A solvent- and vacuum-free route to large-area perovsk modules

Nature 550, 92-95 DOI: 10.1038/nature23877

Citation Report

#	Article	IF	CITATIONS
1	A chemical approach to perovskite solar cells: control of electron-transporting mesoporous TiO ₂ and utilization of nanocarbon materials. Dalton Transactions, 2017, 46, 15615-15627.	1.6	20
2	Perovskite solar modules hit new efficiency record. Science Bulletin, 2017, 62, 1293-1294.	4.3	0
3	Perovskite Photovoltaics: The Path to a Printable Terawatt-Scale Technology. ACS Energy Letters, 2017, 2, 2540-2544.	8.8	64
4	Locking of Methylammonium by Pressure-Enhanced H-Bonding in (CH ₃ NH ₃)PbBr ₃ Hybrid Perovskite. Journal of Physical Chemistry C, 2017, 121, 28125-28131.	1.5	35
5	First-Principles Study of Electron Injection and Defects at the TiO ₂ /CH ₃ NH ₃ PbI ₃ Interface of Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2017, 8, 5840-5847.	2.1	31
6	Microstructure variations induced by excess PbX ₂ or AX within perovskite thin films. Chemical Communications, 2017, 53, 12966-12969.	2.2	9
7	Sequential Processing: Spontaneous Improvements in Film Quality and Interfacial Engineering for Efficient Perovskite Solar Cells. Solar Rrl, 2018, 2, 1800027.	3.1	33
8	Interfacial benzenethiol modification facilitates charge transfer and improves stability of cm-sized metal halide perovskite solar cells with up to 20% efficiency. Energy and Environmental Science, 2018, 11, 1880-1889.	15.6	148
9	Quasiâ€2D Inorganic CsPbBr ₃ Perovskite for Efficient and Stable Lightâ€Emitting Diodes. Advanced Functional Materials, 2018, 28, 1801193.	7.8	108
10	Totally room-temperature solution-processing method for fabricating flexible perovskite solar cells using an Nb ₂ O ₅ –TiO ₂ electron transport layer. RSC Advances, 2018, 8, 12823-12831.	1.7	25
11	Interface Engineering Based on Liquid Metal for Compact-Layer-free, Fully Printable Mesoscopic Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 15616-15623.	4.0	31
12	Low-Temperature Presynthesized Crystalline Tin Oxide for Efficient Flexible Perovskite Solar Cells and Modules. ACS Applied Materials & Interfaces, 2018, 10, 14922-14929.	4.0	81
13	Oxygen- and Water-Induced Energetics Degradation in Organometal Halide Perovskites. ACS Applied Materials & Interfaces, 2018, 10, 16225-16230.	4.0	66
14	Historical Analysis of Champion Photovoltaic Module Efficiencies. IEEE Journal of Photovoltaics, 2018, 8, 363-372.	1.5	37
15	Passivation in perovskite solar cells: A review. Materials Today Energy, 2018, 7, 267-286.	2.5	170
16	Ligandâ€Free, Highly Dispersed NiO _x Nanocrystal for Efficient, Stable, Lowâ€Temperature Processable Perovskite Solar Cells. Solar Rrl, 2018, 2, 1800004.	3.1	58
17	Bifunctional Hydroxylamine Hydrochloride Incorporated Perovskite Films for Efficient and Stable Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 900-909.	2.5	81
18	Research progress on organic–inorganic halide perovskite materials and solar cells. Journal Physics D: Applied Physics, 2018, 51, 093001.	1.3	56

	CITATION	Report	
#	Article	IF	CITATIONS
19	One‣tep Inkjet Printed Perovskite in Air for Efficient Light Harvesting. Solar Rrl, 2018, 2, 1700217.	3.1	90
20	Lowâ€Temperature Processed, Efficient, and Highly Reproducible Cesiumâ€Doped Triple Cation Perovskite Planar Heterojunction Solar Cells. Solar Rrl, 2018, 2, 1700209.	3.1	113
21	Fabrication of Perovskite Films with Large Columnar Grains via Solvent-Mediated Ostwald Ripening for Efficient Inverted Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 868-875.	2.5	58
22	Improvement of red light harvesting ability and open circuit voltage of Cu:NiOx based p-i-n planar perovskite solar cells boosted by cysteine enhanced interface contact. Nano Energy, 2018, 45, 471-479.	8.2	64
23	<i>N</i> â€Annulated Peryleneâ€Based Hole Transporters for Perovskite Solar Cells: The Significant Influence of Lateral Substituents. ChemSusChem, 2018, 11, 672-680.	3.6	17
24	A Facile Low Temperature Fabrication of High Performance CsPbl ₂ Br Allâ€Inorganic Perovskite Solar Cells. Solar Rrl, 2018, 2, 1700180.	3.1	139
25	Metal halide perovskite: a game-changer for photovoltaics and solar devices via a tandem design. Science and Technology of Advanced Materials, 2018, 19, 53-75.	2.8	28
26	An efficient, flexible perovskite solar module exceeding 8% prepared with an ultrafast PbI2 deposition rate. Scientific Reports, 2018, 8, 442.	1.6	35
27	Highly Efficient Perovskite Solar Modules by Scalable Fabrication and Interconnection Optimization. ACS Energy Letters, 2018, 3, 322-328.	8.8	143
28	An integrated organic–inorganic hole transport layer for efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 2157-2165.	5.2	79
29	Low-Temperature Soft-Cover-Assisted Hydrolysis Deposition of Large-Scale TiO2 Layer for Efficient Perovskite Solar Modules. Nano-Micro Letters, 2018, 10, 49.	14.4	14
30	Greener, Nonhalogenated Solvent Systems for Highly Efficient Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1800177.	10.2	106
31	Substituting Cs for MA on the surface of MAPbI3 perovskite: A first-principles study. Computational Materials Science, 2018, 150, 411-417.	1.4	18
32	Semitransparent CH ₃ NH ₃ PbI ₃ Films Achieved by Solvent Engineering for Annealing―and Electron Transport Layerâ€Free Planar Perovskite Solar Cells. Solar Rrl, 2018, 2, 1700222.	3.1	22
33	Metal Oxide CrO _x as a Promising Bilayer Electron Transport Material for Enhancing the Performance Stability of Planar Perovskite Solar Cells. Solar Rrl, 2018, 2, 1700245.	3.1	16
34	N-Type Doping of Fullerenes for Planar Perovskite Solar Cells. ACS Energy Letters, 2018, 3, 875-882.	8.8	66
35	Scalable fabrication of perovskite solar cells. Nature Reviews Materials, 2018, 3, .	23.3	764
36	Electronic properties of tin iodide hybrid perovskites: effect of indium doping. Materials Chemistry Frontiers, 2018, 2, 1291-1295.	3.2	13

#	Article	IF	CITATIONS
37	Understanding the Doping Effect on NiO: Toward Highâ€Performance Inverted Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1703519.	10.2	286
38	Large-area perovskite solar cells – a review of recent progress and issues. RSC Advances, 2018, 8, 10489-10508.	1.7	171
39	Perovskite Solar Cells: From the Laboratory to the Assembly Line. Chemistry - A European Journal, 2018, 24, 3083-3100.	1.7	118
40	Recent progress in organohalide lead perovskites for photovoltaic and optoelectronic applications. Coordination Chemistry Reviews, 2018, 373, 258-294.	9.5	67
41	One plus one greater than two: high-performance inverted planar perovskite solar cells based on a composite Cul/CuSCN hole-transporting layer. Journal of Materials Chemistry A, 2018, 6, 21435-21444.	5.2	64
42	Highly efficient planar perovskite solar cells achieved by simultaneous defect engineering and formation kinetic control. Journal of Materials Chemistry A, 2018, 6, 23865-23874.	5.2	37
43	Effects of temperature and coating speed on the morphology of solution-sheared halide perovskite thin-films. Journal of Materials Chemistry A, 2018, 6, 24911-24919.	5.2	40
44	Interface engineering in solid state Li metal batteries by quasi-2D hybrid perovskites. Journal of Materials Chemistry A, 2018, 6, 20896-20903.	5.2	32
45	Excitons and Biexciton Dynamics in Single CsPbBr ₃ Perovskite Quantum Dots. Journal of Physical Chemistry Letters, 2018, 9, 6934-6940.	2.1	73
46	Perovskite Photovoltaic Modules: Life Cycle Assessment of Pre-industrial Production Process. IScience, 2018, 9, 542-551.	1.9	51
47	Supersmooth Ta ₂ O ₅ /Ag/Polyetherimide Film as the Rear Transparent Electrode for High Performance Semitransparent Perovskite Solar Cells. Advanced Optical Materials, 2019, 7, 1801409.	3.6	13
48	The Role of Charge Selective Contacts in Perovskite Solar Cell Stability. Advanced Energy Materials, 2019, 9, 1803140.	10.2	120
49	Materials toward the Upscaling of Perovskite Solar Cells: Progress, Challenges, and Strategies. Advanced Functional Materials, 2018, 28, 1803753.	7.8	145
50	Scaling of next generation solution processed organic and perovskite solar cells. Nature Communications, 2018, 9, 5261.	5.8	56
51	Ambient Air Condition for Roomâ€īemperature Deposition of MAPbI ₃ Films in Highly Efficient Solar Cells. Small, 2018, 14, e1802240.	5.2	25
52	Improving the stability of methylammonium lead iodide perovskite solar cells by cesium doping. Thin Solid Films, 2018, 667, 40-47.	0.8	24
53	Ag@SiO2 Core-shell Nanoparticles Embedded in a TiO2 Mesoporous Layer Substantially Improve the Performance of Perovskite Solar Cells. Nanomaterials, 2018, 8, 701.	1.9	35
54	Excitonic gain and laser emission from mixed-cation halide perovskite thin films. Optica, 2018, 5, 1141.	4.8	23

#	Article	IF	CITATIONS
55	Gas-solid reaction based over one-micrometer thick stable perovskite films for efficient solar cells and modules. Nature Communications, 2018, 9, 3880.	5.8	109
56	Antisolvent with an Ultrawide Processing Window for the Oneâ€6tep Fabrication of Efficient and Largeâ€Area Perovskite Solar Cells. Advanced Materials, 2018, 30, e1802763.	11.1	130
57	Perovskites – Some Snapshots of Recent Developments. Science Progress, 2018, 101, 384-396.	1.0	1
58	Suppressed Decomposition of Perovskite Film on ZnO Via a Selfâ€Assembly Monolayer of Methoxysilane. Solar Rrl, 2018, 2, 1800240.	3.1	18
59	Antisolvent-Derived Intermediate Phases for Low-Temperature Flexible Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 6477-6486.	2.5	23
60	Dual Functions of Crystallization Control and Defect Passivation Enabled by Sulfonic Zwitterions for Stable and Efficient Perovskite Solar Cells. Advanced Materials, 2018, 30, e1803428.	11.1	296
61	A Novel Strategy for Scalable Highâ€Efficiency Planar Perovskite Solar Cells with New Precursors and Cation Displacement Approach. Advanced Materials, 2018, 30, e1804454.	11.1	25
62	In Situ Measurement of Electric-Field Screening in Hysteresis-Free PTAA/FA _{0.83} Cs _{0.17} Pb(I _{0.83} Br _{0.17}) ₃ /C60 Perovskite Solar Cells Gives an Ion Mobility of â ¹ /43 × 10 ^{–7} cm ² /(V s), 2 Orders of Magnitude Faster than Reported for Metal-Oxide-Contacted Perovskite Cells with Hysteresis. Journal	6.6	47
63	of the American Chemical Society, 2018, 140, 12775-12784. In-situ cross-linking strategy for efficient and operationally stable methylammoniun lead iodide solar cells. Nature Communications, 2018, 9, 3806.	5.8	227
64	Challenges for commercializing perovskite solar cells. Science, 2018, 361, .	6.0	1,327
		0.0	
65	Possible interfacial ion/charge accumulation in thin-film perovskite/fullerene surfactant planar heterojunction solar cells. Journal Physics D: Applied Physics, 2018, 51, 504001.	1.3	3
65 66	Possible interfacial ion/charge accumulation in thin-film perovskite/fullerene surfactant planar		3
	Possible interfacial ion/charge accumulation in thin-film perovskite/fullerene surfactant planar heterojunction solar cells. Journal Physics D: Applied Physics, 2018, 51, 504001.	1.3	
66	Possible interfacial ion/charge accumulation in thin-film perovskite/fullerene surfactant planar heterojunction solar cells. Journal Physics D: Applied Physics, 2018, 51, 504001. Progress toward Stable Lead Halide Perovskite Solar Cells. Joule, 2018, 2, 1961-1990. A facile route to grain morphology controllable perovskite thin films towards highly efficient	1.3	181
66 67	Possible interfacial ion/charge accumulation in thin-film perovskite/fullerene surfactant planar heterojunction solar cells. Journal Physics D: Applied Physics, 2018, 51, 504001. Progress toward Stable Lead Halide Perovskite Solar Cells. Joule, 2018, 2, 1961-1990. A facile route to grain morphology controllable perovskite thin films towards highly efficient perovskite solar cells. Nano Energy, 2018, 53, 405-414. From 2D to 3D: a facile and effective procedure for fabrication of planar CH ₃ NH ₃ Pbl ₃ perovskite solar cells. Journal of Materials	1.3 11.7 8.2	181 60
66 67 68	Possible interfacial ion/charge accumulation in thin-film perovskite/fullerene surfactant planar heterojunction solar cells. Journal Physics D: Applied Physics, 2018, 51, 504001. Progress toward Stable Lead Halide Perovskite Solar Cells. Joule, 2018, 2, 1961-1990. A facile route to grain morphology controllable perovskite thin films towards highly efficient perovskite solar cells. Nano Energy, 2018, 53, 405-414. From 2D to 3D: a facile and effective procedure for fabrication of planar CH ₃ NH ₃ Pbl ₃ perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 17867-17873. Rapid route to efficient, scalable, and robust perovskite photovoltaics in air. Energy and	1.3 11.7 8.2 5.2	181 60 20
66676869	Possible interfacial ion/charge accumulation in thin-film perovskite/fullerene surfactant planar heterojunction solar cells. Journal Physics D: Applied Physics, 2018, 51, 504001. Progress toward Stable Lead Halide Perovskite Solar Cells. Joule, 2018, 2, 1961-1990. A facile route to grain morphology controllable perovskite thin films towards highly efficient perovskite solar cells. Nano Energy, 2018, 53, 405-414. From 2D to 3D: a facile and effective procedure for fabrication of planar CH ₃ NH ₃ Pbl ₃ perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 17867-17873. Rapid route to efficient, scalable, and robust perovskite photovoltaics in air. Energy and Environmental Science, 2018, 11, 2102-2113. 17.46% efficient and highly stable carbon-based planar perovskite solar cells employing Ni-doped rutile	1.3 11.7 8.2 5.2 15.6	 181 60 20 43

