Advancing The Cancer Genome Atlas glioma MRI collec labels and radiomic features

Scientific Data 4, 170117 DOI: 10.1038/sdata.2017.117

Citation Report

#	Article	IF	CITATIONS
1	Machine Learning and Deep Learning Techniques to Predict Overall Survival of Brain Tumor Patients using MRI Images. , 2017, , .		42
2	Semi-Automated Segmentation of Glioblastomas in Brain MRI Using Machine Learning Techniques. , 2017, , .		5
3	An Innovative Model for Detecting Brain Tumors and Glioblastoma Multiforme Disease Patterns. International Journal of Software Science and Computational Intelligence, 2017, 9, 34-45.	3.0	3
4	Multimodal Brain Tumor Segmentation Using Ensemble of Forest Method. Lecture Notes in Computer Science, 2018, , 159-168.	1.3	17
5	MRI Brain Tumor Segmentation and Patient Survival Prediction Using Random Forests andÂFully Convolutional Networks. Lecture Notes in Computer Science, 2018, , 204-215.	1.3	33
6	Automated Brain Tumor Segmentation on Magnetic Resonance Images and Patient's Overall Survival Prediction Using Support Vector Machines. Lecture Notes in Computer Science, 2018, , 435-449.	1.3	10
7	Ensembles of Multiple Models and Architectures for Robust Brain Tumour Segmentation. Lecture Notes in Computer Science, 2018, , 450-462.	1.3	216
8	Brain Tumor Segmentation Using an Adversarial Network. Lecture Notes in Computer Science, 2018, , 123-132.	1.3	19
9	Glioblastoma and Survival Prediction. Lecture Notes in Computer Science, 2018, 10670, 358-368.	1.3	24
10	Deep Learning Based Multimodal Brain Tumor Diagnosis. Lecture Notes in Computer Science, 2018, , 149-158.	1.3	32
11	Pooling-Free Fully Convolutional Networks withÂDense Skip Connections forÂSemanticÂSegmentation, with Application toÂBrain Tumor Segmentation. Lecture Notes in Computer Science, 2018, , 169-177.	1.3	12
12	3D Brain Tumor Segmentation Through Integrating Multiple 2D FCNNs. Lecture Notes in Computer Science, 2018, , 191-203.	1.3	10
13	Multimodal Brain Tumor Segmentation Using 3D Convolutional Networks. Lecture Notes in Computer Science, 2018, , 226-240.	1.3	9
14	Dilated Convolutions for Brain Tumor Segmentation in MRI Scans. Lecture Notes in Computer Science, 2018, , 253-262.	1.3	20
15	Residual Encoder and Convolutional Decoder Neural Network for Glioma Segmentation. Lecture Notes in Computer Science, 2018, , 263-273.	1.3	10
16	TPCNN: Two-Phase Patch-Based Convolutional Neural Network for Automatic Brain Tumor Segmentation and Survival Prediction. Lecture Notes in Computer Science, 2018, , 274-286.	1.3	8
17	Multi-modal PixelNet for Brain Tumor Segmentation. Lecture Notes in Computer Science, 2018, , 298-308.	1.3	12
18	Brain Tumor Segmentation Using Dense Fully Convolutional Neural Network. Lecture Notes in Computer Science, 2018, , 309-319.	1.3	31

#	Article	IF	CITATIONS
19	Brain Tumor Segmentation in MRI Scans Using Deeply-Supervised Neural Networks. Lecture Notes in Computer Science, 2018, , 320-331.	1.3	14
20	Brain Tumor Segmentation and Parsing on MRIs Using Multiresolution Neural Networks. Lecture Notes in Computer Science, 2018, , 332-343.	1.3	5
21	Brain Tumor Segmentation Using Deep Fully Convolutional Neural Networks. Lecture Notes in Computer Science, 2018, , 344-357.	1.3	23
22	MRI Augmentation via Elastic Registration forÂBrain Lesions Segmentation. Lecture Notes in Computer Science, 2018, , 369-380.	1.3	7
23	Cascaded V-Net Using ROI Masks for Brain Tumor Segmentation. Lecture Notes in Computer Science, 2018, , 381-391.	1.3	27
24	Brain Tumor Segmentation Using a 3D FCN with Multi-scale Loss. Lecture Notes in Computer Science, 2018, , 392-402.	1.3	17
25	Brain Tumor Segmentation Using a Multi-path CNN Based Method. Lecture Notes in Computer Science, 2018, , 403-422.	1.3	9
26	3D Deep Neural Network-Based Brain Tumor Segmentation Using Multimodality Magnetic Resonance Sequences. Lecture Notes in Computer Science, 2018, , 423-434.	1.3	19
27	Towards Uncertainty-Assisted Brain Tumor Segmentation and Survival Prediction. Lecture Notes in Computer Science, 2018, , 474-485.	1.3	28
28	Automatic Brain Tumor Segmentation Using Cascaded Anisotropic Convolutional Neural Networks. Lecture Notes in Computer Science, 2018, , 178-190.	1.3	243
29	A Conditional Adversarial Network for Semantic Segmentation of Brain Tumor. Lecture Notes in Computer Science, 2018, , 241-252.	1.3	38
30	Tumor Segmentation from Multimodal MRI Using Random Forest with Superpixel and Tensor Based Feature Extraction. Lecture Notes in Computer Science, 2018, , 463-473.	1.3	12
31	Concatenated and Connected Random Forests With Multiscale Patch Driven Active Contour Model for Automated Brain Tumor Segmentation of MR Images. IEEE Transactions on Medical Imaging, 2018, 37, 1943-1954.	8.9	145
32	Brain Tumor Extraction from MRI Using Clustering Methods and Evaluation of Their Performance. , 2018, , .		Ο
33	Survey of Image Processing Techniques for Brain Pathology Diagnosis: Challenges and Opportunities. Frontiers in Robotics and Al, 2018, 5, 120.	3.2	12
34	Generative Adversarial Framework for Learning Multiple Clinical Tasks. , 2018, , .		7
35	Deep Learning and Multi-Sensor Fusion for Glioma Classification Using Multistream 2D Convolutional Networks. , 2018, 2018, 5894-5897.		56
36	MRI Brain Tumor Segmentation and Analysis using Rough-Fuzzy C-Means and Shape Based Properties. Journal of King Saud University - Computer and Information Sciences, 2022, 34, 115-133.	3.9	23

#	Article	IF	CITATIONS
37	Optimizing Convolutional Neural Networks for Brain Tumor Segmentation in MRI Images. , 2018, , .		0
38	A Modified U-Net Convolutional Network Featuring a Nearest-neighbor Re-sampling-based Elastic-Transformation for Brain Tissue Characterization and Segmentation. , 2018, 2018, .		20
39	Classification of the glioma grading using radiomics analysis. PeerJ, 2018, 6, e5982.	2.0	121
40	Towards Safe Deep Learning: Accurately Quantifying Biomarker Uncertainty in Neural Network Predictions. Lecture Notes in Computer Science, 2018, , 691-699.	1.3	32
41	Adaptive Feature Recombination and Recalibration for Semantic Segmentation: Application to Brain Tumor Segmentation in MRI. Lecture Notes in Computer Science, 2018, , 706-714.	1.3	28
42	Fully automated brain tumour segmentation system in 3Dâ€MRI using symmetry analysis of brain and level sets. IET Image Processing, 2018, 12, 1964-1971.	2.5	53
43	3D Multi-Scale Convolutional Networks for Glioma Grading Using MR Images. , 2018, , .		27
44	Hybrid Pyramid U-Net Model for Brain Tumor Segmentation. IFIP Advances in Information and Communication Technology, 2018, , 346-355.	0.7	29
45	Automatic Brain Tumor Grading from MRI Data Using Convolutional Neural Networks and Quality Assessment. Lecture Notes in Computer Science, 2018, , 106-114.	1.3	76
46	Overall survival prediction in glioblastoma multiforme patients from volumetric, shape and texture features using machine learning. Surgical Oncology, 2018, 27, 709-714.	1.6	70
47	One-Pass Multi-task Convolutional Neural Networks for Efficient Brain Tumor Segmentation. Lecture Notes in Computer Science, 2018, , 637-645.	1.3	46
48	Binary Glioma Grading: Radiomics versus Pre-trained CNN Features. Lecture Notes in Computer Science, 2018, , 498-505.	1.3	11
49	Machine learning: a useful radiological adjunct in determination of a newly diagnosed glioma's grade and IDH status. Journal of Neuro-Oncology, 2018, 139, 491-499.	2.9	30
50	Multimodal 3D DenseNet for IDH Genotype Prediction in Gliomas. Genes, 2018, 9, 382.	2.4	91
51	Wavelet Transform to Improve Accuracy of a Prediction Model for Overall Survival Time of Brain Tumor Patients Based On MRI Images. , 2018, , .		7
52	Epidermal Growth Factor Receptor Extracellular Domain Mutations in Glioblastoma Present Opportunities for Clinical Imaging and Therapeutic Development. Cancer Cell, 2018, 34, 163-177.e7.	16.8	145
53	Brain extraction from normal and pathological images: A joint PCA/Image-Reconstruction approach. NeuroImage, 2018, 176, 431-445.	4.2	20
54	DRINet for Medical Image Segmentation. IEEE Transactions on Medical Imaging, 2018, 37, 2453-2462.	8.9	198

#	Article	IF	CITATIONS
55	Class Balanced PixelNet for Neurological Image Segmentation. , 2018, , .		4
56	Deep Learning Algorithm for Brain Tumor Detection and Analysis Using MR Brain Images. , 2019, , .		5
57	Automatic Brain Tumor Segmentation Based on Cascaded Convolutional Neural Networks With Uncertainty Estimation. Frontiers in Computational Neuroscience, 2019, 13, 56.	2.1	142
58	Integration of Radiomic and Multi-omic Analyses Predicts Survival of Newly Diagnosed IDH1 Wild-Type Glioblastoma. Cancers, 2019, 11, 1148.	3.7	41
59	Bayesian Generative Models for Knowledge Transfer in MRI Semantic Segmentation Problems. Frontiers in Neuroscience, 2019, 13, 844.	2.8	17
60	Prediction of 1p/19q Codeletion in Diffuse Glioma Patients Using Pre-operative Multiparametric Magnetic Resonance Imaging. Frontiers in Computational Neuroscience, 2019, 13, 52.	2.1	22
61	Multi-projection deep learning network for segmentation of 3D medical images. Pattern Recognition Letters, 2019, 125, 791-797.	4.2	26
62	Segmentation of gliomas in magnetic resonance images using recurrent neural networks. , 2019, , .		5
63	Brain Tumor Segmentation Using Multi-Cascaded Convolutional Neural Networks and Conditional Random Field. IEEE Access, 2019, 7, 92615-92629.	4.2	120
64	A Machine Learning Approach to Brain Tumors Segmentation Using Adaptive Random Forest Algorithm. , 2019, , .		19
65	Unsupervised Deformable Registration for Multi-modal Images via Disentangled Representations. Lecture Notes in Computer Science, 2019, , 249-261.	1.3	59
66	Self-supervised learning for medical image analysis using image context restoration. Medical Image Analysis, 2019, 58, 101539.	11.6	315
67	Brain Tumor Segmentation and Survival Prediction Using Multimodal MRI Scans With Deep Learning. Frontiers in Neuroscience, 2019, 13, 810.	2.8	155
68	Region-of-interest undersampled MRI reconstruction: A deep convolutional neural network approach. Magnetic Resonance Imaging, 2019, 63, 185-192.	1.8	19
69	Inception Modules Enhance Brain Tumor Segmentation. Frontiers in Computational Neuroscience, 2019, 13, 44.	2.1	37
71	Fusing of Medical Images and Reports in Diagnostics of Brain Diseases. , 2019, , .		4
72	Automatic Brain Tumor Segmentation Method Based on Modified Convolutional Neural Network. , 2019, 2019, 998-1001.		8
73	Automatic Brain Tumor Segmentation Using Cascaded FCN with DenseCRF and K-means. , 2019, , .		2

	CITATION	Report	
#	Article	IF	CITATIONS
74	Predictable Uncertainty-Aware Unsupervised Deep Anomaly Segmentation. , 2019, , .		8
75	Detection and Classification of Brain tumor tissues from Noisy MR Images using hybrid ACO-SA based LLRBFNN model and modified FLIFCM algorithm. , 2019, , .		1
76	Radiogenomic analysis of vascular endothelial growth factor in patients with diffuse gliomas. Cancer Imaging, 2019, 19, 68.	2.8	20
77	"Après Mois, Le Délugeâ€ŧ Preparing for the Coming Data Flood in the MRI-Guided Radiotherapy Era. Frontiers in Oncology, 2019, 9, 983.	2.8	14
78	Automatic glioma segmentation based on adaptive superpixel. BMC Medical Imaging, 2019, 19, 73.	2.7	28
79	Parasitic GAN for Semi-Supervised Brain Tumor Segmentation. , 2019, , .		13
80	A Compound Neural Network for Brain Tumor Segmentation. , 2019, , .		1
81	A Multi-parametric MRI-Based Radiomics Signature and a Practical ML Model for Stratifying Glioblastoma Patients Based on Survival Toward Precision Oncology. Frontiers in Computational Neuroscience, 2019, 13, 58.	2.1	36
82	Image-based Classification of Tumor Type and Growth Rate using Machine Learning: a preclinical study. Scientific Reports, 2019, 9, 12529.	3.3	32
83	Feature-Guided Deep Radiomics for Glioblastoma Patient Survival Prediction. Frontiers in Neuroscience, 2019, 13, 966.	2.8	43
84	Mixed-Reality Aided System for Glioblastoma Resection Surgery using Microsoft HoloLens. , 2019, , .		4
85	Emerging Applications of Artificial Intelligence in Neuro-Oncology. Radiology, 2019, 290, 607-618.	7.3	159
86	Neurological Diseases. , 2019, , 217-230.		1
87	Of fractal and Fourier: A measure for local shape complexity for neurological applications. Journal of Neuroscience Methods, 2019, 323, 61-67.	2.5	3
88	A potential field segmentation based method for tumor segmentation on multi-parametric MRI of glioma cancer patients. BMC Medical Imaging, 2019, 19, 48.	2.7	11
89	Simulation of glioblastoma growth using a 3D multispecies tumor model with mass effect. Journal of Mathematical Biology, 2019, 79, 941-967.	1.9	34
90	Evaluation of tumor shape features for overall survival prognosis in glioblastoma multiforme patients. Surgical Oncology, 2019, 29, 178-183.	1.6	18
91	Automated brain tumor segmentation on multi-modal MR image using SegNet. Computational Visual Media, 2019, 5, 209-219.	17.5	117

#	Article	IF	CITATIONS
92	Regression based overall survival prediction of glioblastoma multiforme patients using a single discovery cohort of multi-institutional multi-channel MR images. Medical and Biological Engineering and Computing, 2019, 57, 1683-1691.	2.8	6
93	An Efficient Automatic Brain Tumor Classification Using LBP Features and SVM-Based Classifier. Lecture Notes on Data Engineering and Communications Technologies, 2019, , 163-170.	0.7	14
94	Precision diagnostics based on machine learning-derived imaging signatures. Magnetic Resonance Imaging, 2019, 64, 49-61.	1.8	31
95	A Roadmap for Foundational Research on Artificial Intelligence in Medical Imaging: From the 2018 NIH/RSNA/ACR/The Academy Workshop. Radiology, 2019, 291, 781-791.	7.3	241
96	Hierarchical Multi-class Segmentation of Glioma Images Using Networks with Multi-level Activation Function. Lecture Notes in Computer Science, 2019, , 116-127.	1.3	7
97	Segmentation of Gliomas and Prediction of Patient Overall Survival: A Simple and Fast Procedure. Lecture Notes in Computer Science, 2019, , 199-209.	1.3	15
98	Segmenting Brain Tumors from MRI Using Cascaded Multi-modal U-Nets. Lecture Notes in Computer Science, 2019, , 13-24.	1.3	15
99	A novel end-to-end brain tumor segmentation method using improved fully convolutional networks. Computers in Biology and Medicine, 2019, 108, 150-160.	7.0	124
100	Multi-scale Masked 3-D U-Net for Brain Tumor Segmentation. Lecture Notes in Computer Science, 2019, , 222-233.	1.3	8
101	A radiomics nomogram based on multiparametric MRI might stratify glioblastoma patients according to survival. European Radiology, 2019, 29, 5528-5538.	4.5	48
102	Multi-stage Association Analysis of Glioblastoma Gene Expressions with Texture and Spatial Patterns. Lecture Notes in Computer Science, 2019, 11383, 239-250.	1.3	9
103	Brain Tumor Segmentation and Survival Prediction Using a Cascade of Random Forests. Lecture Notes in Computer Science, 2019, , 334-345.	1.3	15
104	Brain Tumor Segmentation Using Bit-plane and UNET. Lecture Notes in Computer Science, 2019, , 466-475.	1.3	13
105	Automatic Brain Tumor Segmentation Using Convolutional Neural Networks with Test-Time Augmentation. Lecture Notes in Computer Science, 2019, , 61-72.	1.3	57
106	Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks. Neurocomputing, 2019, 338, 34-45.	5.9	322
107	Deep Learning Versus Classical Regression for Brain Tumor Patient Survival Prediction. Lecture Notes in Computer Science, 2019, , 429-440.	1.3	16
108	Conditional Generative Adversarial Refinement Networks for Unbalanced Medical Image Semantic Segmentation. , 2019, , .		21
109	Automatic Segmentation of Brain Tumor Using 3D SE-Inception Networks with Residual Connections. Lecture Notes in Computer Science, 2019, , 346-357.	1.3	3

#	Article	IF	CITATIONS
110	Mass Effect Deformation Heterogeneity (MEDH) on Gadolinium-contrast T1-weighted MRI is associated with decreased survival in patients with right cerebral hemisphere Glioblastoma: A feasibility study. Scientific Reports, 2019, 9, 1145.	3.3	16
111	voxel-GAN: Adversarial Framework for Learning Imbalanced Brain Tumor Segmentation. Lecture Notes in Computer Science, 2019, , 321-333.	1.3	14
112	VoxLogicA: A Spatial Model Checker for Declarative Image Analysis. Lecture Notes in Computer Science, 2019, , 281-298.	1.3	21
113	Brain Tumour Segmentation Method Based on Supervoxels and Sparse Dictionaries. Lecture Notes in Computer Science, 2019, , 210-221.	1.3	5
114	A Pretrained DenseNet Encoder for Brain Tumor Segmentation. Lecture Notes in Computer Science, 2019, , 105-115.	1.3	7
115	Multi-institutional Deep Learning Modeling Without Sharing Patient Data: A Feasibility Study on Brain Tumor Segmentation. Lecture Notes in Computer Science, 2019, 11383, 92-104.	1.3	215
116	Glioma Segmentation with Cascaded UNet. Lecture Notes in Computer Science, 2019, , 189-198.	1.3	24
117	Glioma Prognosis: Segmentation of the Tumor and Survival Prediction Using Shape, Geometric and Clinical Information. Lecture Notes in Computer Science, 2019, , 142-153.	1.3	15
118	Brain Tumor Segmentation and Tractographic Feature Extraction from Structural MR Images for Overall Survival Prediction. Lecture Notes in Computer Science, 2019, , 128-141.	1.3	42
119	S3D-UNet: Separable 3D U-Net for Brain Tumor Segmentation. Lecture Notes in Computer Science, 2019, , 358-368.	1.3	114
120	3D convolutional neural networks for tumor segmentation using long-range 2D context. Computerized Medical Imaging and Graphics, 2019, 73, 60-72.	5.8	82
121	Inter-rater agreement in glioma segmentations on longitudinal MRI. NeuroImage: Clinical, 2019, 22, 101727.	2.7	75
122	Radiomics-based machine learning methods for isocitrate dehydrogenase genotype prediction of diffuse gliomas. Journal of Cancer Research and Clinical Oncology, 2019, 145, 543-550.	2.5	76
123	Adverse Effects of Image Tiling on Convolutional Neural Networks. Lecture Notes in Computer Science, 2019, , 25-36.	1.3	0
124	Automatic Brain Tumor Segmentation with Domain Adaptation. Lecture Notes in Computer Science, 2019, , 380-392.	1.3	11
125	Multi-planar Spatial-ConvNet for Segmentation and Survival Prediction in Brain Cancer. Lecture Notes in Computer Science, 2019, , 94-104.	1.3	20
126	Deep Convolutional Neural Networks Using U-Net for Automatic Brain Tumor Segmentation in Multimodal MRI Volumes. Lecture Notes in Computer Science, 2019, , 37-48.	1.3	55
127	Segmentation of Brain Tumors and Patient Survival Prediction: Methods for the BraTS 2018 Challenge. Lecture Notes in Computer Science, 2019, , 3-12.	1.3	47

#	Article	IF	CITATIONS
128	Brain Tumor Segmentation Using an Ensemble of 3D U-Nets and Overall Survival Prediction Using Radiomic Features. Lecture Notes in Computer Science, 2019, , 279-288.	1.3	37
129	3D MRI Brain Tumor Segmentation Using Autoencoder Regularization. Lecture Notes in Computer Science, 2019, , 311-320.	1.3	444
130	Global Planar Convolutions for Improved Context Aggregation in Brain Tumor Segmentation. Lecture Notes in Computer Science, 2019, , 393-405.	1.3	4
131	Tumor Segmentation and Survival Prediction in Glioma with Deep Learning. Lecture Notes in Computer Science, 2019, , 83-93.	1.3	19
132	Ensemble of Fully Convolutional Neural Network for Brain Tumor Segmentation from Magnetic Resonance Images. Lecture Notes in Computer Science, 2019, , 485-496.	1.3	12
133	Segmentation of Brain Tumors Using DeepLabv3+. Lecture Notes in Computer Science, 2019, , 154-167.	1.3	21
134	No New-Net. Lecture Notes in Computer Science, 2019, , 234-244.	1.3	233
135	Automatic Brain Tumor Segmentation with Contour Aware Residual Network and Adversarial Training. Lecture Notes in Computer Science, 2019, , 267-278.	1.3	6
136	Multimodal Brain Tumor Segmentation Using Cascaded V-Nets. Lecture Notes in Computer Science, 2019, , 49-60.	1.3	12
137	Multipath Densely Connected Convolutional Neural Network for Brain Tumor Segmentation. Lecture Notes in Computer Science, 2019, , 81-91.	1.3	1
138	Deep Learning Radiomics Algorithm for Gliomas (DRAG) Model: A Novel Approach Using 3D UNET Based Deep Convolutional Neural Network for Predicting Survival in Gliomas. Lecture Notes in Computer Science, 2019, , 369-379.	1.3	35
139	Deep Hourglass for Brain Tumor Segmentation. Lecture Notes in Computer Science, 2019, , 419-428.	1.3	16
140	Extending 2D Deep Learning Architectures to 3D Image Segmentation Problems. Lecture Notes in Computer Science, 2019, , 73-82.	1.3	12
141	A Novel Domain Adaptation Framework for Medical Image Segmentation. Lecture Notes in Computer Science, 2019, , 289-298.	1.3	25
142	Automatic Brain Tumor Segmentation and Overall Survival Prediction Using Machine Learning Algorithms. Lecture Notes in Computer Science, 2019, , 406-418.	1.3	14
143	3D U-Net for Brain Tumour Segmentation. Lecture Notes in Computer Science, 2019, , 254-266.	1.3	20
144	Ensembles of Densely-Connected CNNs with Label-Uncertainty for Brain Tumor Segmentation. Lecture Notes in Computer Science, 2019, , 456-465.	1.3	78
145	Learning Contextual and Attentive Information for Brain Tumor Segmentation. Lecture Notes in Computer Science, 2019, , 497-507.	1.3	42

