrate Polymers, 2023, 299, 120228.	5.1	22
457	Graphene-based composites for biomedical applications. Green Chemistry Letters and Reviews, 2022, 724-748.	15, _{2.1}	6
458	Advances in Graphene-Supported Single-Atom Catalysts for Clean Energy Conversion. Electrochemica Energy Reviews, 2022, 5, .	13.1	17
459	Understanding the Role of the Lateral Dimensional Property of Graphene Oxide on Its Interactions with Renal Cells. Molecules, 2022, 27, 7956.	1.7	0
460	Hybrid platforms for drug delivery applications. , 2023, , 217-255.		0
461	Inorganic-based biomaterials for rapid hemostasis and wound healing. Chemical Science, 2022, 14, 29-53.	3.7	22
462	Interfacial thermal conductance between atomically thin boron nitride and graphene. Nanoscale, 2022, 15, 122-126.	2.8	2
463	The kinked structure and interchain van der Waals interaction of carbyne nanocrystals. Chemical Science, 0, , .	3.7	0
464	Electrospun Textile Strategies in Tendon to Bone Junction Reconstruction. Advanced Fiber Materials, 2023, 5, 764-790.	7.9	7
465	High-Throughput Preparation of Uncontaminated Graphene-Oxide Aqueous Dispersions with Antioxidant Properties by Semi-Automated Diffusion Dialysis. Nanomaterials, 2022, 12, 4159.	1.9	2
466	Graphene Hydrogel as a Porous Scaffold for Cartilage Regeneration. ACS Applied Materials & Interfaces, 2022, 14, 54431-54438.	4.0	8
467	Anti-Infective and Toxicity Properties of Carbon Based Materials: Graphene and Functionalized Carbor Nanotubes. Microorganisms, 2022, 10, 2439.	۱ 1.6	3
468	Boosting bone regeneration using augmented melt-extruded additive-manufactured scaffolds. International Materials Reviews, 2023, 68, 755-785.	9.4	3
469	Waterborne conductive carbon paste with an eco-friendly binder. Cellulose, 0, , .	2.4	1

#	Article	IF	CITATIONS
470	Three-Dimensional FEA Analysis of the Stress Distribution on Titanium and Graphene Frameworks Supported by 3 or 6-Implant Models. Biomimetics, 2023, 8, 15.	1.5	12
471	Computational Studies of Auto-Active van der Waals Interaction Molecules on Ultra-Thin Black-Phosphorus Film. Molecules, 2023, 28, 681.	1.7	2
472	Energetics and Kinetics of Hydrogen Electrosorption on a Graphene-Covered Pt(111) Electrode. Jacs Au, 2023, 3, 526-535.	3.6	5
473	Reduced graphene oxide-enriched chitosan hydrogel/cellulose acetate-based nanofibers application in mild hyperthermia and skin regeneration. International Journal of Biological Macromolecules, 2023, 229, 224-235.	3.6	6
474	Antimicrobial Activity of Graphene Oxide Contributes to Alteration of Key Stress-Related and Membrane Bound Proteins. International Journal of Nanomedicine, 0, Volume 17, 6707-6721.	3.3	7
475	Synthesis and Functionalization of Graphene Materials for Biomedical Applications: Recent Advances, Challenges, and Perspectives. Advanced Science, 2023, 10, .	5.6	15
476	Theoretical Sensing Performance for Detection of Cyclophosphamide Drug by Using Aluminum Carbide (C3Al) Monolayer: a DFT Study. Applied Biochemistry and Biotechnology, 0, , .	1.4	0
477	Liquid-phase photo-induced covalent modification (PICM) of single-layer graphene by short-chain fatty acids. Nanoscale, 2023, 15, 4932-4939.	2.8	1
478	Nanobiology Dependent Therapeutic Convergence between Biocompatibility and Bioeffectiveness of Graphene Oxide Quantum Dot Scaffold for Immunoâ€Inductive Angiogenesis and Nerve Regeneration. Advanced Functional Materials, 2023, 33, .	7.8	8
479	Current advancement and development of functionalized carbon nanomaterials for biomedical therapy. , 2023, , 381-413.		0
480	BN-Doped Carbon Nanotubes and Nanoribbons as Nonlinear-Optical Functional Materials for Application in Second-Order Nonlinear Optics. ACS Applied Nano Materials, 2023, 6, 1549-1561.	2.4	2
481	Graphitic carbon nitride-based materials for biomedical applications. , 2023, , 377-404.		0
482	A review of carbon-based materials and their coating techniques for biomedical implants applications. Carbon Letters, 2023, 33, 1171-1188.	3.3	3
483	Transformation of graphene oxide affects photodegradation of imidacloprid in the aquatic environment: Mechanism and implication. Science of the Total Environment, 2023, 879, 163108.	3.9	1
484	Functional Graphene for Peritumoral Brain Microenvironment Modulation Therapy in Glioblastoma. Small, 2023, 19, .	5.2	2
485	Assessing recent progress in MXene-based nanomaterials for oxygen evolution reactions. International Journal of Hydrogen Energy, 2024, 52, 293-301.	3.8	3
486	Fabrication & characterizations of reduced graphene oxide via low potential electrochemical exfoliation followed by thermal treatment. Materials Today: Proceedings, 2023, , .	0.9	1
487	A review on electroless Ni–P nanocomposite coatings: effect of hard, soft, and synergistic nanoparticles. Journal of Materials Science, 2023, 58, 4292-4358.	1.7	9