#	Article	IF	CITATIONS
73	Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nature Energy, 2018, 3, 560-566.	19.8	585
74	Performance improvement of perovskite solar cells through enhanced hole extraction: The role of iodide concentration gradient. Solar Energy Materials and Solar Cells, 2018, 185, 117-123.	3.0	176
75	A NH4F interface passivation strategy to produce air-processed high-performance planar perovskite solar cells. Electrochimica Acta, 2018, 282, 653-661.	2.6	26
76	High performance perovskite light-emitting diodes realized by isopropyl alcohol as green anti-solvent. Journal of Luminescence, 2018, 204, 110-115.	1.5	14
77	Bifunctional Molecular Modification Improving Efficiency and Stability of Inverted Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1800645.	1.9	43
78	Microstructure Engineering of Metal-Halide Perovskite Films for Efficient Solar Cells. , 2018, , .		0
79	Two-dimensional organic-inorganic hybrid perovskite: from material properties to device applications. Science China Materials, 2018, 61, 1257-1277.	3.5	84
80	Introducing lead acetate into stoichiometric perovskite lewis acid-base precursor for improved solar cell photovoltaic performance. Journal of Alloys and Compounds, 2018, 767, 829-837.	2.8	8
81	Control of the Morphology and Crystallinity of a PbI ₂ Layer for Large-Area Perovskite Films Prepared by Close Space Sublimation. ACS Applied Energy Materials, 2018, 1, 3843-3849.	2.5	13
82	Inverted (p–i–n) perovskite solar cells using a low temperature processed TiO _x interlayer. RSC Advances, 2018, 8, 24836-24846.	1.7	17
83	Perovskite Solar Cells: Toward Industrial-Scale Methods. Journal of Physical Chemistry Letters, 2018, 9, 4326-4335.	2.1	66
84	Recent Advance in Solutionâ€Processed Organic Interlayers for Highâ€Performance Planar Perovskite Solar Cells. Advanced Science, 2018, 5, 1800159.	5.6	84
85	Toward Industrial-Scale Production of Perovskite Solar Cells: Screen Printing, Slot-Die Coating, and Emerging Techniques. Journal of Physical Chemistry Letters, 2018, 9, 2707-2713.	2.1	124
86	Application of Compact TiO ₂ Layer Fabricated by Pulsed Laser Deposition in Organometal Trihalide Perovskite Solar Cells. Solar Rrl, 2018, 2, 1800097.	3.1	20
87	2H-NbS2 film as a novel counter electrode for meso-structured perovskite solar cells. Scientific Reports, 2018, 8, 7033.	1.6	17
88	Solvothermal Synthesis of Ultrathin Cesium Lead Halide Perovskite Nanoplatelets with Tunable Lateral Sizes and Their Reversible Transformation into Cs ₄ PbBr ₆ Nanocrystals. Chemistry of Materials, 2018, 30, 3714-3721.	3.2	108
89	Ambient-air-stable inorganic Cs ₂ Snl ₆ double perovskite thin films <i>via</i> aerosol-assisted chemical vapour deposition. Journal of Materials Chemistry A, 2018, 6, 11205-11214.	5.2	85
90	Alloying <i>n</i> â€Butylamine into CsPbBr ₃ To Give a Twoâ€Dimensional Bilayered Perovskite Ferroelectric Material. Angewandte Chemie, 2018, 130, 8272-8275.	1.6	26

#	Article	IF	CITATIONS
91	Alloying <i>n</i> â€Butylamine into CsPbBr ₃ To Give a Twoâ€Dimensional Bilayered Perovskite Ferroelectric Material. Angewandte Chemie - International Edition, 2018, 57, 8140-8143.	7.2	135
92	Hydrophobic Polystyrene Passivation Layer for Simultaneously Improved Efficiency and Stability in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 18787-18795.	4.0	107
93	Enhanced electrocatalytic performance of nickel diselenide grown on graphene toward the reduction of triiodide redox couples. RSC Advances, 2018, 8, 28131-28138.	1.7	6
94	High-efficiency large-area perovskite photovoltaic modules achieved via electrochemically assembled metal-filamentary nanoelectrodes. Science Advances, 2018, 4, eaat3604.	4.7	48
95	Probing the origins of photodegradation in organic–inorganic metal halide perovskites with time-resolved mass spectrometry. Sustainable Energy and Fuels, 2018, 2, 2460-2467.	2.5	84
96	Allâ€Solutionâ€Processed Pure Formamidiniumâ€Based Perovskite Lightâ€Emitting Diodes. Advanced Materials, 2018, 30, e1804137.	11.1	77
97	High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nature Communications, 2018, 9, 3239.	5.8	1,017
98	Deposition of methylammonium iodide <i>via</i> evaporation – combined kinetic and mass spectrometric study. RSC Advances, 2018, 8, 29899-29908.	1.7	41
99	Bulk Heterojunction-Assisted Grain Growth for Controllable and Highly Crystalline Perovskite Films. ACS Applied Materials & Interfaces, 2018, 10, 31366-31373.	4.0	17
100	Outlook and Challenges of Perovskite Solar Cells toward Terawatt-Scale Photovoltaic Module Technology. Joule, 2018, 2, 1437-1451.	11.7	162
101	Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells. Nature Communications, 2018, 9, 2225.	5.8	526
102	Perovskite/câ€Si tandem solar cells with realistic inverted architecture: Achieving high efficiency by optical optimization. Progress in Photovoltaics: Research and Applications, 2018, 26, 924-933.	4.4	19
103	Solution Processed Metal Oxide Highâ€₽̂ Dielectrics for Emerging Transistors and Circuits. Advanced Materials, 2018, 30, e1706364.	11.1	158
104	Integration of a functionalized graphene nano-network into a planar perovskite absorber for high-efficiency large-area solar cells. Materials Horizons, 2018, 5, 868-873.	6.4	25
105	Surfactants for smoother films. Nature Energy, 2018, 3, 545-546.	19.8	4
106	Efficient and UV-stable perovskite solar cells enabled by side chain-engineered polymeric hole-transporting layers. Journal of Materials Chemistry A, 2018, 6, 12999-13004.	5.2	43
107	Progress in Scalable Coating and Rollâ€ŧoâ€Roll Compatible Printing Processes of Perovskite Solar Cells toward Realization of Commercialization. Advanced Optical Materials, 2018, 6, 1701182.	3.6	52
108	Methylamine-induced defect-healing and cationic substitution: a new method for low-defect perovskite thin films and solar cells. Journal of Materials Chemistry C, 2019, 7, 10724-10742.	2.7	49

#	Article	IF	Citations
109	Importance of Functional Groups in Cross-Linking Methoxysilane Additives for High-Efficiency and Stable Perovskite Solar Cells. ACS Energy Letters, 2019, 4, 2192-2200.	8.8	157
110	Low temperature combustion synthesized indium oxide electron transport layer for high performance and stable perovskite solar cells. Journal of Power Sources, 2019, 438, 226981.	4.0	22
111	Co-Ni alloy@carbon aerogels for improving the efficiency and air stability of perovskite solar cells and its hysteresis mechanism. Carbon, 2019, 154, 322-329.	5.4	12
112	Hot-Air-Assisted Fully Air-Processed Barium Incorporated CsPbI ₂ Br Perovskite Thin Films for Highly Efficient and Stable All-Inorganic Perovskite Solar Cells. Nano Letters, 2019, 19, 6213-6220.	4.5	102
113	Suppressing the ions-induced degradation for operationally stable perovskite solar cells. Nano Energy, 2019, 64, 103962.	8.2	55
114	Effect of the doping of PC61BM electron transport layer with carbon nanodots on the performance of inverted planar MAPbI3 perovskite solar cells. Solar Energy, 2019, 189, 426-434.	2.9	15
115	Scalable Fabrication of Metal Halide Perovskite Solar Cells and Modules. ACS Energy Letters, 2019, 4, 2147-2167.	8.8	161
116	Preparation of perovskite microfibers by lead bromide self-assembly in aqueous solution assisted methylamine bromide vapor deposition. Chemical Physics, 2019, 527, 110457.	0.9	1
117	A mixed solvent for rapid fabrication of large-area methylammonium lead iodide layers by one-step coating at room temperature. Journal of Materials Chemistry A, 2019, 7, 18275-18284.	5.2	28
118	Synergistic interface and compositional engineering of inverted perovskite solar cells enables highly efficient and stable photovoltaic devices. Chemical Communications, 2019, 55, 9196-9199.	2.2	37
119	High Efficiency (16.37%) of Cesium Bromide—Passivated Allâ€Inorganic CsPbI ₂ Br Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900254.	3.1	91
120	Needle coke: A predominant carbon black alternative for printable triple mesoscopic perovskite solar cells. Carbon, 2019, 153, 602-608.	5.4	35
121	Recent progress in fundamental understanding of halide perovskite semiconductors. Progress in Materials Science, 2019, 106, 100580.	16.0	95
122	Editors' Choice—Stability of Unstable Perovskites: Recent Strategies for Making Stable Perovskite Solar Cells. ECS Journal of Solid State Science and Technology, 2019, 8, Q111-Q117.	0.9	12
123	Scalable Deposition Methods for Largeâ€area Production of Perovskite Thin Films. Energy and Environmental Materials, 2019, 2, 119-145.	7.3	153
124	Adduct phases induced controlled crystallization for mixed-cation perovskite solar cells with efficiency over 21%. Nano Energy, 2019, 63, 103867.	8.2	48
125	Improving the Performance of Perovskite Solar Cells using a Polyphosphazene Interfacing Layer. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900436.	0.8	9
126	Crystallization and grain growth regulation through Lewis acid-base adduct formation in hot cast perovskite-based solar cells. Organic Electronics, 2019, 74, 172-178.	1.4	32