#	Article	IF	CITATIONS
146	Medical Image Collaborative Training Based on Multi-Blockchain. , 2019, , .		3
147	Weakly Supervised Fine Tuning Approach for Brain Tumor Segmentation Problem. , 2019, , .		5
148	ConvRadiomics: Convolutional Radiomics Feature Extraction Toolkit. , 2019, , .		0
149	Effective Multipath Feature Extraction 3D CNN for Multimodal Brain Tumor Segmentation. , 2019, , .		2
150	Attention-Guided Version of 2D UNet for Automatic Brain Tumor Segmentation. , 2019, , .		46
151	An Enhanced U-Net for Brain Tumor Segmentation. , 2019, , .		1
152	Multi-Disease Segmentation of Gliomas and White Matter Hyperintensities in the BraTS Data Using a 3D Convolutional Neural Network. Frontiers in Computational Neuroscience, 2019, 13, 84.	2.1	30
153	Automatic Histogram Specification for Glioma Grading Using Multicenter Data. Journal of Healthcare Engineering, 2019, 2019, 1-12.	1.9	5
154	Brain Tumor Segmentation Based on Deep Learning. , 2019, , .		11
155	Patch and Pixel Based Brain Tumor Segmentation in MRI images using Convolutional Neural Networks. , 2019, , .		10
156	Quantitative Impact of Label Noise on the Quality of Segmentation of Brain Tumors on MRI scans. , 0, , .		3
157	FMNet: Feature Mining Networks for Brain Tumor Segmentation. , 2019, , .		2
158	Multi-level Glioma Segmentation using 3D U-Net Combined Attention Mechanism with Atrous Convolution. , 2019, , .		16
159	Divide and Conquer: Stratifying Training Data by Tumor Grade Improves Deep Learning-Based Brain Tumor Segmentation. Frontiers in Neuroscience, 2019, 13, 1182.	2.8	13
160	Prediction of malignant glioma grades using contrast-enhanced T1-weighted and T2-weighted magnetic resonance images based on a radiomic analysis. Scientific Reports, 2019, 9, 19411.	3.3	27
161	Modified U-Net for Automatic Brain Tumor Regions Segmentation. , 2019, , .		2
162	Data Augmentation for Brain-Tumor Segmentation: A Review. Frontiers in Computational Neuroscience, 2019, 13, 83.	2.1	195
163	Robustness of Radiomics for Survival Prediction of Brain Tumor Patients Depending on Resection Status. Frontiers in Computational Neuroscience, 2019, 13, 73.	2.1	17

#	Article	IF	CITATIONS
164	Mining multi-site clinical data to develop machine learning MRI biomarkers: application to neonatal hypoxic ischemic encephalopathy. Journal of Translational Medicine, 2019, 17, 385.	4.4	14
165	Multivariate Analysis of Preoperative Magnetic Resonance Imaging Reveals Transcriptomic Classification of de novo Glioblastoma Patients. Frontiers in Computational Neuroscience, 2019, 13, 81.	2.1	5
166	Prediction of Overall Survival of Brain Tumor Patients. , 2019, , .		12
167	Long non-coding RNA PAXIP1-AS1 facilitates cell invasion and angiogenesis of glioma by recruiting transcription factor ETS1 to upregulate KIF14 expression. Journal of Experimental and Clinical Cancer Research, 2019, 38, 486.	8.6	52
168	Brain tumor segmentation using neutrosophic expert maximum fuzzy-sure entropy and other approaches. Biomedical Signal Processing and Control, 2019, 47, 276-287.	5.7	36
169	State of the Art: Machine Learning Applications in Glioma Imaging. American Journal of Roentgenology, 2019, 212, 26-37.	2.2	81
171	Glioma extraction from MR images employing Gradient Based Kernel Selection Graph Cut technique. Visual Computer, 2020, 36, 875-891.	3.5	13
172	An improved computer based diagnosis system for early detection of abnormal lesions in the brain tissues with using magnetic resonance and computerized tomography images. Multimedia Tools and Applications, 2020, 79, 15613-15634.	3.9	8
173	MultiResUNet : Rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Networks, 2020, 121, 74-87.	5.9	1,092
174	A unified patch based method for brain tumor detection using features fusion. Cognitive Systems Research, 2020, 59, 273-286.	2.7	44
175	Longitudinal brain tumor segmentation prediction in MRI using feature and label fusion. Biomedical Signal Processing and Control, 2020, 55, 101648.	5.7	42
176	Postoperative glioma segmentation in CT image using deep feature fusion model guided by multi-sequence MRIs. European Radiology, 2020, 30, 823-832.	4.5	23
177	Imaging signatures of glioblastoma molecular characteristics: A radiogenomics review. Journal of Magnetic Resonance Imaging, 2020, 52, 54-69.	3.4	61
178	Brain tumor detection based on extreme learning. Neural Computing and Applications, 2020, 32, 15975-15987.	5.6	60
179	An Adversarial Learning Approach to Medical Image Synthesis for Lesion Detection. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 2303-2314.	6.3	73
180	Deep Learning of Imaging Phenotype and Genotype for Predicting Overall Survival Time of Glioblastoma Patients. IEEE Transactions on Medical Imaging, 2020, 39, 2100-2109.	8.9	56
181	Where did the tumor start? An inverse solver with sparse localization for tumor growth models. Inverse Problems, 2020, 36, 045006.	2.0	21
182	Impact of image preprocessing methods on reproducibility of radiomic features in multimodal magnetic resonance imaging in glioblastoma. Journal of Applied Clinical Medical Physics, 2020, 21, 179-190.	1.9	98

#	Article	IF	Citations
183	An integrated design of particle swarm optimization (PSO) with fusion of features for detection of brain tumor. Pattern Recognition Letters, 2020, 129, 150-157.	4.2	127
184	Novel seed selection techniques for MR brain image segmentation using graph cut. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2020, 8, 389-399.	1.9	4
185	A comprehensive review on multi-organs tumor detection based on machine learning. Pattern Recognition Letters, 2020, 131, 30-37.	4.2	39
186	Robust Deep Learning–based Segmentation of Glioblastoma on Routine Clinical MRI Scans Using Sparsified Training. Radiology: Artificial Intelligence, 2020, 2, e190103.	5.8	16
187	Combined 3D CNN for Brain Tumor Segmentation. , 2020, , .		0
188	A comprehensive study of brain tumour discrimination using phase combinations, feature rankings, and hybridised classifiers. Medical and Biological Engineering and Computing, 2020, 58, 2971-2987.	2.8	10
189	High tissue contrast image synthesis via multistage attention-GAN: Application to segmenting brain MR scans. Neural Networks, 2020, 132, 43-52.	5.9	29
190	(TS)2WM: Tumor Segmentation and Tract Statistics for Assessing White Matter Integrity with Applications to Glioblastoma Patients. NeuroImage, 2020, 223, 117368.	4.2	11
191	A Novel Intelligent System for Brain Tumor Diagnosis Based on a Composite Neutrosophic-Slantlet Transform Domain for Statistical Texture Feature Extraction. BioMed Research International, 2020, 2020, 1-21.	1.9	11
192	A Review of Radiomics and Deep Predictive Modeling in Glioma Characterization. Academic Radiology, 2021, 28, 1599-1621.	2.5	45
193	Technical Note: MRQy — An openâ€source tool for quality control of MR imaging data. Medical Physics, 2020, 47, 6029-6038.	3.0	29
194	Context aware deep learning for brain tumor segmentation, subtype classification, and survival prediction using radiology images. Scientific Reports, 2020, 10, 19726.	3.3	75
195	Multi-Task Learning for Small Brain Tumor Segmentation from MRI. Applied Sciences (Switzerland), 2020, 10, 7790.	2.5	23
196	Deep semi-supervised learning for brain tumor classification. BMC Medical Imaging, 2020, 20, 87.	2.7	43
197	Standardization of brain MR images across machines and protocols: bridging the gap for MRI-based radiomics. Scientific Reports, 2020, 10, 12340.	3.3	138
198	Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data. Scientific Reports, 2020, 10, 12598.	3.3	509
199	Poroelastic model parameter identification using artificial neural networks: on the effects of heterogeneous porosity and solid matrix Poisson ratio. Computational Mechanics, 2020, 66, 625-649.	4.0	11
200	Glioma Classification Using Deep Radiomics. SN Computer Science, 2020, 1, 1.	3.6	16

ARTICLE IF CITATIONS # Overall Survival Prediction in Glioblastoma With Radiomic Features Using Machine Learning. 201 2.1 65 Frontiers in Computational Neuroscience, 2020, 14, 61. Multi-modality encoded fusion with 3D inception U-net and decoder model for brain tumor segmentation. Multimedia Tools and Applications, 2021, 80, 30305-30320. 203 A Nested U-Net Approach for Brain Tumour Segmentation., 2020,,. 8 Reproducibility analysis of multiâ€institutional paired expert annotations and radiomic features of the 204 Ivy Glioblastoma Atlas Project (Ivy GAP) dataset. Medical Physics, 2020, 47, 6039-6052. Prediction Error Meta Classification in Semantic Segmentation: Detection via Aggregated Dispersion 205 28 Measures of Softmax Probabilities., 2020,,. Deep Volumetric Segmentation of Murine Cochlear Compartments from Micro-Computed Tomography Images. , 2020, 2020, 1970-1975. XGBoost Improves Classification of MGMT Promoter Methylation Status in IDH1 Wildtype 207 2.568 Glioblastoma. Journal of Personalized Medicine, 2020, 10, 128. A novel fully automated MRI-based deep-learning method for classification of 1p/19q co-deletion 208 status in brain gliomas. Neuro-Oncology Advances, 2020, 2, iv42-iv48. 209 Review of Automatic Segmentation of MRI Based Brain Tumour using U-Net Architecture., 2020,,. 3 The future of digital health with federated learning. Npj Digital Medicine, 2020, 3, 119. SAINT: Spatially Aware Interpolation NeTwork for Medical Slice Synthesis., 2020,,. 211 29 Brain Tumor Segmentation on Multimodal 3D-MRI using Deep Learning Method., 2020, , . 213 Tumor Segmentation in Brain MRI using Fully Convolutional Network., 2020,,. 0 A Technical Survey on Brain Tumor Segmentation using CNN., 2020, , . 214 Genetic, cellular, and connectomic characterization of the brain regions commonly plagued by 215 52 7.6 glioma. Brain, 2020, 143, 3294-3307. Automatic Measurement of Fetal Cavum Septum Pellucidum From Ultrasound Images Using Deep Attention Network., 2020, , . Improving 3D Brain Tumor Segmentation With Predict-Refine Mechanism Using Saliency And Feature 217 7 Maps., 2020,,. Fusion based on attention mechanism and context constraint for multi-modal brain tumor 5.8 segmentation. Computerized Medical Imaging and Graphics, 2020, 86, 101811.

~		_	
CITA	TION	Drnc	NDT
CITA	TUN	REPU	ואכ

#	Article	IF	CITATIONS
219	Fusion of 3-D medical image gradient domain based on detail-driven and directional structure tensor. Journal of X-Ray Science and Technology, 2020, 28, 1001-1016.	1.0	5
220	Evaluation of multislice inputs to convolutional neural networks for medical image segmentation. Medical Physics, 2020, 47, 6216-6231.	3.0	29
221	Transfer Learning Based Brain Tumor Detection and Segmentation using Superpixel Technique. , 2020, ,		27
222	Knowledge Distillation for Brain Tumor Segmentation. Lecture Notes in Computer Science, 2020, , 324-332.	1.3	10
223	Bag of Tricks for 3D MRI Brain Tumor Segmentation. Lecture Notes in Computer Science, 2020, , 210-220.	1.3	71
224	Two-Stage Cascaded U-Net: 1st Place Solution to BraTS Challenge 2019 Segmentation Task. Lecture Notes in Computer Science, 2020, , 231-241.	1.3	154
225	Triplanar Ensemble of 3D-to-2D CNNs with Label-Uncertainty for Brain Tumor Segmentation. Lecture Notes in Computer Science, 2020, , 379-387.	1.3	41
226	Multimodal Segmentation with MGF-Net and the Focal Tversky Loss Function. Lecture Notes in Computer Science, 2020, , 191-198.	1.3	3
227	Quantitative Imaging Informatics for Cancer Research. JCO Clinical Cancer Informatics, 2020, 4, 444-453.	2.1	11
228	Imaging-AMARETTO: An Imaging Genomics Software Tool to Interrogate Multiomics Networks for Relevance to Radiography and Histopathology Imaging Biomarkers of Clinical Outcomes. JCO Clinical Cancer Informatics, 2020, 4, 421-435.	2.1	10
229	Evaluation of a deep learning based brain tumour segmentation method. Journal of Physics: Conference Series, 2020, 1497, 012009.	0.4	1
230	Measuring Efficiency of Semi-automated Brain Tumor Segmentation by Simulating User Interaction. Frontiers in Computational Neuroscience, 2020, 14, 32.	2.1	6
231	Survival-relevant high-risk subregion identification for glioblastoma patients: the MRI-based multiple instance learning approach. European Radiology, 2020, 30, 5602-5610.	4.5	16
232	Combining analysis of multi-parametric MR images into a convolutional neural network: Precise target delineation for vestibular schwannoma treatment planning. Artificial Intelligence in Medicine, 2020, 107, 101911.	6.5	18
233	DDeep3M: Docker-powered deep learning for biomedical image segmentation. Journal of Neuroscience Methods, 2020, 342, 108804.	2.5	9
234	Redescending intuitionistic fuzzy clustering to brain magnetic resonance image segmentation. Journal of Intelligent and Fuzzy Systems, 2020, 39, 1097-1108.	1.4	4
235	Radiogenomics model for overall survival prediction of glioblastoma. Medical and Biological Engineering and Computing, 2020, 58, 1767-1777.	2.8	24
236	Unified generative adversarial networks for multimodal segmentation from unpaired 3D medical images. Medical Image Analysis, 2020, 64, 101731.	11.6	21

#	Article	IF	CITATIONS
237	Analysis of MRI Data in Diagnostic Neuroradiology. Annual Review of Biomedical Data Science, 2020, 3, 365-390.	6.5	5
238	Integrated Biophysical Modeling and Image Analysis: Application to Neuro-Oncology. Annual Review of Biomedical Engineering, 2020, 22, 309-341.	12.3	39
239	Annotation-Free Gliomas Segmentation Based on a Few Labeled General Brain Tumor Images. , 2020, , .		1
240	Three-Plane–assembled Deep Learning Segmentation of Gliomas. Radiology: Artificial Intelligence, 2020, 2, e190011.	5.8	18
241	Cancer Imaging Phenomics via CaPTk: Multi-Institutional Prediction of Progression-Free Survival and Pattern of Recurrence in Glioblastoma. JCO Clinical Cancer Informatics, 2020, 4, 234-244.	2.1	26
242	Demystifying Brain Tumor Segmentation Networks: Interpretability and Uncertainty Analysis. Frontiers in Computational Neuroscience, 2020, 14, 6.	2.1	44
243	Brain extraction on MRI scans in presence of diffuse glioma: Multi-institutional performance evaluation of deep learning methods and robust modality-agnostic training. NeuroImage, 2020, 220, 117081.	4.2	35
244	Brain Tumor Segmentation in MRI Images Using a Hybrid Deep Network Based on Patch and Pixel. , 2020, , ·		4
245	Radiogenomics correlation between MR imaging features and mRNA-based subtypes in lower-grade glioma. BMC Neurology, 2020, 20, 259.	1.8	4
246	Confidence Calibration and Predictive Uncertainty Estimation for Deep Medical Image Segmentation. IEEE Transactions on Medical Imaging, 2020, 39, 3868-3878.	8.9	158
247	A quantitative model based on clinically relevant MRI features differentiates lower grade gliomas and glioblastoma. European Radiology, 2020, 30, 3073-3082.	4.5	13
248	A Survey on Recent Advancements for Al Enabled Radiomics in Neuro-Oncology. Lecture Notes in Computer Science, 2020, , 24-35.	1.3	2
249	Radiomic profiles in diffuse glioma reveal distinct subtypes with prognostic value. Journal of Cancer Research and Clinical Oncology, 2020, 146, 1253-1262.	2.5	16
250	Preparing Medical Imaging Data for Machine Learning. Radiology, 2020, 295, 4-15.	7.3	473
251	One-Pass Multi-Task Networks With Cross-Task Guided Attention for Brain Tumor Segmentation. IEEE Transactions on Image Processing, 2020, 29, 4516-4529.	9.8	139
252	Radiogenomic-Based Survival Risk Stratification of Tumor Habitat on Gd-T1w MRI Is Associated with Biological Processes in Glioblastoma. Clinical Cancer Research, 2020, 26, 1866-1876.	7.0	67
253	SD-UNet: Stripping down U-Net for Segmentation of Biomedical Images on Platforms with Low Computational Budgets. Diagnostics, 2020, 10, 110.	2.6	58
254	Prediction of Molecular Mutations in Diffuse Low-Grade Gliomas using MR Imaging Features. Scientific Reports, 2020, 10, 3711.	3.3	36

#	Article	IF	CITATIONS
255	Segmenting Brain Tumor Using Cascaded V-Nets in Multimodal MR Images. Frontiers in Computational Neuroscience, 2020, 14, 9.	2.1	32
256	A Novel Approach for Fully Automatic Intra-Tumor Segmentation With 3D U-Net Architecture for Gliomas. Frontiers in Computational Neuroscience, 2020, 14, 10.	2.1	62
257	Deep Learning-Based Concurrent Brain Registration and Tumor Segmentation. Frontiers in Computational Neuroscience, 2020, 14, 17.	2.1	31
258	Segmentation and Classification in Digital Pathology for Glioma Research: Challenges and Deep Learning Approaches. Frontiers in Neuroscience, 2020, 14, 27.	2.8	54
259	BraTS Toolkit: Translating BraTS Brain Tumor Segmentation Algorithms Into Clinical and Scientific Practice. Frontiers in Neuroscience, 2020, 14, 125.	2.8	50
260	Biomedical image analysis challenges should be considered as an academic exercise, not an instrument that will move the field forward in a real, practical way. Medical Physics, 2020, 47, 2325-2328.	3.0	3
261	Novel Volumetric Sub-region Segmentation in Brain Tumors. Frontiers in Computational Neuroscience, 2020, 14, 3.	2.1	17
262	Improving Patch-Based Convolutional Neural Networks for MRI Brain Tumor Segmentation by Leveraging Location Information. Frontiers in Neuroscience, 2019, 13, 1449.	2.8	48
265	Instance-Based Transfer Learning. , 2020, , 23-33.		0
266	Feature-Based Transfer Learning. , 2020, , 34-44.		0
267	Model-Based Transfer Learning. , 2020, , 45-57.		0
268	Relation-Based Transfer Learning. , 2020, , 58-67.		1
269	Heterogeneous Transfer Learning. , 2020, , 68-92.		0
270	Adversarial Transfer Learning. , 2020, , 93-104.		0
271	Transfer Learning in Reinforcement Learning. , 2020, , 105-125.		0
272	Multi-task Learning. , 2020, , 126-140.		0
273	Transfer Learning Theory. , 2020, , 141-150.		1
274	Few-Shot Learning. , 2020, , 177-195.		1

#	Article	IF	CITATIONS
275	Lifelong Machine Learning. , 2020, , 196-208.		0
276	Privacy-Preserving Transfer Learning. , 2020, , 211-220.		1
277	Transfer Learning in Natural Language Processing. , 2020, , 234-256.		3
278	Transfer Learning in Dialogue Systems. , 2020, , 257-278.		0
279	Transfer Learning in Bioinformatics. , 2020, , 293-306.		0
280	Transfer Learning in Activity Recognition. , 2020, , 307-323.		0
281	Transfer Learning in Urban Computing. , 2020, , 324-333.		0
284	Transitive Transfer Learning. , 2020, , 151-167.		0
285	AutoTL: Learning to Transfer Automatically. , 2020, , 168-176.		0
286	Transfer Learning in Computer Vision. , 2020, , 221-233.		2
287	Transfer Learning in Recommender Systems. , 2020, , 279-292.		1
288	Assessing the importance of magnetic resonance contrasts using collaborative generative adversarial networks. Nature Machine Intelligence, 2020, 2, 34-42.	16.0	31
289	Magnetic resonance imaging-based radiomic features for extrapolating infiltration levels of immune cells in lower-grade gliomas. Strahlentherapie Und Onkologie, 2020, 196, 913-921.	2.0	19
290	3D-BoxSup: Positive-Unlabeled Learning of Brain Tumor Segmentation Networks From 3D Bounding Boxes. Frontiers in Neuroscience, 2020, 14, 350.	2.8	6
291	Path aggregation U-Net model for brain tumor segmentation. Multimedia Tools and Applications, 2021, 80, 22951-22964.	3.9	21
292	Automated glioma grading on conventional MRI images using deep convolutional neural networks. Medical Physics, 2020, 47, 3044-3053.	3.0	86
293	Artificial intelligence for management of patients with intracranial neoplasms. , 2020, , 203-230.		0
294	Recent nature-Inspired algorithms for medical image segmentation based on tsallis statistics. Communications in Nonlinear Science and Numerical Simulation, 2020, 88, 105256.	3.3	6

#	Article	IF	CITATIONS
295	IOUC-3DSFCNN: Segmentation of Brain Tumors via IOU Constraint 3D Symmetric Full Convolution Network with Multimodal Auto-context. Scientific Reports, 2020, 10, 6256.	3.3	14
296	Brain Tumor Segmentation Using an Ensemble of 3D U-Nets and Overall Survival Prediction Using Radiomic Features. Frontiers in Computational Neuroscience, 2020, 14, 25.	2.1	130
297	Analyzing the Quality and Challenges of Uncertainty Estimations for Brain Tumor Segmentation. Frontiers in Neuroscience, 2020, 14, 282.	2.8	42
298	Extraction of Gliomas from 3D MRI Images using Convolution Kernel Processing and Adaptive Thresholding. Procedia Computer Science, 2020, 167, 273-284.	2.0	8
299	Multi-Scale Self-Guided Attention for Medical Image Segmentation. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 121-130.	6.3	290
300	DeepNeuro: an open-source deep learning toolbox for neuroimaging. Neuroinformatics, 2021, 19, 127-140.	2.8	26
301	Superpixel-based brain tumor segmentation in MR images using an extended local fuzzy active contour model. Multimedia Tools and Applications, 2021, 80, 8835-8859.	3.9	8
302	MGMT methylation may benefit overall survival in patients with moderately vascularized glioblastomas. European Radiology, 2021, 31, 1738-1747.	4.5	16
303	Brain Tumor Segmentation Using 3D Generative Adversarial Networks. International Journal of Pattern Recognition and Artificial Intelligence, 2021, 35, 2157002.	1.2	11
304	A fusion of salient and convolutional features applying healthy templates for MRI brain tumor segmentation. Multimedia Tools and Applications, 2021, 80, 22533-22550.	3.9	1
305	Fast level set method for glioma brain tumor segmentation based on Superpixel fuzzy clustering and lattice Boltzmann method. Computer Methods and Programs in Biomedicine, 2021, 198, 105809.	4.7	51
306	Noninvasive Determination of <i>IDH</i> and 1p19q Status of Lower-grade Gliomas Using MRI Radiomics: A Systematic Review. American Journal of Neuroradiology, 2021, 42, 94-101.	2.4	53
307	Automated MRI based pipeline for segmentation and prediction of grade, IDH mutation and 1p19q co-deletion in glioma. Computerized Medical Imaging and Graphics, 2021, 88, 101831.	5.8	38
308	Analyzing magnetic resonance imaging data from glioma patients using deep learning. Computerized Medical Imaging and Graphics, 2021, 88, 101828.	5.8	23
309	Potentials and caveats of AI in hybrid imaging. Methods, 2021, 188, 4-19.	3.8	12
310	Segmentation of the multimodal brain tumor image used the multi-pathway architecture method based on 3D FCN. Neurocomputing, 2021, 423, 34-45.	5.9	90
311	Application and Construction of Deep Learning Networks in Medical Imaging. IEEE Transactions on Radiation and Plasma Medical Sciences, 2021, 5, 137-159.	3.7	29
312	Normative Baseline for Radiomics in Brain MRI : Evaluating the Robustness, Regional Variations, and Reproducibility on FLAIR Images. Journal of Magnetic Resonance Imaging, 2021, 53, <u>394-407</u> .	3.4	9

#	Article	IF	CITATIONS
313	Image classification-based brain tumour tissue segmentation. Multimedia Tools and Applications, 2021, 80, 993-1008.	3.9	12
314	Computer-aided diagnostic network for brain tumor classification employing modulated Gabor filter banks. Visual Computer, 2021, 37, 2157-2171.	3.5	28
315	Classification of parotid gland tumors by using multimodal MRI and deep learning. NMR in Biomedicine, 2021, 34, e4408.	2.8	35
316	Multiâ€level dilated convolutional neural network for brain tumour segmentation and multiâ€view â€based radiomics for overall survival prediction. International Journal of Imaging Systems and Technology, 2021, 31, 1519-1535.	4.1	6
317	Multiagent Reinforcement Learning for Hyperparameter Optimization of Convolutional Neural Networks. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41, 1034-1047.	2.7	10
318	Segmentation, Survival Prediction, andÂUncertainty Estimation of Gliomas from Multimodal 3D MRI Using Selective Kernel Networks. Lecture Notes in Computer Science, 2021, , 228-240.	1.3	3
319	Utility of Brain Parcellation in Enhancing Brain Tumor Segmentation and Survival Prediction. Lecture Notes in Computer Science, 2021, , 391-400.	1.3	2
320	A Deep Supervision CNN Network for Brain Tumor Segmentation. Lecture Notes in Computer Science, 2021, , 158-167.	1.3	3
321	Efficient Brain Tumour Segmentation Using Co-registered Data and Ensembles of Specialised Learners. Lecture Notes in Computer Science, 2021, , 15-29.	1.3	0
322	MRI Brain Tumor Segmentation and Uncertainty Estimation Using 3D-UNet Architectures. Lecture Notes in Computer Science, 2021, , 376-390.	1.3	18
323	MRI Brain Tumor Segmentation Using a 2D-3D U-Net Ensemble. Lecture Notes in Computer Science, 2021, , 354-366.	1.3	2
324	Radiogenomic modeling predicts survival-associated prognostic groups in glioblastoma. Neuro-Oncology Advances, 2021, 3, vdab004.	0.7	3
325	Learning Dynamic Convolutions for Multi-modal 3D MRI Brain Tumor Segmentation. Lecture Notes in Computer Science, 2021, , 441-451.	1.3	2
326	A Framework Based on Metabolic Networks and Biomedical Images Data toÂDiscriminate Glioma Grades. Communications in Computer and Information Science, 2021, , 165-189.	0.5	3
327	Multi-decoder Networks with Multi-denoising Inputs for Tumor Segmentation. Lecture Notes in Computer Science, 2021, , 412-423.	1.3	5
328	Low-Rank Convolutional Networks for Brain Tumor Segmentation. Lecture Notes in Computer Science, 2021, , 470-480.	1.3	1
329	Brain Tumour Segmentation Using aÂTriplanar Ensemble of U-Nets on MR Images. Lecture Notes in Computer Science, 2021, , 340-353.	1.3	12
330	MultiATTUNet: Brain Tumor Segmentation and Survival Multitasking. Lecture Notes in Computer Science, 2021, , 424-434.	1.3	5

