Senescent cells: an emerging target for diseases of ageir

Nature Reviews Drug Discovery 16, 718-735 DOI: 10.1038/nrd.2017.116

Citation Report

#	Article	IF	CITATIONS
1	The Aging Risk and Atherosclerosis: A Fresh Look at Arterial Homeostasis. Frontiers in Genetics, 2017, 8, 216.	1.1	103
2	Epigenetic Basis of Cellular Senescence and Its Implications in Aging. Genes, 2017, 8, 343.	1.0	42
3	Senotherapeutics for healthy ageing. Nature Reviews Drug Discovery, 2018, 17, 377-377.	21.5	126
4	Paracrine roles of cellular senescence in promoting tumourigenesis. British Journal of Cancer, 2018, 118, 1283-1288.	2.9	125
5	The effects of graded caloric restriction: <scp>XII</scp> . Comparison of mouse to human impact on cellular senescence in the colon. Aging Cell, 2018, 17, e12746.	3.0	52
6	Recent insights into the cellular and molecular determinants of aging. Journal of Cell Science, 2018, 131, .	1.2	21
7	Oxidation Products of 5-Methylcytosine are Decreased in Senescent Cells and Tissues of Progeroid Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 1003-1009.	1.7	8
8	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	5.0	4,036
9	Novel treatment strategies for chronic kidney disease: insights from the animal kingdom. Nature Reviews Nephrology, 2018, 14, 265-284.	4.1	78
10	Aging, inflammation and the environment. Experimental Gerontology, 2018, 105, 10-18.	1.2	267
11	Pharmacological activation of REV-ERBs is lethal in cancer and oncogene-induced senescence. Nature, 2018, 553, 351-355.	13.7	273
12	Anti-senescence compounds: A potential nutraceutical approach to healthy aging. Ageing Research Reviews, 2018, 46, 14-31.	5.0	130
13	Anthracycline cardiotoxicity: looking for new therapeutic approaches targeting cell senescence?. Cardiovascular Research, 2018, 114, 1304-1305.	1.8	3
14	Cellular Senescence in Postmitotic Cells: Beyond Growth Arrest. Trends in Cell Biology, 2018, 28, 595-607.	3.6	135
15	Mitochondrial metabolism and cancer. Cell Research, 2018, 28, 265-280.	5.7	818
16	Senescent cells: a therapeutic target for cardiovascular disease. Journal of Clinical Investigation, 2018, 128, 1217-1228.	3.9	138
18	Matrine Attenuates D-Galactose-Induced Aging-Related Behavior in Mice <i>via</i> Inhibition of Cellular Senescence and Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-12.	1.9	77
19	Beneficial Effects Exerted by Paeonol in the Management of Atherosclerosis. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-11.	1.9	27

#	Article	IF	Citations
20	The mitomiR/Bcl-2 axis affects mitochondrial function and autophagic vacuole formation in senescent endothelial cells. Aging, 2018, 10, 2855-2873.	1.4	34
21	Epigenetic Regulation of Vascular Aging and Age-Related Vascular Diseases. Advances in Experimental Medicine and Biology, 2018, 1086, 55-75.	0.8	49
22	Recurrent DNA damage is associated with persistent injury in progressive radiation-induced pulmonary fibrosis. International Journal of Radiation Biology, 2018, 94, 1104-1115.	1.0	21
23	Peripheral immune system in aging and Alzheimer's disease. Molecular Neurodegeneration, 2018, 13, 51.	4.4	143
24	Endothelial Cell Senescence in the Pathogenesis of Endothelial Dysfunction. , 2018, , .		10
25	Caloric restriction and cellular senescence. Mechanisms of Ageing and Development, 2018, 176, 19-23.	2.2	73
26	The emerging field of senotherapeutic drugs. Future Medicinal Chemistry, 2018, 10, 2369-2372.	1.1	24
28	Targeting the phospholipase A2 receptor ameliorates premature aging phenotypes. Aging Cell, 2018, 17, e12835.	3.0	31
29	Facing up to the global challenges of ageing. Nature, 2018, 561, 45-56.	13.7	760
30	Mouse Models to Disentangle the Hallmarks of Human Aging. Circulation Research, 2018, 123, 905-924.	2.0	79
31	Elimination of senescent cells prevents neurodegeneration in mice. Nature, 2018, 562, 503-504.	13.7	3
32	Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature, 2018, 562, 578-582.	13.7	803
33	The Basics of Biogerontology. , 2018, , .		1
34	Social stress shortens lifespan in mice. Aging Cell, 2018, 17, e12778.	3.0	89
35	Two-Step Senescence-Focused Cancer Therapies. Trends in Cell Biology, 2018, 28, 723-737.	3.6	145
36	Oxidation resistance 1 is a novel senolytic target. Aging Cell, 2018, 17, e12780.	3.0	95
37	Mitochondrial quality control in AMD: does mitophagy play a pivotal role?. Cellular and Molecular Life Sciences, 2018, 75, 2991-3008.	2.4	60
38	SCAMP4 enhances the senescent cell secretome. Genes and Development, 2018, 32, 909-914.	2.7	38

#	Article	IF	CITATIONS
39	lonizing radiation-induced cellular senescence promotes tissue fibrosis after radiotherapy. A review. Critical Reviews in Oncology/Hematology, 2018, 129, 13-26.	2.0	54
40	Myeloid-derived suppressor cells (MDSC): an important partner in cellular/tissue senescence. Biogerontology, 2018, 19, 325-339.	2.0	51
41	Targeting senescence. Nature Medicine, 2018, 24, 1092-1094.	15.2	22
42	Lymphohematopoietic Stem Cells and Their Aging. , 2018, , 1-16.		0
43	Ionizing Radiation-Induced Cellular Senescence in Normal, Non-transformed Cells and the Involved DNA Damage Response: A Mini Review. Frontiers in Pharmacology, 2018, 9, 522.	1.6	87
44	Cardiac ageing: extrinsic and intrinsic factors in cellular renewal and senescence. Nature Reviews Cardiology, 2018, 15, 523-542.	6.1	103
45	Obesity and type-2 diabetes as inducers of premature cellular senescence and ageing. Biogerontology, 2018, 19, 447-459.	2.0	119
46	Age- and Tissue-Specific Expression of Senescence Biomarkers in Mice. Frontiers in Genetics, 2018, 9, 59.	1.1	87
47	Senolytic drugs in respiratory medicine: is it an appropriate therapeutic approach?. Expert Opinion on Investigational Drugs, 2018, 27, 573-581.	1.9	18
48	A versatile drug delivery system targeting senescent cells. EMBO Molecular Medicine, 2018, 10, .	3.3	204
49	FoxM1 repression during human aging leads to mitotic decline and aneuploidy-driven full senescence. Nature Communications, 2018, 9, 2834.	5.8	91
50	Cellular senescence: a view throughout organismal life. Cellular and Molecular Life Sciences, 2018, 75, 3553-3567.	2.4	44
51	The epigenetic regulator SIRT7 guards against mammalian cellular senescence induced by ribosomal DNA instability. Journal of Biological Chemistry, 2018, 293, 11242-11250.	1.6	58
52	Noninvasive Fingerprinting-Based Tracking of Replicative Cellular Senescence Using a Colorimetric Polyion Complex Array. Analytical Chemistry, 2018, 90, 6348-6352.	3.2	12
53	Cellular senescence in osteoarthritis and anti-aging strategies. Mechanisms of Ageing and Development, 2018, 175, 83-87.	2.2	38
54	Cellular Senescence: The Sought or the Unwanted?. Trends in Molecular Medicine, 2018, 24, 871-885.	3.5	141
55	The induction of the fibroblast extracellular senescence metabolome is a dynamic process. Scientific Reports, 2018, 8, 12148.	1.6	12
56	Horizons in the evolution of aging. BMC Biology, 2018, 16, 93.	1.7	164

#	Article	IF	Citations
57	Induction and Validation of Cellular Senescence in Primary Human Cells. Journal of Visualized Experiments, 2018, , .	0.2	27
58	Combating cellular senescence by sirtuins: Implications for atherosclerosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1822-1830.	1.8	13
59	Senescence and senotherapeutics: a new field in cancer therapy. , 2019, 193, 31-49.		116
60	Single-cell RNA-seq analysis reveals the progression of human osteoarthritis. Annals of the Rheumatic Diseases, 2019, 78, 100-110.	0.5	237
61	Phenotypic instability of chondrocytes in osteoarthritis: on a path to hypertrophy. Annals of the New York Academy of Sciences, 2019, 1442, 17-34.	1.8	113
62	The TGF-β1/p53/PAI-1 Signaling Axis in Vascular Senescence: Role of Caveolin-1. Biomolecules, 2019, 9, 341.	1.8	36
63	Inhibition of the H3K4 methyltransferase MLL1/WDR5 complex attenuates renal senescence in ischemia reperfusion mice by reduction of p16. Kidney International, 2019, 96, 1162-1175.	2.6	31
64	Targeting p16-induced senescence prevents cigarette smoke-induced emphysema by promoting IGF1/Akt1 signaling in mice. Communications Biology, 2019, 2, 307.	2.0	39
65	From discoveries in ageing research to therapeutics for healthy ageing. Nature, 2019, 571, 183-192.	13.7	730
66	A large-scale CRISPR screen and identification of essential genes in cellular senescence bypass. Aging, 2019, 11, 4011-4031.	1.4	8
67	Directed elimination of senescent cells attenuates development of osteoarthritis by inhibition of c-IAP and XIAP. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 2618-2632.	1.8	26
68	Where to Stand with Stromal Cells and Chronic Synovitis in Rheumatoid Arthritis?. Cells, 2019, 8, 1257.	1.8	10
69	A dynamical systems model for the measurement of cellular senescence. Journal of the Royal Society Interface, 2019, 16, 20190311.	1.5	12
70	The Signaling of Cellular Senescence in Diabetic Nephropathy. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-16.	1.9	104
71	Regulation of cellular senescence by retinoid X receptors and their partners. Mechanisms of Ageing and Development, 2019, 183, 111131.	2.2	10
72	Harvard HIV and Aging Workshop: Perspectives and Priorities from Claude D. Pepper Centers and Centers for AIDS Research. AIDS Research and Human Retroviruses, 2019, 35, 999-1012.	0.5	12
73	Metformin and Aging: A Review. Gerontology, 2019, 65, 581-590.	1.4	98
74	Characterization, Antioxidant, Anti-Aging and Organ Protective Effects of Sulfated Polysaccharides from Flammulina velutipes. Molecules, 2019, 24, 3517.	1.7	50

#	Article	IF	CITATIONS
75	Delivery of miR-675 by stem cell-derived exosomes encapsulated in silk fibroin hydrogel prevents aging-induced vascular dysfunction in mouse hindlimb. Materials Science and Engineering C, 2019, 99, 322-332.	3.8	92
76	Complementary and distinct roles of autophagy, apoptosis and senescence during early inner ear development. Hearing Research, 2019, 376, 86-96.	0.9	17
77	XAB2 depletion induces intron retention in POLR2A to impair global transcription and promote cellular senescence. Nucleic Acids Research, 2019, 47, 8239-8254.	6.5	15
78	Cellular Senescence and the Immune System in Cancer. Gerontology, 2019, 65, 505-512.	1.4	66
79	Inflammaging. , 2019, , 1599-1629.		3
80	How to Treat or Prevent, or Slow Down, Cellular Ageing and Senescence?. Practical Issues in Geriatrics, 2019, , 83-88.	0.3	0
81	The Senescent Cell, SC. Practical Issues in Geriatrics, 2019, , 37-46.	0.3	0
82	β-Galactosidase instructed supramolecular hydrogelation for selective identification and removal of senescent cells. Chemical Communications, 2019, 55, 7175-7178.	2.2	44
83	Autophagy Dysfunction, Cellular Senescence, and Abnormal Immune-Inflammatory Responses in AMD: From Mechanisms to Therapeutic Potential. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-13.	1.9	46
84	The innate immune sensor Toll-like receptor 2 controls the senescence-associated secretory phenotype. Science Advances, 2019, 5, eaaw0254.	4.7	93
85	Vascular Senescense and Endothelial Function ― Can We Apply It to Atrial Fibrillation? ―. Circulation Journal, 2019, 83, 1439-1440.	0.7	1
86	The Evolving Role of CD8+CD28â^' Immunosenescent T Cells in Cancer Immunology. International Journal of Molecular Sciences, 2019, 20, 2810.	1.8	105
87	Emerging senolytic agents derived from natural products. Mechanisms of Ageing and Development, 2019, 181, 1-6.	2.2	69
88	Chromosomal instability and pro-inflammatory response in aging. Mechanisms of Ageing and Development, 2019, 182, 111118.	2.2	19
89	Altered levels of hsromega IncRNAs further enhance Ras signaling during ectopically activated Ras induced R7 differentiation in Drosophila. Gene Expression Patterns, 2019, 33, 20-36.	0.3	8
91	Epidemiology and treatment of multiple sclerosis in elderly populations. Nature Reviews Neurology, 2019, 15, 329-342.	4.9	185
92	NAD ⁺ metabolism controls inflammation during senescence. Molecular and Cellular Oncology, 2019, 6, 1605819.	0.3	8
93	A tale of the good and bad: Cell senescence in bone homeostasis and disease. International Review of Cell and Molecular Biology, 2019, 346, 97-128.	1.6	26