#	Article	IF	CITATIONS
127	A Mechanically Robust Conducting Polymer Network Electrode for Efficient Flexible Perovskite Solar Cells. Joule, 2019, 3, 2205-2218.	11.7	175
128	Chemical vapor deposition all-inorganic CsPbI ₂ Br perovskite nanofibers for photodetector. Journal Physics D: Applied Physics, 2019, 52, 485105.	1.3	3
129	Efficient and Stable Mesoscopic Perovskite Solar Cells Using PDTITT as a New Hole Transporting Layer. Advanced Functional Materials, 2019, 29, 1905887.	7.8	29
130	Cesium Lead Inorganic Solar Cell with Efficiency beyond 18% via Reduced Charge Recombination. Advanced Materials, 2019, 31, e1905143.	11.1	202
131	Efficient Perovskite Solar Cell Modules with High Stability Enabled by Iodide Diffusion Barriers. Joule, 2019, 3, 2748-2760.	11.7	167
132	Organic salt mediated growth of phase pure and stable all-inorganic CsPbX3 (X = I, Br) perovskites for efficient photovoltaics. Science Bulletin, 2019, 64, 1773-1779.	4.3	45
133	Engineering Halide Perovskite Crystals through Precursor Chemistry. Small, 2019, 15, e1903613.	5.2	82
134	Defect Passivation in Hybrid Perovskite Solar Cells by Tailoring the Electron Density Distribution in Passivation Molecules. ACS Applied Materials & Interfaces, 2019, 11, 44233-44240.	4.0	68
135	Rhenium diselenide as the broadband saturable absorber for the nanosecond passively Q-switched thulium solid-state lasers. Optical Materials, 2019, 88, 630-634.	1.7	10
136	Novel approaches and scalability prospects of copper based hole transporting materials for planar perovskite solar cells. Journal of Materials Chemistry C, 2019, 7, 13680-13708.	2.7	50
137	Scalable Ambient Fabrication of High-Performance CsPbI2Br Solar Cells. Joule, 2019, 3, 2485-2502.	11.7	124
138	Flexible Perovskite Solar Cells. Joule, 2019, 3, 1850-1880.	11.7	242
139	Acetylacetone Improves the Performance of Mixed Halide Perovskite Solar Cells. Journal of Physical Chemistry C, 2019, 123, 23807-23816.	1.5	12
140	Precursor Engineering for a Large-Area Perovskite Solar Cell with >19% Efficiency. ACS Energy Letters, 2019, 4, 2393-2401.	8.8	127
141	Standardizing Perovskite Solar Modules beyond Cells. Joule, 2019, 3, 2076-2085.	11.7	56
142	Enhanced Performance and Stability in DNA-Perovskite Heterostructure-Based Solar Cells. ACS Energy Letters, 2019, 4, 2646-2655.	8.8	45
143	Nacre-inspired crystallization and elastic "brick-and-mortar―structure for a wearable perovskite solar module. Energy and Environmental Science, 2019, 12, 979-987.	15.6	114
144	Reliable Measurement of Perovskite Solar Cells. Advanced Materials, 2019, 31, e1803231.	11.1	62

	СПАНО	N KEPORT	
#	Article	IF	CITATIONS
145	Highly efficient prismatic perovskite solar cells. Energy and Environmental Science, 2019, 12, 929-937.	15.6	54
146	Surface & grain boundary co-passivation by fluorocarbon based bifunctional molecules for perovskite solar cells with efficiency over 21%. Journal of Materials Chemistry A, 2019, 7, 2497-2506.	5.2	141
147	Effect of mechanical forces on thermal stability reinforcement for lead based perovskite materials. Journal of Materials Chemistry A, 2019, 7, 540-548.	5.2	26
148	All-inorganic lead-free perovskites for optoelectronic applications. Materials Chemistry Frontiers, 2019, 3, 365-375.	3.2	133
149	Surface CH ₃ NH ₃ ⁺ to CH ₃ ⁺ to CH ₃ ⁺ Ratio Impacts the Work Function of Solutionâ€Processed and Vacuumâ€Sublimed CH ₃ NH ₃ PbI ₃ Thin Films. Advanced Materials Interfaces, 2019, 6, 1801827.	1.9	9
150	A Review of the Role of Solvents in Formation of High-Quality Solution-Processed Perovskite Films. ACS Applied Materials & Interfaces, 2019, 11, 7639-7654.	4.0	113
151	Chlorine doping for black γ-CsPbI3 solar cells with stabilized efficiency beyond 16%. Nano Energy, 2019, 58, 175-182.	8.2	170
152	Modeling Host-Virus Interactions in Viral Infectious Diseases Using Stem-Cell-Derived Systems and CRISPR/Cas9 Technology. Viruses, 2019, 11, 124.	1.5	19
153	Scalable and efficient perovskite solar cells prepared by grooved roller coating. Journal of Materials Chemistry A, 2019, 7, 1870-1877.	5.2	9
154	Toward Green Production of Water-Stable Metal–Organic Frameworks Based on High-Valence Metals with Low Toxicities. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	21
155	Completely Solvent-free Protocols to Access Phase-Pure, Metastable Metal Halide Perovskites and Functional Photodetectors from the Precursor Salts. IScience, 2019, 16, 312-325.	1.9	80
156	Spin-Coating Process for 10 cm × 10 cm Perovskite Solar Modules Enabled by Self-Assembly of SnO ₂ Nanocolloids. ACS Energy Letters, 2019, 4, 1845-1851.	8.8	56
157	Air-processed, large grain perovskite films with low trap density from perovskite crystal engineering for high-performance perovskite solar cells with improved ambient stability. Journal of Materials Science, 2019, 54, 12000-12011.	1.7	27
158	High-Performance Planar Perovskite Solar Cells with Negligible Hysteresis Using 2,2,2-Trifluoroethanol-Incorporated SnO2. IScience, 2019, 16, 433-441.	1.9	63
159	Engineering of the Back Contact between PCBM and Metal Electrode for Planar Perovskite Solar Cells with Enhanced Efficiency and Stability. Advanced Optical Materials, 2019, 7, 1900542.	3.6	24
160	Wide-bandgap, low-bandgap, and tandem perovskite solar cells. Semiconductor Science and Technology, 2019, 34, 093001.	1.0	89
161	Inorganic CsPbIBr ₂ â€Based Perovskite Solar Cells: Fabrication Technique Modification and Efficiency Improvement. Solar Rrl, 2019, 3, 1900135.	3.1	60
162	Organic/Inorganic Hybrid p-Type Semiconductor Doping Affords Hole Transporting Layer Free Thin-Film Perovskite Solar Cells with High Stability. ACS Applied Materials & Interfaces, 2019, 11, 22603-22611.	4.0	40

#	Article	IF	CITATIONS
163	Relaying delivery of excited state electrons for fully printable perovskite solar cells via ultra-thin gradient PCBM/perovskite heterojunction. Solar Energy, 2019, 187, 352-357.	2.9	8
164	Methods and strategies for achieving high-performance carbon-based perovskite solar cells without hole transport materials. Journal of Materials Chemistry A, 2019, 7, 15476-15490.	5.2	85
165	Highly Efficient and Stable Solar Cells Based on Crystalline Oriented 2D/3D Hybrid Perovskite. Advanced Materials, 2019, 31, e1901242.	11.1	210
166	Tunable Electronic and Optical Properties of a Planar Hydrogenated AsSi Hybrid Nanosheet: A Potential Wide Water-Splitting Photocatalyst. Journal of Physical Chemistry C, 2019, 123, 14999-15008.	1.5	8
167	Facile and scalable fabrication of low-hysteresis perovskite solar cells and modules using a three-step process for the perovskite layer. Journal of Power Sources, 2019, 430, 145-149.	4.0	13
168	Highly efficient and stable inverted perovskite solar cells using down-shifting quantum dots as a light management layer and moisture-assisted film growth. Journal of Materials Chemistry A, 2019, 7, 14753-14760.	5.2	67
169	Oligomeric Silica-Wrapped Perovskites Enable Synchronous Defect Passivation and Grain Stabilization for Efficient and Stable Perovskite Photovoltaics. ACS Energy Letters, 2019, 4, 1231-1240.	8.8	111
170	A cost-effective quick-making strategy for visible light-responsive titanium dioxide. Materials Letters, 2019, 251, 206-209.	1.3	1
171	Grain boundary regulation of flexible perovskite solar cells via a polymer alloy additive. Organic Electronics, 2019, 70, 205-210.	1.4	19
172	Efficient and Stable CsPbI ₃ Solar Cells via Regulating Lattice Distortion with Surface Organic Terminal Groups. Advanced Materials, 2019, 31, e1900605.	11.1	209
173	Stable hybrid perovskite MAPb(I1â^'Br)3 for photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2019, 253, 41-48.	10.8	56
174	Efficient Methylamine-Containing Antisolvent Strategy to Fabricate High-Efficiency and Stable FA _{0.85} Cs _{0.15} Pb(Br _{0.15} I _{2.85}) Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 18415-18422.	4.0	30
175	Organic bulk-heterojunction injected perovskite films for highly efficient solar cells. Journal of Materials Chemistry C, 2019, 7, 6391-6397.	2.7	9
176	The impact at polar solvent treatment on p-contact layers (PEDOT:PSS or NiOx) of hybrid perovskite solar cells. Organic Electronics, 2019, 73, 273-278.	1.4	5
177	Sealing the domain boundaries and defects passivation by Poly(acrylic acid) for scalable blading of efficient perovskite solar cells. Journal of Power Sources, 2019, 426, 188-196.	4.0	29
178	Improved performance of perovskite solar cells through using (FA)x(MA)1-xPbI3 optical absorber layer. Optoelectronics Letters, 2019, 15, 117-121.	0.4	13
179	Nanomaterials for Polymer and Perovskite Light-Emitting Diodes. , 2019, , 371-421.		0
180	A facile green solvent engineering for up-scaling perovskite solar cell modules. Solar Energy, 2019, 183, 386-391.	2.9	41

#	Article	IF	CITATIONS
181	Direct observation of charge transfer at the interface between PEDOT:PSS and perovskite layers. Applied Physics Express, 2019, 12, 041002.	1.1	12
182	Efficient Defect Passivation for Perovskite Solar Cells by Controlling the Electron Density Distribution of Donorâ€Ï€â€Acceptor Molecules. Advanced Energy Materials, 2019, 9, 1803766.	10.2	280
183	Halide lead perovskites for ionizing radiation detection. Nature Communications, 2019, 10, 1066.	5.8	568
184	Controllable Perovskite Crystallization via Antisolvent Technique Using Chloride Additives for Highly Efficient Planar Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1803587.	10.2	221
186	Sub-sized monovalent alkaline cations enhanced electrical stability for over 17% hysteresis-free planar perovskite solar mini-module. Electrochimica Acta, 2019, 306, 635-642.	2.6	9
187	Rational molecular passivation for high-performance perovskite light-emitting diodes. Nature Photonics, 2019, 13, 418-424.	15.6	970
188	Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature, 2019, 567, 511-515.	13.7	1,867
189	Solution Processed Nb ₂ O ₅ Electrodes for High Efficient Ultraviolet Light Stable Planar Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2019, 7, 7421-7429.	3.2	41
190	Recent Challenges in Perovskite Solar Cells Toward Enhanced Stability, Less Toxicity, and Largeâ€Area Mass Production. Advanced Materials Interfaces, 2019, 6, 1801758.	1.9	52
191	Solutionâ€Processable Perovskite Solar Cells toward Commercialization: Progress and Challenges. Advanced Functional Materials, 2019, 29, 1807661.	7.8	149
192	A MAPbBr ₃ :poly(ethylene oxide) composite perovskite quantum dot emission layer: enhanced film stability, coverage and device performance. Nanoscale, 2019, 11, 9103-9114.	2.8	35
193	Series and Parallel Module Design for Large-Area Perovskite Solar Cells. ACS Applied Energy Materials, 2019, 2, 3851-3859.	2.5	37
194	Ligand-Induced Tunable Dual-Color Emission Based on Lead Halide Perovskites for White Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2019, 11, 15898-15904.	4.0	19
195	Boosting efficiency of planar heterojunction perovskite solar cells to 21.2% by a facile two-step deposition strategy. Applied Surface Science, 2019, 484, 1191-1197.	3.1	24
196	Guiding charge transfer kinetics into cocatalyst for efficient solar water splitting. Electrochimica Acta, 2019, 307, 43-50.	2.6	8
197	Perovskite Photovoltaics: The Significant Role of Ligands in Film Formation, Passivation, and Stability. Advanced Materials, 2019, 31, e1805702.	11.1	192
198	Management of the crystallization in two-dimensional perovskite solar cells with enhanced efficiency within a wide temperature range and high stability. Nano Energy, 2019, 58, 706-714.	8.2	52
199	Si photocathode with Ag-supported dendritic Cu catalyst for CO ₂ reduction. Energy and Environmental Science, 2019, 12, 1068-1077.	15.6	93