#	Article	IF	CITATIONS
331	Survival prediction of patients suffering from glioblastoma based on two-branch DenseNet using multi-channel features. International Journal of Computer Assisted Radiology and Surgery, 2021, 16, 207-217.	2.8	8
332	Magnetic resonance imaging standardization for accurate grading of cerebral gliomas. Multimedia Tools and Applications, 0, , 1.	3.9	0
333	Orthogonal Ensemble Networks for Biomedical Image Segmentation. Lecture Notes in Computer Science, 2021, , 594-603.	1.3	9
334	Brain Tumor Segmentation and Surveillance with Deep Artificial Neural Networks. , 2021, , 311-350.		6
336	Multi-branch sharing network for real-time 3D brain tumor segmentation. Journal of Real-Time Image Processing, 2021, 18, 1409-1419.	3.5	2
337	Brain Tumor Segmentation and Survival Prediction Using Automatic Hard Mining in 3D CNN Architecture. Lecture Notes in Computer Science, 2021, , 310-319.	1.3	17
338	A Hybrid Convolutional Neural Network Based-Method for Brain Tumor Classification Using mMRI and WSI. Lecture Notes in Computer Science, 2021, , 487-496.	1.3	2
339	3D Semantic Segmentation of Brain Tumor for Overall Survival Prediction. Lecture Notes in Computer Science, 2021, , 215-227.	1.3	15
340	Multi-class Glioma Classification from MRI Images Using 3D Convolutional Neural Networks. Communications in Computer and Information Science, 2021, , 327-337.	0.5	0
341	Brain Tumor Segmentation and Associated Uncertainty Evaluation Using Multi-sequences MRI Mixture Data Preprocessing. Lecture Notes in Computer Science, 2021, , 148-157.	1.3	2
342	A Two-Stage Atrous Convolution Neural Network for Brain Tumor Segmentation and Survival Prediction. Lecture Notes in Computer Science, 2021, , 290-299.	1.3	4
343	Estimating Glioblastoma Biophysical Growth Parameters Using Deep Learning Regression. Lecture Notes in Computer Science, 2021, 12658, 157-167.	1.3	1
344	Efficient MRI Brain Tumor Segmentation Using Multi-resolution Encoder-Decoder Networks. Lecture Notes in Computer Science, 2021, , 30-39.	1.3	7
345	Efficient Embedding Network for 3D Brain Tumor Segmentation. Lecture Notes in Computer Science, 2021, , 252-262.	1.3	4
346	Multimodal Brain Image Analysis and Survival Prediction Using Neuromorphic Attention-Based Neural Networks. Lecture Notes in Computer Science, 2021, , 194-206.	1.3	4
347	Automated Brain Tumour Segmentation Using Cascaded 3D Densely-Connected U-Net. Lecture Notes in Computer Science, 2021, , 481-491.	1.3	14
349	Towards a Spatial Model Checker on GPU. Lecture Notes in Computer Science, 2021, , 188-196.	1.3	10
350	Brain Tumor Segmentation Using Dual-Path Attention U-Net in 3D MRI Images. Lecture Notes in Computer Science, 2021, , 183-193.	1.3	4

#	Article	IF	CITATIONS
351	Multi-threshold Attention U-Net (MTAU) Based Model for Multimodal Brain Tumor Segmentation in MRI Scans. Lecture Notes in Computer Science, 2021, , 168-178.	1.3	8
352	TransBTS: Multimodal Brain Tumor Segmentation Using Transformer. Lecture Notes in Computer Science, 2021, , 109-119.	1.3	265
353	ACN: Adversarial Co-training Network for Brain Tumor Segmentation with Missing Modalities. Lecture Notes in Computer Science, 2021, , 410-420.	1.3	18
354	Modality Completion via Gaussian Process Prior Variational Autoencoders for Multi-modal Glioma Segmentation. Lecture Notes in Computer Science, 2021, , 442-452.	1.3	8
355	nnU-Net for Brain Tumor Segmentation. Lecture Notes in Computer Science, 2021, , 118-132.	1.3	148
356	Variational-Autoencoder Regularized 3D MultiResUNet for the BraTS 2020 Brain Tumor Segmentation. Lecture Notes in Computer Science, 2021, , 431-440.	1.3	7
357	Segmentation then Prediction: A Multi-task Solution to Brain Tumor Segmentation and Survival Prediction. Lecture Notes in Computer Science, 2021, , 492-502.	1.3	4
358	Glioma Sub-region Segmentation on Multi-parameter MRI with Label Dropout. Lecture Notes in Computer Science, 2021, , 420-430.	1.3	4
359	Brain Tumor Segmentation and Survival Prediction Using Patch Based Modified 3D U-Net. Lecture Notes in Computer Science, 2021, , 398-409.	1.3	5
360	Self-training for Brain Tumour Segmentation with Uncertainty Estimation and Biophysics-Guided Survival Prediction. Lecture Notes in Computer Science, 2021, , 514-523.	1.3	3
361	H\$\$^2\$\$NF-Net for Brain Tumor Segmentation Using Multimodal MR Imaging: 2nd Place Solution to BraTS Challenge 2020 Segmentation Task. Lecture Notes in Computer Science, 2021, , 58-68.	1.3	26
362	Brain Tumour Segmentation Using Probabilistic U-Net. Lecture Notes in Computer Science, 2021, , 255-264.	1.3	7
363	Cascaded Coarse-to-Fine Neural Network for Brain Tumor Segmentation. Lecture Notes in Computer Science, 2021, , 458-469.	1.3	0
364	3D Brain Tumor Segmentation and Survival Prediction Using Ensembles of Convolutional Neural Networks. Lecture Notes in Computer Science, 2021, , 241-254.	1.3	5
365	Multimodal Brain Tumor Segmentation and Survival Prediction Using a 3D Self-ensemble ResUNet. Lecture Notes in Computer Science, 2021, , 367-375.	1.3	3
366	Segmentation of the Multimodal Brain Tumor Images Used Res-U-Net. Lecture Notes in Computer Science, 2021, , 263-273.	1.3	2
367	Label-Efficient Multi-task Segmentation Using Contrastive Learning. Lecture Notes in Computer Science, 2021, , 101-110.	1.3	3
368	Glioma Segmentation Using Encoder-Decoder Network and Survival Prediction Based on Cox Analysis. Lecture Notes in Computer Science, 2021, , 318-326.	1.3	3

#	Article	IF	CITATIONS
369	Vox2Vox: 3D-GAN for Brain Tumour Segmentation. Lecture Notes in Computer Science, 2021, , 274-284.	1.3	46
370	HI-Net: Hyperdense Inception 3D UNet for Brain Tumor Segmentation. Lecture Notes in Computer Science, 2021, , 50-57.	1.3	11
371	Medical Imaging Based Diagnosis Through Machine Learning and Data Analysis. Computational Biology, 2021, , 179-225.	0.2	0
372	Group Shift Pointwise Convolution for Volumetric Medical Image Segmentation. Lecture Notes in Computer Science, 2021, , 48-58.	1.3	0
373	FS-Net: A New Paradigm of Data Expansion for Medical Image Segmentation. Lecture Notes in Computer Science, 2021, , 217-225.	1.3	0
374	Enhancing MRI Brain Tumor Segmentation with an Additional Classification Network. Lecture Notes in Computer Science, 2021, , 503-513.	1.3	12
375	Integrating SSIM in GANs to Generate High-Quality Brain MRI Images. Lecture Notes on Data Engineering and Communications Technologies, 2021, , 419-426.	0.7	0
376	Cerberus: A Multi-headed Network forÂBrain Tumor Segmentation. Lecture Notes in Computer Science, 2021, , 342-351.	1.3	3
377	Transfer Learning for Brain Tumor Segmentation. Lecture Notes in Computer Science, 2021, , 241-251.	1.3	7
378	Memory Efficient 3D U-Net with Reversible Mobile Inverted Bottlenecks for Brain Tumor Segmentation. Lecture Notes in Computer Science, 2021, , 388-397.	1.3	6
380	PieceNet: A Redundant UNet Ensemble. Lecture Notes in Computer Science, 2021, , 331-341.	1.3	3
381	Lightweight U-Nets for Brain Tumor Segmentation. Lecture Notes in Computer Science, 2021, , 3-14.	1.3	8
382	MVP U-Net: Multi-View Pointwise U-Net for Brain Tumor Segmentation. Lecture Notes in Computer Science, 2021, , 93-103.	1.3	7
383	Some New Tricks for Deep Glioma Segmentation. Lecture Notes in Computer Science, 2021, , 320-330.	1.3	0
384	Trialing U-Net Training Modifications for Segmenting Gliomas Using Open Source Deep Learning Framework. Lecture Notes in Computer Science, 2021, , 40-49.	1.3	9
385	Context Aware 3D UNet for Brain Tumor Segmentation. Lecture Notes in Computer Science, 2021, , 207-218.	1.3	18
386	Improvement of Multiparametric MR Image Segmentation by Augmenting the Data With Generative Adversarial Networks for Glioma Patients. Frontiers in Computational Neuroscience, 2020, 14, 495075.	2.1	12
387	GRGE: Detection of Gliomas Using Radiomics, GA Features and Extremely Randomized Trees. , 2021, , .		2

#	Article	IF	CITATIONS
388	K sparse autoencoder-based accelerated reconstruction of magnetic resonance imaging. Visual Computer, 2022, 38, 837-847.	3.5	6
389	Multimodal Disentangled Variational Autoencoder With Game Theoretic Interpretability for Glioma Grading. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 673-684.	6.3	23
390	Development of a nomograph integrating radiomics and deep features based on MRI to predict the prognosis of high grade Gliomas. Mathematical Biosciences and Engineering, 2021, 18, 8084-8095.	1.9	9
391	Multimodal Self-supervised Learning for Medical Image Analysis. Lecture Notes in Computer Science, 2021, , 661-673.	1.3	40
392	A Two-Stage Cascade Model with Variational Autoencoders and Attention Gates for MRI Brain Tumor Segmentation. Lecture Notes in Computer Science, 2021, , 435-447.	1.3	16
393	SP1-induced IncRNA ZFPM2 antisense RNA 1 (ZFPM2-AS1) aggravates glioma progression via the miR-515-5p/Superoxide dismutase 2 (SOD2) axis. Bioengineered, 2021, 12, 2299-2310.	3.2	28
394	Leveraging Unlabeled Data for Glioma Molecular Subtype and Survival Prediction. , 2021, , .		0
395	Attention U-Net with Dimension-Hybridized Fast Data Density Functional Theory for Automatic Brain Tumor Image Segmentation. Lecture Notes in Computer Science, 2021, , 81-92.	1.3	5
396	Survival Prediction of Glioma Tumors Using Feature Selection and Linear Regression. Communications in Computer and Information Science, 2021, , 85-92.	0.5	0
397	Glioma classification via MR images radiomics analysis. Visual Computer, 2022, 38, 1427-1441.	3.5	9
398	The Nomogram of <scp>MRI</scp> â€based Radiomics with Complementary Visual Features by Machine Learning Improves Stratification of Clioblastoma Patients: A Multicenter Study. Journal of Magnetic Resonance Imaging, 2021, 54, 571-583.	3.4	16
399	Recurrent Multi-Fiber Network for 3D MRI Brain Tumor Segmentation. Symmetry, 2021, 13, 320.	2.2	3
400	Magnetic-resonance image segmentation based on improved variable weight multi-resolution Markov random field in undecimated complex wavelet domain*. Chinese Physics B, 2021, 30, 078703.	1.4	5
401	Brain tumor segmentation via C-dense convolutional neural network. Progress in Artificial Intelligence, 2021, 10, 147-156.	2.4	7
402	Computational Complexity Reduction of Neural Networks of Brain Tumor Image Segmentation by Introducing Fermi–Dirac Correction Functions. Entropy, 2021, 23, 223.	2.2	9
403	Federated learning: a collaborative effort to achieve better medical imaging models for individual sites that have small labelled datasets. Quantitative Imaging in Medicine and Surgery, 2021, 11, 852-857.	2.0	64
404	A Deep-Learning Model with Learnable Group Convolution and Deep Supervision for Brain Tumor Segmentation. Mathematical Problems in Engineering, 2021, 2021, 1-11.	1.1	2
405	A Voxel-Based Radiographic Analysis Reveals the Biological Character of Proneural-Mesenchymal Transition in Glioblastoma. Frontiers in Oncology, 2021, 11, 595259.	2.8	2

#	Article	IF	CITATIONS
406	CBSN: Comparative measures of normalization techniques for brain tumor segmentation using SRCNet. Multimedia Tools and Applications, 0, , 1.	3.9	0
407	Combining K-Means Attention and Hierarchical Mimicking Strategy for 3D U-Net Based Brain Tumor Segmentation. , 2021, , .		2
408	A Survey and Analysis on Automated Glioma Brain Tumor Segmentation and Overall Patient Survival Prediction. Archives of Computational Methods in Engineering, 2021, 28, 4117-4152.	10.2	15
410	A level set method based on domain transformation and bias correction for MRI brain tumor segmentation. Journal of Neuroscience Methods, 2021, 352, 109091.	2.5	6
411	MRI-Based Deep-Learning Method for Determining Glioma <i>MGMT</i> Promoter Methylation Status. American Journal of Neuroradiology, 2021, 42, 845-852.	2.4	53
412	<scp>MEâ€Net</scp> : <scp>Multiâ€encoder</scp> net framework for brain tumor segmentation. International Journal of Imaging Systems and Technology, 2021, 31, 1834-1848.	4.1	76
413	Deep Learning in Brain Segmentation. , 2021, , 261-288.		1
414	An improved framework for brain tumor analysis using MRI based on YOLOv2 and convolutional neural network. Complex & Intelligent Systems, 2021, 7, 2023-2036.	6.5	54
415	Fine-Tuning Approach for Segmentation of Gliomas in Brain Magnetic Resonance Images with a Machine Learning Method to Normalize Image Differences among Facilities. Cancers, 2021, 13, 1415.	3.7	28
416	Threeâ€dimensional multipath DenseNet for improving automatic segmentation of glioblastoma on preâ€operative multimodal MR images. Medical Physics, 2021, 48, 2859-2866.	3.0	9
417	Post-Hoc Overall Survival Time Prediction From Brain MRI. , 2021, , .		4
418	Prediction Performance of Radiomic Features When Obtained using an Object Detection Framework. , 2021, , .		1
419	An <scp>endâ€ŧoâ€end</scp> brain tumor segmentation system using <scp>multiâ€inceptionâ€UNET</scp> . International Journal of Imaging Systems and Technology, 2021, 31, 1803-1816.	4.1	23
420	Post Training Uncertainty Calibration Of Deep Networks For Medical Image Segmentation. , 2021, , .		11
421	Exploring Radiologic Criteria for Glioma Grade Classification on the BraTS Dataset. Irbm, 2021, 42, 407-414.	5.6	19
422	Knocking down of Polo-like kinase 2 inhibits cell proliferation and induced cell apoptosis in human glioma cells. Life Sciences, 2021, 270, 119084.	4.3	11
423	Transfer Learning in Magnetic Resonance Brain Imaging: A Systematic Review. Journal of Imaging, 2021, 7, 66.	3.0	56
424	T-Net: Learning Feature Representation With Task-Specific Supervision For Biomedical Image Analysis. , 2021, , .		0

#	Article	IF	CITATIONS
425	Labeling Cost Sensitive Batch Active Learning For Brain Tumor Segmentation. , 2021, , .		1
426	SGPNet: A Three-Dimensional Multitask Residual Framework for Segmentation and IDH Genotype Prediction of Gliomas. Computational Intelligence and Neuroscience, 2021, 2021, 1-9.	1.7	4
427	Multi-Domain Image Completion for Random Missing Input Data. IEEE Transactions on Medical Imaging, 2021, 40, 1113-1122.	8.9	43
428	ERV-Net: An efficient 3D residual neural network for brain tumor segmentation. Expert Systems With Applications, 2021, 170, 114566.	7.6	79
429	Radiomics-based machine learning model for efficiently classifying transcriptome subtypes in glioblastoma patients from MRI. Computers in Biology and Medicine, 2021, 132, 104320.	7.0	72
430	Observing deep radiomics for the classification of glioma grades. Scientific Reports, 2021, 11, 10942.	3.3	24
431	A systematic evaluation of learning rate policies in training CNNs for brain tumor segmentation. Physics in Medicine and Biology, 2021, 66, 105004.	3.0	4
432	Brain tumor segmentation based on deep learning and an attention mechanism using MRI multi-modalities brain images. Scientific Reports, 2021, 11, 10930.	3.3	253
433	Radiogenomics of Gliomas. Radiologic Clinics of North America, 2021, 59, 441-455.	1.8	7
434	A Multiparametric MRI-Based Radiomics Analysis to Efficiently Classify Tumor Subregions of Glioblastoma: A Pilot Study in Machine Learning. Journal of Clinical Medicine, 2021, 10, 2030.	2.4	15
435	Modeling Healthy Anatomy with Artificial Intelligence for Unsupervised Anomaly Detection in Brain MRI. Radiology: Artificial Intelligence, 2021, 3, e190169.	5.8	20
436	Generative Adversarial Networks to Synthesize Missing T1 and FLAIR MRI Sequences for Use in a Multisequence Brain Tumor Segmentation Model. Radiology, 2021, 299, 313-323.	7.3	46
437	An Improvement of Survival Stratification in Glioblastoma Patients via Combining Subregional Radiomics Signatures. Frontiers in Neuroscience, 2021, 15, 683452.	2.8	9
438	CMM-Net: Contextual multi-scale multi-level network for efficient biomedical image segmentation. Scientific Reports, 2021, 11, 10191.	3.3	26
439	Development of a Fully Automated Glioma-Grading Pipeline Using Post-Contrast T1-Weighted Images Combined with Cloud-Based 3D Convolutional Neural Network. Applied Sciences (Switzerland), 2021, 11, 5118.	2.5	5
440	Brain Tumor Segmentation via Multi-Modalities Interactive Feature Learning. Frontiers in Medicine, 2021, 8, 653925.	2.6	1
441	RD2A: densely connected residual networks using ASPP for brain tumor segmentation. Multimedia Tools and Applications, 2021, 80, 27069-27094.	3.9	12
442	A Transfer Learning–Based Active Learning Framework for Brain Tumor Classification. Frontiers in Artificial Intelligence, 2021, 4, 635766.	3.4	32

#	Article	IF	CITATIONS
443	Spatial information using CRF for brain tumor segmentation. , 2021, , .		0
444	Multimodal MR image registration using weakly supervised constrained affine network. Journal of Modern Optics, 2021, 68, 679-688.	1.3	3
445	Artificial intelligence in tumor subregion analysis based on medical imaging: A review. Journal of Applied Clinical Medical Physics, 2021, 22, 10-26.	1.9	15
446	AUCseg: An Automatically Unsupervised Clustering Toolbox for 3D-Segmentation of High-Grade Gliomas in Multi-Parametric MR Images. Frontiers in Oncology, 2021, 11, 679952.	2.8	3
447	CMIM: Cross-Modal Information Maximization For Medical Imaging. , 2021, , .		1
448	A Deep Multi-Task Learning Framework for Brain Tumor Segmentation. Frontiers in Oncology, 2021, 11, 690244.	2.8	50
449	Classification of brain tumor from magnetic resonance images using probabilistic features and possibilistic Hanman–Shannon transform classifier. International Journal of Imaging Systems and Technology, 2022, 32, 280-294.	4.1	6
451	An efficient brain tumor image classifier by combining multi-pathway cascaded deep neural network and handcrafted features in MR images. Medical and Biological Engineering and Computing, 2021, 59, 1495-1527.	2.8	6
452	MIL normalization —— prerequisites for accurate MRI radiomics analysis. Computers in Biology and Medicine, 2021, 133, 104403.	7.0	14
453	MRI Brain Image Segmentation by Fully Convectional U-Net. Revista GEINTEC, 2021, 11, 6035-6042.	0.2	2
454	Multimodal Brain Tumor Segmentation Based on an Intelligent UNET-LSTM Algorithm in Smart Hospitals. ACM Transactions on Internet Technology, 2021, 21, 1-14.	4.4	11
455	Detection of Vestibular Schwannoma on Triple-parametric Magnetic Resonance Images Using Convolutional Neural Networks. Journal of Medical and Biological Engineering, 2021, 41, 626.	1.8	1
456	GA-UNet: UNet-based framework for segmentation of 2D and 3D medical images applicable on heterogeneous datasets. Neural Computing and Applications, 2021, 33, 14991-15025.	5.6	21
457	Harnessing clinical annotations to improve deep learning performance in prostate segmentation. PLoS ONE, 2021, 16, e0253829.	2.5	4
458	3D brain glioma segmentation in MRI through integrating multiple densely connected 2D convolutional neural networks. Journal of Zhejiang University: Science B, 2021, 22, 462-475.	2.8	7
459	Binary glioma grading framework employing locality preserving projections and Gaussian radial basis function support vector machine. International Journal of Imaging Systems and Technology, 2021, 31, 2047-2059.	4.1	1
460	Does Anatomical Contextual Information Improve 3D U-Net-Based Brain Tumor Segmentation?. Diagnostics, 2021, 11, 1159.	2.6	7
461	MRI biomarkers in neuro-oncology. Nature Reviews Neurology, 2021, 17, 486-500.	10.1	40

#	Article	IF	CITATIONS
462	Projected Gradient Method Combined with Homotopy Techniques for Volume-Measure-Preserving Optimal Mass Transportation Problems. Journal of Scientific Computing, 2021, 88, 1.	2.3	5
463	Arbitrary Scale Super-Resolution for Medical Images. International Journal of Neural Systems, 2021, 31, 2150037.	5.2	24
464	<scp>Nonlocal</scp> convolutional block attention module <scp>VNet</scp> for gliomas automatic segmentation. International Journal of Imaging Systems and Technology, 2022, 32, 528-543.	4.1	14
465	Glioblastoma multiforme prognosis: MRI missing modality generation, segmentation and radiogenomic survival prediction. Computerized Medical Imaging and Graphics, 2021, 91, 101906.	5.8	18
466	Assessing Versatile Machine Learning Models for Glioma Radiogenomic Studies across Hospitals. Cancers, 2021, 13, 3611.	3.7	11
467	Aggregation-and-Attention Network for brain tumor segmentation. BMC Medical Imaging, 2021, 21, 109.	2.7	7
468	Fully automated segmentation of brain tumor from multiparametric MRI using 3D context deep supervised Uâ€Net. Medical Physics, 2021, 48, 4365-4374.	3.0	27
469	Brain Tumor Segmentation based on Knowledge Distillation and Adversarial Training. , 2021, , .		3
470	Three-dimensional deep learning with spatial erasing for unsupervised anomaly segmentation in brain MRI. International Journal of Computer Assisted Radiology and Surgery, 2021, 16, 1413-1423.	2.8	14
471	The added value of PSMA PET/MR radiomics for prostate cancer staging. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 527-538.	6.4	38
472	U-net Mimarileri ile Glioma Tümör Segmentasyonu Üzerine Bir Literatür Çalışması. European Journal Science and Technology, 0, , .	of.5	1
473	Glioma segmentation of optimized 3D U-net and prediction of multi-modal survival time. Neural Computing and Applications, 2022, 34, 211-225.	5.6	5
474	Quantitative Characterization of Tumor Proximity to Stem Cell Niches: Implications on Recurrence and Survival in GBM Patients. International Journal of Radiation Oncology Biology Physics, 2021, 110, 1180-1188.	0.8	2
475	Efficacy of Location-Based Features for Survival Prediction of Patients With Glioblastoma Depending on Resection Status. Frontiers in Oncology, 2021, 11, 661123.	2.8	6
476	Combining MRI and Histologic Imaging Features for Predicting Overall Survival in Patients with Glioma. Radiology Imaging Cancer, 2021, 3, e200108.	1.6	12
477	Multi-modal Brain Tumor Segmentation Using Cascaded 3D U-Net. , 2021, , .		3
479	Multi-view hierarchical split network for brain tumor segmentation. Biomedical Signal Processing and Control, 2021, 69, 102897.	5.7	12
480	Featureâ€versus deep learningâ€based approaches for the automated detection of brain tumor with magnetic resonance images: A comparative study. International Journal of Imaging Systems and Technology, 2022, 32, 501-516.	4.1	10