	CITATIO	N REPORT	
#	Article	IF	CITATIONS
94	Senescent glia spell trouble in Alzheimer's disease. Nature Neuroscience, 2019, 22, 683-684.	7.1	21
95	Quantifying Senescence-Associated Phenotypes in Primary Multipotent Mesenchymal Stromal Cell Cultures. Methods in Molecular Biology, 2019, 2045, 93-105.	0.4	10
96	Senescence in the lung: is this getting old?. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 316, L822-L825.	1.3	13
97	Skin Changes During Ageing. Sub-Cellular Biochemistry, 2019, 91, 249-280.	1.0	101
98	The Genetics of Aging: A Vertebrate Perspective. Cell, 2019, 177, 200-220.	13.5	177
99	Seno-suppressive molecules as new therapeutic perspectives in rheumatic diseases. Biochemical Pharmacology, 2019, 165, 126-133.	2.0	9
100	The curcumin analog EF24 is a novel senolytic agent. Aging, 2019, 11, 771-782.	1.4	100
101	Melatonin Enhances Cisplatin and Radiation Cytotoxicity in Head and Neck Squamous Cell Carcinoma by Stimulating Mitochondrial ROS Generation, Apoptosis, and Autophagy. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-12.	1.9	65
102	Hydrogen Sulfide Inhibits Formaldehyde-Induced Senescence in HT-22 Cells via Upregulation of Leptin Signaling. NeuroMolecular Medicine, 2019, 21, 192-203.	1.8	14
103	Drugs that target aging: how do we discover them?. Expert Opinion on Drug Discovery, 2019, 14, 541-548.	2.5	10
104	Aging and lineage allocation changes of bone marrow skeletal (stromal) stem cells. Bone, 2019, 123, 265-273.	1.4	46
105	Cellular senescence and radiation-induced pulmonary fibrosis. Translational Research, 2019, 209, 14-21.	2.2	66
106	Long-term stimulation of angiotensin II induced endothelial senescence and dysfunction. Experimental Gerontology, 2019, 119, 212-220.	1.2	25
107	Approaches towards Longevity: Reprogramming, Senolysis, and Improved Mitotic Competence as Anti-Aging Therapies. International Journal of Molecular Sciences, 2019, 20, 938.	1.8	17
108	Optimization strategies for ACI: A step-chronicle review. Journal of Orthopaedic Translation, 2019, 17, 3-14.	1.9	8
109	Converging Paths of Pulmonary Arterial Hypertension and Cellular Senescence. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 11-20.	1.4	25
110	Is cellular senescence involved in cystic fibrosis?. Respiratory Research, 2019, 20, 32.	1.4	23
111	Detecting and targeting senescent cells using molecularly imprinted nanoparticles. Nanoscale Horizons, 2019, 4, 757-768.	4.1	67

#	Article	IF	CITATIONS
112	Sirtuins and FoxOs in osteoporosis and osteoarthritis. Bone, 2019, 121, 284-292.	1.4	89
113	Senescent cells: Living or dying is a matter of NK cells. Journal of Leukocyte Biology, 2019, 105, 1275-1283.	1.5	69
114	The senescent status of endothelial cells affects proliferation, inflammatory profile and SOX2 expression in bone marrow-derived mesenchymal stem cells. Experimental Gerontology, 2019, 120, 21-27.	1.2	12
115	NAD+ metabolism governs the proinflammatory senescence-associated secretome. Nature Cell Biology, 2019, 21, 397-407.	4.6	232
116	Elimination of senescent osteoclast progenitors has no effect on the ageâ€associated loss of bone mass in mice. Aging Cell, 2019, 18, e12923.	3.0	57
117	Inhibition of farnesyl pyrophosphate (FPP) and/or geranylgeranyl pyrophosphate (GGPP) biosynthesis and its implication in the treatment of cancers. Critical Reviews in Biochemistry and Molecular Biology, 2019, 54, 41-60.	2.3	52
118	Cellular senescence in the lung across the age spectrum. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 316, L826-L842.	1.3	70
119	Metaâ€inflammaging at the crossroad of geroscience. Aging Medicine (Milton (N S W)), 2019, 2, 157-161.	0.9	14
120	Targeting senescent cells in translational medicine. EMBO Molecular Medicine, 2019, 11, e10234.	3.3	194
121	Murine single-cell RNA-seq reveals cell-identity- and tissue-specific trajectories of aging. Genome Research, 2019, 29, 2088-2103.	2.4	132
122	Inhibition of DNA damage response at telomeres improves the detrimental phenotypes of Hutchinson–Gilford Progeria Syndrome. Nature Communications, 2019, 10, 4990.	5.8	85
123	Implications of Aging in Plastic Surgery. Plastic and Reconstructive Surgery - Global Open, 2019, 7, e2085.	0.3	15
124	p19INK4d: More than Just a Cyclin-Dependent Kinase Inhibitor. Current Drug Targets, 2019, 21, 96-102.	1.0	8
125	Identification and characterization of Cardiac Glycosides as senolytic compounds. Nature Communications, 2019, 10, 4731.	5.8	230
126	Cardiac glycosides are broad-spectrum senolytics. Nature Metabolism, 2019, 1, 1074-1088.	5.1	207
127	New Insights for Cellular and Molecular Mechanisms of Aging and Aging-Related Diseases: Herbal Medicine as Potential Therapeutic Approach. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-25.	1.9	60
128	Healthy aging: A bibliometric analysis of the literature. Experimental Gerontology, 2019, 116, 93-105.	1.2	15
129	N-acetylcysteine ameliorates cisplatin-induced renal senescence and renal interstitial fibrosis through sirtuin1 activation and p53 deacetylation. Free Radical Biology and Medicine, 2019, 130, 512-527.	1.3	71

		CITATION RE	PORT	
#	ARTICLE		IF	Citations
130	Senescent cells: A new Achilles' heel to exploit for cancer medicine?. Aging Cell, 201	9, 18, e12875.	3.0	24
131	The age-related changes and differences in energy metabolism and glutamate-glutamine the d-gal-induced and naturally occurring senescent astrocytes in vitro. Experimental Ge 2019, 118, 9-18.	recycling in rontology,	1.2	23
132	Emerging Interventions for Elderly Patients—The Promise of Regenerative Medicine. Cl Pharmacology and Therapeutics, 2019, 105, 53-60.	inical	2.3	9
133	Iron and iron-dependent reactive oxygen species in the regulation of macrophages and f non-healing chronic wounds. Free Radical Biology and Medicine, 2019, 133, 262-275.	ibroblasts in	1.3	47
134	Aging and bone. , 2020, , 275-292.			2
135	AMPK-mediated senolytic and senostatic activity of quercetin surface functionalized Feat nanoparticles during oxidant-induced senescence in human fibroblasts. Redox Biology, 2 101337.	04 020, 28,	3.9	67
136	Age-associated changes in the response of tendon explants to stress deprivation is sex-o Connective Tissue Research, 2020, 61, 48-62.	lependent.	1.1	9
137	Biomarkers in the path from cellular senescence to frailty. Experimental Gerontology, 20 110750.	20, 129,	1.2	27
138	Regulation of inflammation as an antiâ€aging intervention. FEBS Journal, 2020, 287, 43	-52.	2.2	62
139	1,8-Cineole promotes G0/G1 cell cycle arrest and oxidative stress-induced senescence in and sensitizes cells to anti-senescence drugs. Life Sciences, 2020, 243, 117271.	HepG2 cells	2.0	47
140	Exhaustion and senescence: two crucial dysfunctional states of T cells in the tumor microenvironment. Cellular and Molecular Immunology, 2020, 17, 27-35.		4.8	168
141	Measuring biological aging in humans: A quest. Aging Cell, 2020, 19, e13080.		3.0	364
142	The protective role of omentin-1 in IL-1β-induced chondrocyte senescence. Artificial Cel Nanomedicine and Biotechnology, 2020, 48, 8-14.	ls,	1.9	22
143	Senotherapeutics for HIV and aging. Current Opinion in HIV and AIDS, 2020, 15, 83-93.		1.5	13
144	Loss of epitranscriptomic control of selenocysteine utilization engages senescence and mitochondrial reprogramming. Redox Biology, 2020, 28, 101375.		3.9	25
145	Aging induced by D-galactose aggravates cardiac dysfunction via exacerbating mitochor dysfunction in obese insulin-resistant rats. GeroScience, 2020, 42, 233-249.	ndrial	2.1	27
146	Senescence-induced inflammation: an important player and key therapeutic target in atl European Heart Journal, 2020, 41, 2983-2996.	nerosclerosis.	1.0	108
147	Juvenile high–fat diet–induced senescent glial cells in the medial prefrontal cortex d neuropsychiatric behavioral abnormalities in mice. Behavioural Brain Research, 2020, 39 	rives 5, 112838.	1.2	6

#	Article	IF	CITATIONS
148	Herb-Derived Products: Natural Tools to Delay and Counteract Stem Cell Senescence. Stem Cells International, 2020, 2020, 1-28.	1.2	10
149	Therapeutic Potential of Senolytics in Cardiovascular Disease. Cardiovascular Drugs and Therapy, 2022, 36, 187-196.	1.3	40
150	Drug delivery in intervertebral disc degeneration and osteoarthritis: Selecting the optimal platform for the delivery of disease-modifying agents. Journal of Controlled Release, 2020, 328, 985-999.	4.8	33
151	Type I interferons and related pathways in cell senescence. Aging Cell, 2020, 19, e13234.	3.0	38
152	Senolytic Agent Navitoclax Inhibits Angiotensin II-Induced Heart Failure in Mice. Journal of Cardiovascular Pharmacology, 2020, 76, 452-460.	0.8	26
153	Pterostilbene Sensitizes Cisplatin-Resistant Human Bladder Cancer Cells with Oncogenic HRAS. Cancers, 2020, 12, 2869.	1.7	10
154	Identification of a novel senomorphic agent, avenanthramide C, via the suppression of the senescence-associated secretory phenotype. Mechanisms of Ageing and Development, 2020, 192, 111355.	2.2	17
155	A natural product solution to aging and aging-associated diseases. , 2020, 216, 107673.		26
156	Aging of the cells: Insight into cellular senescence and detection Methods. European Journal of Cell Biology, 2020, 99, 151108.	1.6	100
157	Mesenchymal Stem Cell-Derived Extracellular Vesicles Attenuate Radiation-Induced Lung Injury <i>via</i> miRNA-214-3p. Antioxidants and Redox Signaling, 2021, 35, 849-862.	2.5	61
158	Targeting cellular senescence based on interorganelle communication, multilevel proteostasis, and metabolic control. FEBS Journal, 2021, 288, 3834-3854.	2.2	20
159	Inhibition of 3-phosphoinositide–dependent protein kinase 1 (PDK1) can revert cellular senescence in human dermal fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31535-31546.	3.3	31
160	Hepatocellular Senescence: Immunosurveillance and Future Senescence-Induced Therapy in Hepatocellular Carcinoma. Frontiers in Oncology, 2020, 10, 589908.	1.3	26
161	Molecular Mechanisms to Target Cellular Senescence in Hepatocellular Carcinoma. Cells, 2020, 9, 2540.	1.8	19
162	Therapy-induced polyploidization and senescence: Coincidence or interconnection?. Seminars in Cancer Biology, 2022, 81, 83-95.	4.3	34
163	A Fresh Approach to Targeting Aging Cells: CAR-T Cells Enhance Senolytic Specificity. Cell Stem Cell, 2020, 27, 192-194.	5.2	4
164	Silver nanoparticle-activated COX2/PGE2 axis involves alteration of lung cellular senescence in vitro and in vivo. Ecotoxicology and Environmental Safety, 2020, 204, 111070.	2.9	16
165	Generation of rhBMP-2-induced juvenile ossicles in aged mice. Biomaterials, 2020, 258, 120284.	5.7	17