#	Article	IF	CITATIONS
200	High absorption perovskite solar cell with optical coupling structure. Optics Communications, 2019, 443, 262-267.	1.0	18
201	Perovskite Cluster-Containing Solution for Scalable D-Bar Coating toward High-Throughput Perovskite Solar Cells. ACS Energy Letters, 2019, 4, 1189-1195.	8.8	134
202	Optical Management with Nanoparticles for a Light Conversion Efficiency Enhancement in Inorganic γ-CsPbI ₃ Solar Cells. Nano Letters, 2019, 19, 1796-1804.	4.5	58
203	Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. Chemical Reviews, 2019, 119, 3036-3103.	23.0	2,009
204	A Scalable Methylamine Gas Healing Strategy for Highâ€Efficiency Inorganic Perovskite Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 5587-5591.	7.2	121
205	Hybrid chemical vapor deposition enables scalable and stable Cs-FA mixed cation perovskite solar modules with a designated area of 91.8 cm ² approaching 10% efficiency. Journal of Materials Chemistry A, 2019, 7, 6920-6929.	5.2	112
206	A Scalable Methylamine Gas Healing Strategy for Highâ€Efficiency Inorganic Perovskite Solar Cells. Angewandte Chemie, 2019, 131, 5643-5647.	1.6	19
207	Hydrophilic perovskite microdisks with excellent stability and strong fluorescence for recyclable temperature sensing. Science China Materials, 2019, 62, 1065-1070.	3.5	12
208	A Review of Perovskites Solar Cell Stability. Advanced Functional Materials, 2019, 29, 1808843.	7.8	835
209	Negligibleâ€Pbâ€Waste and Upscalable Perovskite Deposition Technology for Highâ€Operationalâ€5tability Perovskite Solar Modules. Advanced Energy Materials, 2019, 9, 1803047.	10.2	68
210	Efficient and Stable Chemical Passivation on Perovskite Surface via Bidentate Anchoring. Advanced Energy Materials, 2019, 9, 1803573.	10.2	232
211	The effect of hydroiodic (HI) acid on the optoelectronic properties of CsPbI3 films and their photovoltaic performance. , 2019, , .		0
212	Spacer layer design for efficient fully printable mesoscopic perovskite solar cells. RSC Advances, 2019, 9, 29840-29846.	1.7	14
213	Tailoring solvent coordination for high-speed, room-temperature blading of perovskite photovoltaic films. Science Advances, 2019, 5, eaax7537.	4.7	312
214	Reconfiguration of interfacial energy band structure for high-performance inverted structure perovskite solar cells. Nature Communications, 2019, 10, 4593.	5.8	214
215	Enhanced upconversion emissions in Er3+ doped perovskite BaTiO3 glass-ceramics via electric-stimulated polarization technique. Ceramics International, 2019, 45, 5392-5397.	2.3	14
216	Control of Crystal Growth toward Scalable Fabrication of Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1807047.	7.8	111
217	Dimethyl sulfoxide and bromide methylamine co-treatment inducing defect healing for effective and stable perovskite solar cells. Materials Research Bulletin, 2019, 112, 165-173.	2.7	13

ARTICLE IF CITATIONS HxMoO3â[^]ynanobelts: an excellent alternative to carbon electrodes for high performance mesoscopic 218 5.2 8 perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 1499-1508. Toward Long-Term Stability: Single-Crystal Alloys of Cesium-Containing Mixed Cation and Mixed Halide 6.6 141 Perovskite. Journal of the Ámerican Chemical Society, 2019, 141, 1665-1671. Strategic advantages of reactive polyiodide melts for scalable perovskite photovoltaics. Nature 220 15.6 75 Nanotechnology, 2019, 14, 57-63. A self-powered and high-voltage-isolated organic optical communication system based on 34 triboelectric nanogenerators and solar cells. Nano Energy, 2019, 56, 391-399. An Ultrathin Ferroelectric Perovskite Oxide Layer for Highâ€Performance Hole Transport Material Free 222 7.8 93 Carbon Based Halide Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1806506. Synergistic Crystal and Interface Engineering for Efficient and Stable Perovskite Photovoltaics. Advanced Energy Materials, 2019, 9, 1802646. 10.2 Rollable, Stretchable, and Reconfigurable Graphene Hygroelectric Generators. Advanced Materials, 224 11.1 117 2019, 31, e1805705. SnO2-based electron transporting layer materials for perovskite solar cells: A review of recent 7.1 129 progress. Journal of Energy Chemistry, 2019, 35, 144-167. 226 Fully Air-Bladed High-Efficiency Perovskite Photovoltaics. Joule, 2019, 3, 402-416. 11.7 119 Vacuum thermal-evaporated SnO2 as uniform electron transport layer and novel management of perovskite intermediates for efficient and stable planar perovskite solar cells. Organic Electronics, 1.4 2019, 65, 207-214. Machine Learning for Understanding Compatibility of Organic–Inorganic Hybrid Perovskites with 228 8.8 78 Post-Treatment Amines. ACS Energy Letters, 2019, 4, 397-404. SnO₂â€Based Perovskite Solar Cells: Configuration Design and Performance Improvement. 229 3.1 Solar Rrl, 2019, 3, 1800292. Self-Patterned CsPbBr₃ Nanocrystals for High-Performance Optoelectronics. ACS Applied 230 4.0 70 Materials & amp; Interfaces, 2019, 11, 5223-5231. Zero-dimensional cesium lead halide perovskites: Phase transformations, hybrid structures, and 1.4 28 applications. Journal of Solid State Chemistry, 2019, 271, 361-377. Photoexcited Dynamics in Metal Halide Perovskites: From Relaxation Mechanisms to Applications. 232 9 1.5 Journal of Physical Chemistry C, 2019, 123, 3255-3269. Precursor solution temperature dependence of the optical constants, band gap and Urbach tail in organic–inorganic hybrid halide perovskite films. Journal Physics D: Applied Physics, 2019, 52, 045103. An in-situ room temperature route to CuBil4 based bulk-heterojunction perovskite-like solar cells. 234 3.547 Science China Materials, 2019, 62, 519-526. From scalable solution fabrication of perovskite films towards commercialization of solar cells. 269 Energy and Environmental Science, 2019, 12, 518-549.

#	Article	IF	CITATIONS
236	Largeâ€Area Organic Solar Cells: Material Requirements, Modular Designs, and Printing Methods. Advanced Materials, 2019, 31, e1805089.	11.1	246
237	Scalable Fabrication of Stable High Efficiency Perovskite Solar Cells and Modules Utilizing Room Temperature Sputtered SnO ₂ Electron Transport Layer. Advanced Functional Materials, 2019, 29, 1806779.	7.8	118
238	Cesium Oleate Precursor Preparation for Lead Halide Perovskite Nanocrystal Synthesis: The Influence of Excess Oleic Acid on Achieving Solubility, Conversion, and Reproducibility. Chemistry of Materials, 2019, 31, 62-67.	3.2	55
239	Hollow rice grain-shaped TiO2 nanostructures for high-efficiency and large-area perovskite solar cells. Solar Energy Materials and Solar Cells, 2019, 191, 389-398.	3.0	10
240	Molecular Engineering of Copper Phthalocyanines: A Strategy in Developing Dopantâ€Free Holeâ€Transporting Materials for Efficient and Ambientâ€Stable Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1803287.	10.2	138
241	Stability Challenges for Perovskite Solar Cells. ChemNanoMat, 2019, 5, 253-265.	1.5	39
242	Merits and Challenges of Ruddlesden–Popper Soft Halide Perovskites in Electroâ€Optics and Optoelectronics. Advanced Materials, 2019, 31, e1803514.	11.1	82
243	Interface engineering with NiO nanocrystals for highly efficient and stable planar perovskite solar cells. Electrochimica Acta, 2019, 293, 211-219.	2.6	56
244	"Unleaded―Perovskites: Status Quo and Future Prospects of Tinâ€Based Perovskite Solar Cells. Advanced Materials, 2019, 31, e1803230.	11.1	345
245	A low-temperature TiO2/SnO2 electron transport layer for high-performance planar perovskite solar cells. Science China Materials, 2020, 63, 207-215.	3.5	31
246	A Review on Additives for Halide Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1902492.	10.2	240
247	Dynamic Antisolvent Engineering for Spin Coating of 10 × 10 cm ² Perovskite Solar M Approaching 18%. Solar Rrl, 2020, 4, 1900263.	Ngdµle	52
248	High-efficiency colorful perovskite solar cells using TiO2 nanobowl arrays as a structured electron transport layer. Science China Materials, 2020, 63, 35-46.	3.5	26
249	Interfacial Postâ€Treatment for Enhancing the Performance of Printable Carbonâ€Based Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900278.	3.1	23
250	Solutionâ€Processed Ternary Oxides as Carrier Transport/Injection Layers in Optoelectronics. Advanced Energy Materials, 2020, 10, 1900903.	10.2	44
251	Carbonâ€Electrode Based Perovskite Solar Cells: Effect of Bulk Engineering and Interface Engineering on the Power Conversion Properties. Solar Rrl, 2020, 4, 1900190.	3.1	45
252	Organicâ€Inorganic Halide Perovskites: From Crystallization of Polycrystalline Films to Solar Cell Applications. Solar Rrl, 2020, 4, 1900200.	3.1	43
253	Flexible perovskite solar cells: device design and perspective. Flexible and Printed Electronics, 2020, 5, 013002.	1.5	17

# 254	ARTICLE A‧ite Management for Highly Crystalline Perovskites. Advanced Materials, 2020, 32, e1904702.	IF 11.1	Citations 62
255	MOFs and COFs for Batteries and Supercapacitors. Electrochemical Energy Reviews, 2020, 3, 81-126.	13.1	98
256	Efficient and stable planar all-inorganic perovskite solar cells based on high-quality CsPbBr3 films with controllable morphology. Journal of Energy Chemistry, 2020, 46, 8-15.	7.1	89
257	Enhanced photovoltaic performance and stability of planar perovskite solar cells by introducing dithizone. Solar Energy Materials and Solar Cells, 2020, 206, 110290.	3.0	8
258	Reticulated Mesoporous TiO ₂ Scaffold, Fabricated by Spray Coating, for Largeâ€Area Perovskite Solar Cells. Energy Technology, 2020, 8, 1900922.	1.8	19
259	Effects of methylamine doping on the stability of triple cation (FA _{0.95â^'x} MA _x 0.05)PbI ₃ single crystal perovskites. Nanoscale Advances, 2020, 2, 332-339.	2.2	8
260	<i>In situ</i> transfer of CH ₃ NH ₃ PbI ₃ single crystals in mesoporous scaffolds for efficient perovskite solar cells. Chemical Science, 2020, 11, 474-481.	3.7	19
261	Improving perovskite solar cells photovoltaic performance using tetrabutylammonium salt as additive. Journal of Power Sources, 2020, 450, 227623.	4.0	28
262	Synergistic Coassembly of Highly Wettable and Uniform Holeâ€Extraction Monolayers for Scalingâ€up Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 1909509.	7.8	41
263	Rapid Layerâ€Specific Annealing Enabled by Ultraviolet LED with Estimation of Crystallization Energy for Highâ€Performance Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1902898.	10.2	8
264	Molecular Aggregation of Naphthalene Diimide(NDI) Derivatives in Electron Transport Layers of Inverted Perovskite Solar Cells and Their Influence on the Device Performance. Chemistry - an Asian Journal, 2020, 15, 112-121.	1.7	20
265	Highly efficient tin perovskite solar cells achieved in a wide oxygen concentration range. Journal of Materials Chemistry A, 2020, 8, 2760-2768.	5.2	85
266	Low-Temperature Preparation of CsPbI ₂ Br for Efficient and Stable Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 1076-1081.	2.5	13
267	Monolithic Perovskite/Si Tandem Solar Cells: Pathways to Over 30% Efficiency. Advanced Energy Materials, 2020, 10, 1902840.	10.2	87
268	Luminescent europium-doped titania for efficiency and UV-stability enhancement of planar perovskite solar cells. Nano Energy, 2020, 69, 104392.	8.2	47
269	Molecular dynamics simulations of ejecta formation in helium-implanted copper. Scripta Materialia, 2020, 178, 114-118.	2.6	18
270	Stability of materials and complete devices. , 2020, , 197-215.		1
271	Efficient Anti-solvent-free Spin-Coated and Printed Sn-Perovskite Solar Cells with Crystal-Based Precursor Solutions. Matter, 2020, 2, 167-180.	5.0	38