#	Article	IF	CITATIONS
481	3D brain tumor segmentation using a two-stage optimal mass transport algorithm. Scientific Reports, 2021, 11, 14686.	3.3	8
482	Joint Modeling of RNAseq and Radiomics Data for Glioma Molecular Characterization and Prediction. Frontiers in Medicine, 2021, 8, 705071.	2.6	3
483	Clioblastoma Multiforme Patient Survival Prediction. Lecture Notes in Electrical Engineering, 2022, , 47-58.	0.4	3
484	Brain Tumor Volumetric Segmentation in Multimodal MRI Using 3D Convolutional Neural Networks. , 2021, , .		0
485	Effect of learning parameters on the performance of U-Net Model in segmentation of Brain tumor. Multimedia Tools and Applications, 2022, 81, 34717-34735.	3.9	10
486	Overall Survival Prediction for Gliomas Using a Novel Compound Approach. Frontiers in Oncology, 2021, 11, 724191.	2.8	13
487	Fully automated detection of paramagnetic rims in multiple sclerosis lesions on 3T susceptibility-based MR imaging. NeuroImage: Clinical, 2021, 32, 102796.	2.7	10
488	CLCU-Net: Cross-level connected U-shaped network with selective feature aggregation attention module for brain tumor segmentation. Computer Methods and Programs in Biomedicine, 2021, 207, 106154.	4.7	18
489	Potential and limitations of radiomics in neuro-oncology. Journal of Clinical Neuroscience, 2021, 90, 206-211.	1.5	8
490	Segmentation of Brain Tumour Using UNET Architecture. IFMBE Proceedings, 2022, , 779-788.	0.3	0
491	Brain volume refinement (BVeR): automatic correction tool as an alternative to manual intervention on brain segmentation. Research on Biomedical Engineering, 2021, 37, 631-640.	2.2	0
492	Interactive Machine Learning-Based Multi-Label Segmentation of Solid Tumors and Organs. Applied Sciences (Switzerland), 2021, 11, 7488.	2.5	5
493	RMU-Net: A Novel Residual Mobile U-Net Model for Brain Tumor Segmentation from MR Images. Electronics (Switzerland), 2021, 10, 1962.	3.1	27
494	An Unsupervised Registration Method for Brain Images Based on Contour Guidance. , 2021, , .		0
495	Deep unregistered multi-contrast MRI reconstruction. Magnetic Resonance Imaging, 2021, 81, 33-41.	1.8	8
496	A Survey of Brain Tumor Segmentation and Classification Algorithms. Journal of Imaging, 2021, 7, 179.	3.0	64
497	MRI-based brain tumor segmentation using FPGA-accelerated neural network. BMC Bioinformatics, 2021, 22, 421.	2.6	15
498	A Radiology-focused Review of Predictive Uncertainty for Al Interpretability in Computer-assisted Segmentation. Radiology: Artificial Intelligence, 2021, 3, e210031.	5.8	18

ARTICLE IF CITATIONS Serum IncRNA-ANRIL and SOX9 expression levels in glioma patients and their relationship with poor 499 1.9 13 prognosis. World Journal of Surgical Oncology, 2021, 19, 287. What is The Best Data Augmentation For 3D Brain Tumor Segmentation?., 2021, , . Glioblastoma Surgery Imaging–Reporting and Data System: Validation and Performance of the 501 3.7 9 Automated Segmentation Task. Cancers, 2021, 13, 4674. Brain Tumour Temporal Monitoring of Interval Change Using Digital Image Subtraction Technique. 2.7 Frontiers in Public Health, 2021, 9, 752509. Asymmetric Ensemble of Asymmetric U-Net Models for Brain Tumor Segmentation With Uncertainty 503 2.4 9 Estimation. Frontiers in Neurology, 2021, 12, 609646. Feasibility of Simulated Postcontrast MRI of Glioblastomas and Lower-Grade Gliomas by Using Three-dimensional Fully Convolutional Neural Networks. Radiology: Artificial Intelligence, 2021, 3, 5.8 e200276. Robustifying Deep Networks for Medical Image Segmentation. Journal of Digital Imaging, 2021, 34, 505 2.9 4 1279-1293. Multi-Task Deep Supervision on Attention R2U-Net for Brain Tumor Segmentation. Frontiers in 506 2.8 Oncology, 2021, 11, 704850. Double level set segmentation model based on mutual exclusion of adjacent regions with application 507 7 7.1 to brain MR images. Knowledge-Based Systems, 2021, 228, 107266. MRI-based Identification and Classification of Major Intracranial Tumor Types by Using a 3D Convolutional Neural Network: A Retrospective Multi-institutional Analysis. Radiology: Artificial 5.8 Intelligence, 2021, 3, e200301. An Automatic Deep Learning–Based Workflow for Glioblastoma Survival Prediction Using Preoperative Multimodal MR Images: A Feasibility Study. Advances in Radiation Oncology, 2021, 6, 509 1.2 14 100746. Generating Annotated High-Fidelity Images Containing Multiple Coherent Objects., 2021, , . DeepPrognosis: Preoperative prediction of pancreatic cancer survival and surgical margin via comprehensive understanding of dynamic contrast-enhanced CT imaging and tumor-vascular contact 511 11.6 24 parsing. Medical Image Analysis, 2021, 73, 102150. Cognitive Brain Tumour Segmentation Using Varying Window Architecture of Cascade Convolutional Neural Network. International Journal of Computer Vision and Image Processing, 2021, 11, 21-29. 0.4 Feature-enhanced generation and multi-modality fusion based deep neural network for brain tumor 513 5.9 20 segmentation with missing MR modalities. Neurocomputing, 2021, 466, 102-112. A novel deep learning model DDU-net using edge features to enhance brain tumor segmentation on MR 514 images. Artificial Intelligence in Medicine, 2021, 121, 102180. Knowledge and attitudes towards artificial intelligence in imaging: a look at the quantitative survey 515 1.510 literature. Clinical Imaging, 2021, 80, 413-419. Decomposing normal and abnormal features of medical images for content-based image retrieval of 11.6 19 glioma imaging. Medical Image Analysis, 2021, 74, 102227.

#	Article	IF	CITATIONS
517	Attention Res-UNet with Guided Decoder for semantic segmentation of brain tumors. Biomedical Signal Processing and Control, 2022, 71, 103077.	5.7	68
519	Glioma Segmentation Using Ensemble of 2D/3D U-Nets and Survival Prediction Using Multiple Features Fusion. Lecture Notes in Computer Science, 2021, , 189-199.	1.3	9
520	Segmenting Brain Tumors from MRI Using Cascaded 3D U-Nets. Lecture Notes in Computer Science, 2021, , 265-277.	1.3	3
521	Modified MobileNet for Patient Survival Prediction. Lecture Notes in Computer Science, 2021, , 374-387.	1.3	6
522	Clioma Segmentation with 3D U-Net Backed with Energy-Based Post-Processing. Lecture Notes in Computer Science, 2021, , 104-117.	1.3	1
523	2D Dense-UNet: A Clinically Valid Approach to Automated Glioma Segmentation. Lecture Notes in Computer Science, 2021, , 69-80.	1.3	8
524	Impact of Spherical Coordinates Transformation Pre-processing in Deep Convolution Neural Networks for Brain Tumor Segmentation and Survival Prediction. Lecture Notes in Computer Science, 2021, , 295-306.	1.3	8
525	A Fully Automatic Procedure for Brain Tumor Segmentation from Multi-Spectral MRI Records Using Ensemble Learning and Atlas-Based Data Enhancement. Applied Sciences (Switzerland), 2021, 11, 564.	2.5	14
526	Advancements in Neuroimaging to Unravel Biological and Molecular Features of Brain Tumors. Cancers, 2021, 13, 424.	3.7	21
527	AIM and Brain Tumors. , 2021, , 1-16.		Ο
528	Quantitative integration of radiomic and genomic data improves survival prediction of low-grade glioma patients. Mathematical Biosciences and Engineering, 2021, 18, 727-744.	1.9	6
529	ASC-Net: Adversarial-Based Selective Network for Unsupervised Anomaly Segmentation. Lecture Notes in Computer Science, 2021, , 236-247.	1.3	7
530	Patch-Free 3D Medical Image Segmentation Driven by Super-Resolution Technique and Self-Supervised Guidance. Lecture Notes in Computer Science, 2021, , 131-141.	1.3	9
531	On the Relationship Between Calibrated Predictors and Unbiased Volume Estimation. Lecture Notes in Computer Science, 2021, , 678-688.	1.3	3
533	Brain Tumor Segmentation Network Using Attention-Based Fusion and Spatial Relationship Constraint. Lecture Notes in Computer Science, 2021, , 219-229.	1.3	9
535	Generalized Wasserstein Dice Score, Distributionally Robust Deep Learning, and Ranger for Brain Tumor Segmentation: BraTS 2020 Challenge. Lecture Notes in Computer Science, 2021, , 200-214.	1.3	20
536	An Automatic Overall Survival Time Prediction System for Glioma Brain Tumor Patients Based on Volumetric and Shape Features. Lecture Notes in Computer Science, 2021, , 352-365.	1.3	4
538	Automatic Brain Tumor Segmentation with Scale Attention Network. Lecture Notes in Computer Science, 2021, , 285-294.	1.3	16

#	Article	IF	CITATIONS
539	A Deep Supervised U-Attention Net for Pixel-Wise Brain Tumor Segmentation. Lecture Notes in Computer Science, 2021, , 278-289.	1.3	0
540	Deep Learning-based Type Identification of Volumetric MRI Sequences. , 2021, , .		1
541	Application of deep learning for automatic segmentation of brain tumors on magnetic resonance imaging: a heuristic approach in the clinical scenario. Neuroradiology, 2021, 63, 1253-1262.	2.2	36
542	QAIS-DSNN: Tumor Area Segmentation of MRI Image with Optimized Quantum Matched-Filter Technique and Deep Spiking Neural Network. BioMed Research International, 2021, 2021, 1-16.	1.9	36
543	Exploring Graph-Based Neural Networks for Automatic Brain Tumor Segmentation. Lecture Notes in Computer Science, 2021, , 18-37.	1.3	2
545	DR-Unet104 for Multimodal MRI Brain Tumor Segmentation. Lecture Notes in Computer Science, 2021, , 410-419.	1.3	7
546	An Analysis of Brain Tumor Segmentation Using Modified U-Net Architecture. Advances in Science, Technology and Innovation, 2021, , 141-147.	0.4	0
547	Brain Tumor Segmentation with Self-ensembled, Deeply-Supervised 3D U-Net Neural Networks: A BraTS 2020 Challenge Solution. Lecture Notes in Computer Science, 2021, , 327-339.	1.3	39
548	Clobal-Local Transformer for Brain Age Estimation. IEEE Transactions on Medical Imaging, 2022, 41, 213-224.	8.9	51
549	Modality-Pairing Learning for Brain Tumor Segmentation. Lecture Notes in Computer Science, 2021, , 230-240.	1.3	29
550	Generator Versus Segmentor: Pseudo-healthy Synthesis. Lecture Notes in Computer Science, 2021, , 150-160.	1.3	3
551	Super-resolution reconstruction of brain magnetic resonance images via lightweight autoencoder. Informatics in Medicine Unlocked, 2021, 26, 100713.	3.4	19
552	Monte Carlo Concrete DropPath forÂEpistemic Uncertainty Estimation inÂBrain Tumor Segmentation. Lecture Notes in Computer Science, 2021, , 64-74.	1.3	0
553	Tumor Delineation for Brain Radiosurgery by a ConvNet and Non-uniform Patch Generation. Lecture Notes in Computer Science, 2018, , 122-129.	1.3	4
554	Pathology Segmentation Using Distributional Differences to Images of Healthy Origin. Lecture Notes in Computer Science, 2019, , 228-238.	1.3	12
555	Brain Tumor Segmentation on Multimodal MR Imaging Using Multi-level Upsampling in Decoder. Lecture Notes in Computer Science, 2019, , 168-177.	1.3	10
556	Neuromorphic Neural Network for Multimodal Brain Image Segmentation and Overall Survival Analysis. Lecture Notes in Computer Science, 2019, , 178-188.	1.3	3
557	3D-ESPNet with Pyramidal Refinement for Volumetric Brain Tumor Image Segmentation. Lecture Notes in Computer Science, 2019, , 245-253.	1.3	33

#	Article	IF	CITATIONS
558	Context Aware 3D CNNs for Brain Tumor Segmentation. Lecture Notes in Computer Science, 2019, , 299-310.	1.3	22
559	Automatic Brain Tumor Segmentation by Exploring the Multi-modality Complementary Information and Cascaded 3D Lightweight CNNs. Lecture Notes in Computer Science, 2019, , 25-36.	1.3	8
560	Semi-automatic Brain Tumor Segmentation by Drawing Long Axes on Multi-plane Reformat. Lecture Notes in Computer Science, 2019, , 441-455.	1.3	3
561	Glioma Segmentation and a Simple Accurate Model for Overall Survival Prediction. Lecture Notes in Computer Science, 2019, , 476-484.	1.3	11
562	Glioblastoma Survival Prediction. Lecture Notes in Computer Science, 2019, , 508-515.	1.3	7
563	Generation of 3D Brain MRI Using Auto-Encoding Generative Adversarial Networks. Lecture Notes in Computer Science, 2019, , 118-126.	1.3	52
564	3D Dilated Multi-fiber Network for Real-Time Brain Tumor Segmentation in MRI. Lecture Notes in Computer Science, 2019, , 184-192.	1.3	88
565	Weakly Supervised Brain Lesion Segmentation via Attentional Representation Learning. Lecture Notes in Computer Science, 2019, , 211-219.	1.3	11
566	Unified Attentional Generative Adversarial Network for Brain Tumor Segmentation from Multimodal Unpaired Images. Lecture Notes in Computer Science, 2019, , 229-237.	1.3	7
568	Overfitting of Neural Nets Under Class Imbalance: Analysis and Improvements for Segmentation. Lecture Notes in Computer Science, 2019, , 402-410.	1.3	39
569	Deep Cascaded Attention Network for Multi-task Brain Tumor Segmentation. Lecture Notes in Computer Science, 2019, , 420-428.	1.3	25
570	Multi-task Attention-Based Semi-supervised Learning for Medical Image Segmentation. Lecture Notes in Computer Science, 2019, , 457-465.	1.3	75
571	End-to-End Boundary Aware Networks for Medical Image Segmentation. Lecture Notes in Computer Science, 2019, , 187-194.	1.3	22
572	Unsupervised Lesion Detection with Locally Gaussian Approximation. Lecture Notes in Computer Science, 2019, , 355-363.	1.3	3
573	Improving Pathological Structure Segmentation via Transfer Learning Across Diseases. Lecture Notes in Computer Science, 2019, , 90-98.	1.3	7
574	Intramodality Domain Adaptation Using Self Ensembling and Adversarial Training. Lecture Notes in Computer Science, 2019, , 28-36.	1.3	9
575	A Study on Histogram Normalization for Brain Tumour Segmentation from Multispectral MR Image Data. Lecture Notes in Computer Science, 2019, , 375-384.	1.3	1
576	cuRadiomics: A GPU-Based Radiomics Feature Extraction Toolkit. Lecture Notes in Computer Science, 2020, , 44-52.	1.3	1

#	Article	IF	CITATIONS
577	U-Net Based Glioblastoma Segmentation with Patient's Overall Survival Prediction. Communications in Computer and Information Science, 2020, , 22-32.	0.5	13
578	Convolutional 3D to 2D Patch Conversion for Pixel-Wise Glioma Segmentation inÂMRI Scans. Lecture Notes in Computer Science, 2020, , 3-12.	1.3	9
579	3D U-Net Based Brain Tumor Segmentation and Survival Days Prediction. Lecture Notes in Computer Science, 2020, , 131-141.	1.3	56
580	Brain Tumor Synthetic Segmentation inÂ3D Multimodal MRI Scans. Lecture Notes in Computer Science, 2020, , 153-162.	1.3	19
581	Multi-step Cascaded Networks for Brain Tumor Segmentation. Lecture Notes in Computer Science, 2020, , 163-173.	1.3	27
582	TuNet: End-to-End Hierarchical Brain Tumor Segmentation Using Cascaded Networks. Lecture Notes in Computer Science, 2020, , 174-186.	1.3	18
583	Using Separated Inputs for Multimodal Brain Tumor Segmentation with 3D U-Net-like Architectures. Lecture Notes in Computer Science, 2020, , 187-199.	1.3	4
584	Two-Step U-Nets for Brain Tumor Segmentation and Random Forest with Radiomics for Survival Time Prediction. Lecture Notes in Computer Science, 2020, , 200-209.	1.3	18
585	Multi-resolution 3D CNN for MRI Brain Tumor Segmentation and Survival Prediction. Lecture Notes in Computer Science, 2020, , 221-230.	1.3	19
586	Memory-Efficient Cascade 3D U-Net for Brain Tumor Segmentation. Lecture Notes in Computer Science, 2020, , 242-253.	1.3	14
587	A Baseline for Predicting Clioblastoma Patient Survival Time with Classical Statistical Models and Primitive Features Ignoring Image Information. Lecture Notes in Computer Science, 2020, , 254-261.	1.3	5
588	Brain Tumor Segmentation and Survival Prediction Using 3D Attention UNet. Lecture Notes in Computer Science, 2020, , 262-272.	1.3	43
589	Brain Tumor Segmentation Using Dense Channels 2D U-net and Multiple Feature Extraction Network. Lecture Notes in Computer Science, 2020, , 273-283.	1.3	10
590	ONCOhabitats Glioma Segmentation Model. Lecture Notes in Computer Science, 2020, , 295-303.	1.3	3
591	Brain Tumor Segmentation with Uncertainty Estimation and Overall Survival Prediction. Lecture Notes in Computer Science, 2020, , 304-314.	1.3	11
592	Cascaded Clobal Context Convolutional Neural Network for Brain Tumor Segmentation. Lecture Notes in Computer Science, 2020, , 315-326.	1.3	7
593	Multi-task Learning for Brain Tumor Segmentation. Lecture Notes in Computer Science, 2020, , 327-337.	1.3	17
594	Brain Tumor Segmentation and Survival Prediction. Lecture Notes in Computer Science, 2020, , 338-348.	1.3	31

#	Article	IF	CITATIONS
595	An Integrative Analysis of Image Segmentation and Survival of Brain Tumour Patients. Lecture Notes in Computer Science, 2020, , 368-378.	1.3	5
596	Memory Efficient Brain Tumor Segmentation Using an Autoencoder-Regularized U-Net. Lecture Notes in Computer Science, 2020, , 388-396.	1.3	9
597	Skull-Stripping of Glioblastoma MRI Scans Using 3D Deep Learning. Lecture Notes in Computer Science, 2020, 11992, 57-68.	1.3	11
598	Brain Tumor Segmentation Using Attention-Based Network in 3D MRI Images. Lecture Notes in Computer Science, 2020, , 3-13.	1.3	4
599	Fully Automated Brain Tumor Segmentation and Survival Prediction of Gliomas Using Deep Learning and MRI. Lecture Notes in Computer Science, 2020, , 99-112.	1.3	3
600	3D Automatic Brain Tumor Segmentation Using a Multiscale Input U-Net Network. Lecture Notes in Computer Science, 2020, , 113-123.	1.3	3
601	Hybrid Labels for Brain Tumor Segmentation. Lecture Notes in Computer Science, 2020, , 158-166.	1.3	8
602	Detection and Segmentation of Brain Tumors from MRI Using U-Nets. Lecture Notes in Computer Science, 2020, , 179-190.	1.3	6
603	Multimodal Brain Image Segmentation and Analysis with Neuromorphic Attention-Based Learning. Lecture Notes in Computer Science, 2020, , 14-26.	1.3	3
604	DDU-Nets: Distributed Dense Model for 3D MRI Brain Tumor Segmentation. Lecture Notes in Computer Science, 2020, , 208-217.	1.3	10
605	Brain Tumor Segmentation Based on 3D Residual U-Net. Lecture Notes in Computer Science, 2020, , 218-225.	1.3	14
606	Automatic Segmentation of Brain Tumor from 3D MR Images Using SegNet, U-Net, and PSP-Net. Lecture Notes in Computer Science, 2020, , 226-233.	1.3	2
607	A Multi-path Decoder Network for Brain Tumor Segmentation. Lecture Notes in Computer Science, 2020, , 255-265.	1.3	9
608	Domain Knowledge Based Brain Tumor Segmentation and Overall Survival Prediction. Lecture Notes in Computer Science, 2020, , 285-295.	1.3	10
609	Brain Tumor Classification Using 3D Convolutional Neural Network. Lecture Notes in Computer Science, 2020, , 335-342.	1.3	19
610	Automatic Classification of Brain Tumor Types with the MRI Scans and Histopathology Images. Lecture Notes in Computer Science, 2020, , 353-359.	1.3	12
611	Ensemble of CNNs for Segmentation of Glioma Sub-regions with Survival Prediction. Lecture Notes in Computer Science, 2020, , 37-49.	1.3	4
612	Brain Tumor Segmentation Based on Attention Mechanism and Multi-model Fusion. Lecture Notes in Computer Science, 2020, , 50-60.	1.3	6

#	Article	IF	CITATIONS
613	Automatic Brain Tumour Segmentation and Biophysics-Guided Survival Prediction. Lecture Notes in Computer Science, 2020, , 61-72.	1.3	12
614	Multimodal Brain Tumor Segmentation and Survival Prediction Using Hybrid Machine Learning. Lecture Notes in Computer Science, 2020, , 73-81.	1.3	8
615	Robust Semantic Segmentation of Brain Tumor Regions from 3D MRIs. Lecture Notes in Computer Science, 2020, , 82-89.	1.3	31
616	Brain Tumor Segmentation with Cascaded Deep Convolutional Neural Network. Lecture Notes in Computer Science, 2020, , 90-98.	1.3	9
617	Arbitrary Scale Super-Resolution forÂBrain MRI Images. IFIP Advances in Information and Communication Technology, 2020, , 165-176.	0.7	10
618	Model-Driven Deep Attention Network for Ultra-fast Compressive Sensing MRI Guided by Cross-contrast MR Image. Lecture Notes in Computer Science, 2020, , 188-198.	1.3	7
619	Suggestive Annotation of Brain Tumour Images with Gradient-Guided Sampling. Lecture Notes in Computer Science, 2020, , 156-165.	1.3	14
620	Learning Sample-Adaptive Intensity Lookup Table for Brain Tumor Segmentation. Lecture Notes in Computer Science, 2020, , 216-226.	1.3	7
621	Learning High-Resolution and Efficient Non-local Features for Brain Glioma Segmentation in MR Images. Lecture Notes in Computer Science, 2020, , 480-490.	1.3	10
622	State-of-the-Art in Brain Tumor Segmentation and Current Challenges. Lecture Notes in Computer Science, 2020, , 189-198.	1.3	4
623	Brain Tumor Survival Prediction Using Radiomics Features. Lecture Notes in Computer Science, 2020, , 284-293.	1.3	5
624	Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Lecture Notes in Computer Science, 2018, , .	1.3	19
625	Automatic Segmentation and Overall Survival Prediction in Gliomas Using Fully Convolutional Neural Network and Texture Analysis. Lecture Notes in Computer Science, 2018, , 216-225.	1.3	5
626	Brain Tumor Segmentation and Radiomics Survival Prediction: Contribution to the BRATS 2017 Challenge. Lecture Notes in Computer Science, 2018, , 287-297.	1.3	244
627	Overall Survival Time Prediction for High Grade Gliomas Based on Sparse Representation Framework. Lecture Notes in Computer Science, 2018, , 77-87.	1.3	2
628	Segmentation and Detection of Glioma Using Deep Learning. Advances in Intelligent Systems and Computing, 2021, , 109-120.	0.6	1
629	Brain Tumor Segmentation Using 2D-UNET Convolutional Neural Network. Studies in Computational Intelligence, 2021, , 239-248.	0.9	6
630	Fuzzy volumetric delineation of brain tumor and survival prediction. Soft Computing, 2020, 24, 13115-13134.	3.6	5