#	Article	IF	CITATIONS
166	Senescence, Necrosis, and Apoptosis Govern Circulating Cell-free DNA Release Kinetics. Cell Reports, 2020, 31, 107830.	2.9	100
167	Mechanisms of protection of retinal pigment epithelial cells from oxidant injury by humanin and other mitochondrial-derived peptides: Implications for age-related macular degeneration. Redox Biology, 2020, 37, 101663.	3.9	15
168	Radiation-Induced Senescence Bystander Effect: The Role of Exosomes. Biology, 2020, 9, 191.	1.3	10
169	Rising from the ashes: cellular senescence in regeneration. Current Opinion in Genetics and Development, 2020, 64, 94-100.	1.5	25
170	Pathogenesis of Osteoarthritis: Risk Factors, Regulatory Pathways in Chondrocytes, and Experimental Models. Biology, 2020, 9, 194.	1.3	111
171	Accelerated Kidney Aging in Diabetes Mellitus. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-24.	1.9	52
172	Melatonin antagonizes ovarian aging via YTHDF2-MAPK-NF-κB pathway. Genes and Diseases, 2022, 9, 494-509.	1.5	13
173	Regulatory coupling between long noncoding RNAs and senescence in irradiated microglia. Journal of Neuroinflammation, 2020, 17, 321.	3.1	4
174	Metformin as a senostatic drug enhances the anticancer efficacy of CDK4/6 inhibitor in head and neck squamous cell carcinoma. Cell Death and Disease, 2020, 11, 925.	2.7	35
175	A Blueprint for Characterizing Senescence. Cell, 2020, 183, 1143-1146.	13.5	60
175 176	A Blueprint for Characterizing Senescence. Cell, 2020, 183, 1143-1146. Aging of the Immune System: Research Challenges to Enhance the Health Span of Older Adults. Frontiers in Aging, 2020, 1, .	13.5 1.2	60 40
175 176 177	A Blueprint for Characterizing Senescence. Cell, 2020, 183, 1143-1146. Aging of the Immune System: Research Challenges to Enhance the Health Span of Older Adults. Frontiers in Aging, 2020, 1, . Photochromic Fluorescent Probe Strategy for the Super-resolution Imaging of Biologically Important Biomarkers. Journal of the American Chemical Society, 2020, 142, 18005-18013.	13.5 1.2 6.6	60 40 118
175 176 177 178	A Blueprint for Characterizing Senescence. Cell, 2020, 183, 1143-1146. Aging of the Immune System: Research Challenges to Enhance the Health Span of Older Adults. Frontiers in Aging, 2020, 1, . Photochromic Fluorescent Probe Strategy for the Super-resolution Imaging of Biologically Important Biomarkers. Journal of the American Chemical Society, 2020, 142, 18005-18013. A public health perspective of aging: do hyper-inflammatory syndromes such as COVID-19, SARS, ARDS, cytokine storm syndrome, and post-ICU syndrome accelerate short- and long-term inflammaging?. Immunity and Ageing, 2020, 17, 23.	13.5 1.2 6.6 1.8	 60 40 118 61
175 176 177 178	A Blueprint for Characterizing Senescence. Cell, 2020, 183, 1143-1146. Aging of the Immune System: Research Challenges to Enhance the Health Span of Older Adults. Frontiers in Aging, 2020, 1, . Photochromic Fluorescent Probe Strategy for the Super-resolution Imaging of Biologically Important Biomarkers. Journal of the American Chemical Society, 2020, 142, 18005-18013. A public health perspective of aging: do hyper-inflammatory syndromes such as COVID-19, SARS, ARDS, cytokine storm syndrome, and post-ICU syndrome accelerate short- and long-term inflammaging?. Immunity and Ageing, 2020, 17, 23. Antioxidant activity of selenium-enriched Chrysomyia megacephala (Fabricius) larvae powder and its impact on intestinal microflora in D-galactose induced aging mice. BMC Complementary Medicine and Therapies, 2020, 20, 264.	13.5 1.2 6.6 1.8 1.2	 60 40 118 61 16
175 176 177 178 178 179	A Blueprint for Characterizing Senescence. Cell, 2020, 183, 1143-1146. Aging of the Immune System: Research Challenges to Enhance the Health Span of Older Adults. Frontiers in Aging, 2020, 1, . Photochromic Fluorescent Probe Strategy for the Super-resolution Imaging of Biologically Important Biomarkers. Journal of the American Chemical Society, 2020, 142, 18005-18013. A public health perspective of aging: do hyper-inflammatory syndromes such as COVID-19, SARS, ARDS, cytokine storm syndrome, and post-ICU syndrome accelerate short- and long-term inflammaging?. Immunity and Ageing, 2020, 17, 23. Antioxidant activity of selenium-enriched Chrysomyia megacephala (Fabricius) larvae powder and its impact on intestinal microflora in D-galactose induced aging mice. BMC Complementary Medicine and Therapies, 2020, 20, 264. Cellular senescence and hepatitis Bâ€related hepatocellular carcinoma: An intriguing link. Liver International, 2020, 40, 2917-2927.	13.5 1.2 6.6 1.8 1.2 1.2	 60 40 118 61 16 23
175 176 177 178 179 180	A Blueprint for Characterizing Senescence. Cell, 2020, 183, 1143-1146. Aging of the Immune System: Research Challenges to Enhance the Health Span of Older Adults. Frontiers in Aging, 2020, 1, . Photochromic Fluorescent Probe Strategy for the Super-resolution Imaging of Biologically Important Biomarkers. Journal of the American Chemical Society, 2020, 142, 18005-18013. A public health perspective of aging: do hyper-inflammatory syndromes such as COVID-19, SARS, ARDS, cytokine storm syndrome, and post-ICU syndrome accelerate short- and long-term inflammaging?. Immunity and Ageing, 2020, 17, 23. Antioxidant activity of selenium-enriched Chrysomyla megacephala (Fabricius) larvae powder and its impact on intestinal microflora in D-galactose induced aging mice. BMC Complementary Medicine and Therapies, 2020, 20, 264. Cellular senescence and hepatitis Bâ€related hepatocellular carcinoma: An intriguing link. Liver International, 2020, 40, 2917-2927. Biological and Functional Biomarkers of Aging: Definition, Characteristics, and How They Can Impact Everyday Cancer Treatment. Current Oncology Reports, 2020, 22, 115.	 13.5 1.2 6.6 1.8 1.2 1.9 1.8 	 60 40 118 61 16 23 32
175 176 177 178 179 180 181	A Blueprint for Characterizing Senescence. Cell, 2020, 183, 1143-1146. Aging of the Immune System: Research Challenges to Enhance the Health Span of Older Adults. Frontiers in Aging, 2020, 1, . Photochromic Fluorescent Probe Strategy for the Super-resolution Imaging of Biologically Important Biomarkers. Journal of the American Chemical Society, 2020, 142, 18005-18013. A public health perspective of aging: do hyper-inflammatory syndromes such as COVID-19, SARS, ARDS, cytokine storm syndrome, and post-ICU syndrome accelerate short- and long-term inflammaging?. Immunity and Ageing, 2020, 17, 23. Antioxidant activity of selenium-enriched Chrysomyla megacephala (Fabricius) larvae powder and its impact on intestinal microflora in D-galactose induced aging mice. BMC Complementary Medicine and Therapies, 2020, 20, 264. Cellular senescence and hepatitis Bâcrelated hepatocellular carcinoma: An intriguing link. Liver International, 2020, 40, 2917-2927. Biological and Functional Biomarkers of Aging: Definition, Characteristics, and How They Can Impact Everyday Cancer Treatment. Current Oncology Reports, 2020, 22, 115. Senescent Cell Depletion Through Targeting BCL-Family Proteins and Mitochondria. Frontiers in Physiology, 2020, 11, 593630.	 13.5 1.2 6.6 1.8 1.2 1.9 1.8 1.3 	 60 40 118 61 61 23 32 27

		Citation Ri	EPORT	
#	Article		IF	CITATIONS
184	Can Blood-Circulating Factors Unveil and Delay Your Biological Aging?. Biomedicines, 2	2020, 8, 615.	1.4	17
185	Advancements in therapeutic drugs targeting of senescence. Therapeutic Advances in 2020, 11, 204062232096412.	Chronic Disease,	1.1	31
186	On the evolution of cellular senescence. Aging Cell, 2020, 19, e13270.		3.0	84
187	Cellular and molecular mechanisms of xenobiotics-induced premature senescence. Tox Research, 2020, 9, 669-675.	icology	0.9	7
188	FBP1 loss disrupts liver metabolism and promotes tumorigenesis through a hepatic ste senescence secretome. Nature Cell Biology, 2020, 22, 728-739.	illate cell	4.6	110
189	A β-galactosidase kiss of death for senescent cells. Cell Research, 2020, 30, 556-557.		5.7	4
190	Attenuation of Age-Related Hepatic Steatosis by <i>Dunaliella salina</i> Microalgae in through the Regulation of Redox Status, Inflammatory Indices, and Apoptotic Biomark Pharmacological and Pharmaceutical Sciences, 2020, 2020, 1-11.	Senescence Rats ers. Advances in	0.7	6
191	New aspects of hepatic endothelial cells in physiology and nonalcoholic fatty liver dise Journal of Physiology - Cell Physiology, 2020, 318, C1200-C1213.	ase. American	2.1	27
192	Integrin-mediated adhesions in regulation of cellular senescence. Science Advances, 20)20, 6, eaay3909.	4.7	35
193	MicroRNAâ€127â€5p impairs function of granulosa cells via <i>HMGB2</i> gene in pro insufficiency. Journal of Cellular Physiology, 2020, 235, 8826-8838.	emature ovarian	2.0	24
194	Chiral Cu _{<i>x</i>} Co _{<i>y</i>} S Nanoparticles under Magnetic Light to Eliminate Senescent Cells. Angewandte Chemie - International Edition, 2020, 5	: Field and NIR 59, 13915-13922.	7.2	40
195	Defined p16High Senescent Cell Types Are Indispensable for Mouse Healthspan. Cell N 32, 87-99.e6.	letabolism, 2020,	7.2	230
196	Chronic expression of p16INK4a in the epidermis induces Wnt-mediated hyperplasia ar tumor initiation. Nature Communications, 2020, 11, 2711.	nd promotes	5.8	36
197	DNA Damage Regulates Senescence-Associated Extracellular Vesicle Release via the Ce to Prevent Excessive Inflammatory Responses. International Journal of Molecular Scien 3720.	ramide Pathway ces, 2020, 21,	1.8	45
198	Chiral Cu _{<i>x</i>} Co _{<i>y</i>} S Nanoparticles under Magnetic Light to Eliminate Senescent Cells. Angewandte Chemie, 2020, 132, 14019-14026.	: Field and NIR	1.6	9
199	Mitochondrial phosphatase PGAM5 modulates cellular senescence by regulating mitoc dynamics. Nature Communications, 2020, 11, 2549.	hondrial	5.8	100
200	The quest to slow ageing through drug discovery. Nature Reviews Drug Discovery, 202	0, 19, 513-532.	21.5	260
201	Overâ€expression of Nicotinamide phosphoribosyltransferase in mouse cells confers p against oxidative and ER stressâ€induced premature senescence. Genes To Cells, 2020	rotective effect), 25, 593-602.	0.5	5

#	Article	IF	CITATIONS
202	Integrating context of tumor biology and vaccine design to shape multidimensional immunotherapies. Future Drug Discovery, 2020, 2, FDD25.	0.8	1
203	Telomere transcription in ageing. Ageing Research Reviews, 2020, 62, 101115.	5.0	44
204	Emerging use of senolytics and senomorphics against aging and chronic diseases. Medicinal Research Reviews, 2020, 40, 2114-2131.	5.0	71
205	Astrocyte Senescence and Alzheimer's Disease: A Review. Frontiers in Aging Neuroscience, 2020, 12, 148.	1.7	81
206	The crosstalk between cellular reprogramming and senescence in aging and regeneration. Experimental Gerontology, 2020, 138, 111005.	1.2	13
207	Galactoseâ€modified duocarmycin prodrugs as senolytics. Aging Cell, 2020, 19, e13133.	3.0	84
208	Sleep and ageing: from human studies to rodent models. Current Opinion in Physiology, 2020, 15, 210-216.	0.9	13
209	Cellular Senescence as a Therapeutic Target for Age-Related Diseases: A Review. Advances in Therapy, 2020, 37, 1407-1424.	1.3	53
210	The senotherapeutic drug ABT-737 disrupts aberrant p21 expression to restore liver regeneration in adult mice. Genes and Development, 2020, 34, 489-494.	2.7	64
211	Biological Behaviour of Craniopharyngiomas. Neuroendocrinology, 2020, 110, 797-804.	1.2	20
212	The JAK1/2 inhibitor ruxolitinib delays premature aging phenotypes. Aging Cell, 2020, 19, e13122.	3.0	41
213	Anti-Ageing Effect of Physalis alkekengi Ethyl Acetate Layer on a d-galactose-Induced Mouse Model through the Reduction of Cellular Senescence and Oxidative Stress. International Journal of Molecular Sciences, 2020, 21, 1836.	1.8	18
214	Immune Clearance of Senescent Cells to Combat Ageing and Chronic Diseases. Cells, 2020, 9, 671.	1.8	100
215	Mitochondriaâ€Targeting Plasmonic Spiky Nanorods Increase the Elimination of Aging Cells in Vivo. Angewandte Chemie, 2020, 132, 8776-8783.	1.6	10
216	BET family protein degraders poised to join the senolytic arsenal. Signal Transduction and Targeted Therapy, 2020, 5, 88.	7.1	1
217	DNA Damage- But Not Enzalutamide-Induced Senescence in Prostate Cancer Promotes Senolytic Bcl-xL Inhibitor Sensitivity. Cells, 2020, 9, 1593.	1.8	31
218	A rapid-response near-infrared fluorescent probe with a large Stokes shift for senescence-associated β-galactosidase activity detection and imaging of senescent cells. Dyes and Pigments, 2020, 182, 108657.	2.0	17
219	Therapeutic senescence via GPCR activation in synovial fibroblasts facilitates resolution of arthritis. Nature Communications, 2020, 11, 745.	5.8	49