#	Article	IF	Citations
	A data review on certified perovskite solar cells efficiency and I-V metrics: Insights into materials		
272	selection and process scaling up. Solar Energy, 2020, 209, 21-29.	2.9	5
273	Tailoring In Situ Healing and Stabilizing Post-Treatment Agent for High-Performance Inverted CsPbl ₃ Perovskite Solar Cells with Efficiency of 16.67%. ACS Energy Letters, 2020, 5, 3314-3321.	8.8	74
274	Interface induced in-situ vertical phase separation from MAPbI3:Spiro-OMeTAD precursors for perovskite solar cells. Solar Energy Materials and Solar Cells, 2020, 216, 110689.	3.0	5
275	Quantum dot-modified CsPbIBr2 perovskite absorber for efficient and stable photovoltaics. Organic Electronics, 2020, 86, 105917.	1.4	10
276	Controlling the crystallization dynamics of photovoltaic perovskite layers on larger-area coatings. Energy and Environmental Science, 2020, 13, 4666-4690.	15.6	79
277	Zwitterionic-Surfactant-Assisted Room-Temperature Coating of Efficient Perovskite Solar Cells. Joule, 2020, 4, 2404-2425.	11.7	137
278	Impedance Spectroscopy of Perovskite Solar Cells: Studying the Dynamics of Charge Carriers Before and After Continuous Operation. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000291.	0.8	54
279	Insight into the Origins of Figures of Merit and Design Strategies for Organic/Inorganic Leadâ€Halide Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000452.	3.1	14
280	Design of Perovskite Thermally Coâ€Evaporated Highly Efficient Miniâ€Modules with High Geometrical Fill Factors. Solar Rrl, 2020, 4, 2000473.	3.1	29
281	Novel insights into the role of solvent environment in perovskite solar cells prepared by two-step sequential deposition. Journal of Power Sources, 2020, 480, 228862.	4.0	9
282	Interfacial defect passivation by chenodeoxycholic acid for efficient and stable perovskite solar cells. Journal of Power Sources, 2020, 472, 228502.	4.0	21
283	Impact of Pressure and Temperature on the Compaction Dynamics and Layer Properties of Powder-Pressed Methylammonium Lead Halide Thick Films. ACS Applied Electronic Materials, 2020, 2, 2619-2628.	2.0	14
284	Potassium Acetate-Based Treatment for Thermally Co-Evaporated Perovskite Solar Cells. Coatings, 2020, 10, 1163.	1.2	9
285	Perovskite Tandem Solar Cells: From Fundamentals to Commercial Deployment. Chemical Reviews, 2020, 120, 9835-9950.	23.0	248
286	Highly Flexible and Transparent Polylactic Acid Composite Electrode for Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000320.	3.1	18
287	Templated growth of FASnI ₃ crystals for efficient tin perovskite solar cells. Energy and Environmental Science, 2020, 13, 2896-2902.	15.6	165
288	Quasiâ€Heteroface Perovskite Solar Cells. Small, 2020, 16, e2002887.	5.2	4
289	The engulfment of precipitate by extension twinning in Mg–Al alloy. Scripta Materialia, 2020, 188, 195-199.	2.6	7

#	Article	IF	CITATIONS
290	Narrow-Bandgap Mixed Lead/Tin-Based 2D Dion–Jacobson Perovskites Boost the Performance of Solar Cells. Journal of the American Chemical Society, 2020, 142, 15049-15057.	6.6	103
291	High Photoluminescence Quantum Yield (>95%) of MAPbBr ₃ Nanocrystals via Reprecipitation from Methylamine-MAPbBr ₃ Liquid. ACS Applied Electronic Materials, 2020, 2, 2707-2715.	2.0	22
292	Inverted Solar Cells with Thermally Evaporated Selenium as an Active Layer. ACS Applied Energy Materials, 2020, 3, 7345-7352.	2.5	13
293	An Efficient and Stable Perovskite Solar Cell with Suppressed Defects by Employing Dithizone as a Lead Indicator. Angewandte Chemie, 2020, 132, 21593-21597.	1.6	1
294	An Efficient and Stable Perovskite Solar Cell with Suppressed Defects by Employing Dithizone as a Lead Indicator. Angewandte Chemie - International Edition, 2020, 59, 21409-21413.	7.2	33
295	Toward Greener Solution Processing of Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2020, 8, 13126-13138.	3.2	41
296	Hydrophobic 2D Perovskiteâ€Modified Layer with Polyfunctional Groups for Enhanced Performance and High Moisture Stability of Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000647.	3.1	16
297	Rising from the Ashes: Gaseous Therapy for Robust and Large-Area Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 49648-49658.	4.0	11
298	Nearâ€Infraredâ€Transparent Perovskite Solar Cells and Perovskiteâ€Based Tandem Photovoltaics. Small Methods, 2020, 4, 2000395.	4.6	63
299	Interfacial Strain Release from the WS ₂ /CsPbBr ₃ van der Waals Heterostructure for 1.7â€V Voltage Allâ€Inorganic Perovskite Solar Cells. Angewandte Chemie, 2020, 132, 22181-22185.	1.6	47
300	NdCl ₃ Dose as a Universal Approach for High-Efficiency Perovskite Solar Cells Based on Low-Temperature-Processed SnO _{<i>x</i>} . ACS Applied Materials & Interfaces, 2020, 12, 46306-46316.	4.0	28
301	Interfacial Strain Release from the WS ₂ /CsPbBr ₃ van der Waals Heterostructure for 1.7â€V Voltage Allâ€inorganic Perovskite Solar Cells. Angewandte Chemie - International Edition, 2020, 59, 21997-22001.	7.2	149
302	Simultaneous hole transport and defect passivation enabled by a dopant-free single polymer for efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 21036-21043.	5.2	23
303	Modification Engineering in SnO ₂ Electron Transport Layer toward Perovskite Solar Cells: Efficiency and Stability. Advanced Functional Materials, 2020, 30, 2004209.	7.8	98
304	Role of formamidinium in the crystallization of FAxMA1-xPbI3-yCly perovskite via recrystallization-assisted bath-immersion sequential ambient deposition. Journal of Power Sources, 2020, 477, 228736.	4.0	3
305	Methylamine-assisted growth of uniaxial-oriented perovskite thin films with millimeter-sized grains. Nature Communications, 2020, 11, 5402.	5.8	71
306	Polar CsPbBr ₃ -based Dion–Jacobson hybrid for promising UV photodetection. Chemical Communications, 2020, 56, 14381-14384.	2.2	16
307	Perovskite Puzzle for Revolutionary Functional Materials. Frontiers in Chemistry, 2020, 8, 550625.	1.8	5

#	Article	IF	CITATIONS
308	High-Quality MAPbBr ₃ Cuboid Film with Promising Optoelectronic Properties Prepared by a Hot Methylamine Precursor Approach. ACS Applied Materials & Interfaces, 2020, 12, 24498-24504.	4.0	14
309	First-principles calculations of electronic structure and optical and elastic properties of the novel ABX ₃ -type LaWN ₃ perovskite structure. RSC Advances, 2020, 10, 17317-17326.	1.7	27
310	Challenges and approaches towards upscaling the assembly of hybrid perovskite solar cells. Materials Advances, 2020, 1, 292-309.	2.6	35
311	Comparison of Physical Isolation on Large Active Area Perovskite Solar Cells. Chemical Research in Chinese Universities, 2020, 36, 1279-1283.	1.3	4
312	Side-chain engineering of PEDOT derivatives as dopant-free hole-transporting materials for efficient and stable n–i–p structured perovskite solar cells. Journal of Materials Chemistry C, 2020, 8, 9236-9242.	2.7	14
313	Influence of Cu modified surface states by sol gel Technique on Photocatalytic Activity of Titanium dioxide. Materials Chemistry and Physics, 2020, 249, 123169.	2.0	7
314	First principle study on electronic structure, elastic properties and debye temperature of pure and doped KCaF3. Vacuum, 2020, 179, 109504.	1.6	21
315	Methylammonium Polyiodides in Perovskite Photovoltaics: From Fundamentals to Applications. Frontiers in Chemistry, 2020, 8, 418.	1.8	3
316	Progress toward Applications of Perovskite Solar Cells. Energy & amp; Fuels, 2020, 34, 6624-6633.	2.5	31
317	Dion-Jacobson 2D-3D perovskite solar cells with improved efficiency and stability. Nano Energy, 2020, 75, 104892.	8.2	99
318	Stable and efficient air-processed perovskite solar cells employing low-temperature processed compact In2O3 thin films as electron transport materials. Journal of Alloys and Compounds, 2020, 836, 155460.	2.8	19
319	Efficient Perovskite Solar Modules with Minimized Nonradiative Recombination and Local Carrier Transport Losses. Joule, 2020, 4, 1263-1277.	11.7	93
320	Structure engineering of hierarchical layered perovskite interface for efficient and stable wide bandgap photovoltaics. Nano Energy, 2020, 75, 104917.	8.2	44
321	Controlling the Morphology and Interface of the Perovskite Layer for Scalable High-Efficiency Solar Cells Fabricated Using Green Solvents and Blade Coating in an Ambient Environment. ACS Applied Materials & Interfaces, 2020, 12, 26041-26049.	4.0	41
322	Investigation on the role of amines in the liquefaction and recrystallization process of MAPbl ₃ perovskite. Journal of Materials Chemistry A, 2020, 8, 13585-13593.	5.2	11
323	Low Temperature (<40 °C) Atmospheric-Pressure Dielectric-Barrier-Discharge-jet (DBDjet) Plasma Treatment on Jet-Sprayed Silver Nanowires (AgNWs) Electrodes for Fully Solution-Processed n-i-p Structure Perovskite Solar Cells. ECS Journal of Solid State Science and Technology, 2020, 9, 055016.	0.9	6
324	Enhanced stability and performance of light-emitting diodes based on <i>in situ</i> fabricated FAPbBr ₃ nanocrystals <i>via</i> ligand compensation with <i>n</i> -octylphosphonic acid. Journal of Materials Chemistry C, 2020, 8, 9936-9944.	2.7	11
325	Hybrid 2D [Pb(CH ₃ NH ₂)I ₂] _{<i>n</i>} Coordination Polymer Precursor for Scalable Perovskite Deposition. ACS Energy Letters, 2020, 5, 2305-2312.	8.8	18

#	Article	IF	CITATIONS
326	Nanocarbon. , 2020, , 131-155.		0
327	Improving the crystal growth of a Cs0.24FA0.76PbI3â^'xBrx perovskite in a vapor–solid reaction process using strontium iodide. Sustainable Energy and Fuels, 2020, 4, 2491-2496.	2.5	12
328	Methylamine-Dimer-Induced Phase Transition toward MAPbl ₃ Films and High-Efficiency Perovskite Solar Modules. Journal of the American Chemical Society, 2020, 142, 6149-6157.	6.6	59
329	Sandwich-like electron transporting layer to achieve highly efficient perovskite solar cells. Journal of Power Sources, 2020, 453, 227876.	4.0	15
330	Photo-Rechargeable Fabrics as Sustainable and Robust Power Sources for Wearable Bioelectronics. Matter, 2020, 2, 1260-1269.	5.0	204
331	Choline Chloride-Modified SnO ₂ Achieving High Output Voltage in MAPbI ₃ Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 3504-3511.	2.5	57
332	Generation of low-symmetry perovskite structures for <i>ab initio</i> computation. Journal of Physics Condensed Matter, 2020, 32, 315901.	0.7	8
333	Reverse Manufacturing Enables Perovskite Photovoltaics to Reach the Carbon Footprint Limit of a Glass Substrate. Joule, 2020, 4, 882-901.	11.7	23
334	Influence of a UV-ozone treatment on amorphous SnO2 electron selective layers for highly efficient planar MAPbI3 perovskite solar cells. Journal of Materials Science and Technology, 2020, 59, 195-202.	5.6	28
335	<i>In Situ</i> Interface Engineering for Highly Efficient Electron-Transport-Layer-Free Perovskite Solar Cells. Nano Letters, 2020, 20, 5799-5806.	4.5	67
336	Biodegradable Materials and Green Processing for Green Electronics. Advanced Materials, 2020, 32, e2001591.	11.1	168
337	Lowâ€Dimensional Dion–Jacobsonâ€Phase Leadâ€Free Perovskites for Highâ€Performance Photovoltaics with Improved Stability. Angewandte Chemie - International Edition, 2020, 59, 6909-6914.	7.2	123
338	Lowâ€Dimensional Dion–Jacobsonâ€Phase Leadâ€Free Perovskites for Highâ€Performance Photovoltaics with Improved Stability. Angewandte Chemie, 2020, 132, 6976-6981.	1.6	26
339	Large-area perovskite solar cells. Science Bulletin, 2020, 65, 872-875.	4.3	34
340	A hysteresis-free perovskite transistor with exceptional stability through molecular cross-linking and amine-based surface passivation. Nanoscale, 2020, 12, 7641-7650.	2.8	40
341	Low-temperature direct synthesis of perovskite nanocrystals in water and their application in light-emitting diodes. Nanoscale, 2020, 12, 6522-6528.	2.8	17
342	Lead-free perovskite [H ₃ NC ₆ H ₄ NH ₃]CuBr ₄ with both a bandgap of 1.43 eV and excellent stability. Journal of Materials Chemistry A, 2020, 8, 5484-5488.	5.2	20
343	Reduced graphene oxide assisted charge separation and serving as transport pathways in planar perovskite photodetector. Organic Electronics, 2020, 81, 105663.	1.4	3