#	Article	IF	Citations
632	Gradientâ€based kernel selection technique for tumour detection and extraction of medical images using graph cut. IET Image Processing, 2020, 14, 84-93.	2.5	13
633	Deep learning in medical image registration. Progress in Biomedical Engineering, 0, , .	4.9	17
634	Deep learning for medical image analysis: a brief introduction. Neuro-Oncology Advances, 2020, 2, iv35-iv41.	0.7	15
635	Introduction to radiomics and radiogenomics in neuro-oncology: implications and challenges. Neuro-Oncology Advances, 2020, 2, iv3-iv14.	0.7	20
639	Rethinking Dice Loss for Medical Image Segmentation. , 2020, , .		51
640	Simple MyUnet3D for BraTS Segmentation. , 2020, , .		3
641	Assigning a new glioma grade label ground-truth for the BraTS dataset using radiologic criteria. , 2020, , .		1
642	Cancer imaging phenomics toolkit: quantitative imaging analytics for precision diagnostics and predictive modeling of clinical outcome. Journal of Medical Imaging, 2018, 5, 1.	1.5	110
643	Radiomics-based convolutional neural network for brain tumor segmentation on multiparametric magnetic resonance imaging. Journal of Medical Imaging, 2019, 6, 1.	1.5	12
644	Glioma grading using structural magnetic resonance imaging and molecular data. Journal of Medical Imaging, 2019, 6, 1.	1.5	19
645	Deep learning with mixed supervision for brain tumor segmentation. Journal of Medical Imaging, 2019, 6, 1.	1.5	91
646	Overall survival prediction in glioblastoma patients using structural magnetic resonance imaging (MRI): advanced radiomic features may compensate for lack of advanced MRI modalities. Journal of Medical Imaging, 2020, 7, 1.	1.5	26
647	Robustness of brain tumor segmentation. Journal of Medical Imaging, 2020, 7, 064006.	1.5	4
648	Deriving stable multi-parametric MRI radiomic signatures in the presence of inter-scanner variations: survival prediction of glioblastoma via imaging pattern analysis and machine learning techniques. , 2018, , .		1
649	Lesion focused super-resolution. , 2019, , .		11
650	Prediction of low-grade glioma progression using MR imaging. , 2019, , .		1
651	An Inductive Transfer Learning Approach using Cycle-consistent Adversarial Domain Adaptation with Application to Brain Tumor Segmentation. , 2019, , .		10
652	Hierarchical Normalized Completely Random Measures for Robust Graphical Modeling. Bayesian Analysis, 2019, 14, 1271-1301.	3.0	10
#	Article	IF	CITATIONS
-----	--	------	-----------
653	Identification of Altered Circular RNA Expression in Serum Exosomes from Patients with Papillary Thyroid Carcinoma by High-Throughput Sequencing. Medical Science Monitor, 2019, 25, 2785-2791.	1.1	45
654	A Fully Automated Deep Learning Network for Brain Tumor Segmentation. Tomography, 2020, 6, 186-193.	1.8	50
655	Discernable differences in the genetic and molecular profile of cerebellar glioblastoma. Translational Cancer Research, 2019, 8, S553-S558.	1.0	3
656	SDResU-Net: Separable and Dilated Residual U-Net for MRI Brain Tumor Segmentation. Current Medical Imaging, 2020, 16, 720-728.	0.8	12
658	Radiomics MRI Phenotyping with Machine Learning to Predict the Grade of Lower-Grade Gliomas: A Study Focused on Nonenhancing Tumors. Korean Journal of Radiology, 2019, 20, 1381.	3.4	42
659	Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Frontiers in Neuroscience, 2020, 14, 65.	2.8	27
660	BU-Net: Brain Tumor Segmentation Using Modified U-Net Architecture. Electronics (Switzerland), 2020, 9, 2203.	3.1	67
661	MRI-Trans-GAN: 3D MRI Cross-Modality Translation. , 2021, , .		2
662	Fully automatic brain tumor segmentation using DeepLabv3+ with variable loss functions. , 2021, , .		7
663	Identifying the most suitable histogram normalization technique for machine learning based segmentation of multispectral brain MRI data. , 2021, , .		7
664	Multimodal Extension of the ML-CSC Framework for Medical Image Segmentation. , 2021, , .		1
665	Deep Learning-Based Segmentation of Various Brain Lesions for Radiosurgery. Applied Sciences (Switzerland), 2021, 11, 9180.	2.5	6
666	DR-Net: dual-rotation network with feature map enhancement for medical image segmentation. Complex & Intelligent Systems, 2022, 8, 611-623.	6.5	13
667	Deep Learning Radiomics to Predict PTEN Mutation Status From Magnetic Resonance Imaging in Patients With Glioma. Frontiers in Oncology, 2021, 11, 734433.	2.8	10
668	Stratification by Tumor Grade Groups in a Holistic Evaluation of Machine Learning for Brain Tumor Segmentation. Frontiers in Neuroscience, 2021, 15, 740353.	2.8	3
669	Relax and focus on brain tumor segmentation. Medical Image Analysis, 2022, 75, 102259.	11.6	22
670	Improving the noninvasive classification of glioma genetic subtype with deep learning and diffusion-weighted imaging. Neuro-Oncology, 2022, 24, 639-652.	1.2	22
671	Brain Tumor Segmentation From Multi-Modal MR Images via Ensembling UNets. Frontiers in Radiology, 2021, 1, .	2.0	13

#	Article	IF	CITATIONS
672	Predicting Short-Term Survival after Gross Total or Near Total Resection in Glioblastomas by Machine Learning-Based Radiomic Analysis of Preoperative MRI. Cancers, 2021, 13, 5047.	3.7	11
673	Brain Tumour Segmentation with a Muti-Pathway ResNet Based UNet. Journal of Grid Computing, 2021, 19, 1.	3.9	13
674	Improving Automated Glioma Segmentation in Routine Clinical Use Through Artificial Intelligence-Based Replacement of Missing Sequences With Synthetic Magnetic Resonance Imaging Scans. Investigative Radiology, 2022, 57, 187-193.	6.2	20
675	Medical Augmentation (Med-Aug) for Optimal Data Augmentation in Medical Deep Learning Networks. Sensors, 2021, 21, 7018.	3.8	5
676	Hierarchical-order multimodal interaction fusion network for grading gliomas. Physics in Medicine and Biology, 2021, 66, 215016.	3.0	6
677	Brain Tumor Segmentation. International Journal of Computer Applications, 2016, 138, 6-8.	0.2	4
678	Understanding and Interpreting Machine Learning in Medical Image Computing Applications. Lecture Notes in Computer Science, 2018, , .	1.3	6
679	Combined Learning for Similar Tasks with Domain-Switching Networks. Lecture Notes in Computer Science, 2019, , 565-572.	1.3	1
680	Multi-modal Segmentation with Missing MR Sequences Using Pre-trained Fusion Networks. Lecture Notes in Computer Science, 2019, , 165-172.	1.3	6
681	Efficient 3D Depthwise and Separable Convolutions with Dilation for Brain Tumor Segmentation. Lecture Notes in Computer Science, 2019, , 563-573.	1.3	3
682	Image Data Validation for Medical Systems. Lecture Notes in Computer Science, 2019, , 329-337.	1.3	4
683	Children's Neuroblastoma Segmentation Using Morphological Features. Lecture Notes in Computer Science, 2019, , 81-88.	1.3	Ο
684	Learning imbalanced semantic segmentation through cross-domain relations of multi-agent generative adversarial networks. , 2019, , .		2
686	Segmentation of Vestibular Schwannoma from Multi-parametric Magnetic Resonance Images using Convolutional Neural Network. , 2019, , .		Ο
687	Improved U-Net with Multi-scale Cross Connection and Dilated Convolution for Brain Tumor Segmentation. , 2019, , .		3
688	Imaging Genomics. , 2020, , 223-239.		0
689	₽₽ŷ₽"₽ž₽₽~₽¢₽œ₽¡₽•₽"₽œ₽•₽₽¢₽₽¦₽†₽‡₽₽ž₽`₽ž₽£₽¢₽`₽ž₽₽•₽₽~₽¥₽Ÿ₽£₽¥₽ŷ₽~₽₽₽₽₽œ₽₽¢₽—Ę)žÐt ÐÐ Ð−I	ЕĐĐІГО

690	Improving Brain Tumor Segmentation with Dilated Pseudo-3D Convolution and Multi-direction Fusion. Lecture Notes in Computer Science, 2020, , 727-738.	1.3	2	
-----	--	-----	---	--

#	Article	IF	CITATIONS
691	Improving Brain Tumor Segmentation with Multi-direction Fusion and Fine Class Prediction. Lecture Notes in Computer Science, 2020, , 349-358.	1.3	4
692	Feature Preserving Smoothing Provides Simple and Effective Data Augmentation for Medical Image Segmentation. Lecture Notes in Computer Science, 2020, , 116-126.	1.3	4
693	Local Binary and Ternary Patterns Based Quantitative Texture Analysis for Assessment of IDH Genotype in Gliomas on Multi-modal MRI. Lecture Notes in Computer Science, 2020, , 240-248.	1.3	0
694	Adaptive Weighted Loss Makes Brain Tumors Segmentation More Accurate in 3D MRI Volume. , 2020, , .		1
697	An automatic brain tumor segmentation using modified inception module based U-Net model. Journal of Intelligent and Fuzzy Systems, 2021, , 1-12.	1.4	3
698	Brain Tumor Segmentation of MRI Images Using Processed Image Driven U-Net Architecture. Computers, 2021, 10, 139.	3.3	15
699	Development and Validation of an Efficient MRI Radiomics Signature for Improving the Predictive Performance of 1p/19q Co-Deletion in Lower-Grade Gliomas. Cancers, 2021, 13, 5398.	3.7	18
700	Augmented Radiology: Patient-Wise Feature Transfer Model for Glioma Grading. Lecture Notes in Computer Science, 2020, , 23-30.	1.3	0
701	Multi-branch Learning Framework with Different Receptive Fields Ensemble for Brain Tumor Segmentation. Lecture Notes in Computer Science, 2020, , 274-284.	1.3	0
702	Multi-modal U-Nets with Boundary Loss and Pre-training for Brain Tumor Segmentation. Lecture Notes in Computer Science, 2020, , 135-147.	1.3	4
703	Overall Survival Prediction Using Conventional MRI Features. Lecture Notes in Computer Science, 2020, , 244-254.	1.3	1
704	Brain Tumor Segmentation Using 3D Convolutional Neural Network. Lecture Notes in Computer Science, 2020, , 199-207.	1.3	1
705	3D Dilated Dense Network for Automatic Brain Tumor Segmentation. , 2020, , .		0
706	Automatic segmentation of low-grade glioma in MRI image based on UNet++ model. Journal of Physics: Conference Series, 2020, 1693, 012135.	0.4	2
707	Ensembleâ€based glioma grade classification using Gabor filter bank and rotation forest. IET Image Processing, 2020, 14, 3851-3858.	2.5	1
708	An Adaptive Segmentation Technique to Detect Brain Tumors Using 2D Unet. , 2020, , .		4
709	Semantic Segmentation of Brain Tumor from 3D Structural MRI Using U-Net Autoencoder. , 2020, , .		3
710	A Dense-Gated U-Net for Brain Lesion Segmentation. , 2020, , .		2

#	Article	IF	CITATIONS
711	Spatial Attention-based Efficiently Features Fusion Network for 3D-MR Brain Tumor Segmentation. , 2020, , .		3
712	Convolutional neural network with coarse-to-fine resolution fusion and residual learning structures for cross-modality image synthesis. Biomedical Signal Processing and Control, 2022, 71, 103199.	5.7	1
713	An Empirical Study of Deep Neural Networks for Glioma Detection from MRI Sequences. Lecture Notes in Computer Science, 2020, , 113-125.	1.3	1
714	The Latest Trends in Attention Mechanisms and Their Application in Medical Imaging. Journal of the Korean Society of Radiology, 2020, 81, 1305.	0.2	3
715	Brain Tumor Segmentation Algorithm Based on Attention Mechanism and Hybrid Cascaded Network. Communications in Computer and Information Science, 2020, , 107-114.	0.5	0
716	Optimization with Soft Dice Can Lead to a Volumetric Bias. Lecture Notes in Computer Science, 2020, , 89-97.	1.3	10
717	Brain Tumour Segmentation on MRI Images by Voxel Classification Using Neural Networks, and Patient Survival Prediction. Lecture Notes in Computer Science, 2020, , 284-294.	1.3	1
718	Deep Convolutional Neural Networks for Brain Tumor Segmentation: Boosting Performance Using Deep Transfer Learning: Preliminary Results. Lecture Notes in Computer Science, 2020, , 303-315.	1.3	5
719	Multidimensional and Multiresolution Ensemble Networks for Brain Tumor Segmentation. Lecture Notes in Computer Science, 2020, , 148-157.	1.3	3
720	3D Dense Separated Convolution Module for Volumetric Medical Image Analysis. Applied Sciences (Switzerland), 2020, 10, 485.	2.5	14
721	Overall Survival Prediction in Gliomas Using Region-Specific Radiomic Features. Lecture Notes in Computer Science, 2020, , 259-267.	1.3	1
722	A Deep Network for Joint Registration and Reconstruction of Images with Pathologies. Lecture Notes in Computer Science, 2020, 12436, 342-352.	1.3	7
723	Learn Distributed GAN with Temporary Discriminators. Lecture Notes in Computer Science, 2020, , 175-192.	1.3	9
725	Autofocus Net: Auto-focused 3D CNN for Brain Tumour Segmentation. Communications in Computer and Information Science, 2020, , 43-55.	0.5	1
726	On Validating Multimodal MRI Based Stratification of IDH Genotype in High Grade Gliomas Using CNNs and Its Comparison to Radiomics. Lecture Notes in Computer Science, 2020, , 53-60.	1.3	2
727	SteGANomaly: Inhibiting CycleGAN Steganography for Unsupervised Anomaly Detection in Brain MRI. Lecture Notes in Computer Science, 2020, , 718-727.	1.3	15
728	Towards Population-Based Histologic Stain Normalization of Glioblastoma. Lecture Notes in Computer Science, 2020, 11992, 44-56.	1.3	3
729	Automatic Brain Mask Segmentation for Mono-modal MRI. , 2020, , .		0

#	Article	IF	CITATIONS
730	Multimodal Brain Tumor Segmentation with Normal Appearance Autoencoder. Lecture Notes in Computer Science, 2020, , 316-323.	1.3	2
731	Improving Brain Tumor Segmentation in Multi-sequence MR Images Using Cross-Sequence MR Image Generation. Lecture Notes in Computer Science, 2020, , 27-36.	1.3	2
732	O-Net: An Overall Convolutional Network for Segmentation Tasks. Lecture Notes in Computer Science, 2020, 12436, 199-209.	1.3	3
733	Aggregating Multi-scale Prediction Based on 3D U-Net in Brain Tumor Segmentation. Lecture Notes in Computer Science, 2020, , 142-152.	1.3	9
734	An Ensemble of 2D Convolutional Neural Network for 3D Brain Tumor Segmentation. Lecture Notes in Computer Science, 2020, , 359-367.	1.3	6
736	The Tumor Mix-Up in 3D Unet for Glioma Segmentation. Lecture Notes in Computer Science, 2020, , 266-273.	1.3	1
737	3D Deep Residual Encoder-Decoder CNNS with Squeeze-and-Excitation for Brain Tumor Segmentation. Lecture Notes in Computer Science, 2020, , 234-243.	1.3	1
738	Radiomics-Enhanced Multi-task Neural Network for Non-invasive Glioma Subtyping and Segmentation. Lecture Notes in Computer Science, 2020, , 81-90.	1.3	5
739	Automated Acquisition Planning for Magnetic Resonance Spectroscopy in Brain Cancer. Lecture Notes in Computer Science, 2020, 12267, 730-739.	1.3	0
740	Learning Joint Shape and Appearance Representations with Metamorphic Auto-Encoders. Lecture Notes in Computer Science, 2020, , 202-211.	1.3	5
741	Deep Recurrent Neural Network with Tanimoto Similarity and MKSIFT Features for Medical Image Search and Retrieval. Communications in Computer and Information Science, 2020, , 42-54.	0.5	0
743	Integrative radiomic analysis for pre-surgical prognostic stratification of glioblastoma patients: from advanced to basic MRI protocols. , 2020, 11315, .		4
744	DARCNN: Domain Adaptive Region-based Convolutional Neural Network for Unsupervised Instance Segmentation in Biomedical Images. , 2021, , .		19
745	Glioma Image Segmentation Method on Fully Convolutional Neural Network. , 2021, , .		1
746	A Predictive Clinical-Radiomics Nomogram for Survival Prediction of Glioblastoma Using MRI. Diagnostics, 2021, 11, 2043.	2.6	12
747	Brain tumor detection and classification using machine learning: a comprehensive survey. Complex & Intelligent Systems, 2022, 8, 3161-3183.	6.5	99
748	How does DICOM support big data management? Investigating its use in medical imaging community. Insights Into Imaging, 2021, 12, 164.	3.4	11
751	Deep Learning for Magnetic Resonance Images of Gliomas. Studies in Computational Intelligence, 2021, , 269-300.	0.9	0

#	Δρτιςι ε	IF	CITATIONS
" 752	March on Data Imperfections: Domain Division and Domain Generalization for Semantic Segmentation. , 2020, , .		2
753	A Generalized Pooling for Brain Tumor Segmentation. IEEE Access, 2021, 9, 159283-159290.	4.2	8
754	Lesion covariance networks reveal proposed origins and pathways of diffuse gliomas. Brain Communications, 2021, 3, fcab289.	3.3	11
755	Hirni: Segmentation of Brain Tumors in Multi-parametric Magnetic Resonance Imaging Scans. , 2021, , .		0
756	MRI super-resolution using 3D cycle-consistent generative adversarial network. , 2021, , .		3
757	Evolution in diagnosis and detection of brain tumor – review. Journal of Physics: Conference Series, 2021, 2115, 012039.	0.4	4
758	Evaluation of conventional and deep learning based image harmonization methods in radiomics studies. Physics in Medicine and Biology, 2021, 66, 245009.	3.0	18
759	A Modified AUC for Training Convolutional Neural Networks: Taking Confidence Into Account. Frontiers in Artificial Intelligence, 2021, 4, 582928.	3.4	12
760	Progressive attention module for segmentation of volumetric medical images. Medical Physics, 2022, 49, 295-308.	3.0	2
761	An empirical study of different machine learning techniques for brain tumor classification and subsequent segmentation using hybrid texture feature. Machine Vision and Applications, 2022, 33, 1.	2.7	31
762	Prediction of the degree of pathological differentiation in tongue squamous cell carcinoma based on radiomics analysis of magnetic resonance images. BMC Oral Health, 2021, 21, 585.	2.3	6
763	Glioma classification framework based on SEâ€ResNeXt network and its optimization. IET Image Processing, 2022, 16, 596-605.	2.5	8
764	Synthesizing highâ€resolution magnetic resonance imaging using parallel cycleâ€consistent generative adversarial networks for fast magnetic resonance imaging. Medical Physics, 2022, 49, 357-369.	3.0	5
765	Quantifying T2-FLAIR Mismatch Using Geographically Weighted Regression and Predicting Molecular Status in Lower-Grade Gliomas. American Journal of Neuroradiology, 2022, 43, 33-39.	2.4	11
766	DA-ResUNet: a novel method for brain tumor segmentation based on U-Net with residual block and CBAM. , 2021, , .		2
767	Deep Convolutional Neural Network With a Multi-Scale Attention Feature Fusion Module for Segmentation of Multimodal Brain Tumor. Frontiers in Neuroscience, 2021, 15, 782968.	2.8	6
768	<scp>GANâ€segNet</scp> : A deep generative adversarial segmentation network for brain tumor semantic segmentation. International Journal of Imaging Systems and Technology, 2022, 32, 857-868.	4.1	6
769	Applications of Radiomics and Radiogenomics in High-Grade Cliomas in the Era of Precision Medicine. Cancers, 2021, 13, 5921.	3.7	29

#	Article	IF	CITATIONS
770	Development and Practical Implementation of a Deep Learning–Based Pipeline for Automated Pre- and Postoperative Glioma Segmentation. American Journal of Neuroradiology, 2021, , .	2.4	5
771	Comparing the Performance of Two Radiomic Models to Predict Progression and Progression Speed of White Matter Hyperintensities. Frontiers in Neuroinformatics, 2021, 15, 789295.	2.5	1
772	Brain Tumor Classification into High Grade and Low Grade Gliomas. International Journal of Scientific Research in Science, Engineering and Technology, 2019, , 785-790.	0.1	0
774	KiU-Net: Overcomplete Convolutional Architectures for Biomedical Image and Volumetric Segmentation. IEEE Transactions on Medical Imaging, 2022, 41, 965-976.	8.9	94
775	Unified Focal loss: Generalising Dice and cross entropy-based losses to handle class imbalanced medical image segmentation. Computerized Medical Imaging and Graphics, 2022, 95, 102026.	5.8	186
776	SdcNet for object recognition. Computer Vision and Image Understanding, 2022, 215, 103332.	4.7	2
777	Scale-adaptive super-feature based MetricUNet for brain tumor segmentation. Biomedical Signal Processing and Control, 2022, 73, 103442.	5.7	19
778	Brain tumor segmentation with corner attention and high-dimensional perceptual loss. Biomedical Signal Processing and Control, 2022, 73, 103438.	5.7	11
779	A computation-efficient CNN system for high-quality brain tumor segmentation. Biomedical Signal Processing and Control, 2022, 74, 103475.	5.7	10
780	A Separate 3D-SegNet Based on Priority Queue for Brain Tumor Segmentation. , 2020, , .		2
781	T1-Weighted Contrast-Enhanced Synthesis for Multi-Contrast MRI Segmentation. , 2020, , .		2
782	Immersive Visualisation In Medical Imaging. , 2020, , .		1
783	RANP: Resource Aware Neuron Pruning at Initialization for 3D CNNs. , 2020, , .		1
784	Batch Weighted Nuclear-Norm Minimization for Medical Image Sequence Segmentation. Lecture Notes in Computer Science, 2021, , 360-371.	1.3	0
785	BrainSeg R-CNN for Brain Tumor Segmentation. Communications in Computer and Information Science, 2021, , 217-226.	0.5	0
786	Cross-Modal Distillation to Improve MRI-Based Brain Tumor Segmentation With Missing MRI Sequences. IEEE Transactions on Biomedical Engineering, 2022, 69, 2153-2164.	4.2	15
787	TransConver: transformer and convolution parallel network for developing automatic brain tumor segmentation in MRI images. Quantitative Imaging in Medicine and Surgery, 2022, 12, 2397-2415.	2.0	16
788	Fully-Automatic Segmentation of Gliomas using MR Images. , 2021, , .		0

#	Article	IF	CITATIONS
789	Research on Feature Detection Based on Convolutional Network with Deep Instance Segmentation. , 2021, , .		0
790	BORDE: Boundary and Sub-Region Denormalization for Semantic Brain Image Synthesis. , 2021, , .		1
791	3D Dense Volumetric Network for Accurate Automated Pancreas Segmentation. , 2021, 2021, 3553-3556.		0
792	Radiologically Defined Tumor-habitat Adjacency as a Prognostic Biomarker in Glioblastoma. , 2021, 2021, 3998-4001.		2
793	Improving Localization of Brain Tumors through 3D GAN Inpainting. , 2021, 2021, 2651-2654.		1
794	Reliability as a Precondition for Trust—Segmentation Reliability Analysis of Radiomic Features Improves Survival Prediction. Diagnostics, 2022, 12, 247.	2.6	3
795	Medical image segmentation using deep learning: A survey. IET Image Processing, 2022, 16, 1243-1267.	2.5	166
796	Preoperative Contrast-Enhanced MRI in Differentiating Glioblastoma From Low-Grade Gliomas in The Cancer Imaging Archive Database: A Proof-of-Concept Study. Frontiers in Oncology, 2021, 11, 761359.	2.8	2
797	Al-Driven Image Analysis in Central Nervous System Tumors-Traditional Machine Learning, Deep Learning and Hybrid Models. Journal of Biotechnology and Biomedicine, 2022, 05, 1-19.	0.3	4
798	Segmentation of multicorrelated images with copula models and conditionally random fields. Journal of Medical Imaging, 2022, 9, 014001.	1.5	0
799	Deep learningâ€based convolutional neural network for intramodality brain MRI synthesis. Journal of Applied Clinical Medical Physics, 2022, 23, e13530.	1.9	11
800	Classification of brain tumours in MR images using deep spatiospatial models. Scientific Reports, 2022, 12, 1505.	3.3	42
802	Brain tumor segmentation in MRI images using nonparametric localization and enhancement methods with U-net. International Journal of Computer Assisted Radiology and Surgery, 2022, 17, 589-600.	2.8	24
803	Radiomic Deformation and Textural Heterogeneity (R-DepTH) Descriptor to Characterize Tumor Field Effect: Application to Survival Prediction in Glioblastoma. IEEE Transactions on Medical Imaging, 2022, 41, 1764-1777.	8.9	7
806	Automatic Brain Tumor Detection from MRI using Curvelet Transform and Neural Features. International Journal of Ambient Computing and Intelligence, 2022, 13, 0-0.	1.1	1
807	3D AGSE-VNet: an automatic brain tumor MRI data segmentation framework. BMC Medical Imaging, 2022, 22, 6.	2.7	58
808	A Fully Automated Multimodal MRI-Based Multi-Task Learning for Glioma Segmentation and IDH Genotyping. IEEE Transactions on Medical Imaging, 2022, 41, 1520-1532.	8.9	62
809	Optimal acquisition sequence for Al-assisted brain tumor segmentation under the constraint of largest information gain per additional MRI sequence. Neuroscience Informatics, 2022, 2, 100053.	4.5	5