#	Article	IF	CITATIONS
220	Pharmacotherapy for knee osteoarthritis: current and emerging therapies. Expert Opinion on Pharmacotherapy, 2020, 21, 797-809.	0.9	51
221	An NIRâ€Responsive DNAâ€Mediated Nanotetrahedron Enhances the Clearance of Senescent Cells. Advanced Materials, 2020, 32, e2000184.	11.1	49
222	Slowly Repaired Bulky DNA Damages Modulate Cellular Redox Environment Leading to Premature Senescence. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-13.	1.9	2
223	Small extracellular vesicles deliver miRâ€21 and miRâ€217 as proâ€senescence effectors to endothelial cells. Journal of Extracellular Vesicles, 2020, 9, 1725285.	5.5	104
224	Oxidative stress, telomeres and cellular senescence: What non-drug interventions might break the link?. Free Radical Biology and Medicine, 2020, 150, 87-95.	1.3	26
225	Inhibition of USP7 activity selectively eliminates senescent cells in part via restoration of p53 activity. Aging Cell, 2020, 19, e13117.	3.0	60
226	Atherosclerosis: Insights into Vascular Pathobiology and Outlook to Novel Treatments. Journal of Cardiovascular Translational Research, 2020, 13, 744-757.	1.1	41
227	DNA damage, repair and the improvement of cancer therapy – A tribute to the life and research of Barbara Tudek. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2020, 852, 503160.	0.9	1
228	Mitochondriaâ€Targeting Plasmonic Spiky Nanorods Increase the Elimination of Aging Cells in Vivo. Angewandte Chemie - International Edition, 2020, 59, 8698-8705.	7.2	29
229	Anti-Aging Effects of Calorie Restriction (CR) and CR Mimetics Based on the Senoinflammation Concept. Nutrients, 2020, 12, 422.	1.7	34
230	Therapy-induced senescence — an induced synthetic lethality in liver cancer?. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 135-136.	8.2	12
231	Recurrent pregnancy loss is associated with a pro-senescent decidual response during the peri-implantation window. Communications Biology, 2020, 3, 37.	2.0	158
232	Untargeted Lipidomics Highlight the Depletion of Deoxyceramides during Therapyâ€Induced Senescence. Proteomics, 2020, 20, e2000013.	1.3	17
233	ER stress activates immunosuppressive network: implications for aging and Alzheimer's disease. Journal of Molecular Medicine, 2020, 98, 633-650.	1.7	60
234	Senescent Cells: Emerging Targets for Human Aging and Age-Related Diseases. Trends in Biochemical Sciences, 2020, 45, 578-592.	3.7	126
235	A BET family protein degrader provokes senolysis by targeting NHEJ and autophagy in senescent cells. Nature Communications, 2020, 11, 1935.	5.8	118
236	Activation of epidermal growth factor receptor signaling mediates cellular senescence induced by certain proâ€inflammatory cytokines. Aging Cell, 2020, 19, e13145.	3.0	39
237	Using proteolysis-targeting chimera technology to reduce navitoclax platelet toxicity and improve its senolytic activity. Nature Communications, 2020, 11, 1996.	5.8	141

#	Article	IF	Citations
238	Elimination of senescent cells by \hat{l}^2 -galactosidase-targeted prodrug attenuates inflammation and restores physical function in aged mice. Cell Research, 2020, 30, 574-589.	5.7	187
239	Targeting senescent cells to attenuate cardiovascular disease progression. Ageing Research Reviews, 2020, 60, 101072.	5.0	39
240	The Nlrp3 inflammasome as a "rising star―in studies of normal and malignant hematopoiesis. Leukemia, 2020, 34, 1512-1523.	3.3	73
241	Galactoâ€conjugation of Navitoclax as an efficient strategy to increase senolytic specificity and reduce platelet toxicity. Aging Cell, 2020, 19, e13142.	3.0	131
242	Vitamin C Treatment Rescues Prelamin A-Induced Premature Senescence of Subchondral Bone Mesenchymal Stem Cells. Stem Cells International, 2020, 2020, 1-16.	1.2	9
243	Treatment with Modified Extracts of the Microalga Planktochlorella nurekis Attenuates the Development of Stress-Induced Senescence in Human Skin Cells. Nutrients, 2020, 12, 1005.	1.7	8
244	Chimeric Antigen Receptor T Cells as Senolytic and Antifibrotic Therapy. Hepatology, 2021, 73, 1227-1229.	3.6	3
245	Multifaceted role of extracellular vesicles in atherosclerosis. Atherosclerosis, 2021, 319, 121-131.	0.4	36
246	Neuroblast senescence in the aged brain augments natural killer cell cytotoxicity leading to impaired neurogenesis and cognition. Nature Neuroscience, 2021, 24, 61-73.	7.1	93
247	Mechanisms and therapeutic implications of cellular senescence in osteoarthritis. Nature Reviews Rheumatology, 2021, 17, 47-57.	3.5	284
248	Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nature Reviews Molecular Cell Biology, 2021, 22, 75-95.	16.1	812
249	Global spliceosome activity regulates entry into cellular senescence. FASEB Journal, 2021, 35, e21204.	0.2	18
250	NAD+ metabolism and its roles in cellular processes during ageing. Nature Reviews Molecular Cell Biology, 2021, 22, 119-141.	16.1	593
251	Mangiferin, a naturally occurring polyphenol, mitigates oxidative stress induced premature senescence in human dermal fibroblast cells. Molecular Biology Reports, 2021, 48, 457-466.	1.0	6
252	Alzheimer's disease drug development pipeline: 2021. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2021, 7, e12179.	1.8	259
253	Dysregulation of leukocyte trafficking in ageing: Causal factors and possible corrective therapies. Pharmacological Research, 2021, 163, 105323.	3.1	12
254	The Role of Oxidative Stress in Cardiovascular Aging and Cardiovascular Diseases. Life, 2021, 11, 60.	1.1	60
255	Autophagy is deregulated in cancer-associated fibroblasts from oral cancer and is stimulated during the induction of fibroblast senescence by TGF-Î21. Scientific Reports, 2021, 11, 584.	1.6	15

ARTICLE IF CITATIONS # Targeting senescent cell clearance: An approach to delay aging and age-associated disorders. 256 0.6 1 Translational Medicine of Aging, 2021, 5, 1-9. Mechanisms of neuroplasticity and brain degeneration: strategies for protection during the aging 1.6 39 process. Neural Regeneration Research, 2021, 16, 58. 258 The Jekyll and Hyde of Cellular Senescence in Cancer. Cells, 2021, 10, 208. 1.8 25 Control of Mesenchymal Stromal Cell Senescence by Tryptophan Metabolites. International Journal 1.8 of Molecular Sciences, 2021, 22, 697. Pathophysiology and genetics in craniopharyngioma., 2021, , 53-66. 260 2 Cellular Senescence in Brain Aging. Frontiers in Aging Neuroscience, 2021, 13, 646924. 1.7 129 Reactive astrocyte nomenclature, definitions, and future directions. Nature Neuroscience, 2021, 24, 262 7.1 1,098 312-325. Calcium channel ITPR2 and mitochondria–ER contacts promote cellular senescence and aging. Nature 264 5.8 Communications, 2021, 12, 720. Evidence of the Cellular Senescence Stress Response in Mitotically Active Brain Cellsâ€"Implications 266 1.1 16 for Cancer and Neurodegeneration. Life, 2021, 11, 153. Inhibitory role of ginsenoside Rb2 in endothelial senescence and inflammation mediated by 1.1 microRNAâ€'216a. Molecular Medicine Reports, 2021, 23, . Implication of cellular senescence in the progression of chronic kidney disease and the treatment 268 2.5 16 potencies. Biomedicine and Pharmacotherapy, 2021, 135, 111191. Osteoclasts protect bone blood vessels against senescence through the angiogenin/plexin-B2 axis. 5.8 50 Nature Communications, 2021, 12, 1832 Recent advances in the field of caloric restriction mimetics and anti-aging molecules. Ageing Research 270 5.0 38 Reviews, 2021, 66, 101240. Adamantinomatous craniopharyngioma as a model to understand paracrine and senescence-induced 271 2.4 tumourigenesis. Cellular and Molecular Life Sciences, 2021, 78, 4521-4544. Twoâ€Dimensional Design Strategy to Construct Smart Fluorescent Probes for the Precise Tracking of 272 7.2 65 Senescence. Angewandte Chemie - International Edition, 2021, 60, 10756-10765. Senolytic elimination of Cox2-expressing senescent cells inhibits the growth of premalignant 6.1 pancreatic lesions. Gut, 2022, 71, 345-355. Implication of Dietary Iron-Chelating Bioactive Compounds in Molecular Mechanisms of Oxidative 274 2.216 Stress-Induced Cell Ageing. Antioxidants, 2021, 10, 491. Biological functions of therapy-induced senescence in cancer. Seminars in Cancer Biology, 2022, 81, 4.3 5-13.

#	Article	IF	CITATIONS
276	Mechanisms of Cellular Senescence: Cell Cycle Arrest and Senescence Associated Secretory Phenotype. Frontiers in Cell and Developmental Biology, 2021, 9, 645593.	1.8	608
278	Which is the most effective one in knee osteoarthritis treatment from mesenchymal stem cells obtained from different sources? —A systematic review with conventional and network meta-analyses of randomized controlled trials. Annals of Translational Medicine, 2021, 9, 452-452.	0.7	19
279	Twoâ€Ðimensional Design Strategy to Construct Smart Fluorescent Probes for the Precise Tracking of Senescence. Angewandte Chemie, 2021, 133, 10851-10860.	1.6	6
280	Radiation induces primary osteocyte senescenceÂphenotype and affects osteoclastogenesis <i>inÂvitro</i> . International Journal of Molecular Medicine, 2021, 47, .	1.8	12
283	The cGAS–STING pathway as a therapeutic target in inflammatory diseases. Nature Reviews Immunology, 2021, 21, 548-569.	10.6	714
284	m6A-independent genome-wide METTL3 and METTL14 redistribution drives the senescence-associated secretory phenotype. Nature Cell Biology, 2021, 23, 355-365.	4.6	71
285	Senolytic targets and new strategies for clearing senescent cells. Mechanisms of Ageing and Development, 2021, 195, 111468.	2.2	30
286	Mitochondrial Mutations and Genetic Factors Determining NAFLD Risk. International Journal of Molecular Sciences, 2021, 22, 4459.	1.8	30
287	Vascular Senescence: A Potential Bridge Between Physiological Aging and Neurogenic Decline. Frontiers in Neuroscience, 2021, 15, 666881.	1.4	9
288	New Trends in Pharmacological Treatments for Osteoarthritis. Frontiers in Pharmacology, 2021, 12, 645842.	1.6	51
289	Mild exacerbation of obesity- and age-dependent liver disease progression by senolytic cocktail dasatinib + quercetin. Cell Communication and Signaling, 2021, 19, 44.	2.7	35
290	Connective Tissue and Fibroblast Senescence in Skin Aging. Journal of Investigative Dermatology, 2021, 141, 985-992.	0.3	108
291	Senescence mechanisms and targets in the heart. Cardiovascular Research, 2022, 118, 1173-1187.	1.8	86
292	New insights into oxidative stress and immune mechanisms involved in age-related macular degeneration tackled by novel therapies. Neuropharmacology, 2021, 188, 108513.	2.0	12
294	Macro, Micro, and Molecular. Changes of the Osteochondral Interface in Osteoarthritis Development. Frontiers in Cell and Developmental Biology, 2021, 9, 659654.	1.8	23
295	Coordinate regulation of the senescent state by selective autophagy. Developmental Cell, 2021, 56, 1512-1525.e7.	3.1	29
296	An update in toxicology of ageing. Environmental Toxicology and Pharmacology, 2021, 84, 103611.	2.0	7
297	Dietary Technologies to Optimize Healing from Injury-Induced Inflammation. Anti-Inflammatory and Anti-Anti-Anti-Anti-Anti-Anti-Anti-Anti-	1.1	4

#	Article	IF	CITATIONS
298	Longâ€ŧerm exposure to cigarette smoke influences characteristics in human gingival fibroblasts. Journal of Periodontal Research, 2021, 56, 951-963.	1.4	11
299	The p53/p21/p16 and <scp>PI3K</scp> /Akt signaling pathways are involved in the ameliorative effects of maltol on Dâ€galactoseâ€induced liver and kidney aging and injury. Phytotherapy Research, 2021, 35, 4411-4424.	2.8	30
300	Comparison of the major cell populations among osteoarthritis, Kashin–Beck disease and healthy chondrocytes by single-cell RNA-seq analysis. Cell Death and Disease, 2021, 12, 551.	2.7	42
301	Feed-forward regulation between cellular senescence and immunosuppression promotes the aging process and age-related diseases. Ageing Research Reviews, 2021, 67, 101280.	5.0	34
302	p16-3MR: A Novel Model to Study Cellular Senescence in Cigarette Smoke-Induced Lung Injuries. International Journal of Molecular Sciences, 2021, 22, 4834.	1.8	6
303	KDM4 orchestrates epigenomic remodeling of senescent cells and potentiates the senescence-associated secretory phenotype. Nature Aging, 2021, 1, 454-472.	5.3	31
304	CISD2 plays a role in age-related diseases and cancer. Biomedicine and Pharmacotherapy, 2021, 138, 111472.	2.5	9
305	Cellular Senescence in Lung Fibrosis. International Journal of Molecular Sciences, 2021, 22, 7012.	1.8	33
306	Vascular Endothelial Senescence: Pathobiological Insights, Emerging Long Noncoding RNA Targets, Challenges and Therapeutic Opportunities. Frontiers in Physiology, 2021, 12, 693067.	1.3	29
307	Systems biology for reverse aging. Aging, 2021, 13, 14549-14551.	1.4	0
308	17β-Estradiol alleviates cardiac aging induced by d-galactose by downregulating the methylation of autophagy-related genes. Steroids, 2021, 170, 108829.	0.8	3
310	Immunohistochemical Expressions of Senescence-Associated Secretory Phenotype and Its Association With Immune Microenvironments and Clinicopathological Factors in Invasive Breast Cancer. Pathology and Oncology Research, 2021, 27, 1609795.	0.9	5
311	Activités physiques, sédentarité, comorbidités et arthrose. Revue Du Rhumatisme Monographies, 2021, 88, 194-202.	0.0	1
312	Interventional Strategies to Delay Aging-Related Dysfunctions of the Musculoskeletal System. , 0, , .		0
313	Nanomedicine: Photo-activated nanostructured titanium dioxide, as a promising anticancer agent. , 2021, 222, 107795.		32
314	Inflammation, epigenetics, and metabolism converge to cell senescence and ageing: the regulation and intervention. Signal Transduction and Targeted Therapy, 2021, 6, 245,	7.1	119
	······································		
315	Frataxin deficiency promotes endothelial senescence in pulmonary hypertension. Journal of Clinical Investigation, 2021, 131, .	3.9	38

