Electricity demand planning forecasts should consider maintain reserve margins during heat waves

Applied Energy 206, 267-277 DOI: 10.1016/j.apenergy.2017.08.141

Citation Report

#	Article	IF	CITATIONS
1	A review of the potential impacts of climate change on bulk power system planning and operations in the United States. Renewable and Sustainable Energy Reviews, 2018, 98, 255-267.	8.2	67
2	The impact of climate change on electricity demand in Australia. Energy and Environment, 2018, 29, 1263-1297.	2.7	19
3	Passive survivability of buildings under changing urban climates across eight US cities. Environmental Research Letters, 2019, 14, 074028.	2.2	33
4	Effects of Climate Change in Electric Power Infrastructures. , 0, , .		7
5	A novel approach for selecting typical hot-year (THY) weather data. Applied Energy, 2019, 242, 1634-1648.	5.1	22
6	A multi-scale calibration approach for process-oriented aggregated building energy demand models. Energy and Buildings, 2019, 191, 82-94.	3.1	10
7	Electricity infrastructure vulnerabilities due to long-term growth and extreme heat from climate change in Los Angeles County. Energy Policy, 2019, 128, 943-953.	4.2	31
8	Forecasting peak electricity demand for Los Angeles considering higher air temperatures due to climate change. Applied Energy, 2019, 236, 1-9.	5.1	70
9	Critical risk determination method of energy-flow network for urban electricity system under extreme heat wave impact. Environmental Research, 2020, 191, 110143.	3.7	7
10	Resource adequacy implications of temperature-dependent electric generator availability. Applied Energy, 2020, 262, 114424.	5.1	16
11	Decomposing the drivers of residential space cooling energy consumption in EU-28 countries using a panel data approach. Energy and Built Environment, 2020, 1, 432-442.	2.9	13
12	Reconciling complexity and deep uncertainty in infrastructure design for climate adaptation. Sustainable and Resilient Infrastructure, 2022, 7, 83-99.	1.7	30
13	The impact of probability of electricity price spike and outside temperature to define total expected cost for air conditioning. Energy, 2020, 195, 116994.	4.5	4
14	Multi-step least squares support vector machine modeling approach for forecasting short-term electricity demand with application. Neural Computing and Applications, 2021, 33, 301-320.	3.2	17
15	Stay-at-Home Orders during the COVID-19 Pandemic Reduced Urban Water Use. Environmental Science and Technology Letters, 2021, 8, 431-436.	3.9	36
16	Institutional heat wave analysis by building energy modeling fleet and meter data. Energy and Buildings, 2021, 237, 110774.	3.1	10
17	The Role of Temperature Variability on Seasonal Electricity Demand in the Southern US. Frontiers in Sustainable Cities, 2021, 3, .	1.2	9
18	Centralization and decentralization for resilient infrastructure and complexity. Environmental Research: Infrastructure and Sustainability, 2021, 1, 021001.	0.9	18

CITATION REPORT

#	Article	IF	CITATIONS
19	Core process representation in power system operational models: Gaps, challenges, and opportunities for multisector dynamics research. Energy, 2022, 238, 122049.	4.5	20
20	How will climate change affect the peak electricity load? Evidence from China. Journal of Cleaner Production, 2021, 322, 129080.	4.6	15
21	Weathering adaptation: Grid infrastructure planning in a changing climate. Climate Risk Management, 2020, 30, 100256.	1.6	14
22	Leveraging SETS resilience capabilities for safe-to-fail infrastructure under climate change. Current Opinion in Environmental Sustainability, 2022, 54, 101153.	3.1	17
23	Navigating Exploitative and Explorative Leadership in Support of Infrastructure Resilience. Frontiers in Sustainable Cities, 2022, 4, .	1.2	3
24	Can Satellite-Based Thermal Anomalies Be Indicative of Heatwaves? An Investigation for MODIS Land Surface Temperatures in the Mediterranean Region. Remote Sensing, 2022, 14, 3139.	1.8	4
25	Resilient cooling through geothermal district energy system. Applied Energy, 2022, 325, 119880.	5.1	4
26	High temperatures and electricity disconnections for low-income homes in California. Nature Energy, 2022, 7, 1052-1064.	19.8	11
27	Understanding the social impacts of power outages in North America: a systematic review. Environmental Research Letters, 2023, 18, 053004.	2.2	6
33	Research and Analysis on the Potential of Residential Consumers' Response to Adjustable Electricity Demand under the Background of Regional Short-time Power ShortageA Case Study of Jiangxi Province, China. , 2023, , .		0