#	Article	IF	CITATIONS
810	An efficient magnetic resonance image data quality screening dashboard. Journal of Applied Clinical Medical Physics, 2022, 23, e13557.	1.9	3
811	MR brain segmentation based on DE-ResUnet combining texture features and background knowledge. Biomedical Signal Processing and Control, 2022, 75, 103541.	5.7	13
812	Object Detection Improves Tumour Segmentation in MR Images of Rare Brain Tumours. Cancers, 2021, 13, 6113.	3.7	9
813	Deep Classification of Glioma Grade using 3D Wavelet Features. , 2022, , .		1
815	Review of Brain Tumor MRI Image Segmentation Methods for BraTS Challenge Dataset. , 2022, , .		2
816	SGEResU-Net for brain tumor segmentation. Mathematical Biosciences and Engineering, 2022, 19, 5576-5590.	1.9	12
817	Detection of Brain Tumor with Magnetic Resonance Imaging using Deep Learning Techniques. , 2022, , 183-196.		4
818	Dominant Gray Level Based Particle Swarm Optimization Clustering for Segmenting Brain Tumor Sub-regions from Multimodal Magnetic Resonance Images. Lecture Notes in Electrical Engineering, 2022, , 605-617.	0.4	0
819	QSMRim-Net: Imbalance-aware learning for identification of chronic active multiple sclerosis lesions on quantitative susceptibility maps. NeuroImage: Clinical, 2022, 34, 102979.	2.7	15
820	Deep learning for noninvasive management of brain tumors. , 2022, , 15-34.		0
821	Contrast Enhancement and Noise Removal from Medical Images Using a Hybrid Technique. Smart Innovation, Systems and Technologies, 2022, , 223-232.	0.6	2
822	Simultaneous brain tumor segmentation and molecular profiling using deep learning and T2w magnetic resonance images. , 2022, , 57-79.		0
823	AIM and Brain Tumors. , 2022, , 1717-1732.		0
824	Magnetic resonance image-based brain tumour segmentation methods: A systematic review. Digital Health, 2022, 8, 205520762210741.	1.8	5
825	Transfer Learning Approaches for Neuroimaging Analysis: A Scoping Review. Frontiers in Artificial Intelligence, 2022, 5, 780405.	3.4	24
826	A multi-sequences MRI deep framework study applied to glioma classfication. Multimedia Tools and Applications, 2022, 81, 13563-13591.	3.9	7
827	Detection of Brain Tumor Abnormality from MRI FLAIR Images using Machine Learning Techniques. Journal of the Institution of Engineers (India): Series B, 2022, 103, 1097-1104.	1.9	7
828	Efficient Radiomics-Based Classification of Multi-Parametric MR Images to Identify Volumetric Habitats and Signatures in Glioblastoma: A Machine Learning Approach. Cancers, 2022, 14, 1475.	3.7	9

#	Article	IF	CITATIONS
829	Nakagami-Fuzzy imaging framework for precise lesion segmentation in MRI. Pattern Recognition, 2022, 128, 108675.	8.1	9
830	Cascaded mutual enhancing networks for brain tumor subregion segmentation in multiparametric MRI. Physics in Medicine and Biology, 2022, 67, 085015.	3.0	5
831	Method to Minimize the Errors of Al: Quantifying and Exploiting Uncertainty of Deep Learning in Brain Tumor Segmentation. Sensors, 2022, 22, 2406.	3.8	5
832	The Efficacy of Shape Radiomics and Deep Features for Glioblastoma Survival Prediction by Deep Learning. Electronics (Switzerland), 2022, 11, 1038.	3.1	1
833	Radiomics-Based Method for Predicting the Glioma Subtype as Defined by Tumor Grade, IDH Mutation, and 1p/19q Codeletion. Cancers, 2022, 14, 1778.	3.7	18
834	Clinically Deployed Computational Assessment of Multiple Sclerosis Lesions. Frontiers in Medicine, 2022, 9, 797586.	2.6	4
835	Combined Features in Region of Interest for Brain Tumor Segmentation. Journal of Digital Imaging, 2022, 35, 938-946.	2.9	4
836	Magnetic resonance imaging contrast enhancement synthesis using cascade networks with local supervision. Medical Physics, 2022, 49, 3278-3287.	3.0	13
837	Category guided attention network for brain tumor segmentation in MRI. Physics in Medicine and Biology, 2022, 67, 085014.	3.0	6
838	RDAU-Net: Based on a Residual Convolutional Neural Network With DFP and CBAM for Brain Tumor Segmentation. Frontiers in Oncology, 2022, 12, 805263.	2.8	5
839	State-of-the-art techniques using pre-operative brain MRI scans for survival prediction of glioblastoma multiforme patients and future research directions. Clinical and Translational Imaging, 2022, , 1-35.	2.1	5
840	Level set method for automated 3D brain tumor segmentation using symmetry analysis and kernel induced fuzzy clustering. Multimedia Tools and Applications, 2022, 81, 21719-21740.	3.9	7
841	The proposition of Possibilistic sigmoid features and the Shannon-Hanman transform classifier along with the pervasive learning model for the classification of brain tumor using MRI. Multimedia Tools and Applications, 2022, 81, 23913-23939.	3.9	1
842	Tumor Connectomics: Mapping the Intra-Tumoral Complex Interaction Network Using Machine Learning. Cancers, 2022, 14, 1481.	3.7	1
843	Brain multi-parametric MRI tumor subregion segmentation via hierarchical substructural activation network. , 2022, , .		0
844	Deep variational clustering framework for self-labeling large-scale medical images. , 2022, , .		2
845	Unsupervised anomaly detection in 3D brain MRI using deep learning with multi-task brain age prediction. , 2022, , .		3
846	HGG and LGG Brain Tumor Segmentation in Multi-Modal MRI Using Pretrained Convolutional Neural Networks of Amazon Sagemaker. Applied Sciences (Switzerland), 2022, 12, 3620	2.5	11

#	Article	IF	CITATIONS
847	Weakly supervised brain tumor segmentation via semantic affinity deep neural network. , 2022, , .		2
848	CaraNet: context axial reverse attention network for segmentation of small medical objects. , 2022, , .		44
849	Deep learning-based contrast-enhanced MRI using cascade networks with local supervision. , 2022, , .		0
850	Uncertainty estimation in classification of MGMT using radiogenomics for glioblastoma patients. , 2022, , .		1
851	High-resolution MR imaging using self-supervised parallel network. , 2022, , .		0
852	Transition Net: 2D backbone to segment 3D brain tumor. Biomedical Signal Processing and Control, 2022, 75, 103622.	5.7	5
853	Handling data heterogeneity with generative replay in collaborative learning for medical imaging. Medical Image Analysis, 2022, 78, 102424.	11.6	8
854	ComBat harmonization for multicenter MRI based radiomics features. , 2021, , .		1
855	Multi-Dilated Hierarchical Filter Based 3D U-Net for Multi-Modal Brain Tumor Segmentation. , 2021, , .		0
856	Cherry-Picking Gradients: Learning Low-Rank Embeddings of Visual Data via Differentiable Cross-Approximation. , 2021, , .		0
857	Glioma Segmentation from Multimodal MRI using U-Net Convolutional Neural Networks. , 2021, , .		1
858	Whole Tumor Segmentation from Brain MR images using Multi-view 2D Convolutional Neural Network. , 2021, 2021, 4111-4114.		5
859	Fully Automated MR Based Virtual Biopsy of Cerebral Gliomas. Cancers, 2021, 13, 6186.	3.7	10
860	Perceptual Variation Stacking: Test Time Augmentations in Endoscopy Image Segmentation. , 2021, , .		0
861	GEU-Net: Rethinking the information transmission in the skip connection of U-Net architecture. , 2021, , .		1
862	RADIOHEAD: Radiogenomic analysis incorporating tumor heterogeneity in imaging through densities. Annals of Applied Statistics, 2021, 15, .	1.1	5
863	Robust, Primitive, and Unsupervised Quality Estimation for Segmentation Ensembles. Frontiers in Neuroscience, 2021, 15, 752780.	2.8	4
864	False positive repression: Data centric pipeline for object detection in brain MRI. Concurrency Computation Practice and Experience, 2022, 34, .	2.2	4

#	Article	IF	CITATIONS
865	Segmentation and Classification of Brain Tumors using Deep Learning Techniques. , 2021, , .		1
866	Trends in Development of Novel Machine Learning Methods for the Identification of Gliomas in Datasets That Include Non-Glioma Images: A Systematic Review. Frontiers in Oncology, 2021, 11, 788819.	2.8	7
867	3D asymmetric expectationâ€maximization attention network for brain tumor segmentation. NMR in Biomedicine, 2022, 35, e4657.	2.8	7
868	Attention-based deep learning segmentation: Application to brain tumor delineation. , 2021, , .		18
869	A Comparative and Summative Study of Radiomics-based Overall Survival Prediction in Glioblastoma Patients. Journal of Computer Assisted Tomography, 2022, Publish Ahead of Print, .	0.9	3
870	Medical image segmentation with 3D convolutional neural networks: A survey. Neurocomputing, 2022, 493, 397-413.	5.9	37
871	Brain tumor detection and patient survival prediction using <scp>Uâ€Net</scp> and regression model. International Journal of Imaging Systems and Technology, 2022, 32, 1801-1814.	4.1	5
872	A weakly supervised deep learning-based method for glioma subtype classification using WSI and mpMRIs. Scientific Reports, 2022, 12, 6111.	3.3	17
873	A novel 2-phase residual U-net algorithm combined with optimal mass transportation for 3D brain tumor detection and segmentation. Scientific Reports, 2022, 12, 6452.	3.3	3
874	A Novel Distributed Matching Global and Local Fuzzy Clustering (DMGLFC) for 3D Brain Image Segmentation for Tumor Detection. IETE Journal of Research, 2022, 68, 2363-2375.	2.6	2
875	A New Model for Brain Tumor Detection Using Ensemble Transfer Learning and Quantum Variational Classifier. Computational Intelligence and Neuroscience, 2022, 2022, 1-13.	1.7	38
876	Single level UNet3D with multipath residual attention block for brain tumor segmentation. Journal of King Saud University - Computer and Information Sciences, 2022, 34, 3247-3258.	3.9	16
877	Swin transformer for fast MRI. Neurocomputing, 2022, 493, 281-304.	5.9	55
893	Explainability of deep neural networks for MRI analysis of brain tumors. International Journal of Computer Assisted Radiology and Surgery, 2022, 17, 1673-1683.	2.8	23
894	Performance Analysis for Accuracy of Various Algorithms to Detect and Classify Brain Tumor Using Data Mining. Lecture Notes in Networks and Systems, 2022, , 469-487.	0.7	0
897	Collaborative Learning of Images and Geometrics for Predicting Isocitrate Dehydrogenase Status of Glioma. , 2022, , .		3
898	Fusion-Based Multimodal Medical Image Registration Combining Inter-Modality Metric and Disentanglement. , 2022, , .		1
899	Multi-Class Brain Tumor Segmentation via 3d and 2d Neural Networks. , 2022, , .		2

#	Article	IF	CITATIONS
900	Unsupervised Anomaly Detection in 3D Brain MRI Using Deep Learning with Impured Training Data. , 2022, , .		1
901	Pseudo-Label Refinement Using Superpixels for Semi-Supervised Brain Tumour Segmentation. , 2022, , .		6
902	Anomaly Detection via Context and Local Feature Matching. , 2022, , .		1
903	Brain Cancer Survival Prediction on Treatment-NaÃ⁻ve MRI using Deep Anchor Attention Learning with Vision Transformer. , 2022, , .		4
904	Federated Learning in Medical Imaging: Part I: Toward Multicentral Health Care Ecosystems. Journal of the American College of Radiology, 2022, 19, 969-974.	1.8	22
905	Detection of Abnormalities in Brain using Machine Learning in Medical Image Analysis. , 2022, , .		2
906	Simulating the behaviour of glioblastoma multiforme based on patient MRI during treatments. Journal of Mathematical Biology, 2022, 84, 44.	1.9	0
907	CTV Delineation for High-Grade Gliomas: Is There Agreement With Tumor Cell Invasion Models?. Advances in Radiation Oncology, 2022, 7, 100987.	1.2	4
908	A Comprehensive Survey on Brain Tumor Diagnosis Using Deep Learning and Emerging Hybrid Techniques with Multi-modal MR Image. Archives of Computational Methods in Engineering, 2022, 29, 4871-4896.	10.2	16
909	Private Learning Via Knowledge Transfer with High-Dimensional Targets. , 2022, , .		0
910	Unsupervised brain imaging 3D anomaly detection and segmentation with transformers. Medical Image Analysis, 2022, 79, 102475.	11.6	59
911	Common feature learning for brain tumor MRI synthesis by context-aware generative adversarial network. Medical Image Analysis, 2022, 79, 102472.	11.6	10
912	Robustness of radiomic features in magnetic resonance imaging for patients with glioblastoma: Multi-center study. Physics and Imaging in Radiation Oncology, 2022, 22, 131-136.	2.9	12
913	A Review on Convolutional Neural Networks for Brain Tumor Segmentation: Methods, Datasets, Libraries, and Future Directions. Irbm, 2022, 43, 521-537.	5.6	14
914	An optimal brain tumor segmentation algorithm for clinical MRI dataset with low resolution and non-contiguous slices. BMC Medical Imaging, 2022, 22, 89.	2.7	3
915	edaGAN: Encoder-Decoder Attention Generative Adversarial Networks for Multi-contrast MR Image Synthesis. , 2022, , .		1
916	Prediction of glioma-subtypes: comparison of performance on a DL classifier using bounding box areas versus annotated tumors. BMC Biomedical Engineering, 2022, 4, 4.	2.6	3
917	Optical Flow Video Frame InterpolationÂBased MRI Super-Resolution. Algorithms for Intelligent Systems, 2022, , 451-462.	0.6	1

#	Article	IF	Citations
918	A secure two-qubit quantum model for segmentation and classification of brain tumor using MRI images based on blockchain. Neural Computing and Applications, 2022, 34, 17315-17328.	5.6	13
919	An automated segmentation model based on CBAM for MR image of glioma tumors. , 2022, , .		0
920	Learning global dependencies based on hierarchical full connection for brain tumor segmentation. Computer Methods and Programs in Biomedicine, 2022, 221, 106925.	4.7	4
921	scSE-NL V-Net: A Brain Tumor Automatic Segmentation Method Based on Spatial and Channel "Squeeze-and-Excitation―Network With Non-local Block. Frontiers in Neuroscience, 2022, 16, .	2.8	8
922	Application of a Modified Combinational Approach to Brain Tumor Detection in MR Images. Journal of Digital Imaging, 2022, 35, 1421-1432.	2.9	1
923	CoCycleReg: Collaborative cycle-consistency method for multi-modal medical image registration. Neurocomputing, 2022, 500, 799-808.	5.9	8
924	Fully automatic MRI brain tumor segmentation using efficient spatial attention convolutional networks with composite loss. Neurocomputing, 2022, 500, 243-254.	5.9	10
925	SplitAVG: A Heterogeneity-Aware Federated Deep Learning Method for Medical Imaging. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 4635-4644.	6.3	24
926	Benchmarking of Deep Architectures for Segmentation of Medical Images. IEEE Transactions on Medical Imaging, 2022, 41, 3231-3241.	8.9	15
927	Features Driven Brain Tumor Detection Using Machine Learning Models. , 2022, , .		3
928	BTSwin-Unet: 3D U-shaped Symmetrical Swin Transformer-based Network for Brain Tumor Segmentation with Self-supervised Pre-training. Neural Processing Letters, 2023, 55, 3695-3713.	3.2	9
929	Enhancing the REMBRANDT MRI collection with expert segmentation labels and quantitative radiomic features. Scientific Data, 2022, 9, .	5.3	1
930	LGMSU-Net: Local Features, Global Features, and Multi-Scale Features Fused the U-Shaped Network for Brain Tumor Segmentation. Electronics (Switzerland), 2022, 11, 1911.	3.1	2
931	SwinBTS: A Method for 3D Multimodal Brain Tumor Segmentation Using Swin Transformer. Brain Sciences, 2022, 12, 797.	2.3	58
932	Learning disentangled representations in the imaging domain. Medical Image Analysis, 2022, 80, 102516.	11.6	26
933	Multimodal attention-gated cascaded U-Net model for automatic brain tumor detection and segmentation. Biomedical Signal Processing and Control, 2022, 78, 103907.	5.7	2
934	Brain Tumor Segmentation withÂSelf-supervised Enhance Region Post-processing. Lecture Notes in Computer Science, 2022, , 267-275.	1.3	2
935	BiTr-Unet: A CNN-Transformer Combined Network forÂMRI Brain Tumor Segmentation. Lecture Notes in Computer Science, 2022, , 3-14.	1.3	28

#	Article	IF	CITATIONS
936	Extending nn-UNet forÂBrain Tumor Segmentation. Lecture Notes in Computer Science, 2022, , 173-186.	1.3	43
937	AttU-NET: Attention U-Net forÂBrain Tumor Segmentation. Lecture Notes in Computer Science, 2022, , 302-311.	1.3	6
938	Evaluation andÂAnalysis ofÂDifferent Aggregation andÂHyperparameter Selection Methods forÂFederated Brain Tumor Segmentation. Lecture Notes in Computer Science, 2022, , 405-419.	1.3	2
942	HNF-Netv2 forÂBrain Tumor Segmentation Using Multi-modal MR Imaging. Lecture Notes in Computer Science, 2022, , 106-115.	1.3	5
943	Redundancy Reduction inÂSemantic Segmentation ofÂ3D Brain Tumor MRIs. Lecture Notes in Computer Science, 2022, , 163-172.	1.3	1
944	MS UNet: Multi-scale 3D UNet forÂBrain Tumor Segmentation. Lecture Notes in Computer Science, 2022, , 30-41.	1.3	6
945	Radiogenomic Prediction ofÂMGMT Using Deep Learning withÂBayesian Optimized Hyperparameters. Lecture Notes in Computer Science, 2022, , 357-366.	1.3	0
946	A Deep Learning Approach toÂClioblastoma Radiogenomic Classification Using Brain MRI. Lecture Notes in Computer Science, 2022, , 345-356.	1.3	0
947	Brain Tumor Segmentation (BraTS) Challenge Short Paper: Improving Three-Dimensional Brain Tumor Segmentation Using SegResnet and Hybrid Boundary-Dice Loss. Lecture Notes in Computer Science, 2022, , 334-344.	1.3	1
949	Federated Learning for Brain Tumor Segmentation Using MRI and Transformers. Lecture Notes in Computer Science, 2022, , 444-454.	1.3	3
950	Optimized U-Net forÂBrain Tumor Segmentation. Lecture Notes in Computer Science, 2022, , 15-29.	1.3	28
951	FedCostWAvg: A New Averaging forÂBetter Federated Learning. Lecture Notes in Computer Science, 2022, , 383-391.	1.3	3
952	Prediction ofÂMGMT Methylation Status ofÂGlioblastoma Using Radiomics andÂLatent Space Shape Features. Lecture Notes in Computer Science, 2022, , 222-231.	1.3	3
953	Coupling nnU-Nets withÂExpert Knowledge forÂAccurate Brain Tumor Segmentation fromÂMRI. Lecture Notes in Computer Science, 2022, , 197-209.	1.3	6
957	E1D3 U-Net forÂBrain Tumor Segmentation: Submission toÂtheÂRSNA-ASNR-MICCAI BraTS 2021 challenge. Lecture Notes in Computer Science, 2022, , 276-288.	1.3	3
959	Disparity Autoencoders for Multi-class Brain Tumor Segmentation. Lecture Notes in Computer Science, 2022, , 116-124.	1.3	1
961	Evaluating Scale Attention Network forÂAutomatic Brain Tumor Segmentation withÂLarge Multi-parametric MRI Database. Lecture Notes in Computer Science, 2022, , 42-53.	1.3	3
963	An Ensemble Approach toÂAutomatic Brain Tumor Segmentation. Lecture Notes in Computer Science, 2022, , 138-148.	1.3	2

#	Article	IF	CITATIONS
964	Brain Tumor Segmentation with Patch-Based 3D Attention UNet from Multi-parametric MRI. Lecture Notes in Computer Science, 2022, , 90-96.	1.3	1
968	Feature Learning by Attention and Ensemble with 3D U-Net to Glioma Tumor Segmentation. Lecture Notes in Computer Science, 2022, , 68-79.	1.3	2
970	Center Dropout: A Simple Method forÂSpeed andÂFairness inÂFederated Learning. Lecture Notes in Computer Science, 2022, , 481-493.	1.3	1
971	Generalized Wasserstein Dice Loss, Test-Time Augmentation, andÂTransformers forÂtheÂBraTS 2021 Challenge. Lecture Notes in Computer Science, 2022, , 187-196.	1.3	3
973	Dice Focal Loss withÂResNet-like Encoder-Decoder Architecture inÂ3D Brain Tumor Segmentation. Lecture Notes in Computer Science, 2022, , 97-105.	1.3	0
974	Adaptive Weight Aggregation inÂFederated Learning forÂBrain Tumor Segmentation. Lecture Notes in Computer Science, 2022, , 455-469.	1.3	8
975	Brain Tumor Segmentation in mpMRI Scans (BraTS-2021) Using Models Based on U-Net Architecture. Lecture Notes in Computer Science, 2022, , 312-323.	1.3	2
976	Efficient Federated Tumor Segmentation viaÂNormalized Tensor Aggregation andÂClient Pruning. Lecture Notes in Computer Science, 2022, , 433-443.	1.3	1
977	Training Hacks and a Frugal Manâ \in Ms Net with Application to Glioblastoma Segmentation. , 2022, , .		0
978	A lightweight 3D UNet model for glioma grading. Physics in Medicine and Biology, 2022, 67, 155006.	3.0	3
979	Intelligent framework for brain tumor grading using advanced feature analysis. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2023, 11, 485-503.	1.9	0
980	Morphological and Fractal Properties of Brain Tumors. Frontiers in Physiology, 0, 13, .	2.8	4
981	Adding radiomics to the 2021 WHO updates may improve prognostic prediction for current IDH-wildtype histological lower-grade gliomas with known EGFR amplification and TERT promoter mutation status. European Radiology, 2022, 32, 8089-8098.	4.5	4
982	Logistic Regression–Based Model Is More Efficient Than U-Net Model for Reliable Whole Brain Magnetic Resonance Imaging Segmentation. Topics in Magnetic Resonance Imaging, 2022, 31, 31-39.	1.2	5
983	Deep learning based brain tumor segmentation: a survey. Complex & Intelligent Systems, 2023, 9, 1001-1026.	6.5	66
984	Combined molecular subtyping, grading, and segmentation of glioma using multi-task deep learning. Neuro-Oncology, 2023, 25, 279-289.	1.2	34
985	Research on the magnetic resonance imaging brain tumor segmentation algorithm based on <scp>DOâ€UNet</scp> . International Journal of Imaging Systems and Technology, 0, , .	4.1	1
986	Overall Survival Prediction of Clioma Patients With Multiregional Radiomics. Frontiers in Neuroscience, 0, 16, .	2.8	5

ARTICLE IF CITATIONS # CSU-Net: A CNN-Transformer Parallel Network for Multimodal Brain Tumour Segmentation. 987 3.1 8 Electronics (Switzerland), 2022, 11, 2226. Review on Hybrid Segmentation Methods for Identification of Brain Tumor in MRI. Contrast Media and 988 0.8 Molecular Imaging, 2022, 2022, 1-16. 989 The Medical Segmentation Decathlon. Nature Communications, 2022, 13, . 12.8 252 Molecular subtype classification of lowâ€grade gliomas using magnetic resonance imagingâ€based 991 radiomics and machine learning. NMR in Biomedicine, 2022, 35, . Brain Tumor Segmentation Using Deep Capsule Network and Latent-Dynamic Conditional Random 992 3.0 13 Fields. Journal of Imaging, 2022, 8, 190. CM-SegNet: A deep learning-based automatic segmentation approach for medical images by combining convolution and multilayer perceptron. Computers in Biology and Medicine, 2022, 147, 105797. 993 Brain tumor segmentation using a hybrid multi resolution U-Net with residual dual attention and deep 994 5.7 10 supervision on MR images. Biomedical Signal Processing and Control, 2022, 78, 103939. Enhancing level set brain tumor segmentation using fuzzy shape prior information and deep learning. 4.1 International Journal of Imaging Systems and Technology, 0, , . A Radiomics-Based Machine Learning Model for Prediction of Tumor Mutational Burden in 996 3.7 11 Lower-Grade Gliomas. Cancers, 2022, 14, 3492. Brain Tumor Diagnosis Using Machine Learning, Convolutional Neural Networks, Capsule Neural Networks and Vision Transformers, Applied to MRI: A Survey. Journal of Imaging, 2022, 8, 205. Preoperative Brain Tumor Imaging: Models and Software for Segmentation and Standardized 998 2.4 6 Reporting. Frontiers in Neurology, 0, 13, . Automatic brain tumor segmentation from Multiparametric MRI based on cascaded 3D U-Net and 3D 999 5.7 U-Net++. Biomedical Signal Processing and Control, 2022, 78, 103979. Swin UNETR: Swin Transformers forÂSemantic Segmentation ofÂBrain Tumors inÂMRI Images. Lecture 1000 1.3 214 Notes in Computer Science, 2022, , 272-284. Unet3D withÂMultiple Atrous Convolutions Attention Block forÂBrain Tumor Segmentation. Lecture 1.3 Notes in Computer Science, 2022, , 182-193. Segmenting Brain Tumors inÂMulti-modal MRI Scans Using aÂ3D SegNet Architecture. Lecture Notes in 1002 2 1.3 Computer Science, 2022, , 377-388. Brain Tumor Segmentation Using UNet-Context Encoding Network. Lecture Notes in Computer Science, 2022, , 463-472 Brain Tumor Segmentation Using Attention Activated U-Net with Positive Mining. Lecture Notes in 1004 1.32 Computer Science, 2022, , 431-440. Optimization ofÂDeep Learning Based Brain Extraction inÂMRI forÂLow Resource Environments. Lecture 1.3 Notes in Computer Science, 2022, , 151-167.