#	Article	IF	CITATIONS
317	Flavonoids in Skin Senescence Prevention and Treatment. International Journal of Molecular Sciences, 2021, 22, 6814.	1.8	49
318	Acid ceramidase promotes senescent cell survival. Aging, 2021, 13, 15750-15769.	1.4	11
319	Senescence in tissue samples of humans with age-related diseases: A systematic review. Ageing Research Reviews, 2021, 68, 101334.	5.0	32
320	Oligodendrocytes in the aging brain. Neuronal Signaling, 2021, 5, NS20210008.	1.7	39
321	Oncogene-induced senescence in hematopoietic progenitors features myeloid restricted hematopoiesis, chronic inflammation and histiocytosis. Nature Communications, 2021, 12, 4559.	5.8	17
322	Immunosenescence in Childhood Cancer Survivors and in Elderly: A Comparison and Implication for Risk Stratification. Frontiers in Aging, 2021, 2, .	1.2	5
323	mTOR Activity and Autophagy in Senescent Cells, a Complex Partnership. International Journal of Molecular Sciences, 2021, 22, 8149.	1.8	33
324	HDAC2 and 7 down-regulation induces senescence in dermal fibroblasts. Aging, 2021, 13, 17978-18005.	1.4	6
325	Role of Cellular Senescence in Type II Diabetes. Endocrinology, 2021, 162, .	1.4	36
326	Roles and Regulation of Growth differentiation factor-15 in the Immune and tumor microenvironment. Human Immunology, 2021, 82, 937-944.	1.2	13
327	Cellular senescence and the senescence-associated secretory phenotype: Potential therapeutic targets for renal fibrosis. Experimental Gerontology, 2021, 151, 111403.	1.2	11
328	p53 regulated senescence mechanism and role of its modulators in age-related disorders. Biochemical Pharmacology, 2021, 190, 114651.	2.0	15
329	Invariant natural killer TÂcells coordinate removal of senescent cells. Med, 2021, 2, 938-950.e8.	2.2	28
330	Evaluating causality of cellular senescence in non-alcoholic fatty liver disease. JHEP Reports, 2021, 3, 100301.	2.6	30
331	Aging associated altered response to intracellular bacterial infections and its implication on the host. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 119063.	1.9	5
332	Radiation-Induced Osteocyte Senescence Alters Bone Marrow Mesenchymal Stem Cell Differentiation Potential via Paracrine Signaling. International Journal of Molecular Sciences, 2021, 22, 9323.	1.8	18
333	Anti-aging: senolytics or gerostatics (unconventional view). Oncotarget, 2021, 12, 1821-1835.	0.8	18
334	Senolytics and senomorphics: Natural and synthetic therapeutics in the treatment of aging and chronic diseases. Free Radical Biology and Medicine, 2021, 171, 169-190.	1.3	103

# 335	ARTICLE Brain Atrophy and White Matter Damage Linked to Peripheral Bioenergetic Deficits in the	IF 1.8	Citations 8
336	Sargahydroquinoic acid (SHQA) suppresses cellular senescence through Akt/mTOR signaling pathway. Experimental Gerontology, 2021, 151, 111406.	1.2	6
337	The role of retrotransposable elements in ageing and age-associated diseases. Nature, 2021, 596, 43-53.	13.7	156
338	A chromosomeâ€level genome of <i>Antechinus flavipes</i> provides a reference for an Australian marsupial genus with male death after mating. Molecular Ecology Resources, 2022, 22, 740-754.	2.2	12
339	One-Two Punch Therapy for the Treatment of T-Cell Malignancies Involving p53-Dependent Cellular Senescence. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-20.	1.9	8
340	DNA damage-induced degradation of Sp1 promotes cellular senescence. GeroScience, 2022, 44, 683-698.	2.1	8
341	Cellular Plasticity: A Route to Senescence Exit and Tumorigenesis. Cancers, 2021, 13, 4561.	1.7	32
342	Septic shock as a trigger of arterial stress-induced premature senescence: A new pathway involved in the post sepsis long-term cardiovascular complications. Vascular Pharmacology, 2021, 141, 106922.	1.0	9
343	The redox-senescence axis and its therapeutic targeting. Redox Biology, 2021, 45, 102032.	3.9	34
344	Gut bacteria identified in colorectal cancer patients promote tumourigenesis via butyrate secretion. Nature Communications, 2021, 12, 5674.	5.8	95
345	Asporin regulated by miR-26b-5p mediates chondrocyte senescence and exacerbates osteoarthritis progression via TGF-Î21/Smad2 pathway. Rheumatology, 2022, 61, 2631-2643.	0.9	18
346	Targeting Wnt signaling pathway by polyphenols: implication for aging and age-related diseases. Biogerontology, 2021, 22, 479-494.	2.0	12
347	Cellular senescence in knee osteoarthritis: molecular mechanisms and therapeutic implications. Ageing Research Reviews, 2021, 70, 101413.	5.0	62
348	Accumulation of CD28null Senescent T-Cells Is Associated with Poorer Outcomes in COVID19 Patients. Biomolecules, 2021, 11, 1425.	1.8	12
349	Cellular senescence in musculoskeletal homeostasis, diseases, and regeneration. Bone Research, 2021, 9, 41.	5.4	58
350	Understanding the Radiobiology of Vestibular Schwannomas to Overcome Radiation Resistance. Cancers, 2021, 13, 4575.	1.7	6
351	Senescence and senolytics in cardiovascular disease: Promise and potential pitfalls. Mechanisms of Ageing and Development, 2021, 198, 111540.	2.2	52
352	The hoverfly and the wasp: A critique of the hallmarks of aging as a paradigm. Ageing Research Reviews, 2021, 70, 101407.	5.0	67

#	Article	IF	CITATIONS
353	Breathe it in – Spotlight on senescence and regeneration in the lung. Mechanisms of Ageing and Development, 2021, 199, 111550.	2.2	5
354	Keeping zombies alive: The ER-mitochondria Ca2+ transfer in cellular senescence. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 119099.	1.9	18
355	Cellular senescence as a driver of cognitive decline triggered by chronic unpredictable stress. Neurobiology of Stress, 2021, 15, 100341.	1.9	22
356	Super-resolution image-based tracking of drug distribution in mitochondria of a label-free naturally derived drug molecules. Chemical Engineering Journal, 2022, 429, 132134.	6.6	20
357	The emerging role of cellular senescence in complications of COVID-19. Cancer Treatment and Research Communications, 2021, 28, 100399.	0.7	7
358	Ultrasmall Prussian blue nanoparticles attenuate UVA-induced cellular senescence in human dermal fibroblasts <i>via</i> inhibiting the ERK/AP-1 pathway. Nanoscale, 2021, 13, 16104-16112.	2.8	8
359	Phospholipase A2 receptor 1 promotes lung cell senescence and emphysema in obstructive lung disease. European Respiratory Journal, 2021, 58, 2000752.	3.1	11
360	Senescence under appraisal: hopes and challenges revisited. Cellular and Molecular Life Sciences, 2021, 78, 3333-3354.	2.4	27
361	Polyphenols as Modulators of Oxidative Stress in Cancer Disease. , 2021, , 143-188.		2
362	Latency Reversal 2.0: Giving the Immune System a Seat at the Table. Current HIV/AIDS Reports, 2021, 18, 117-127.	1.1	20
363	Senotherapeutics: Experimental therapy of cellular senescence. , 2021, , 251-284.		0
364	Epigenetic dysregulation in cardiovascular aging and disease. , 2021, 1, .		14
365	Is it the time of seno-therapeutics application in cardiovascular pathological conditions related to ageing?. Current Research in Pharmacology and Drug Discovery, 2021, 2, 100027.	1.7	2
366	Interconnection Between Cellular Senescence, Regeneration and Ageing in Salamanders. Healthy Ageing and Longevity, 2020, , 43-62.	0.2	2
367	Cellular Senescence and Tumor Promotion. , 2020, , 55-69.		1
368	Inflammaging. , 2018, , 1-31.		4
369	Ayurvedic Rasayana Therapy: A Rational Understanding Necessary for Mass Benefits. , 2019, , 77-99.		3
370	Preclinical antitumor efficacy of senescence-inducing chemotherapy combined with a nanoSenolytic. Journal of Controlled Release, 2020, 323, 624-634.	4.8	64

#	Article	IF	CITATIONS
371	Inflammageing in the cardiovascular system: mechanisms, emerging targets, and novel therapeutic strategies. Clinical Science, 2020, 134, 2243-2262.	1.8	28
372	Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. European Heart Journal, 2020, 41, 2313-2330.	1.0	776
373	Elevated Plasma Growth and Differentiation Factor 15 Predicts Incident Anemia in Older Adults Aged 60 Years and Older. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, 76, 1192-1197.	1.7	7
383	Cellular senescence and senescenceâ€associated secretory phenotype via the cGASâ€STING signaling pathway in cancer. Cancer Science, 2020, 111, 304-311.	1.7	117
384	Targetable mechanisms driving immunoevasion of persistent senescent cells link chemotherapy-resistant cancer to aging. JCI Insight, 2019, 4, .	2.3	90
385	Cellular senescence in brain aging and neurodegenerative diseases: evidence and perspectives. Journal of Clinical Investigation, 2018, 128, 1208-1216.	3.9	289
386	The INSPIRE Bio-resource Research Platform for Healthy Aging and Geroscience: Focus on the Human Translational Research Cohort (The INSPIRE-T Cohort). Journal of Frailty & Aging,the, 2021, 10, 1-11.	0.8	17
387	LINKING GEROSCIENCE AND INTEGRATED CARE TO REINFORCE PREVENTION. journal of prevention of Alzheimer's disease, The, 2020, 7, 1-2.	1.5	11
388	Senolytics and Senostatics: A Two-Pronged Approach to Target Cellular Senescence for Delaying Aging and Age-Related Diseases. Molecules and Cells, 2019, 42, 821-827.	1.0	61
389	The emerging role of cell senescence in atherosclerosis. Clinical Chemistry and Laboratory Medicine, 2021, 59, 27-38.	1.4	42
390	Effects of senescence and angiotensin II on expression and processing of amyloid precursor protein in human cerebral microvascular endothelial cells. Aging, 2018, 10, 100-114.	1.4	14
391	Replicative senescent human cells possess altered circadian clocks with a prolonged period and delayed peak-time. Aging, 2019, 11, 950-973.	1.4	17
392	Knockdown of angiopoietin-like 2 induces clearance of vascular endothelial senescent cells by apoptosis, promotes endothelial repair and slows atherogenesis in mice. Aging, 2019, 11, 3832-3850.	1.4	21
393	LncRNA RP11-670E13.6, interacted with hnRNPH, delays cellular senescence by sponging microRNA-663a in UVB damaged dermal fibroblasts. Aging, 2019, 11, 5992-6013.	1.4	17
394	Mesenchymal stem cell senescence alleviates their intrinsic and seno-suppressive paracrine properties contributing to osteoarthritis development. Aging, 2019, 11, 9128-9146.	1.4	58
395	Aging and stress induced β cell senescence and its implication in diabetes development. Aging, 2019, 11, 9947-9959.	1.4	33
396	Targeting senescent cells: approaches, opportunities, challenges. Aging, 2019, 11, 12844-12861.	1.4	67
397	FOXO4-DRI alleviates age-related testosterone secretion insufficiency by targeting senescent Leydig cells in aged mice. Aging, 2020, 12, 1272-1284.	1.4	46