#	Article	IF	CITATIONS
344	Is Formamidinium Always More Stable than Methylammonium?. Chemistry of Materials, 2020, 32, 2501-2507.	3.2	34
345	How far are we from attaining 10-year lifetime for metal halide perovskite solar cells?. Materials Science and Engineering Reports, 2020, 140, 100545.	14.8	67
346	In Situ Tin(II) Complex Antisolvent Process Featuring Simultaneous Quasiâ€Core–Shell Structure and Heterojunction for Improving Efficiency and Stability of Lowâ€Bandgap Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1903013.	10.2	31
347	In Situ Observation of Vapor-Assisted 2D–3D Heterostructure Formation for Stable and Efficient Perovskite Solar Cells. Nano Letters, 2020, 20, 1296-1304.	4.5	65
348	High Electron Affinity Enables Fast Hole Extraction for Efficient Flexible Inverted Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1903487.	10.2	210
349	Biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold. Nature Communications, 2020, 11, 310.	5.8	313
350	Exceptional Long Electron Lifetime in Methylammonium Lead Iodide Perovskite Solar Cell Made from Aqueous Lead Nitrate Precursor. Advanced Functional Materials, 2020, 30, 1909644.	7.8	21
351	Superior Textured Film and Process Tolerance Enabled by Intermediateâ€ S tate Engineering for Highâ€Efficiency Perovskite Solar Cells. Advanced Science, 2020, 7, 1903009.	5.6	22
352	The nature of the methylamine–MAPbI ₃ complex: fundamentals of gas-induced perovskite liquefaction and crystallization. Journal of Materials Chemistry A, 2020, 8, 9788-9796.	5.2	28
353	Tuning the wettability of the blade enhances solution-sheared perovskite solar cell performance. Nano Energy, 2020, 74, 104830.	8.2	19
354	Efficient triple-mesoscopic perovskite solar mini-modules fabricated with slot-die coating. Nano Energy, 2020, 74, 104842.	8.2	63
355	A Low-Cost and High-Efficiency Integrated Device toward Solar-Driven Water Splitting. ACS Nano, 2020, 14, 5426-5434.	7.3	36
356	From 1D to 3D: Fabrication of CH 3 NH 3 PbI 3 Perovskite Solar Cell Thin Films from (Pyrrolidinium)PbI 3 via Organic Cation Exchange Approach. Energy Technology, 2020, 8, 2000148.	1.8	4
357	Enhanced hole transport in benzoic acid doped spiro-OMeTAD composite layer with intergrowing benzoate phase for perovskite solar cells. Journal of Alloys and Compounds, 2020, 832, 154991.	2.8	18
358	Thermodynamic theory of crystal plasticity: Formulation and application to polycrystal fcc copper. Journal of the Mechanics and Physics of Solids, 2020, 138, 103905.	2.3	16
359	Highly Efficient Thermally Co-evaporated Perovskite Solar Cells and Mini-modules. Joule, 2020, 4, 1035-1053.	11.7	257
360	Fully Doctor-bladed efficient perovskite solar cells in ambient condition via composition engineering. Organic Electronics, 2020, 83, 105736.	1.4	18
361	Photoactivated transition metal dichalcogenides to boost electron extraction for all-inorganic tri-brominated planar perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 7784-7791.	5.2	31

#	Article	IF	CITATIONS
362	Efficient Interconnection in Perovskite Tandem Solar Cells. Small Methods, 2020, 4, 2000093.	4.6	43
363	Vacancies substitution induced interfacial dipole formation and defect passivation for highly stable perovskite solar cells. Chemical Engineering Journal, 2020, 396, 125010.	6.6	19
364	Embedding of WO3 nanocrystals with rich oxygen-vacancies in solution processed perovskite film for improved photovoltaic performance. Journal of Power Sources, 2020, 461, 228175.	4.0	17
365	UV-Stable and Highly Efficient Perovskite Solar Cells by Employing Wide Band gap NaTaO ₃ as an Electron-Transporting Layer. ACS Applied Materials & Interfaces, 2020, 12, 21772-21778.	4.0	10
366	Zwitterion-Stabilizing Scalable Bladed α-Phase Cs _{0.1} FA _{0.9} PbI ₃ Films for Efficient Inverted Planar Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2020, 8, 7020-7030.	3.2	27
367	Tri-functionalized TiO Cl4-2 accessory layer to boost efficiency of hole-free, all-inorganic perovskite solar cells. Journal of Energy Chemistry, 2020, 50, 1-8.	7.1	20
368	Intermediates transformation for efficient perovskite solar cells. Journal of Energy Chemistry, 2021, 52, 102-114.	7.1	26
369	Interphases, Interfaces, and Surfaces of Active Materials in Rechargeable Batteries and Perovskite Solar Cells. Advanced Materials, 2021, 33, e1905245.	11.1	30
370	All Electrospray Printing of Carbonâ€Based Costâ€Effective Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2006803.	7.8	26
371	A universal method for hysteresis-free and stable perovskite solar cells using water pre-treatment. Chemical Engineering Journal, 2021, 403, 126435.	6.6	12
372	Understanding the precursor chemistry for one-step deposition of mixed cation perovskite solar cells by methylamine route. Journal of Energy Chemistry, 2021, 57, 386-391.	7.1	9
373	Spontaneously supersaturated nucleation strategy for high reproducible and efficient perovskite solar cells. Chemical Engineering Journal, 2021, 405, 126998.	6.6	20
374	Improved perovskite crystallization via antisolvent-assisted processed using additive engineering for efficient perovskite solar cells. Journal of Alloys and Compounds, 2021, 855, 157396.	2.8	10
375	Strategies from small-area to scalable fabrication for perovskite solar cells. Journal of Energy Chemistry, 2021, 57, 567-586.	7.1	17
376	Thermomechanical conversion in metals: dislocation plasticity model evaluation of the Taylor-Quinney coefficient. Acta Materialia, 2021, 202, 170-180.	3.8	17
377	Beyond 17% stable perovskite solar module via polaron arrangement of tuned polymeric hole transport layer. Nano Energy, 2021, 82, 105685.	8.2	28
378	Evidence of improved power conversion efficiency in lead-free CsGel3 based perovskite solar cell heterostructure via <scp>scaps</scp> simulation. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2021, 39, .	0.6	75
379	Wearable temperature sensors based on lanthanum-doped aluminum-oxide dielectrics operating at low-voltage and high-frequency for healthcare monitoring systems. Ceramics International, 2021, 47, 4579-4586.	2.3	17

#	Article	IF	CITATIONS
380	Recent Advances in Carbon Nanotube Utilizations in Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2004765.	7.8	37
381	Numerical Modeling and Analysis of HTM-Free Heterojunction Solar Cell Using SCAPS-1D. East European Journal of Physics, 2021, , .	0.1	2
382	Recent progress in meniscus coating for large-area perovskite solar cells and solar modules. Sustainable Energy and Fuels, 2021, 5, 1926-1951.	2.5	11
383	Electronic effects of nano-confinement in functional organic and inorganic materials for optoelectronics. Chemical Society Reviews, 2021, 50, 3585-3628.	18.7	32
384	Scalable perovskite coating <i>via</i> anti-solvent-free Lewis acid–base adduct engineering for efficient perovskite solar modules. Journal of Materials Chemistry A, 2021, 9, 3018-3028.	5.2	58
385	Printing Highâ€Efficiency Perovskite Solar Cells in Highâ€Humidity Ambient Environment—An In Situ Guided Investigation. Advanced Science, 2021, 8, 2003359.	5.6	40
386	Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth. Nature Energy, 2021, 6, 63-71.	19.8	365
387	Ambient processed (110) preferred MAPbI ₃ thin films for highly efficient perovskite solar cells. Nanoscale Advances, 2021, 3, 2056-2064.	2.2	15
388	A Perspective on Perovskite Solar Cells. Energy, Environment, and Sustainability, 2021, , 55-151.	0.6	1
389	Methylamine-assisted secondary grain growth for CH ₃ NH ₃ PbI ₃ perovskite films with large grains and a highly preferred orientation. Journal of Materials Chemistry A, 2021, 9, 7625-7630.	5.2	12
390	Efficient Sb ₂ (S,Se) ₃ Solar Modules Enabled by Hydrothermal Deposition. Solar Rrl, 2021, 5, 2000750.	3.1	11
391	Simulation and property calculation for FA _{1–} <i>_x</i> Cs <i>_x</i> PbI _{3–} <i>_y</i> Br <i>Structures and optoelectronical properties. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 036301-036301.</i>	.< ฒ b>y :</td <td>sub>:</td>	su b >:
392	Towards the environmentally friendly solution processing of metal halide perovskite technology. Green Chemistry, 2021, 23, 5302-5336.	4.6	38
393	Mitigating Open-Circuit Voltage Loss in Pb–Sn Low-Bandgap Perovskite Solar Cells via Additive Engineering. ACS Applied Energy Materials, 2021, 4, 1731-1742.	2.5	43
394	Stable tin perovskite solar cells enabled by widening the time window for crystallization. Science China Materials, 2021, 64, 1849-1857.	3.5	10
395	Fully Air-Processed Dynamic Hot-Air-Assisted M:CsPbI2Br (M: Eu2+, In3+) for Stable Inorganic Perovskite Solar Cells. Matter, 2021, 4, 635-653.	5.0	109
396	Electroluminescence Principle and Performance Improvement of Metal Halide Perovskite Lightâ€Emitting Diodes. Advanced Optical Materials, 2021, 9, 2002167.	3.6	49
397	Close-loop recycling of perovskite solar cells through dissolution-recrystallization of perovskite by butylamine. Cell Reports Physical Science, 2021, 2, 100341.	2.8	32

#	Article	IF	CITATIONS
398	Structural Design for Efficient Perovskite Solar Modules. Solar Rrl, 2021, 5, 2000733.	3.1	8
399	Degradation Mechanisms in a Mixed Cations and Anions Perovskite Solar Cell: Mitigation Effect of the Gold Electrode. ACS Applied Energy Materials, 2021, 4, 1365-1376.	2.5	11
400	Work function engineering to enhance open-circuit voltage in planar perovskite solar cells by g-C3N4 nanosheets. Nano Research, 2021, 14, 2139-2144.	5.8	11
401	Additive Engineering toward Highâ€Performance Tin Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100034.	3.1	34
402	Commercial Carbon-Based all-Inorganic Perovskite Solar Cells with a High Efficiency of 13.81%: Interface Engineering and Photovoltaic Performance. ACS Applied Energy Materials, 2021, 4, 3255-3264.	2.5	12
403	A Review on Encapsulation Technology from Organic Light Emitting Diodes to Organic and Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2100151.	7.8	114
404	Efficient and Stable Mesoscopic Perovskite Solar Cells Using a Dopantâ€Free D–A Copolymer Holeâ€Transporting Layer. Solar Rrl, 2021, 5, 2000801.	3.1	7
405	Multifunctional potassium hexafluorophosphate passivate interface defects for high efficiency perovskite solar cells. Journal of Power Sources, 2021, 488, 229451.	4.0	39
406	Suppression of ion migration through cross-linked PDMS doping to enhance the operational stability of perovskite solar cells. Solar Energy, 2021, 217, 105-112.	2.9	10
408	Volatile solution: the way toward scalable fabrication of perovskite solar cells?. Matter, 2021, 4, 775-793.	5.0	53
409	Low-temperature processed tantalum/niobium co-doped TiO ₂ electron transport layer for high-performance planar perovskite solar cells. Nanotechnology, 2021, 32, 245201.	1.3	21
410	Bi-Directional functionalization of urea-complexed SnO2 for efficient planar perovskite solar cells. Applied Surface Science, 2021, 546, 148711.	3.1	21
411	Printing strategies for scaling-up perovskite solar cells. National Science Review, 2021, 8, nwab075.	4.6	48
412	Perovskite films prepared by solvent volatilization via DMSO-based intermediate phase for photovoltaics. Solar Energy, 2021, 218, 383-391.	2.9	7
413	Slot-die coating large-area formamidinium-cesium perovskite film for efficient and stable parallel solar module. Science Advances, 2021, 7, .	4.7	165
414	Technical Challenges and Perspectives for the Commercialization of Solutionâ€Processable Solar Cells. Advanced Materials Technologies, 2021, 6, .	3.0	60
415	Ink Engineering for Blade Coating FA-Dominated Perovskites in Ambient Air for Efficient Solar Cells and Modules. ACS Applied Materials & Interfaces, 2021, 13, 18724-18732.	4.0	20
416	Ambient Air Bladeâ€Coating Fabrication of Stable Tripleâ€Cation Perovskite Solar Modules by Green Solvent Quenching. Solar Rrl, 2021, 5, 2100073.	3.1	34