Article	IF	CITATIONS
A 3D Medical Image Segmentation Framework Fusing Convolution and Transformer Features. Lecture Notes in Computer Science, 2022, , 772-786.	1.3	0
A Video Data Based Transfer Learning Approach forÂClassification ofÂMGMT Status inÂBrain Tumor MR Images. Lecture Notes in Computer Science, 2022, , 306-314.	1.3	0
Brain Tumor Segmentation Using U-net and U-net++ Networks. , 2022, , .		6
AutoComBat: a generic method for harmonizing MRI-based radiomic features. Scientific Reports, 2022, 12, .	3.3	6
A Feasibility Study on Deep Learning Based Brain Tumor Segmentation Using 2D Ellipse Box Areas. Sensors, 2022, 22, 5292.	3.8	3
<i>GPCR</i> genes as a predictor of glioma severity and clinical outcome. Journal of International Medical Research, 2022, 50, 030006052211139.	1.0	1
Fully Automated Conversion Of Glioma Clinical MRI Scans Into A 3D Virtual Reality Model For Presurgical Planning. , 2022, , .		1
Expert tumor annotations and radiomics for locally advanced breast cancer in DCE-MRI for ACRIN 6657/I-SPY1. Scientific Data, 2022, 9, .	5.3	6
Improving MGMT methylation status prediction of glioblastoma through optimizing radiomics features using genetic algorithm-based machine learning approach. Scientific Reports, 2022, 12, .	3.3	11
Evaluation of a hybrid pipeline for automated segmentation of solid lesions based on mathematical algorithms and deep learning. Scientific Reports, 2022, 12, .	3.3	2
Deep Active Learning for Computer Vision Tasks: Methodologies, Applications, and Challenges. Applied Sciences (Switzerland), 2022, 12, 8103.	2.5	14
Federated disentangled representation learning for unsupervised brain anomaly detection. Nature Machine Intelligence, 2022, 4, 685-695.	16.0	17
Stable and Discriminatory Radiomic Features from the Tumor and Its Habitat Associated with Progression-Free Survival in Glioblastoma: A Multi-Institutional Study. American Journal of Neuroradiology, 2022, 43, 1115-1123.	2.4	3
MSFRâ€Net: Multiâ€modality and singleâ€modality feature recalibration network for brain tumor segmentation. Medical Physics, 2023, 50, 2249-2262.	3.0	5
Integrative Bayesian Models Using Post-Selective Inference: A Case Study in Radiogenomics. Biometrics, 2023, 79, 1801-1813.	1.4	2
DP-GAT: A Framework for Image-based Disease Progression Prediction. , 2022, , .		1
Artificial intelligence (AI)-based decision support improves reproducibility of tumor response assessment in neuro-oncology: An international multi-reader study. Neuro-Oncology, 2023, 25, 533-543.	1.2	16
Artificial intelligence in the radiomic analysis of glioblastomas: A review, taxonomy, and perspective. Frontiers in Oncology, 0, 12, .	2.8	9
	ARTICLE A 3D Medical Image Segmentation Framework Fusing Convolution and Transformer Features. Lecture Notes in Computer Science, 2022, 772-786. A Video Data Based Transfer Learning Approach for AClassification of AMCMIT Status in ABrain Tumor MR Images. Lecture Notes in Computer Science, 2022, 306-314. Brain Tumor Segmentation Using U-net and U-net++ Networks., 2022, AutoComBat: a generic method for harmonizing MRI-based radiomic features. Scientfic Reports, 2022, 12, . A Feasibility Study on Deep Learning Based Brain Tumor Segmentation Using 2D Ellipse Box Areas. Sensor 2022, 22, 5292. (I) GPCR(I): genes as a predictor of glioma severity and clinical outcome. Journal of International Medical Research, 2022, 50, 0300062211139. Fully Automated Conversion Of Glioma Clinical MRI Scans Into A 3D Virtual Reality Model For Presurgical Planning., 2022, . Export tumor annotations and radiomics for locally advanced breast cancer in DCE-MRI for ACRIN 6657(NSPY). Scientific Data, 2022, 9, . Improving MCMT methylation status prediction of glioblastoma through optimizing radiomics features using genetic algorithm-based machine learning approach. Scientific Reports, 2022, 12, . Evaluation of a hybrid oppeline for automated segmentation of solid lesions based on mathematical algorithm-based machine learning the unsupervised brain anomaly detection. Nature Machine Intelligence, 2022, 4, 685 695. Stable and Discriminatory Radiomic Features from the Tumor and Its Habitat Associated with Progression-free Survival in Glioblastoma: A Multinstitutional Study. American Journal of Neuroradiogy, 0222	ARTICLE IF A3D Medical Image Segmentation Framework Fusing Convolution and Transformer Features. Lecture 1.3 A Wdoe Data Based Transfer Learning Approach for AClassification of AMGMT Status in ABrain Tumor MR 1.3 Brain Tumor Segmentation Using Unet and Unet++ Networks., 2022, , . 3.3 AttoCombat: a generic method for harmonizing MRI-based radiomic features. Scientific Reports, 2022. 3.3 A Feasibility Study on Deep Learning Based Brain Tumor Segmentation Using 2D Ellipse Box Areas. 3.8 Sensors, 2022, 22, 5292. 1.0 Fully Automated Conversion Of Glioma Clinical MRI Scans Into A 3D Virtual Reality Model For 5.3 Fully Automated Conversion Of Glioma Clinical MRI Scans Into A 3D Virtual Reality Model For 5.3 Fully Automated Conversion Of Glioma Clinical MRI Scans Into A 3D Virtual Reality Model For 5.3 Expert tumor annotations and radiomics for locally advanced breast cancer in DCE-MRI for ACRIN 6.3 Evaluation of a hybrid pipeline for automated segmentation of solid lesions based on mathematical 3.3 Evaluation of a hybrid pipeline for automated segmentation and solid lesions based on mathematical 3.0 Stable and Diseriminatory Redomic Features from the Lumor and Its Habitat Associated with Progression-Free Survey and Michines Features in Conputer Vision Tasks: Methodologies, Applications, and Challenges, Applied Sciences (Switzerland), 2022, 12, 8103. <t< td=""></t<>

#	Article	IF	CITATIONS
1025	MTDCNet: A 3D multi-threading dilated convolutional network for brain tumor automatic segmentation. Journal of Biomedical Informatics, 2022, 133, 104173.	4.3	6
1026	An Exhaustive Analytical Study of U-Net Architecture on Two DiverseÂBiomedical Imaging Datasets of Electron MicroscopyÂDrosophila ssTEM and Brain MRI BraTS-2021 for Segmentation. SN Computer Science, 2022, 3, .	3.6	5
1027	Transformers in medical image analysis. Intelligent Medicine, 2023, 3, 59-78.	3.1	76
1028	Challenges in Glioblastoma Radiomics and the Path to Clinical Implementation. Cancers, 2022, 14, 3897.	3.7	3
1029	A Weakly Supervised Brain Tumor Segmentation Strategy Based on Multi-level Sub-category and Membership Matrix. Current Medical Imaging, 2022, 18, .	0.8	0
1030	An automated approach for predicting glioma grade and survival of LGG patients using CNN and radiomics. Frontiers in Oncology, 0, 12, .	2.8	5
1031	A medical image segmentation method based on multi-dimensional statistical features. Frontiers in Neuroscience, 0, 16, .	2.8	52
1032	Deep evidential fusion network for medical image classification. International Journal of Approximate Reasoning, 2022, 150, 188-198.	3.3	6
1033	Survival Prediction ofÂBrain Cancer withÂIncomplete Radiology, Pathology, Genomic, andÂDemographic Data. Lecture Notes in Computer Science, 2022, , 626-635.	1.3	3
1034	Ensemble CNN Networks for GBM Tumors Segmentation Using Multi-parametric MRI. Lecture Notes in Computer Science, 2022, , 473-483.	1.3	7
1035	Optimal MRI Undersampling Patterns forÂPathology Localization. Lecture Notes in Computer Science, 2022, , 768-779.	1.3	2
1036	A Survey on Brain Tumor Segmentation and Classification. International Journal of Software Innovation, 2022, 10, 1-21.	0.4	1
1037	Simple andÂFast Convolutional Neural Network Applied toÂMedian Cross Sections forÂPredicting theÂPresence ofÂMGMT Promoter Methylation inÂFLAIR MRI Scans. Lecture Notes in Computer Science, 2022, , 227-238.	1.3	0
1038	CA-Net: Collaborative Attention Network forÂMulti-modal Diagnosis ofÂGliomas. Lecture Notes in Computer Science, 2022, , 52-62.	1.3	0
1039	Multimodal Brain Tumor Segmentation Using a 3D ResUNet in BraTS 2021. Lecture Notes in Computer Science, 2022, , 315-323.	1.3	5
1040	Automatic Brain Tumor Segmentation Using Multi-scale Features andÂAttention Mechanism. Lecture Notes in Computer Science, 2022, , 216-226.	1.3	4
1041	Ensemble Outperforms Single Models inÂBrain Tumor Segmentation. Lecture Notes in Computer Science, 2022, , 451-462.	1.3	0
1042	Brain Tumor Segmentation Using Neural Network Topology Search. Lecture Notes in Computer Science, 2022, , 366-376.	1.3	1

		CITATION REPORT		
#	Article		IF	CITATIONS
1043	EfficientNet forÂBrain-Lesion Classification. Lecture Notes in Computer Science, 2022,	, 249-260.	1.3	0
1044	A Two-Phase Optimal Mass Transportation Technique forÂ3D Brain Tumor Detection an Lecture Notes in Computer Science, 2022, , 400-409.	ndÂSegmentation.	1.3	2
1045	Combining Global Information withÂTopological Prior forÂBrain Tumor Segmentation. Computer Science, 2022, , 204-215.	Lecture Notes in	1.3	3
1046	A Joint Graph andÂlmage Convolution Network forÂAutomatic Brain Tumor Segmentat in Computer Science, 2022, , 356-365.	ion. Lecture Notes	1.3	5
1047	3D MRI Brain Tumour Segmentation with Autoencoder Regularization and Hausdorff D Function. Lecture Notes in Computer Science, 2022, , 324-332.	istance Loss	1.3	0
1048	Diffusion Models forÂMedical Anomaly Detection. Lecture Notes in Computer Science,	2022, , 35-45.	1.3	52
1049	Fitting Segmentation Networks onÂVarying Image Resolutions Using Splatting. Lecture Computer Science, 2022, , 271-282.	e Notes in	1.3	0
1050	Attention-Fused CNN Model Compression withÂKnowledge Distillation forÂBrain Tumc Lecture Notes in Computer Science, 2022, , 328-338.	or Segmentation.	1.3	0
1051	End-to-End Evidential-Efficient Net forÂRadiomics Analysis ofÂBrain MRI toÂPredict One andÂOverall Survival. Lecture Notes in Computer Science, 2022, , 282-291.	cogene Expression	1.3	2
1052	Multi-tracer PET Imaging Using Deep Learning: Applications inÂPatients withÂHigh-Gra Notes in Computer Science, 2022, , 24-35.	de Gliomas. Lecture	1.3	0
1053	Uncertainty Categories inÂMedical Image Segmentation: A Study ofÂSource-Related D Notes in Computer Science, 2022, , 26-35.	iversity. Lecture	1.3	0
1054	Reciprocal Adversarial Learning forÂBrain Tumor Segmentation: A Solution toÂBraTS C Segmentation Task. Lecture Notes in Computer Science, 2022, , 171-181.	hallenge 2021	1.3	11
1055	LKAU-Net: 3D Large-Kernel Attention-Based U-Net forÂAutomatic MRI Brain Tumor Seg Notes in Computer Science, 2022, , 313-327.	mentation. Lecture	1.3	13
1056	Brain Tumor Segmentation Using Non-local Mask R-CNN andÂSingle Model Ensemble. Computer Science, 2022, , 239-248.	Lecture Notes in	1.3	1
1057	Multi-plane UNet++ Ensemble forÂGlioblastoma Segmentation. Lecture Notes in Comp , 285-294.	uter Science, 2022,	1.3	4
1058	Multimodal Brain Tumor Segmentation Using Modified UNet Architecture. Lecture Not Science, 2022, , 295-305.	es in Computer	1.3	3
1059	DS\$\$^3\$\$-Net: Difficulty-Perceived Common-to-T1ce Semi-supervised Multimodal MRI Network. Lecture Notes in Computer Science, 2022, , 571-581.	Synthesis	1.3	1
1060	AutoGAN-Synthesizer: Neural Architecture Search forÂCross-Modality MRI Synthesis. Le Computer Science, 2022, , 397-409.	ecture Notes in	1.3	3

#	Article	IF	CITATIONS
1061	3D CMM-Net with Deeper Encoder for Semantic Segmentation of Brain Tumors in BraTS2021 Challenge. Lecture Notes in Computer Science, 2022, , 333-343.	1.3	2
1062	Multi Modal Fusion forÂRadiogenomics Classification ofÂBrain Tumor. Lecture Notes in Computer Science, 2022, , 344-355.	1.3	0
1063	A Stratified Cascaded Approach forÂBrain Tumor Segmentation withÂtheÂAid ofÂMulti-modal Synthetic Data. Lecture Notes in Computer Science, 2022, , 92-101.	1.3	0
1064	Multi-task Learning-Driven Volume and Slice Level Contrastive Learning for 3D Medical Image Classification. Lecture Notes in Computer Science, 2022, , 110-120.	1.3	0
1065	Evidence Fusion with Contextual Discounting for Multi-modality Medical Image Segmentation. Lecture Notes in Computer Science, 2022, , 401-411.	1.3	6
1066	Predicting Isocitrate Dehydrogenase Mutation Status inÂGlioma Using Structural Brain Networks andÂGraph Neural Networks. Lecture Notes in Computer Science, 2022, , 140-150.	1.3	2
1067	HarDNet-BTS: A Harmonic Shortcut Network forÂBrain Tumor Segmentation. Lecture Notes in Computer Science, 2022, , 261-271.	1.3	0
1068	Cascaded Training Pipeline for 3D Brain Tumor Segmentation. Lecture Notes in Computer Science, 2022, , 410-420.	1.3	1
1069	What Do Untargeted Adversarial Examples Reveal inÂMedical Image Segmentation?. Lecture Notes in Computer Science, 2022, , 47-56.	1.3	1
1070	The Dice Loss in the Context of Missing or Empty Labels: Introducing \$\$varPhi \$\$ and \$\$epsilon \$\$. Lecture Notes in Computer Science, 2022, , 527-537.	1.3	3
1071	NestedFormer: Nested Modality-Aware Transformer forÂBrain Tumor Segmentation. Lecture Notes in Computer Science, 2022, , 140-150.	1.3	20
1072	Challenging Current Semi-supervised Anomaly Segmentation Methods forÂBrain MRI. Lecture Notes in Computer Science, 2022, , 63-74.	1.3	14
1073	Opportunities andÂChallenges forÂDeep Learning inÂBrain Lesions. Lecture Notes in Computer Science, 2022, , 25-36.	1.3	0
1074	NnUNet withÂRegion-based Training andÂLoss Ensembles forÂBrain Tumor Segmentation. Lecture Notes in Computer Science, 2022, , 421-430.	1.3	0
1075	Hierarchical andÂGlobal Modality Interaction forÂBrain Tumor Segmentation. Lecture Notes in Computer Science, 2022, , 441-450.	1.3	1
1076	Residual 3D U-Net withÂLocalization forÂBrain Tumor Segmentation. Lecture Notes in Computer Science, 2022, , 389-399.	1.3	2
1077	SCENIC: An Area and Energy-Efficient CNN-based Hardware Accelerator for Discernable Classification of Brain Pathologies using MRI. , 2022, , .		2
1078	Bottleneck Sharing Generative Adversarial Networks for Unified Multi-Contrast MR Image Synthesis. , 2022, , .		1

#	Article	IF	CITATIONS
1079	A Novel Partitioning Approach for Multimodal Brain Tumor Segmentation for Federated Learning. , 2022, , .		0
1080	A Deep Graph Cut Model For 3D Brain Tumor Segmentation. , 2022, , .		0
1081	Are 3D better than 2D Convolutional Neural Networks for Medical Imaging Semantic Segmentation?. , 2022, , .		3
1082	Modality Bank: Learn multi-modality images across data centers without sharing medical data. , 2022, ,		1
1083	Machine learning in neuroimaging: from research to clinical practice. , 2022, 62, 1-10.		6
1084	Attention 3D U-Net with Multiple Skip Connections for Segmentation of Brain Tumor Images. Sensors, 2022, 22, 6501.	3.8	29
1085	Brain Tumor MRI Image Segmentation Via Combining Pyramid Convolution and Attention Gate. , 2022, , .		1
1086	RMTF-Net: Residual Mix Transformer Fusion Net for 2D Brain Tumor Segmentation. Brain Sciences, 2022, 12, 1145.	2.3	7
1087	Interpretable Machine Learning with Brain Image and Survival Data. BioMedInformatics, 2022, 2, 492-510.	2.0	8
1088	Deep learning and machine learningâ€based early survival predictions of glioblastoma patients using preâ€operative <scp>threeâ€dimensional</scp> brain <scp>magnetic resonance imaging</scp> modalities. International Journal of Imaging Systems and Technology, 2023, 33, 340-361.	4.1	1
1089	Quantitative evaluation of the influence of multiple MRI sequences and of pathological tissues on the registration of longitudinal data acquired during brain tumor treatment. , 0, 1, .		1
1090	Analysis of depth variation of U-NET architecture for brain tumor segmentation. Multimedia Tools and Applications, 2023, 82, 10723-10743.	3.9	7
1091	Identification of a 6-RBP gene signature for a comprehensive analysis of glioma and ischemic stroke: Cognitive impairment and aging-related hypoxic stress. Frontiers in Aging Neuroscience, 0, 14, .	3.4	7
1092	The federated tumor segmentation (FeTS) tool: an open-source solution to further solid tumor research. Physics in Medicine and Biology, 2022, 67, 204002.	3.0	8
1093	Segmentation Method of Magnetoelectric Brain Image Based on the Transformer and the CNN. Information (Switzerland), 2022, 13, 445.	2.9	0
1094	Regional healthy brain activity, glioma occurrence and symptomatology. Brain, 2022, 145, 3654-3665.	7.6	19
1095	Global weighted average pooling network with multilevel feature fusion for weakly supervised brain tumor segmentation. IET Image Processing, 2023, 17, 418-427.	2.5	2
1096	U-Net Based Segmentation and Characterization of Gliomas. Cancers, 2022, 14, 4457.	3.7	10

#	Article	IF	Citations
1097	CrossMoDA 2021 challenge: Benchmark of cross-modality domain adaptation techniques for vestibular schwannoma and cochlea segmentation. Medical Image Analysis, 2023, 83, 102628.	11.6	25
1098	Brain tumor segmentation based on CBAM-TransUNet. , 2022, , .		0
1099	Role of the TSPO–NOX4 axis in angiogenesis in glioblastoma. Frontiers in Pharmacology, 0, 13, .	3.5	1
1100	OpenFL: the open federated learning library. Physics in Medicine and Biology, 2022, 67, 214001.	3.0	27
1101	MLRD-Net: 3D multiscale local cross-channel residual denoising network for MRI-based brain tumor segmentation. Medical and Biological Engineering and Computing, 2022, 60, 3377-3395.	2.8	2
1102	The University of California San Francisco Preoperative Diffuse Glioma MRI Dataset. Radiology: Artificial Intelligence, 2022, 4, .	5.8	16
1103	X-Net: A Novel Deep Learning Architecture with High-resolution Feature Maps for Image Segmentation. , 2021, , .		1
1104	SEResU-Net for Multimodal Brain Tumor Segmentation. IEEE Access, 2022, 10, 117033-117044.	4.2	6
1105	Med-DANet: Dynamic Architecture Network forÂEfficient Medical Volumetric Segmentation. Lecture Notes in Computer Science, 2022, , 506-522.	1.3	1
1106	Graph-Constrained Contrastive Regularization forÂSemi-weakly Volumetric Segmentation. Lecture Notes in Computer Science, 2022, , 401-419.	1.3	0
1107	A Specificity-Preserving Generative Model forÂFederated MRI Translation. Lecture Notes in Computer Science, 2022, , 79-88.	1.3	2
1108	msFormer: Adaptive Multi-Modality 3D Transformer forÂMedical Image Segmentation. Lecture Notes in Computer Science, 2022, , 311-322.	1.3	1
1109	Gradual Selfâ€Training via Confidence and Volume Based Domain Adaptation for Multi Dataset Deep Learningâ€Based Brain Metastases Detection Using Nonlocal Networks on MRI Images. Journal of Magnetic Resonance Imaging, 2023, 57, 1728-1740.	3.4	4
1110	Towards survival prediction of cancer patients using medical images. PeerJ Computer Science, 0, 8, e1090.	4.5	1
1111	ResNet-SVM: Fusion based glioblastoma tumor segmentation and classification. Journal of X-Ray Science and Technology, 2023, 31, 27-48.	1.0	1
1112	Clinical implementation of artificial intelligence in neuroradiology with development of a novel workflow-efficient picture archiving and communication system-based automated brain tumor segmentation and radiomic feature extraction. Frontiers in Neuroscience, 0, 16, .	2.8	12
1113	Radiomic Features of the Edema Region May Contribute to Grading Meningiomas With Peritumoral Edema. Journal of Magnetic Resonance Imaging, 2023, 58, 301-310.	3.4	1
1114	Transcriptomic and connectomic correlates of differential spatial patterning among gliomas. Brain, 2023, 146, 1200-1211.	7.6	13