	CITATION	Report	
#	Article	IF	CITATIONS
398	Survey of senescent cell markers with age in human tissues. Aging, 2020, 12, 4052-4066.	1.4	88
399	D-galactose induces senescence of glioblastoma cells through YAP-CDK6 pathway. Aging, 2020, 12, 18501-18521.	1.4	23
400	MDM2-p53 Interaction Inhibitors: The Current State-of-Art and Updated Patent Review (2010-Present). Recent Patents on Anti-Cancer Drug Discovery, 2020, 14, 324-369.	0.8	16
401	Senescent Cell-Secreted Netrin-1 Modulates Aging-Related Disorders by Recruiting Sympathetic Fibers. Frontiers in Aging Neuroscience, 2020, 12, 507140.	1.7	6
402	Cellular Senescence in Neurodegenerative Diseases. Frontiers in Cellular Neuroscience, 2020, 14, 16.	1.8	164
403	The Senescence-Associated Secretory Phenotype (SASP) in the Challenging Future of Cancer Therapy and Age-Related Diseases. Biology, 2020, 9, 485.	1.3	116
404	Targeting senescent cells and tumor therapy (Review). International Journal of Molecular Medicine, 2020, 46, 1603-1610.	1.8	4
405	Hydrogen Sulfide Inhibits Homocysteine-Induced Neuronal Senescence by Up-Regulation of SIRT1. International Journal of Medical Sciences, 2020, 17, 310-319.	1.1	12
406	Clearance of senescent decidual cells by uterine natural killer cells in cycling human endometrium. ELife, 2017, 6, .	2.8	193
407	p16 deficiency attenuates intervertebral disc degeneration by adjusting oxidative stress and nucleus pulposus cell cycle. ELife, 2020, 9, .	2.8	106
408	Senotherapeutic drugs for human intervertebral disc degeneration and low back pain. ELife, 2020, 9, .	2.8	53
409	Gerosuppressive and Senolytic Nutrients. Healthy Ageing and Longevity, 2021, , 465-490.	0.2	0
410	Silica Induced Lung Fibrosis Is Associated With Senescence, Fgr, and Recruitment of Bone Marrow Monocyte/Macrophages. In Vivo, 2021, 35, 3053-3066.	0.6	5
411	Cellular senescence in the tumor microenvironment and contextâ€specific cancer treatment strategies. FEBS Journal, 2023, 290, 1290-1302.	2.2	20
412	Shear stress–induced cellular senescence blunts liver regeneration through Notch–sirtuin 1–P21/P16 axis. Hepatology, 2022, 75, 584-599.	3.6	44
413	Targeted clearance of senescent cells using an antibody-drug conjugate against a specific membrane marker. Scientific Reports, 2021, 11, 20358.	1.6	45
414	Targeted Therapeutics Delivery by Exploiting Biophysical Properties of Senescent Cells. Advanced Functional Materials, 2022, 32, 2107990.	7.8	5
415	Alteration of STIM1/Orai1-Mediated SOCE in Skeletal Muscle: Impact in Genetic Muscle Diseases and Beyond. Cells, 2021, 10, 2722.	1.8	7

#	Article	IF	CITATIONS
416	Senescence and Type 2 Diabetic Cardiomyopathy: How Young Can You Die of Old Age?. Frontiers in Pharmacology, 2021, 12, 716517.	1.6	9
417	Marine n-3 Polyunsaturated Fatty Acids and Cellular Senescence Markers in Incident Kidney Transplant Recipients: The Omega-3 Fatty Acids in Renal Transplantation (ORENTRA) Randomized Clinical Trial. Kidney Medicine, 2021, 3, 1041-1049.	1.0	5
418	Recent advances in the discovery of senolytics. Mechanisms of Ageing and Development, 2021, 200, 111587.	2.2	41
419	MicroRNA-34a: the bad guy in age-related vascular diseases. Cellular and Molecular Life Sciences, 2021, 78, 7355-7378.	2.4	40
420	Emerging Role of Dermal White Adipose Tissue in Modulating Hair Follicle Development During Aging. Frontiers in Cell and Developmental Biology, 2021, 9, 728188.	1.8	4
421	The metabolic roots of senescence: mechanisms and opportunities for intervention. Nature Metabolism, 2021, 3, 1290-1301.	5.1	211
422	Marek's disease virus prolongs survival of primary chicken B-cells by inducing a senescence-like phenotype. PLoS Pathogens, 2021, 17, e1010006.	2.1	6
423	Evidence That SARS-CoV-2 Induces Lung Cell Senescence: Potential Impact on COVID-19 Lung Disease. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, 107-111.	1.4	14
424	Strategies for late phase preclinical and early clinical trials of senolytics. Mechanisms of Ageing and Development, 2021, 200, 111591.	2.2	48
427	Cellular Senescence and Tumor Promotion. , 2018, , 1-15.		0
428	Gene therapy for p16-overexpressing cells. Aging, 2018, 10, 518-519.	1.4	1
431	Understanding the Importance of Proteostasis in Maximizing Healthspan: Challenges and Connections With the Other Pillars of Aging. , 2019, , .		0
432	Role of Altered Extracellular Signalling in Cellular Senescence. , 2019, , .		0
433	Senescence-Associated Beta-Galactosidase Marker of Cellular Senescence. , 2019, , .		0
434	Cellular Signal Transduction. , 2019, , 371-371.		0
435	Lymphohematopoietic Stem Cells and Their Aging. , 2019, , 995-1009.		0
437	Phenotypic Personhood: Epigenetics and the Biolegality of Processing Asylum. , 2020, , 127-147.		1
440	Future challenges. , 2020, , 287-299.		0

#	Article	IF	CITATIONS
442	Effects of LDD-2269 on the Senescence of Glioblastoma Cells. International Journal of Pharmacology, 2020, 16, 562-567.	0.1	0
443	Chronic Systemic Curcumin Administration Antagonizes Murine Sarcopenia and Presarcopenia. International Journal of Molecular Sciences, 2021, 22, 11789.	1.8	9
444	Towards biomarkers for outcomes after pancreatic ductal adenocarcinoma and ischaemic stroke, with focus on (co)-morbidity and ageing/cellular senescence (SASKit): protocol for a prospective cohort study. BMJ Open, 2020, 10, e039560.	0.8	5
445	Therapeutic effects and perspective of stem cell extracellular vesicles in aging and cancer. Journal of Cellular Physiology, 2021, 236, 4783-4796.	2.0	5
446	Senotherapy of Cancer. Healthy Ageing and Longevity, 2020, , 85-99.	0.2	3
447	Senolytic Drug Development. Healthy Ageing and Longevity, 2020, , 3-20.	0.2	2
448	Novel Probes and Carriers to Target Senescent Cells. Healthy Ageing and Longevity, 2020, , 163-180.	0.2	2
449	Molecular Biomarkers of Health. Healthy Ageing and Longevity, 2020, , 243-270.	0.2	3
450	Biological Roles and Clinical Significance of Exosome-Derived Noncoding RNAs in Bladder Cancer. Frontiers in Oncology, 2021, 11, 704703.	1.3	10
451	Minocycline Attenuates Excessive DNA Damage Response and Reduces Ectopic Calcification in Pseudoxanthoma Elasticum. Journal of Investigative Dermatology, 2022, 142, 1629-1638.e6.	0.3	12
452	MDM2 as a Rational Target for Intervention in CDK4/6 Inhibitor Resistant, Hormone Receptor Positive Breast Cancer. Frontiers in Oncology, 2021, 11, 777867.	1.3	4
453	Decreased autophagy and fuel switching occur in a senescent hepatic cell model system. Aging, 2020, 12, 13958-13978.	1.4	14
455	Senescence as a therapeutic target. , 2022, , 425-442.		2
456	Nociceptin/orphanin FQ opioid receptor (NOP) selective ligand MCOPPB links anxiolytic and senolytic effects. GeroScience, 2022, 44, 463-483.	2.1	11
457	Senotherapeutic Drugs: A New Avenue for Skincare?. Plastic and Reconstructive Surgery, 2021, 148, 21S-26S.	0.7	4
458	Roles of Macrophages in Atherogenesis. Frontiers in Pharmacology, 2021, 12, 785220.	1.6	38
459	Nutrition senolytics - illusion or reality for cognitive ageing?. Current Opinion in Clinical Nutrition and Metabolic Care, 2021, Publish Ahead of Print, 7-28.	1.3	2
460	Role of Senescence and Aging in SARS-CoV-2 Infection and COVID-19 Disease. Cells, 2021, 10, 3367.	1.8	42

#	Article	IF	CITATIONS
461	T Cell Fitness and Autologous CAR T Cell Therapy in Haematologic Malignancy. Frontiers in Immunology, 2021, 12, 780442.	2.2	42
462	Immune ageing at single-cell resolution. Nature Reviews Immunology, 2022, 22, 484-498.	10.6	128
463	Endothelial SIRT1 as a Target for the Prevention of Arterial Aging: Promises and Challenges. Journal of Cardiovascular Pharmacology, 2021, 78, S63-S77.	0.8	20
464	Long-term cardiovascular complications following sepsis: is senescence the missing link?. Annals of Intensive Care, 2021, 11, 166.	2.2	20
465	A Benzenesulfonamide GW8510 Rejuvenates Mice and Yeast Through Interaction with P21-Activated Kinases. SSRN Electronic Journal, 0, , .	0.4	0
467	Retrotransposons as a Source of DNA Damage in Neurodegeneration. Frontiers in Aging Neuroscience, 2021, 13, 786897.	1.7	15
468	Senolysis-Based Elimination of Chemotherapy-Induced Senescent Breast Cancer Cells by Quercetin Derivative with Blocked Hydroxy Groups. Cancers, 2022, 14, 605.	1.7	12
469	A new insight into cell biological and biochemical changes through aging. Acta Histochemica, 2022, 124, 151841.	0.9	13
470	Exploring Microenvironment Strategies to Delay Mesenchymal Stem Cell Senescence. Stem Cells and Development, 2022, 31, 38-52.	1.1	6
471	Spatially Confined Intervention of Cellular Senescence by a Lysosomal Metabolism Targeting Molecular Prodrug for Broad‧pectrum Senotherapy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	7
472	Fisetin as a Senotherapeutic Agent: Biopharmaceutical Properties and Crosstalk between Cell Senescence and Neuroprotection. Molecules, 2022, 27, 738.	1.7	25
473	Mechanical overloading promotes chondrocyte senescence and osteoarthritis development through downregulating FBXW7. Annals of the Rheumatic Diseases, 2022, 81, 676-686.	0.5	60
474	Spatially Confined Intervention of Cellular Senescence by a Lysosomal Metabolism Targeting Molecular Prodrug for Broad‧pectrum Senotherapy. Angewandte Chemie, 2022, 134, .	1.6	3
475	Systems approaches to investigate the role of NF-κB signaling in aging. Biochemical Journal, 2022, 479, 161-183.	1.7	23
476	Galectin-3 promotes the adipogenic differentiation of PDGFRα+ cells and ectopic fat formation in regenerating muscle. Development (Cambridge), 2022, 149, .	1.2	5
477	The role of cellular senescence and SASP in tumour microenvironment. FEBS Journal, 2023, 290, 1348-1361.	2.2	35
478	Characterization of radiation-induced micronuclei associated with premature senescence, and their selective removal by senolytic drug, ABT-263. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2022, 876-877, 503448.	0.9	0
479	Restoration of miR-223-3p expression in aged mouse uteri with Samul-tang administration. Integrative Medicine Research, 2022, 11, 100835.	0.7	4

#	Article	IF	CITATIONS
480	Generation of mice for evaluating endogenous p16Ink4a protein expression. Biochemical and Biophysical Research Communications, 2022, 599, 43-50.	1.0	3
481	A systems-approach to NAD+Ârestoration. Biochemical Pharmacology, 2022, 198, 114946.	2.0	16
482	The flavonoid procyanidin C1 has senotherapeutic activity and increases lifespan in mice. Nature Metabolism, 2021, 3, 1706-1726.	5.1	99
483	Emerging rejuvenation strategies—Reducing the biological age. Aging Cell, 2022, 21, e13538.	3.0	21
484	Untangling senescent and damageâ€associated microglia in the aging and diseased brain. FEBS Journal, 2023, 290, 1326-1339.	2.2	20
487	Why Senescent Cells Are Resistant to Apoptosis: An Insight for Senolytic Development. Frontiers in Cell and Developmental Biology, 2022, 10, 822816.	1.8	40
488	Endothelial Senescence: A New Age in Pulmonary Hypertension. Circulation Research, 2022, 130, 928-941.	2.0	20
489	Cellular senescence and acute kidney injury. Pediatric Nephrology, 2022, 37, 3009-3018.	0.9	12
490	Identification of gingerenone A as a novel senolytic compound. PLoS ONE, 2022, 17, e0266135.	1.1	13
491	The Role of MicroRNAs in Endothelial Cell Senescence. Cells, 2022, 11, 1185.	1.8	9
492	Functional implications of aging-related lncRNAs for predicting prognosis and immune status in glioma patients. Aging, 2022, 14, 2348-2366.	1.4	6
493	Exploiting senescence for the treatment of cancer. Nature Reviews Cancer, 2022, 22, 340-355.	12.8	254
494	New Directions in the Development of Pharmacotherapy for Osteoarthrosis Based on Modern Concepts of the Disease Pathogenesis (A Review). Pharmaceutical Chemistry Journal, 2022, 55, 1282-1287.	0.3	0
495	Senotherapeutics in Cancer and HIV. Cells, 2022, 11, 1222.	1.8	7
496	Downregulation of IGFBP5 contributes to replicative senescence via ERK2 activation in mouse embryonic fibroblasts. Aging, 2022, 14, 2966-2988.	1.4	5
497	BAK plays a key role in A-1331852-induced apoptosis in senescent chondrocytes. Biochemical and Biophysical Research Communications, 2022, 609, 93-99.	1.0	4
498	Dihydro-β-agarofuran-type sesquiterpenoids from the seeds of Celastrus virens with lifespan-extending effect on the nematode Caenorhabditis elegans. Fìtoterapìâ, 2022, 158, 105165.	1.1	1
499	Combining adoptive NK cell infusion with a dopamine-releasing peptide reduces senescent cells in aged mice. Cell Death and Disease, 2022, 13, 305.	2.7	9