		CITATION REPORT		
#	Article		IF	CITATIONS
488	2D material-based sensing devices: an update. Journal of Materials Chemistry A, 2023,	11, 6016-6063.	5.2	16
489	Graphene Oxideâ€BODIPY Conjugates as Highly Fluorescent Materials. Chemistry - A E 2023, 29, .	Iuropean Journal,	1.7	2
490	3D Graphene Oxide-Polyethylenimine Scaffolds for Cardiac Tissue Engineering. ACS Ap & Interfaces, 0, , .	plied Materials	4.0	4
491	Rational Design of Biomaterials to Potentiate Cancer Thermal Therapy. Chemical Revie 7326-7378.	ws, 2023, 123,	23.0	28
492	Recent Advances in the Green Reduction of Graphene Oxide and its Potential Applicati Nanoscience, 2024, 20, 146-156.	ons. Current	0.7	0
493	Partial Denaturation of Double-Stranded DNA on Pristine Graphene under Physiologica Conditions. Liquids, 2023, 3, 168-186.	I-like	0.8	0
494	Enriched Graphene Oxide-Polypropylene Suture Threads Buttons Modulate the Inflamm Induced by Escherichia coli Lipopolysaccharide. International Journal of Molecular Scien 6622.	natory Pathway nces, 2023, 24,	1.8	2
495	A mixed-valence biotinylated Cu(<scp>i</scp> iii) complex for tumor-targe chemodynamic therapy accompanied by GSH depletion. Inorganic Chemistry Frontiers 4045-4053.	eted , 2023, 10,	3.0	6
496	Sericin/Nano-Hydroxyapatite Hydrogels Based on Graphene Oxide for Effective Bone R Immunomodulation and Osteoinduction. International Journal of Nanomedicine, 0, Vol 1875-1895.	egeneration via lume 18,	3.3	4
497	Investigation of electronic reactivity and affinity of aluminum carbide (C3Al) monolaye cisplatin drug; a computational study. Brazilian Journal of Chemical Engineering, 0, , .	r toward	0.7	0
498	Recent progress in MXenes incorporated into electrospun nanofibers for biomedical a Study focusing from 2017 to 2022. Chinese Chemical Letters, 2023, 34, 108463.	pplication:	4.8	11
499	Graphene in nanomedicine: A review on nano-bio factors and antibacterial activity. Col Surfaces B: Biointerfaces, 2023, 226, 113323.	loids and	2.5	13
500	Microbial reduction of graphene oxide and its application in microbial fuel cells and biophotovoltaics. Frontiers of Materials Science, 2023, 17, .		1.1	1
502	Green Synthesis of Metallic Nanoparticles and Their Biomedical Applications. , 2023, , \cdot	47-71.		0
505	Lubrication and surface engineering. , 2023, , 295-343.			2
513	Graphene-Based Biosensor: Physics and Technology. Lecture Notes in Electrical Engine 171-182.	ering, 2023, ,	0.3	0
516	Electrochemical biosensors based on graphene and its allied derivatives for lifestyle dis diagnosis. , 2023, , 536-568.	sease		0
523	Two-Dimensional Nanomaterials as Technology Marvels. , 2023, , 279-291.			0

#	Article	IF	CITATIONS
528	Graphene oxide based multifunctional nano composite for cancer theranostics: Present clinical and regulatory breakthroughs. AIP Conference Proceedings, 2023, , .	0.3	0
535	Progress and future prospects of hemostatic materials based on nanostructured clay minerals. Biomaterials Science, 0, , .	2.6	3
539	The gut microbiome meets nanomaterials: exposure and interplay with graphene nanoparticles. Nanoscale Advances, 2023, 5, 6349-6364.	2.2	0
542	A comparative investigation of the chemical reduction of graphene oxide for electrical engineering applications. Nanoscale, 2023, 15, 17765-17775.	2.8	2
545	MXene and Xene: promising frontier beyond graphene in tissue engineering and regenerative medicine. Nanoscale Horizons, 2023, 9, 93-117.	4.1	1
554	The potential of graphene coatings as neural interfaces. Nanoscale Horizons, 2024, 9, 384-406.	4.1	1