	CITATION R	EPORT	
#	Article	IF	CITATIONS
417	A Review of Integrated Systems Based on Perovskite Solar Cells and Energy Storage Units: Fundamental, Progresses, Challenges, and Perspectives. Advanced Science, 2021, 8, 2100552.	5.6	19
418	Amplifying Surface Energy Difference toward Anisotropic Growth of Allâ€Inorganic Perovskite Singleâ€Crystal Wires for Highly Sensitive Photodetector. Advanced Functional Materials, 2021, 31, 2101966.	7.8	21
419	Progress of Perovskite Solar Modules. Advanced Energy and Sustainability Research, 2021, 2, 2000051.	2.8	19
420	Improving perovskite solar cell performance by compositional engineering via triple-mixed cations. Solar Energy, 2021, 220, 412-417.	2.9	11
421	Opportunities and challenges of inorganic perovskites in high-performance photodetectors. Journal Physics D: Applied Physics, 2021, 54, 293002.	1.3	35
422	Symmetrical Conjugated Molecular Additive for Defect Passivation and Charge Transfer Bridge in Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 5935-5943.	2.5	14
423	Lead halide–templated crystallization of methylamine-free perovskite for efficient photovoltaic modules. Science, 2021, 372, 1327-1332.	6.0	351
424	Reduced Defects and Enhanced Performance of (FAPbl ₃) _{0.97} (MAPbBr ₃) _{0.03} -Based Perovskite Solar Cells by Trimesic Acid Additives. ACS Omega, 2021, 6, 16151-16158.	1.6	7
425	Recent advances on interface engineering of perovskite solar cells. Nano Research, 2022, 15, 85-103.	5.8	59
426	Current Development toward Commercialization of Metalâ€Halide Perovskite Photovoltaics. Advanced Optical Materials, 2021, 9, 2100390.	3.6	15
427	Roomâ€Temperatureâ€Processed, Carbonâ€Based Fully Printed Mesoscopic Perovskite Solar Cells with 15% Efficiency. Solar Rrl, 2021, 5, 2100274.	3.1	11
428	Scalable Blade Coating: A Technique Accelerating the Commercialization of Perovskiteâ€Based Photovoltaics. Energy Technology, 2021, 9, 2100204.	1.8	9
429	Solvent Free Laminated Fabrication of Lead Halide Perovskites for Sensitive and Stable X-ray Detection. Journal of Physical Chemistry Letters, 2021, 12, 6961-6966.	2.1	23
430	Releasing Nanocapsules for Highâ€Throughput Printing of Stable Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2101291.	10.2	18
431	"One-key-reset―recycling of whole perovskite solar cell. Matter, 2021, 4, 2522-2541.	5.0	31
432	The Main Progress of Perovskite Solar Cells in 2020–2021. Nano-Micro Letters, 2021, 13, 152.	14.4	250
433	Controllable printing of large-scale compact perovskite films for flexible photodetectors. Nano Research, 2022, 15, 1547-1553.	5.8	30
434	Recent Progress on Metal Halide Perovskite Solar Minimodules. Solar Rrl, 2022, 6, 2100458.	3.1	21

#	Article	IF	CITATIONS
435	Tailored Lattice "Tape―to Confine Tensile Interface for 11.08%â€Efficiency Allâ€Inorganic CsPbBr ₃ Perovskite Solar Cell with an Ultrahigh Voltage of 1.702ÂV. Advanced Science, 2021, 8, e2101418.	5.6	161
436	Highly Conductive Ligandâ€Free Cs ₂ PtBr ₆ Perovskite Nanocrystals with a Narrow Bandgap and Efficient Photoelectrochemical Performance. Small, 2021, 17, e2102149.	5.2	11
437	Upscaling perovskite solar cells via the ambient deposition of perovskite thin films. Trends in Chemistry, 2021, 3, 747-764.	4.4	12
438	Revealing phase evolution mechanism for stabilizing formamidinium-based lead halide perovskites by a key intermediate phase. CheM, 2021, 7, 2513-2526.	5.8	49
439	Review on engineering two-dimensional nanomaterials for promoting efficiency and stability of perovskite solar cells. Journal of Energy Chemistry, 2022, 68, 154-175.	7.1	11
440	Ï€â€Conjugated Small Molecules Modified SnO ₂ Layer for Perovskite Solar Cells with over 23% Efficiency. Advanced Energy Materials, 2021, 11, 2101416.	10.2	84
441	Materials and Methods for Highâ€Efficiency Perovskite Solar Modules. Solar Rrl, 2022, 6, 2100455.	3.1	51
442	Halogen Edge-Passivated Antimonene Nanoribbons for Photocatalytic Hydrogen Evolution Reaction with High Solar-to-Hydrogen Conversion. Journal of Physical Chemistry C, 2021, 125, 21341-21351.	1.5	12
443	Healing the Buried Cavities and Defects in Quasi-2D Perovskite Films by Self-Generated Methylamine Gas. ACS Energy Letters, 2021, 6, 3634-3642.	8.8	24
444	Toward Commercialization of Efficient and Stable Perovskite Solar Modules. Solar Rrl, 2022, 6, 2100600.	3.1	16
445	(FA 0.83 MA 0.17) 0.95 Cs 0.05 Pb(I 0.83 Br 0.17) 3 Perovskite Films Prepared by Solvent Volatilization for Highâ€Efficiency Solar Cells. Solar Rrl, 2021, 5, 2100640.	3.1	3
446	The Fabrication of Leadâ€Free Cs ₂ SnI ₆ Perovskite Films Using Iodineâ€Rich Strategy for Optoelectronic Applications. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100271.	0.8	5
447	Recent progress on all-inorganic metal halide perovskite solar cells. Materials Today Nano, 2021, 16, 100143.	2.3	13
448	Simulation and analysis of the performances of a thin plasmonic-based perovskite absorber by subtracting the parasitic absorption of nano-cylinders. Optical and Quantum Electronics, 2021, 53, 1.	1.5	5
449	Development and Challenges of Metal Halide Perovskite Solar Modules. Solar Rrl, 2022, 6, 2100545.	3.1	34
450	Chromium trioxide modified spiro-OMeTAD for highly efficient and stable planar perovskite solar cells. Journal of Energy Chemistry, 2021, 61, 386-394.	7.1	17
451	A strategic review on processing routes towards scalable fabrication of perovskite solar cells. Journal of Energy Chemistry, 2022, 64, 538-560.	7.1	33
452	Alkali chloride doped SnO ₂ electron-transporting layers for boosting charge transfer and passivating defects in all-inorganic CsPbBr ₃ perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 15003-15011.	5.2	30

#	Article	IF	CITATIONS
453	Organic–inorganic hybrid thin film light-emitting devices: interfacial engineering and device physics. Journal of Materials Chemistry C, 2021, 9, 1484-1519.	2.7	25
454	Toward Perovskite Solar Cell Commercialization: A Perspective and Research Roadmap Based on Interfacial Engineering. Advanced Materials, 2018, 30, e1800455.	11.1	332
455	Localized Surface Plasmon Resonance Enhanced Light Absorption in AuCu/CsPbCl ₃ Core/Shell Nanocrystals. Advanced Materials, 2020, 32, e2002163.	11.1	59
456	Morphology Controlling of Allâ€Inorganic Perovskite at Low Temperature for Efficient Rigid and Flexible Solar Cells. Advanced Energy Materials, 2018, 8, 1800758.	10.2	124
457	Local nearly non-strained perovskite lattice approaching a broad environmental stability window of efficient solar cells. Nano Energy, 2020, 75, 104940.	8.2	15
458	Progress and Opportunities for Cs Incorporated Perovskite Photovoltaics. Trends in Chemistry, 2020, 2, 638-653.	4.4	35
459	Scalable fabrication and coating methods for perovskite solar cells and solar modules. Nature Reviews Materials, 2020, 5, 333-350.	23.3	568
460	CHAPTER 4. Solution-processed Solar Cells: Perovskite Solar Cells. Inorganic Materials Series, 2019, , 153-192.	0.5	6
461	Roadmap on organic–inorganic hybrid perovskite semiconductors and devices. APL Materials, 2021, 9, .	2.2	102
462	Investigation of air-stable Cs ₂ Snl ₆ films prepared by the modified two-step process for lead-free perovskite solar cells. Semiconductor Science and Technology, 2020, 35, 125027.	1.0	10
463	Laser printed metal halide perovskites. JPhys Materials, 2020, 3, 034010.	1.8	5
464	Perovskite solar cells from lab to fab: the main challenges to access the market. Oxford Open Materials Science, 2020, 1, .	0.5	8
465	Research progress in large-area perovskite solar cells. Photonics Research, 2020, 8, A1.	3.4	37
466	Quality management of high-efficiency planar heterojunction organic-inorganic hybrid perovskite solar cells. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 158801.	0.2	3
467	Organic additives in all-inorganic perovskite solar cells and modules: from moisture endurance to enhanced efficiency and operational stability. Journal of Energy Chemistry, 2022, 67, 361-390.	7.1	21
468	Emerging Perovskite Solar Cell Technology: Remedial Actions for the Foremost Challenges. Advanced Energy Materials, 2021, 11, .	10.2	40
469	Upscaling Solutionâ€Processed Perovskite Photovoltaics. Advanced Energy Materials, 2021, 11, 2101973.	10.2	46
470	Lead Sources in Perovskite Solar Cells: Toward Controllable, Sustainable, and Largeâ€Scalable Production. Solar Rrl, 2021, 5, 2100665.	3.1	21

ARTICLE IF CITATIONS # Progress in flexible perovskite solar cells with improved efficiency. Journal of Semiconductors, 2021, 471 2.0 16 42, 101605. H _xMoO _{3-Y} Nanobelts: An Excellent Alternative to Carbon Electrode for High 0.4 Performance Mesoscopic Perovskite Solar Cells. SSRN Electronic Journal, 0, , . Lead-Free Perovskite Solar Cells with Efficiencies Reaching 8.29% Based on Single-Crystalline 473 0.4 0 Precursor Solutions. SSRN Electronic Journal, 0, , . Oligomeric Silica-Wrapped Perovskites Enable Synchronous Defect Passivation and Grain Stabilization 474 for Efficient and Stable Perovskite Photovoltaics. SSRN Electronic Journal, 0, , . Environmentally friendly approach via solvent-free processed perovskite solar cells., 2019,,. 475 0 Strategies for Largeâ€Scale Fabrication of Perovskite Films for Solar Cells. Solar Rrl, 2022, 6, 2100683. 3.1 Perovskite-based solar cells fabricated from TiO2 nanoparticles hybridized with biomaterials from 477 4.2 7 mollusc and diatoms. Chemosphere, 2022, 291, 132692. Surface-tension release in PTAA-based inverted perovskite solar cells. Organic Electronics, 2022, 100, 1.4 20 106378. A modified hybrid chemical vapor deposition method for the fabrication of efficient CsPbBr3 479 1.3 7 perovskite sólar cells. Journal Physics D: Applied Physics, 2022, 55, 064001. Progress in Perovskite Solar Cells towards Commercializationâ€"A Review. Materials, 2021, 14, 6569. 1.3 Low-temperature processing of polyvinylpyrrolidone modified CsPbI2Br perovskite films for 481 1.4 6 high-performance solar cells. Journal of Solid State Chemistry, 2022, 305, 122656. Methylamine gas healing of perovskite films: a short review and perspective. Journal of Materials Chemistry C, 2022, 10, 2390-2399. Stabilization Techniques of Lead Halide Perovskite for Photovoltaic Applications. Solar Rrl, 2022, 6, . 485 3.1 8 Hole transporting materials in inorganic CsPbI3â[°]Br solar cells: Fundamentals, criteria and opportunities. Materials Today, 2022, 52, 250-268. 8.3 Recent Advances and Perspectives of Photostability for Halide Perovskite Solar Cells. Advanced 487 3.6 41 Optical Materials, 2022, 10, 2101822. Strain relaxation and domain enlargement<i>via</i>phase transition towards efficient 488 5.2 CsPbl₂Br solar cells. Journal of Materials Chemistry A, 2022, 10, 3513-3521. Understanding the "double-edged-sword―effect of dimethyl sulfoxide to guide the design of highly 489 6.2 8 efficient perovskite solar cells in humid air. Nano Today, 2022, 42, 101371. Improved performance and stability of perovskite solar modules by interface modulating with graphene oxide crosslinked CsPbBr₃ quantum dots. Énergy and Environmental Science, 491 2022, 15, 244-253.