#	Article	IF	CITATIONS
500	Biochemical and Cellular Characterization of New Radio-Resistant Cell Lines Reveals a Role of Natural Flavonoids to Bypass Senescence. International Journal of Molecular Sciences, 2022, 23, 301.	1.8	7
501	Senolytic vaccination improves normal and pathological age-related phenotypes and increases lifespan in progeroid mice. Nature Aging, 2021, 1, 1117-1126.	5.3	87
502	Pulsed electromagnetic fields attenuate glucocorticoid-induced bone loss by targeting senescent LepR+ bone marrow mesenchymal stromal cells. Materials Science and Engineering C, 2022, 133, 112635.	3.8	8
503	Misexpression of genes lacking CpG islands drives degenerative changes during aging. Science Advances, 2021, 7, eabj9111.	4.7	8
504	Pancreatic Cancer and Cellular Senescence: Tumor Microenvironment under the Spotlight. International Journal of Molecular Sciences, 2022, 23, 254.	1.8	33
505	Senotherapeutic-like effect of Silybum marianum flower extract revealed on human skin cells. PLoS ONE, 2021, 16, e0260545.	1.1	8
508	Metformin suppresses vascular smooth muscle cell senescence by promoting autophagic flux. Journal of Advanced Research, 2022, 41, 205-218.	4.4	13
509	Senescence Alterations in Pulmonary Hypertension. Cells, 2021, 10, 3456.	1.8	11
510	Glycoprotein nonmetastatic melanoma protein B regulates lysosomal integrity and lifespan of senescent cells. Scientific Reports, 2022, 12, 6522.	1.6	24
512	Cellular senescence in cancers: relationship between bone marrow cancer and cellular senescence. Molecular Biology Reports, 2022, 49, 4003-4012.	1.0	2
515	Nutrition Interventions of Herbal Compounds on Cellular Senescence. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-17.	1.9	0
517	Antiaging agents: safe interventions to slow aging and healthy life span extension. Natural Products and Bioprospecting, 2022, 12, 18.	2.0	31
518	Identification and Validation of Aging-Related Genes in Alzheimer's Disease. Frontiers in Neuroscience, 2022, 16, .	1.4	15
519	Role of low-dose radiation in senescence and aging: A beneficial perspective. Life Sciences, 2022, 302, 120644.	2.0	6
520	Hyperbaric oxygen therapy for healthy aging: From mechanisms to therapeutics. Redox Biology, 2022, 53, 102352.	3.9	15
521	The Inflamm-Aging Model Identifies Key Risk Factors in Atherosclerosis. Frontiers in Genetics, 0, 13, .	1.1	3
522	Oridonin Delays Aging Through the AKT Signaling Pathway. Frontiers in Pharmacology, 0, 13, .	1.6	9
524	Beyond Genetics: The Role of Metabolism in Photoreceptor Survival, Development and Repair. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	2

#	Article	IF	CITATIONS
525	Triboelectric Nanogenerators for Cellular Bioelectrical Stimulation. Advanced Functional Materials, 2022, 32, .	7.8	17
526	Drugging the efferocytosis process: concepts and opportunities. Nature Reviews Drug Discovery, 2022, 21, 601-620.	21.5	91
527	Blood–Brain Barrier Dysfunction and Astrocyte Senescence as Reciprocal Drivers of Neuropathology in Aging. International Journal of Molecular Sciences, 2022, 23, 6217.	1.8	19
528	Cross-Tissue Analysis Using Machine Learning to Identify Novel Biomarkers for Knee Osteoarthritis. Computational and Mathematical Methods in Medicine, 2022, 2022, 1-21.	0.7	1
529	Epigenetic Regulation of Inflammatory Signaling and Inflammation-Induced Cancer. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	15
530	Molecular Mechanisms of Changes in Homeostasis of the Dermal Extracellular Matrix: Both Involutional and Mediated by Ultraviolet Radiation. International Journal of Molecular Sciences, 2022, 23, 6655.	1.8	14
531	TGFβ1 Induces Senescence and Attenuated VEGF Production in Retinal Pericytes. Biomedicines, 2022, 10, 1404.	1.4	1
532	Senescent hepatic stellate cells promote liver regeneration through IL-6 and ligands of CXCR2. JCI Insight, 2022, 7, .	2.3	16
533	Aged Lens Epithelial Cells Suppress Proliferation and Epithelial–Mesenchymal Transition-Relevance for Posterior Capsule Opacification. Cells, 2022, 11, 2001.	1.8	7
534	YAP/TAZ activity in stromal cells prevents ageing by controlling cGAS–STING. Nature, 2022, 607, 790-798.	13.7	89
535	Mitoribosomal Deregulation Drives Senescence via TPP1-Mediated Telomere Deprotection. Cells, 2022, 11, 2079.	1.8	1
536	A Tandemly Activated Fluorescence Probe for Detecting Senescent Cells with Improved Selectivity by Targeting a Biomarker Combination. ACS Sensors, 2022, 7, 1958-1966.	4.0	12
537	Potential Methods of Targeting Cellular Aging Hallmarks to Reverse Osteoarthritic Phenotype of Chondrocytes. Biology, 2022, 11, 996.	1.3	3
538	Autophagy at the intersection of aging, senescence, and cancer. Molecular Oncology, 2022, 16, 3259-3275.	2.1	23
540	Senescence diversity in muscle aging. Nature Aging, 2022, 2, 570-572.	5.3	2
541	AT2 Receptor Stimulation Inhibits Vascular Smooth Muscle Cell Senescence Induced by Angiotensin II and Hyperglycemia. American Journal of Hypertension, 2022, 35, 884-891.	1.0	4
542	Nutrient intakes and telomere length of cell-free circulating DNA from amniotic fluid: findings from the Mamma & amp; Bambino cohort. Scientific Reports, 2022, 12, .	1.6	1
543	Miscarriage syndrome: Linking early pregnancy loss to obstetric and age-related disorders. EBioMedicine, 2022, 81, 104134.	2.7	10

		CITATION REPORT		
#	Article		IF	CITATIONS
544	Nanoparticles-based anti-aging treatment of Alzheimer's disease. Drug Delivery, 20	22, 29, 2100-2116.	2.5	6
545	Pretreatment of nucleus pulposus mesenchymal stem cells with appropriate concentra enhances their ability to treat intervertebral disc degeneration. Stem Cell Research and 13, .	tion of H2O2 Therapy, 2022,	2.4	8
546	Senescence in osteoarthritis: from mechanism to potential treatment. Arthritis Researc 2022, 24, .	h and Therapy,	1.6	40
547	Protein Biomarkers in Blood Reflect the Interrelationships Between Stroke Outcome, In Coagulation, Adhesion, Senescence and Cancer. Cellular and Molecular Neurobiology, 2 1413-1424.	flammation, 2023, 43,	1.7	4
548	FAK Executes Anti-Senescence via Regulating EZH2 Signaling in Non-Small Cell Lung Ca Biomedicines, 2022, 10, 1937.	ancer Cells.	1.4	3
551	Nuclear morphology is a deep learning biomarker of cellular senescence. Nature Aging, 742-755.	2022, 2,	5.3	41
552	New Trends in Aging Drug Discovery. Biomedicines, 2022, 10, 2006.		1.4	3
553	Senescence of alveolar epithelial cells impacts initiation and chronic phases of murine f interstitial lung disease. Frontiers in Immunology, 0, 13, .	ibrosing	2.2	13
554	Senescent cells: A therapeutic target for osteoporosis. Cell Proliferation, 2022, 55, .		2.4	8
556	BID- and BAX-mediated mitochondrial pathway dominates A-1331852-induced apopto A549Âcells. Biochemical and Biophysical Research Communications, 2022, 627, 160-1	sis in senescent 67.	1.0	1
557	Dicer1 deficient mice exhibit premature aging and metabolic perturbations in adipocyte 25, 105149.	es. IScience, 2022,	1.9	1
558	A senolysis-based theragnostic prodrug strategy towards chronic renal failure. Chemica 2022, 13, 11738-11745.	l Science,	3.7	13
559	Selenoproteins and the senescence-associated epitranscriptome. Experimental Biology 2022, 247, 2090-2102.	and Medicine,	1.1	5
560	Senescence plays a role in myotonic dystrophy type 1. JCI Insight, 2022, 7, .		2.3	7
561	The landscape of aging. Science China Life Sciences, 2022, 65, 2354-2454.		2.3	110
562	Upregulation of PD-L1 in Senescence and Aging. Molecular and Cellular Biology, 2022,	42, .	1.1	24
563	Cellular senescence and cardiovascular diseases: moving to the "heart―of the pro Reviews, 2023, 103, 609-647.	blem. Physiological	13.1	26
564	Recent Advances in Strategies for Imaging Detection and Intervention of Cellular Sene: ChemBioChem, 2023, 24, .	scence.	1.3	8

#	Article	IF	CITATIONS
565	Identification of cellular heterogeneity and immunogenicity of chondrocytes via single-cell RNA sequencing technique in human osteoarthritis. Frontiers in Pharmacology, 0, 13, .	1.6	7
566	Potential Role of Polyphenolic Flavonoids as Senotherapeutic Agents in Degenerative Diseases and Geroprotection. Pharmaceutical Medicine, 2022, 36, 331-352.	1.0	9
567	The Immune System as a Therapeutic Target for Alzheimer's Disease. Life, 2022, 12, 1440.	1.1	6
568	Single-cell RNA-sequencing analysis reveals the molecular mechanism of subchondral bone cell heterogeneity in the development of osteoarthritis. RMD Open, 2022, 8, e002314.	1.8	7
569	Senescence of Tumor Cells in Anticancer Therapy—Beneficial and Detrimental Effects. International Journal of Molecular Sciences, 2022, 23, 11082.	1.8	8
570	RagC GTPase regulates mTOR to promote chemoresistance in senescence-like HepG2 cells. Frontiers in Physiology, 0, 13, .	1.3	1
571	Repair Strategies and Bioactive Functional Materials for Intervertebral Disc. Advanced Functional Materials, 2022, 32, .	7.8	11
573	Emerging injectable therapies for osteoarthritis. Expert Opinion on Emerging Drugs, 2022, 27, 311-320.	1.0	1
574	Cellular Senescence in Aging, Tissue Repair, and Regeneration. Plastic and Reconstructive Surgery, 2022, 150, 4S-11S.	0.7	11
575	Snapshot imprinting as a tool for surface mapping and identification of novel biomarkers of senescent cells. Nanoscale Advances, 2022, 4, 5304-5311.	2.2	1
576	Oridonin acts as a novel senolytic by targeting glutathione <i>S</i> -transferases to activate the ROS-p38 signaling axis in senescent cells. Chemical Communications, 2022, 58, 13250-13253.	2.2	4
577	A single short reprogramming early in life initiates and propagates an epigenetically related mechanism improving fitness and promoting an increased healthy lifespan. Aging Cell, 2022, 21, .	3.0	29
578	Senotherapeutics and Their Molecular Mechanism for Improving Aging. Biomolecules and Therapeutics, 2022, 30, 490-500.	1.1	8
579	Cellular Senescence in Immunity against Infections. International Journal of Molecular Sciences, 2022, 23, 11845.	1.8	11
580	Downregulation of P300/CBP-Associated Factor Protects from Vascular Aging via Nrf2 Signal Pathway Activation. International Journal of Molecular Sciences, 2022, 23, 12574.	1.8	4
581	Blockade of Nuclear <i>β</i> â€Catenin Signaling via Direct Targeting of RanBP3 with NU2058 Induces Cell Senescence to Suppress Colorectal Tumorigenesis. Advanced Science, 2022, 9, .	5.6	7
582	Therapeutic Antiaging Strategies. Biomedicines, 2022, 10, 2515.	1.4	11
583	Association between atherogenic risk-modulating proteins and endothelium-dependent flow-mediated dilation in coronary artery disease patients. European Journal of Applied Physiology, 2023, 123, 367-380.	1.2	2

	CITATION RE	CITATION REPORT	
#	Article	IF	CITATIONS
584	Blocking PD-L1–PD-1 improves senescence surveillance and ageing phenotypes. Nature, 2022, 611, 358-364.	13.7	102
585	Neurons and glial cells acquire a senescent signature after repeated mild traumatic brain injury in a sex-dependent manner. Frontiers in Neuroscience, 0, 16, .	1.4	16
586	Alveolar type 2 epithelial cell senescence and radiation-induced pulmonary fibrosis. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	5
587	Interaction of aging and Immunosenescence: New therapeutic targets of aging. International Immunopharmacology, 2022, 113, 109397.	1.7	1
588	Kaempferol tetrasaccharides restore skin atrophy via PDK1 inhibition in human skin cells and tissues: Bench and clinical studies. Biomedicine and Pharmacotherapy, 2022, 156, 113864.	2.5	4
589	Aging principles and interventional perspectives. , 2023, , 1-21.		0
590	Lipoxin and glycation in SREBP signaling: Insight into diabetic cardiomyopathy and associated lipotoxicity. Prostaglandins and Other Lipid Mediators, 2023, 164, 106698.	1.0	1
591	A focused natural compound screen reveals senolytic and senostatic effects of <i>Isatis tinctoria</i> . Animal Cells and Systems, 2022, 26, 310-317.	0.8	3
592	Targeting Multiple Homeostasis-Maintaining Systems by Ionophore Nigericin Is a Novel Approach for Senolysis. International Journal of Molecular Sciences, 2022, 23, 14251.	1.8	3
593	circHIPK3 prevents cardiac senescence by acting as a scaffold to recruit ubiquitin ligase to degrade HuR. Theranostics, 2022, 12, 7550-7566.	4.6	17
594	Paxlovid accelerates cartilage degeneration and senescence through activating endoplasmic reticulum stress and interfering redox homeostasis. Journal of Translational Medicine, 2022, 20, .	1.8	5
596	Noninvasive and Efficient Peptide Delivery by a Novel Biocompatible Ionic Liquid. ACS Sustainable Chemistry and Engineering, 2022, 10, 16611-16623.	3.2	4
597	PET/MR imaging of inflammation in atherosclerosis. Nature Biomedical Engineering, 2023, 7, 202-220.	11.6	10
598	Research progress and prospect of aging mechanism and anti-aging. , 2022, , .		0
599	Sirt6 attenuates chondrocyte senescence and osteoarthritis progression. Nature Communications, 2022, 13, .	5.8	34
600	Senescent cells suppress macrophage-mediated corpse removal via upregulation of the CD47-QPCT/L axis. Journal of Cell Biology, 2023, 222, .	2.3	16
601	Age-related changes in CD4+ T and NK cell compartments may contribute to the occurrence of pregnancy loss in advanced maternal age. Journal of Reproductive Immunology, 2023, 155, 103790.	0.8	2
602	NIH SenNet Consortium to map senescent cells throughout the human lifespan to understand physiological health. Nature Aging, 2022, 2, 1090-1100.	5.3	27

#	Article	IF	CITATIONS
603	Establishment of a cell senescence related prognostic model for predicting prognosis in glioblastoma. Frontiers in Pharmacology, 0, 13, .	1.6	2
604	Autophagy inhibition signals through senescence to promote tumor suppression. Autophagy, 2023, 19, 1764-1780.	4.3	2
605	Engineering Hierarchical Recognitionâ€Mediated Senolytics for Reliable Regulation of Cellular Senescence and Antiâ€Atherosclerosis Therapy. Angewandte Chemie - International Edition, 2023, 62, .	7.2	5
606	Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	150
608	Eliminating Senescent Cells Can Promote Pulmonary Hypertension Development and Progression. Circulation, 2023, 147, 650-666.	1.6	28
609	Investigation of MicroRNA Biomarkers in Equine Distal Interphalangeal Joint Osteoarthritis. International Journal of Molecular Sciences, 2022, 23, 15526.	1.8	3
610	Engineering Hierarchical Recognitionâ€Mediated Senolytics for Reliable Regulation of Cellular Senescence and Antiâ€Atherosclerosis Therapy. Angewandte Chemie, 0, , .	1.6	0
611	Rapid emergence of transcriptional heterogeneity upon molecular stress predisposes cells to two distinct states of senescence. GeroScience, 2023, 45, 1115-1130.	2.1	2
612	Insulin-like growth factor-binding protein-7 (IGFBP7) links senescence to heart failure. , 2022, 1, 1195-1214.		6
613	The Double-Edged Role of Extracellular Vesicles in the Hallmarks of Aging. Biomolecules, 2023, 13, 165.	1.8	4
614	Extracellular Vesicles and Cellular Ageing. Sub-Cellular Biochemistry, 2023, , 271-311.	1.0	1
615	Dormant cancer cells: programmed quiescence, senescence, or both?. Cancer and Metastasis Reviews, 2023, 42, 37-47.	2.7	8
616	RBM4 regulates cellular senescence via miR1244/SERPINE1 axis. Cell Death and Disease, 2023, 14, .	2.7	3
617	Airway Smooth Muscle Regulated by Oxidative Stress in COPD. Antioxidants, 2023, 12, 142.	2.2	10
619	Radiation-induced senescence: therapeutic opportunities. Radiation Oncology, 2023, 18, .	1.2	14
620	Senescent cells perturb intestinal stem cell differentiation through Ptk7 induced noncanonical Wnt and YAP signaling. Nature Communications, 2023, 14, .	5.8	7
621	Protein phosphatase <scp>2A</scp> activators reverse ageâ€related behavioral changes by targeting neural cell senescence. Aging Cell, 2023, 22, .	3.0	4
622	NOMA-DB: a framework for management and analysis of ageing-related gene-expression data. , 2022, , .		1

#	Article	IF	CITATIONS
623	Yishen Xiezhuo formula ameliorates the development of cisplatin-induced acute kidney injury by attenuating renal tubular epithelial cell senescence. Annals of Translational Medicine, 2022, 10, 1392-1392.	0.7	1
624	RNaseH2A downregulation drives inflammatory gene expression via genomic DNA fragmentation in senescent and cancer cells. Communications Biology, 2022, 5, .	2.0	7
625	Gold Nanoparticles Encapsulated Resveratrol as an Anti-Aging Agent to Delay Cataract Development. Pharmaceuticals, 2023, 16, 26.	1.7	5
626	Aging is a Side Effect of the Ontogenesis Program of Multicellular Organisms. Biochemistry (Moscow), 2022, 87, 1498-1503.	0.7	0
627	ML216 Prevents DNA Damage-Induced Senescence by Modulating DBC1–BLM Interaction. Cells, 2023, 12, 145.	1.8	2
628	Cellular uptake and retention studies of silica nanoparticles utilizing senescent fibroblasts. Scientific Reports, 2023, 13, .	1.6	1
629	Identification of Novel Senescent Markers in Small Extracellular Vesicles. International Journal of Molecular Sciences, 2023, 24, 2421.	1.8	7
630	New Insights into the Genetics and Epigenetics of Aging Plasticity. Genes, 2023, 14, 329.	1.0	2
631	Omics approaches in aging research. , 2023, , 41-70.		0
632	Melanocortin therapies to resolve fibroblast-mediated diseases. Frontiers in Immunology, 0, 13, .	2.2	1
633	Repurpose dasatinib and quercetin: Targeting senescent cells ameliorates postmenopausal osteoporosis and rejuvenates bone regeneration. Bioactive Materials, 2023, 25, 13-28.	8.6	4
634	Vitamin D as a Shield against Aging. International Journal of Molecular Sciences, 2023, 24, 4546.	1.8	16
635	Oxylipin-PPARÎ ³ -initiated adipocyte senescence propagates secondary senescence in the bone marrow. Cell Metabolism, 2023, 35, 667-684.e6.	7.2	17
637	Ultra-small polydopamine nanomedicine-enabled antioxidation against senescence. Materials Today Bio, 2023, 19, 100544.	2.6	2
638	Selective ablation of primary and paracrine senescent cells by targeting iron dyshomeostasis. Cell Reports, 2023, 42, 112058.	2.9	8
639	Senescent cancer cell vaccines induce cytotoxic T cell responses targeting primary tumors and disseminated tumor cells. , 2023, 11, e005862.		3
640	P21 Overexpression Promotes Cell Death and Induces Senescence in Human Glioblastoma. Cancers, 2023, 15, 1279.	1.7	5
641	Adipose tissue aging is regulated by an altered immune system. Frontiers in Immunology, 0, 14, .	2.2	8

#	Article	IF	CITATIONS
642	E2F1 inhibits cellular senescence and promotes oxaliplatin resistance in colorectal cancer. Annals of Translational Medicine, 2023, 11, 185-185.	0.7	0
643	An evaluation of the role of miR-361-5p in senescence and systemic ageing. Experimental Gerontology, 2023, 174, 112127.	1.2	3
644	Selective photodynamic eradication of senescent cells with a β-galactosidase-activated photosensitiser. Chemical Communications, 2023, 59, 3471-3474.	2.2	5
645	Single-cell RNA sequencing in orthopedic research. Bone Research, 2023, 11, .	5.4	6
646	Localization of senescent cells under cavity preparations in rats and restoration of reparative dentin formation by senolytics. Dental Materials Journal, 2023, , .	0.8	0
647	Cellular senescence and developmental defects. FEBS Journal, 2023, 290, 1303-1313.	2.2	5
648	Cholesterol drives inflammatory senescence. Nature Metabolism, 2023, 5, 355-356.	5.1	3
649	Lysosomal control of senescence and inflammation through cholesterol partitioning. Nature Metabolism, 2023, 5, 398-413.	5.1	14
650	Tumor senescence leads to poor survival and therapeutic resistance in human breast cancer. Frontiers in Oncology, 0, 13, .	1.3	1
651	cCAS-STING pathway as a potential trigger of immunosenescence and inflammaging. Frontiers in Immunology, 0, 14, .	2.2	13
652	A near-infrared fluorescent probe for fast and precise imaging of senescent cells and ovarian cancer cells via tracking β-galactosidase. Chinese Chemical Letters, 2023, 34, 108321.	4.8	5
653	Targeting cellular senescence as a therapeutic approach in non-alcoholic steatohepatitis. Annals of Hepatology, 2023, 28, 100900.	0.6	0
654	Emerging Therapeutic Approaches to Target the Dark Side of Senescent Cells: New Hopes to Treat Aging as a Disease and to Delay Age-Related Pathologies. Cells, 2023, 12, 915.	1.8	6
655	Senescent Stromal Cells in the Tumor Microenvironment: Victims or Accomplices?. Cancers, 2023, 15, 1927.	1.7	2
656	Kidney fibrosis: from mechanisms to therapeutic medicines. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	54
657	The impact of cellular senescence and senescence‑associated secretory phenotype in cancer‑associated fibroblasts on the malignancy of pancreatic cancer. Oncology Reports, 2023, 49, .	1.2	3
658	p21 facilitates chronic lung inflammation via epithelial and endothelial cells. Aging, 2023, 15, 2395-2417.	1.4	0
659	Cycloastragenol: A Novel Senolytic Agent That Induces Senescent Cell Apoptosis and Restores Physical Function in TBI-Aged Mice. International Journal of Molecular Sciences, 2023, 24, 6554.	1.8	4

	Сітатіо	TATION REPORT		
#	ARTICLE	IF	Citations	
660	Epitranscriptomics: new players in an old game. Biochemical Society Transactions, 2023, 51, 783-796.	1.6	1	
661	Dasatinib Attenuates Fibrosis in Keloids by Decreasing Senescent Cell Burden. Acta Dermato-Venereologica, 0, 103, adv4475.	0.6	0	
662	Advances in biomarkers and diagnostic significance of organ aging. Fundamental Research, 2023, , .	1.6	0	
663	Indication of Activated Senescence Pathways in the Temporal Arteries of Patients With Giant Cell Arteritis. Arthritis and Rheumatology, 2023, 75, 1812-1818.	2.9	3	
664	Cancer History Avoids the Increase of Senescence Markers in Peripheral Cells of Amnestic Mild Cognitive Impaired Patients. International Journal of Molecular Sciences, 2023, 24, 7364.	1.8	0	
665	Sirtuins in osteoarthritis: current understanding. Frontiers in Immunology, 0, 14, .	2.2	0	
666	Targeting the microbiota-mitochondria crosstalk in neurodegeneration with senotherapeutics. Advances in Protein Chemistry and Structural Biology, 2023, , 339-383.	1.0	5	
671	Heart Disease and Ageing: The Roles of Senescence, Mitochondria, and Telomerase in Cardiovascular Disease. Sub-Cellular Biochemistry, 2023, , 45-78.	1.0	6	
672	Chronic Inflammation as an Underlying Mechanism of Ageing and Ageing-Related Diseases. Sub-Cellular Biochemistry, 2023, , 31-44.	1.0	2	
677	High-throughput assessment of cellular senescence. Methods in Cell Biology, 2024, , 151-160.	0.5	0	
680	Senolytic and senomorphic interventions to defy senescence-associated mitochondrial dysfunction. Advances in Protein Chemistry and Structural Biology, 2023, , .	1.0	0	
703	Inflammation and gut dysbiosis as drivers of CKD–MBD. Nature Reviews Nephrology, 2023, 19, 646-657.	4.1	3	
721	Cellular senescence and frailty: a comprehensive insight into the causal links. GeroScience, 0, , .	2.1	1	
735	Microgravity Effects and Aging Physiology: Similar Changes or Common Mechanisms?. Biochemistry (Moscow), 2023, 88, 1763-1777.	0.7	0	
760	A review of the pathophysiological mechanisms of doxorubicin-induced cardiotoxicity and aging. , 2024, 10, .		0	
764	Annotating omics Data with sex and age of samples: Enabling powerful omics studies. , 2023, , .		0	
768	Circular RNAs: Regulators of endothelial cell dysfunction in atherosclerosis. Journal of Molecular Medicine, 2024, 102, 313-335.	1.7	0	