#	Article	IF	CITATIONS
492	Crystal-array-assisted growth of a perovskite absorption layer for efficient and stable solar cells. Energy and Environmental Science, 2022, 15, 1078-1085.	15.6	62
493	Progress and challenges on scaling up of perovskite solar cell technology. Sustainable Energy and Fuels, 2022, 6, 243-266.	2.5	59
494	High-quality and full-coverage CsPbBr3 thin films via electron beam evaporation with post-annealing treatment for all-inorganic perovskite solar cells. Solar Energy, 2022, 232, 320-327.	2.9	14
495	Interface Engineering of Pb–Sn Lowâ€Bandgap Perovskite Solar Cells for Improved Efficiency and Stability. Solar Rrl, 2022, 6, .	3.1	8
496	Enhanced photosensitive properties of a single-crystal formamidinium lead bromide iodine (FAPbBr ₂ 1) based photodetector. Materials Advances, 2022, 3, 2089-2095.	2.6	11
497	Hot-Air Treatment-Regulated Diffusion of LiTFSI to Accelerate the Aging-Induced Efficiency Rising of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 4378-4388.	4.0	9
498	Tunable engineering of photo- and electro-induced carrier dynamics in perovskite photoelectronic devices. Science China Materials, 2022, 65, 855-875.	3.5	9
499	Multifunctional Compoundâ€Regulated SnO ₂ for Highâ€Efficiency and Stable Perovskite Solar Cells under Ambient Air. ChemElectroChem, 2022, 9, .	1.7	6
500	PbS/CdS heterojunction thin layer affords high-performance carbon-based all-inorganic solar cells. Nano Energy, 2022, 95, 106973.	8.2	54
501	Pbs/Cds Heterojunction Thin Layer Affords High-Performance Carbon-Based All-Inorganic Solar Cells. SSRN Electronic Journal, 0, , .	0.4	0
502	åøŒ–物é'™é'›çŸ¿è–"膜çš"宿,©ç»"æ™¶ä,Žç¨³å®šæ€§ç"ç©¶. Scientia Sinica: Physica, Mechanica Et Astr	on ouz nica, 2	2022,,.
503	Electro-Thermal Small-Signal Analysis of Defects in Large-Area Perovskite Solar Cells. SSRN Electronic Journal, 0, , .	0.4	0
504	Selection of the ultimate perovskite solar cell materials and fabrication processes towards its industrialization: A review. Energy Science and Engineering, 2022, 10, 1478-1525.	1.9	9
505	Intermediate phase engineering of halide perovskites for photovoltaics. Joule, 2022, 6, 315-339.	11.7	60
506	A Review of Recent Developments in Preparation Methods for Large-Area Perovskite Solar Cells. Coatings, 2022, 12, 252.	1.2	42
507	Intermediate Chemistry of Halide Perovskites: Origin, Evolution, and Application. Journal of Physical Chemistry Letters, 2022, 13, 1765-1776.	2.1	23
508	Surface Passivation of Sputtered NiO _{<i>x</i>} Using a SAM Interface Layer to Enhance the Performance of Perovskite Solar Cells. ACS Omega, 2022, 7, 12147-12157.	1.6	38
509	Boosting the efficiency of inverted perovskite solar cells via ethanolamine doped PEDOT:PSS as hole transport layer. Chinese Physics B, 0, , .	0.7	4

ARTICLE IF CITATIONS # Moisture Stability of Perovskite Solar Cells Processed in Supercritical Carbon Dioxide. Molecules, 510 1.7 2 2021, 26, 7570. Stable perovskite solar cells with 23.12% efficiency and area over 1 cm2 by an all-in-one strategy. 511 4.2 Science China Chemistry, 2022, 65, 1321-1329. Recent developments in perovskite-based precursor inks for scalable architectures of perovskite 512 2.5 19 solar cell technology. Sustainable Energy and Fuels, 2022, 6, 2879-2900. NaBr-Modified CsPbl₂Br Improves the Comprehensive Performance of the Solar Cells. IEEE Journal of Photovoltaics, 2022, 12, 948-953. Unraveling the irreversible transformation by nucleophilic substitution: A hint for fully transparent 514 6.8 9 perovskite. EcoMat, 2022, 4, . Scalable processing for realizing 21.7%-efficient all-perovskite tandem solar modules. Science, 2022, 6.0 376, 762-767. A route towards the fabrication of large-scale and high-quality perovskite films for optoelectronic 516 1.6 13 devices. Scientific Reports, 2022, 12, 7411. Perovskite solar cells by vapor deposition based and assisted methods. Applied Physics Reviews, 2022, 9, 5.5 Defective MWCNT Enabled Dual Interface Coupling for Carbonâ€Based Perovskite Solar Cells with 518 7.8 35 Efficiency Exceeding 22%. Advanced Functional Materials, 2022, 32, . Recovery of Lead and Iodine from Spent Perovskite Solar Cells in Molten Salt. SSRN Electronic 0.4 Journal, 0, , . A facile oneâ€step solution synthesis of <scp> Cs ₂ Snl _{6â°ix} Br _x </scp> using lessâ€toxic methanol solvent for application in dyeâ€sensitized solar cells. International 520 2.2 1 Journal of Energy Research, 0, , . A boosting carrier transfer passivation layer for achieving efficient perovskite solar cells. Journal of 2.7 Materials Chemistry C, 2022, 10, 9794-9801. Recovery of lead and iodine from spent perovskite solar cells in molten salt. Chemical Engineering 524 6.6 8 Journal, 2022, 447, 137498. Polyhydroxy Compound Modifying Sno2 for High-Performance and Stable Perovskite Solar Cells. SSRN 0.4 Electronic Journal, O, , . Bifunctional Passivation through Fluoride Treatment for Highly Efficient and Stable Perovskite Solar 526 10.2 37 Cells. Advanced Energy Materials, 2022, 12, . Soluble Hybrid Ionic Semiconductor and Its Photovoltaic Effect in Solution. ACS Applied Materials & Interfaces, 0, , . Successive Solution–Liquid–Vapor Conversion of Metallic Lead Films for Highly Efficient Perovskite 528 0.3 4 Solar Cells. Russian Journal of Inorganic Chemistry, 2022, 67, 992-996. 529 High-performance large-area perovskite photovoltaic modules. , 2022, 1, e9120024. 64

#	Article	IF	CITATIONS
530	Progress of Solution-Processed Metal Oxides as Charge Transport Layers towards Efficient and Stable Perovskite Solar Cells and Modules. Materials Today Nano, 2022, , 100252.	2.3	2
531	Integrated Idealâ€Bandgap Perovskite/Bulkâ€Heterojunction Solar Cells with Efficiencies > 24%. Advanced Materials, 2022, 34, .	11.1	23
532	Nanopatterning on Mixed Halide Perovskites for Promoting Photocurrent Generation of Flexible Photodetector. Advanced Functional Materials, 2022, 32, .	7.8	2
533	Methylamineâ€Assisted Preparation of Ruddlesdenâ€Popper Perovskites for Stable Detection and Imaging of Xâ€Rays. Advanced Optical Materials, 2022, 10, .	3.6	14
534	Emerging Metal-Halide Perovskite Materials for Enhanced Solar Cells and Light-Emitting Applications. Engineering Materials, 2022, , 45-85.	0.3	1
535	Na2S decorated NiOx as effective hole transport layer for inverted planar perovskite solar cells. Materials Science in Semiconductor Processing, 2023, 153, 107107.	1.9	5
536	Optical Simulations in Perovskite Devices: A Critical Analysis. ACS Photonics, 2022, 9, 3196-3214.	3.2	3
537	Carbon emission reduction by amalgated perovskite structure as suitable lead substitute. Materials Today: Proceedings, 2022, , .	0.9	0
538	Photovoltaic Performance Improvement of Allâ€Inorganic CsPbBr ₃ Perovskite Solar Cells by Antisolvent Assisted Crystallization. ChemistrySelect, 2022, 7, .	0.7	2
539	Defect passivation and electrical conductivity enhancement in perovskite solar cells using functionalized graphene quantum dots. Materials Futures, 2022, 1, 045101.	3.1	20
540	Formate as Antiâ€Oxidation Additives for Pbâ€Free FASnI ₃ Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	4
541	Recent Advances in g-C3N4 for the Application of Perovskite Solar Cells. Nanomaterials, 2022, 12, 3625.	1.9	4
542	Opportunities and Challenges for Perovskite Solar Cells Based on Vacuum Thermal Evaporation. Advanced Materials Technologies, 2023, 8, .	3.0	10
543	Toward Clean and Economic Production of Highly Efficient Perovskite Solar Module Using a Cost-Effective and Low Toxic Aqueous Lead-Nitrate Precursor. Nanomaterials, 2022, 12, 3783.	1.9	2
544	Polyhydroxy compound modifying SnO2 for high-performance and stable perovskite solar cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656, 130318.	2.3	3
545	An illustrative understanding on strengthening in stability and efficiency of perovskite solar cells: Utilization of the perovskite-constructed polymer hybrid system of PHQACI-CN inclusion. Journal of Materials Chemistry C, 0, , .	2.7	0
546	Cuttingâ€Edge Studies Toward Commercialization of Large Area Solutionâ€Processed Perovskite Solar Cells. Advanced Materials Technologies, 2023, 8, .	3.0	4
547	Recent progress in perovskite solar cells: from device to commercialization. Science China Chemistry, 2022, 65, 2369-2416.	4.2	53

#	Article	IF	CITATIONS
548	Perovskite solar cells based on screen-printed thin films. Nature, 2022, 612, 266-271.	13.7	65
549	Method to Inhibit Perovskite Solution Aging: Induced by Perovskite Microcrystals. ACS Applied Materials & Interfaces, 2022, 14, 52960-52970.	4.0	4
550	Perovskite Dual-function Passivator: Room Temperature Ionic Liquid Obtained from Mechanochemical Preparation. Acta Chimica Sinica, 2022, 80, 1469.	0.5	0
551	Spraying Perovskite Intermediate Enabling Inchâ€Scale Microwire Film Fabrication for Integration Compatible Efficientâ€Photodetectors Array. Advanced Functional Materials, 2023, 33, .	7.8	2
552	Construction of Metal–Organic Framework Films via Crosslinkingâ€Induced Assembly. Advanced Materials, 2023, 35, .	11.1	6
553	High-Efficiency Inorganic Perovskite Solar Cell in a Wide Additive-Processing Window. ACS Applied Energy Materials, 2023, 6, 109-119.	2.5	2
554	FA cation replenishment-induced second growth of printed MA-free perovskites for efficient solar cells and modules. Chemical Communications, 2023, 59, 1521-1524.	2.2	1
555	Lead, tin, bismuth or organics: Assessment of potential environmental and human health hazards originating from mature perovskite PV technology. Solar Energy Materials and Solar Cells, 2023, 252, 112177.	3.0	4
556	Recycling of halide perovskites. , 2023, , 385-446.		0
557	Halide perovskites and high-pressure technologies: a fruitful encounter. Materials Chemistry Frontiers, 2023, 7, 2102-2119.	3.2	2
558	Distinct Reaction Route toward High Photovoltaic Performance: Perovskite Salts versus Crystals. ACS Applied Energy Materials, 2023, 6, 2247-2256.	2.5	3
559	3D printing and solar cell fabrication methods: A review of challenges, opportunities, and future prospects. Results in Optics, 2023, 11, 100385.	0.9	6
560	Building optimistic perovskite-polymer composite solar cells: Feasible involvement of a BLP inclusion to efficiently stable perovskite films. Materials Science in Semiconductor Processing, 2023, 160, 107409.	1.9	0
561	Study of lead-free perovskite photoconverting structures by impedance spectroscopy. Energy, 2023, 273, 127141.	4.5	4
562	Low-dimensional perovskite modified 3D structures for higher-performance solar cells. Journal of Energy Chemistry, 2023, 81, 389-403.	7.1	8
563	Efficient Inverted Perovskite Solar Cells with a Fill Factor Over 86% via Surface Modification of the Nickel Oxide Hole Contact. Advanced Functional Materials, 2023, 33, .	7.8	23
564	Tetramethylammonium hexafluorophosphate interface modification for high-efficiency perovskite solar cells. Journal Physics D: Applied Physics, 2023, 56, 145101.	1.3	0
565	Research Progress of Green Solvent in CsPbBr3 Perovskite Solar Cells. Nanomaterials, 2023, 13, 991.	1.9	8

#	Article	IF	CITATIONS
566	Enhanced UV Stability of 2D Perovskites (HO(CH2)4NH3)2(MA)n-1PbnI3n+1 by Hydrogen Bonds. New Journal of Chemistry, 0, , .	1.4	0
568	Sustainable Energy, Fuel and Chemicals. , 2021, , 488-588.		0
579	Stable Sn-Based Hybrid Perovskite-Related Structures with Tunable Color Coordinates via Organic Cations in Low-Temperature Synthesis. ACS Energy Letters, 2023, 8, 2630-2640.	8.8	7
584	Industrial perspectives on the upscaling of perovskite materials for photovoltaic applications and its environmental impacts. , 2023, , 117-142.		0
595	Modeling and Analysis of a Novel HTL-Free CsGel ₃ Inorganic Perovskite Solar Cell Structure. , 2023, , .		0