	CHATION R	EPORT	
#	ARTICLE	IF	Citations
1115	Deep Learning Hybrid Techniques for Brain Tumor Segmentation. Sensors, 2022, 22, 8201.	3.8	7
1116	TCGAN: a transformer-enhanced GAN for PET synthetic CT. Biomedical Optics Express, 2022, 13, 6003.	2.9	5
1117	Brain tumor segmentation based on the fusion of deep semantics and edge information in multimodal MRI. Information Fusion, 2023, 91, 376-387.	19.1	145
1118	LETCP: A Label-Efficient Transformer-Based Contrastive Pre-Training Method for Brain Tumor Segmentation. Applied Sciences (Switzerland), 2022, 12, 11016.	2.5	0
1119	Deep Learning Meets Radiomics For End-To-End Brain Tumor MRI Analysis. , 2022, , .		2
1120	<scp>FFCAEs</scp> : An efficient feature fusion framework using cascaded autoencoders for the identification of gliomas. International Journal of Imaging Systems and Technology, 2023, 33, 483-494.	4.1	4
1121	Pure Versus Hybrid Transformers For Multi-Modal Brain Tumor Segmentation: A Comparative Study. , 2022, , .		1
1122	Multiscale lightweight 3D segmentation algorithm with attention mechanism: Brain tumor image segmentation. Expert Systems With Applications, 2023, 214, 119166.	7.6	28
1123	Shuffle-ResNet: Deep learning for predicting LGG IDH1 mutation from multicenter anatomical MRI sequences. Biomedical Physics and Engineering Express, 2022, 8, 065036.	1.2	2
1124	Explainable multi-module semantic guided attention based network for medical image segmentation. Computers in Biology and Medicine, 2022, 151, 106231.	7.0	6
1125	Multi-modal contrastive mutual learning and pseudo-label re-learning for semi-supervised medical image segmentation. Medical Image Analysis, 2023, 83, 102656.	11.6	28
1127	A Self-Attention-Guided 3D Deep Residual Network With Big Transfer to Predict Local Failure in Brain Metastasis After Radiotherapy Using Multi-Channel MRI. IEEE Journal of Translational Engineering in Health and Medicine, 2023, 11, 13-22.	3.7	6
1128	Automatic Segmentation and Classification of Brain Tumours on Pre-operative and Post-operative MRI Sample Using Deep Learning. Algorithms for Intelligent Systems, 2022, , 677-704.	0.6	1
1129	Brain Tumour Image Segmentation Using Deep Networks. International Journal of Advanced Research in Science, Communication and Technology, 0, , 7-12.	0.0	0
1130	Ensemble learning for glioma patients overall survival prediction using pre-operative MRIs. Physics in Medicine and Biology, 0, , .	3.0	0
1131	Guidelines and evaluation of clinical explainable AI in medical image analysis. Medical Image Analysis, 2023, 84, 102684.	11.6	26
1132	Predicting survival of glioblastoma from automatic whole-brain and tumor segmentation of MR images. Scientific Reports, 2022, 12, .	3.3	6
1133	Fully Convolutional Network for the Semantic Segmentation of Medical Images: A Survey. Diagnostics, 2022, 12, 2765.	2.6	5

#	Article	IF	CITATIONS
1134	Temperature guided network for 3D joint segmentation of the pancreas and tumors. Neural Networks, 2023, 157, 387-403.	5.9	5
1135	A deep learning framework integrating MRI image preprocessing methods for brain tumor segmentation and classification. IBRO Neuroscience Reports, 2022, 13, 523-532.	1.6	14
1136	Encâ€Unet: A novel method for Glioma segmentation. International Journal of Imaging Systems and Technology, 2023, 33, 465-482.	4.1	1
1137	Semiâ€supervised interactive fusion network for MR image segmentation. Medical Physics, 2023, 50, 1586-1600.	3.0	2
1138	Region-based evidential deep learning to quantify uncertainty and improve robustness of brain tumor segmentation. Neural Computing and Applications, 2023, 35, 22071-22085.	5.6	6
1139	PocketNet: A Smaller Neural Network for Medical Image Analysis. IEEE Transactions on Medical Imaging, 2023, 42, 1172-1184.	8.9	5
1140	Factorizer: A scalable interpretable approach to context modeling for medical image segmentation. Medical Image Analysis, 2023, 84, 102706.	11.6	9
1141	Data synthesis and adversarial networks: A review and meta-analysis in cancer imaging. Medical Image Analysis, 2023, 84, 102704.	11.6	9
1142	Segmentation ability map: Interpret deep features for medical image segmentation. Medical Image Analysis, 2023, 84, 102726.	11.6	5
1143	Improving brain tumor classification performance with an effective approach based on new deep learning model named 3ACL from 3D MRI data. Biomedical Signal Processing and Control, 2023, 81, 104424.	5.7	23
1144	Deep and statistical learning in biomedical imaging: State of the art in 3D MRI brain tumor segmentation. Information Fusion, 2023, 92, 450-465.	19.1	12
1145	Accurate prediction of glioma grades from radiomics using a multi-filter and multi-objective-based method. Mathematical Biosciences and Engineering, 2022, 20, 2890-2907.	1.9	0
1146	An Ensemble Survival Prediction Method of High-Grade Glioma based on Multi-Feature Fusion. , 2022, , .		0
1147	A Comprehensive Survey on MRI Images Classification for Brain Tumor Identification using Deep Learning Techniques. , 2022, , .		2
1148	NDNN based U-Net: An Innovative 3D Brain Tumor Segmentation Method. , 2022, , .		6
1149	Feature Extraction and Analysis of MR Images of Brain Tumors. , 2022, , .		0
1150	Brain Tumour Detection by Multilevel Thresholding Using Opposition Equilibrium Optimizer. Smart Innovation, Systems and Technologies, 2023, , 33-40.	0.6	1
1151	Multi-Modal Magnetic Resonance Images Segmentation Based on An Improved 3DUNet. , 2022, , .		1

#	Article	IF	CITATIONS
1152	Predicting IDH Mutation Status in Low-Grade Gliomas Based on Optimal Radiomic Features Combined with Multi-Sequence Magnetic Resonance Imaging. Diagnostics, 2022, 12, 2995.	2.6	6
1153	A transformer-based generative adversarial network for brain tumor segmentation. Frontiers in Neuroscience, 0, 16, .	2.8	5
1154	Automated multi-modal Transformer network (AMTNet) for 3D medical images segmentation. Physics in Medicine and Biology, 2023, 68, 025014.	3.0	2
1155	A multi-scale method based on U-Net for brain tumor segmentation. , 2022, , .		0
1156	SAResU-Net: Shuffle attention residual U-Net for brain tumor segmentation. , 2022, , .		1
1157	Evrişimli Sinir Ağlarında Beyin Tümörü Segmentasyonu. El-Cezeri Journal of Science and Engineering, 0,	,0.1	0
1158	The LUMIERE dataset: Longitudinal Clioblastoma MRI with expert RANO evaluation. Scientific Data, 2022, 9, .	5.3	4
1159	DeepEOR: automated perioperative volumetric assessment of variable grade gliomas using deep learning. Acta Neurochirurgica, 2023, 165, 555-566.	1.7	1
1160	NS-HGlio: A generalizable and repeatable HGG segmentation and volumetric measurement AI algorithm for the longitudinal MRI assessment to inform RANO in trials and clinics. Neuro-Oncology Advances, 2023, 5, .	0.7	4
1161	Multiparametric magnetic resonance imaging-derived deep learning network to determine ferroptosis-related gene signatures in gliomas. Frontiers in Neuroscience, 0, 16, .	2.8	1
1162	An Ensemble Classification Method for Brain Tumor Images Using Small Training Data. Mathematics, 2022, 10, 4566.	2.2	1
1163	Federated learning enables big data for rare cancer boundary detection. Nature Communications, 2022, 13, .	12.8	71
1164	Inconsistent Partitioning and Unproductive Feature Associations Yield Idealized Radiomic Models. Radiology, 2023, 307, .	7.3	14
1165	Relevance maps: A weakly supervised segmentation method for 3D brain tumours in MRIs. Frontiers in Radiology, 0, 2, .	2.0	1
1166	Axial Attention Convolutional Neural Network for Brain Tumor Segmentation with Multi-Modality MRI Scans. Brain Sciences, 2023, 13, 12.	2.3	3
1167	Extracting Radiomic features from pre-operative and segmented MRI scans improved survival prognosis of glioblastoma Multiforme patients through machine learning: a retrospective study. Multimedia Tools and Applications, 0, , .	3.9	0
1168	Fully Automated Segmentation Models of Supratentorial Meningiomas Assisted by Inclusion of Normal Brain Images. Journal of Imaging, 2022, 8, 327.	3.0	1
1170	A lightweight hierarchical convolution network for brain tumor segmentation. BMC Bioinformatics, 2021, 22, .	2.6	1

#	Article	IF	CITATIONS
1173	Survival prediction for patients with glioblastoma multiforme using a Cox proportional hazards denoising autoencoder network. Frontiers in Computational Neuroscience, 0, 16, .	2.1	1
1174	Magnetic resonance imaging image-based segmentation of brain tumor using the modified transfer learning method. Journal of Medical Physics, 2022, 47, 315.	0.3	3
1175	A Novel Generative Adversarial Network-Based Approach for Automated Brain Tumour Segmentation. Medicina (Lithuania), 2023, 59, 119.	2.0	6
1176	HMNet: Hierarchical Multi-Scale Brain Tumor Segmentation Network. Journal of Clinical Medicine, 2023, 12, 538.	2.4	7
1177	A Comparison of Three Different Deep Learning-Based Models to Predict the MGMT Promoter Methylation Status in Glioblastoma Using Brain MRI. Journal of Digital Imaging, 2023, 36, 837-846.	2.9	5
1178	Federated Learning forÂLung Sound Analysis. Communications in Computer and Information Science, 2023, , 120-134.	0.5	3
1179	Generating post-hoc explanation from deep neural networks for multi-modal medical image analysis tasks. MethodsX, 2023, 10, 102009.	1.6	5
1180	The Influence of Magnetic Resonance Imaging Artifacts on CNN-Based Brain Cancer Detection Algorithms. Computational Mathematics and Modeling, 0, , .	0.5	0
1182	Lesion delineation framework for vestibular schwannoma, meningioma and brain metastasis for gamma knife radiosurgery using stereotactic magnetic resonance images. Computer Methods and Programs in Biomedicine, 2023, 229, 107311.	4.7	3
1183	A literature survey of MR-based brain tumor segmentation with missing modalities. Computerized Medical Imaging and Graphics, 2023, 104, 102167.	5.8	5
1184	Specific features of designing a database for neuro-oncological 3D MRI images to be used in training artificial intelligence. The Siberian Scientific Medical Journal, 2022, 42, 51-59.	0.3	2
1185	Finding the Most Transferable Tasks for Brain Image Segmentation. , 2022, , .		0
1186	Detection and Classification of Brain Tumor Using Machine Learning Algorithms. Biomedical and Pharmacology Journal, 2022, 15, 2381-2397.	0.5	5
1187	Fusion-based Multilevel Thresholding For Image Segmentation Using Evolutionary Algorithm. , 2022, , .		1
1188	Pseudo-3D CNN with inter-slice attention for glioma grading. , 2022, , .		0
1189	Implementing multiphysics models in FEniCS: Viscoelastic flows, poroelasticity, and tumor growth. Biomedical Engineering Advances, 2023, , 100074.	3.8	1
1190	Computational imaging applications in brain and breast cancer. , 2023, , 29-45.		0
1191	Anomaly Detection in 3D Point Clouds using Deep Geometric Descriptors. , 2023, , .		6

#	Article	IF	CITATIONS
1192	Brain Tumor Segmentation Using Deep Learning Technique. Advances in Medical Technologies and Clinical Practice Book Series, 2023, , 54-67.	0.3	0
1193	Regionâ€related Focal Loss for 3D Brain Tumor MRI segmentation Medical Physics, 0, , .	3.0	0
1194	Evaluation of the HD-GLIO Deep Learning Algorithm for Brain Tumour Segmentation on Postoperative MRI. Diagnostics, 2023, 13, 363.	2.6	1
1195	Deep learning methods for scientific and industrial research. Handbook of Statistics, 2023, , 107-168.	0.6	1
1196	Classification and Segmentation on Multi-regional Brain Tumors Using Volumetric Images of MRI with Customized 3D U-Net Framework. Studies in Autonomic, Data-driven and Industrial Computing, 2023, , 223-234.	0.5	2
1197	DSFormer: A Dual-domain Self-supervised Transformer for Accelerated Multi-contrast MRI Reconstruction. , 2023, , .		14
1198	DCSAU-Net: A deeper and more compact split-attention U-Net for medical image segmentation. Computers in Biology and Medicine, 2023, 154, 106626.	7.0	50
1199	Bimodal segmentation and classification of endoscopic ultrasonography images for solid pancreatic tumor. Biomedical Signal Processing and Control, 2023, 83, 104591.	5.7	4
1200	A Deep Learning-based 3D-GAN for Glioma Subregions Detection and Segmentation in Multimodal Brain MRI volumes. , 2022, , .		0
1201	An Efficient Deep Learning Approach for Brain Tumor Segmentation using 3D Convolutional Neural Network. , 2022, , .		0
1202	Attention Mechanism, Linked Networks, and Pyramid Pooling Enabled 3D Biomedical Image Segmentation. , 2022, , .		1
1203	Unsupervised Anomaly Segmentation forÂBrain Lesions Using Dual Semantic-Manifold Reconstruction. Lecture Notes in Computer Science, 2023, , 133-144.	1.3	1
1204	Automated Brain Tumor Segmentation for MR Brain Images Using Artificial Bee Colony Combined With Interval Type-II Fuzzy Technique. IEEE Transactions on Industrial Informatics, 2023, 19, 11150-11159.	11.3	5
1205	U-Net multi-modality glioma MRIs segmentation combined with attention. , 2023, , .		0
1206	Tumor Diagnosis against Other Brain Diseases Using T2 MRI Brain Images and CNN Binary Classifier and DWT. Brain Sciences, 2023, 13, 348.	2.3	3
1207	Recent advances of Transformers in medical image analysis: A comprehensive review. , 2023, 2, .		6
1208	Prediction of Glioma Grade by Tumor Heterogeneity Radiomic Analysis Based on Multiparametric MRI. International Journal of Computational Intelligence Systems, 2023, 16, .	2.7	1
1209	GMetaNet: Multi-scale ghost convolutional neural network with auxiliary MetaFormer decoding path for brain tumor segmentation. Biomedical Signal Processing and Control, 2023, 83, 104694.	5.7	4

#	Article	IF	Citations
1210	Radiomics-based survival risk stratification of glioblastoma is associated with different genome alteration. Computers in Biology and Medicine, 2023, 159, 106878.	7.0	2
1211	Vision Transformers in medical computer vision—A contemplative retrospection. Engineering Applications of Artificial Intelligence, 2023, 122, 106126.	8.1	34
1212	Glioma brain tumor detection using dual convolutional neural networks and histogram density segmentation algorithm. Biomedical Signal Processing and Control, 2023, 85, 104859.	5.7	5
1213	Semi-supervised multiple evidence fusion for brain tumor segmentation. Neurocomputing, 2023, 535, 40-52.	5.9	2
1214	RsALUNet: A reinforcement supervision U-Net-based framework for multi-ROI segmentation of medical images. Biomedical Signal Processing and Control, 2023, 84, 104743.	5.7	0
1215	Error-Correcting Mean-Teacher: Corrections instead of consistency-targets applied to semi-supervised medical image segmentation. Computers in Biology and Medicine, 2023, 154, 106585.	7.0	6
1216	Effective data augmentation for brain tumor segmentation. International Journal of Imaging Systems and Technology, 0, , .	4.1	0
1217	Investigating the Impact of Two Major Programming Environments on the Accuracy of Deep Learning-Based Glioma Detection from MRI Images. Diagnostics, 2023, 13, 651.	2.6	0
1218	Free form deformation and symmetry constraintâ€based multiâ€modal brain image registration using generative adversarial nets. CAAI Transactions on Intelligence Technology, 2023, 8, 1492-1506.	8.1	1
1219	Deriving quantitative information from multiparametric MRI via Radiomics: Evaluation of the robustness and predictive value of radiomic features in the discrimination of low-grade versus high-grade gliomas with machine learning. Physica Medica, 2023, 107, 102538.	0.7	1
1220	Swin Unet3D: a three-dimensional medical image segmentation network combining vision transformer and convolution. BMC Medical Informatics and Decision Making, 2023, 23, .	3.0	4
1221	TransMVU: Multiâ€view 2D Uâ€Nets with transformer for brain tumour segmentation. IET Image Processing, 2023, 17, 1874-1882.	2.5	2
1222	PatchResNet: Multiple Patch Division–Based Deep Feature Fusion Framework for Brain Tumor Classification Using MRI Images. Journal of Digital Imaging, 2023, 36, 973-987.	2.9	16
1223	Data Augmentation in Classification and Segmentation: A Survey and New Strategies. Journal of Imaging, 2023, 9, 46.	3.0	30
1224	CaraNet: context axial reverse attention network for segmentation of small medical objects. Journal of Medical Imaging, 2023, 10, .	1.5	19
1225	3D EdgeSegNET: a deep neural network framework for simultaneous edge detection and segmentation of medical images. Signal, Image and Video Processing, 2023, 17, 2981-2989.	2.7	1
1226	Region-of-interest Attentive Heteromodal Variational Encoder-Decoder forÂSegmentation withÂMissing Modalities. Lecture Notes in Computer Science, 2023, , 132-148.	1.3	1
1227	A neural ordinary differential equation model for visualizing deep neural network behaviors in multiâ€parametric MRIâ€based glioma segmentation. Medical Physics, 2023, 50, 4825-4838.	3.0	5

#	Article	IF	CITATIONS
1228	Efficient U-Net Architecture with Multiple Encoders and Attention Mechanism Decoders for Brain Tumor Segmentation. Diagnostics, 2023, 13, 872.	2.6	7
1229	Clinical capability of modern brain tumor segmentation models. Medical Physics, 2023, 50, 4943-4959.	3.0	2
1230	Large-Kernel Attention for 3D Medical Image Segmentation. Cognitive Computation, 0, , .	5.2	6
1231	Privacy Issues in Magnetic Resonance Images. , 0, , .		0
1232	Hybrid Multilevel Thresholding Image Segmentation Approach for Brain MRI. Diagnostics, 2023, 13, 925.	2.6	5
1233	Automatic segmentation of brain tumor in multi-contrast magnetic resonance using deep neural network. , 2023, , .		0
1234	MRI-based classification of IDH mutation and 1p/19q codeletion status of gliomas using a 2.5D hybrid multi-task convolutional neural network. Neuro-Oncology Advances, 2023, 5, .	0.7	4
1235	Prediction of O-6-methylguanine-DNA methyltransferase and overall survival of the patients suffering from glioblastoma using MRI-based hybrid radiomics signatures in machine and deep learning framework. Neural Computing and Applications, 2023, 35, 13647-13663.	5.6	4
1236	Artificial Intelligence Approach for Early Detection of Brain Tumors Using MRI Images. Applied Sciences (Switzerland), 2023, 13, 3808.	2.5	6
1237	Generalized Knowledge Distillation for Unimodal Glioma Segmentation from Multimodal Models. Electronics (Switzerland), 2023, 12, 1516.	3.1	3
1238	High-Resolution Swin Transformer for Automatic Medical Image Segmentation. Sensors, 2023, 23, 3420.	3.8	7
1239	Brain tumour segmentation and survival prognostication using 3D radiomics features and machine learning algorithms. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2023, 11, 1803-1817.	1.9	0
1240	Classification of 3D-DWT Features of Brain Tumours with SVM. , 2023, 2, 39-49.		0
1241	Attention-based multimodal glioma segmentation with multi-attention layers for small-intensity dissimilarity. Journal of King Saud University - Computer and Information Sciences, 2023, 35, 183-195.	3.9	5
1242	Deep Convolutional Neural Network for Brain Tumor Segmentation. Journal of Electrical Engineering and Technology, 0, , .	2.0	1
1243	A Foreground Prototype-Based One-Shot Segmentation of Brain Tumors. Diagnostics, 2023, 13, 1282.	2.6	1
1244	Deep Neuroevolution Squeezes More Out of Small Neural Networks andÂSmall Training Sets: Sample Application toÂMRI Brain Sequence Classification. Smart Innovation, Systems and Technologies, 2023, , 153-167.	0.6	0
1245	HybridCANet:UNet-like network Bridging CNN and Attention for Multimodal Brain Image Segmentation. , 2022, , .		0

#	Article	IF	CITATIONS
1246	Non-invasive classification of IDH mutation status of gliomas from multi-modal MRI using a 3D convolutional neural network. , 2023, , .		0
1247	3t2FTS: A Novel Feature Transform Strategy to Classify 3D MRI Voxels and Its Application on HGG/LGG Classification. Machine Learning and Knowledge Extraction, 2023, 5, 359-383.	5.0	1
1248	Brain Tumor Segmentation Network with Multi-View Ensemble Discrimination and Kernel-Sharing Dilated Convolution. Brain Sciences, 2023, 13, 650.	2.3	1
1249	A Hunger Games Search algorithm with opposition-based learning for solving multimodal medical image registration. Neurocomputing, 2023, 540, 126204.	5.9	5
1250	Brain tumor detection and segmentation: Interactive framework with a visual interface and feedback facility for dynamically improved accuracy and trust. PLoS ONE, 2023, 18, e0284418.	2.5	4
1251	ETISTP: An Enhanced Model for Brain Tumor Identification and Survival Time Prediction. Diagnostics, 2023, 13, 1456.	2.6	4
1252	Predicting methylation class from diffusely infiltrating adult gliomas using multi-modality MRI data. Neuro-Oncology Advances, 0, , .	0.7	0
1253	Medical image segmentation method based on multi-feature interaction and fusion over cloud computing. Simulation Modelling Practice and Theory, 2023, 126, 102769.	3.8	26
1254	MDFU-Net: Multiscale dilated features up-sampling network for accurate segmentation of tumor from heterogeneous brain data. Journal of King Saud University - Computer and Information Sciences, 2023, 35, 101560.	3.9	2
1255	An Ensemble of Deep Learning Object Detection Models for Anatomical and Pathological Regions in Brain MRI. Diagnostics, 2023, 13, 1494.	2.6	1
1256	Deep Active Learning forÂGlioblastoma Quantification. Lecture Notes in Computer Science, 2023, , 190-200.	1.3	0
1257	BRAIN TUMOR SEGMENTATION ON FLAIR MR IMAGES WITH U-NET. MuÄŸla Journal of Science and Technology, 0, , .	0.1	0
1258	MPS-AMS: Masked Patches Selection and Adaptive Masking Strategy Based Self-Supervised Medical Image Segmentation. , 2023, , .		0
1260	3D Multimodal k-means and Morphological Operations (3DMKM) Segmentation of Brain Tumors from MR Images. , 2022, , .		0
1261	BCM-VEMT: classification of brain cancer from MRI images using deep learning and ensemble of machine learning techniques. Multimedia Tools and Applications, 0, , .	3.9	1
1262	Calibrating segmentation networks with margin-based label smoothing. Medical Image Analysis, 2023, 87, 102826.	11.6	6
1263	Superâ€resolution of sodium images from simultaneous ¹ H MRF/ ²³ Na MRI acquisition. NMR in Biomedicine, 0, , .	2.8	0
1264	Attentionâ€guided multiâ€scale context aggregation network for multiâ€modal brain glioma segmentation. Medical Physics, 2023, 50, 7629-7640.	3.0	0

#	Article	IF	CITATIONS
1265	Autoencoder-Based Collaborative Attention GAN for Multi-Modal Image Synthesis. IEEE Transactions on Multimedia, 2024, 26, 995-1010.	7.2	1
1266	Multimodal Stereotactic Brain Tumor Segmentation Using 3D-Znet. Bioengineering, 2023, 10, 581.	3.5	0
1267	Deep learning method for brain tumor identification with multimodal 3D-MRI. AIP Conference Proceedings, 2023, , .	0.4	0
1268	A novel federated deep learning scheme for glioma and its subtype classification. Frontiers in Neuroscience, 0, 17, .	2.8	1
1269	Cerebral Metastases Segmentation using Transfer Gliomas Learning and GrabCut. , 2022, , .		0
1270	Brain Tumor Segmentation using MRI Images by Optimized U-Net. , 2023, , .		0
1271	Tumor delineation from 3-D MR brain images. Signal, Image and Video Processing, 0, , .	2.7	0
1272	Semi-supervised Brain Tumor Segmentation Using Diffusion Models. IFIP Advances in Information and Communication Technology, 2023, , 314-325.	0.7	2
1273	Automated Neural Network-based Survival Prediction of Glioblastoma Patients Using Pre-operative MRI and Clinical Data. IETE Journal of Research, 0, , 1-17.	2.6	1
1274	Mutated Aquila Optimizer for assisting brain tumor segmentation. Biomedical Signal Processing and Control, 2024, 88, 105089.	5.7	2
1275	An improved DNN with FFCM method for multimodal brain tumor segmentation. Intelligent Systems With Applications, 2023, 18, 200245.	3.0	3
1276	U-Net Variants for Brain Tumor Segmentation: Performance and Limitations. , 2023, , .		0
1277	Artificial Intelligence for Enhancement of Brain Image Using Semantic Segmentation CNN with IoT Classification Techniques. EAI/Springer Innovations in Communication and Computing, 2023, , 447-459.	1.1	0
1278	Bibliometric research on the developments of artificial intelligence in radiomics toward nervous system diseases. Frontiers in Neurology, 0, 14, .	2.4	1
1279	Deep learning-assisted radiomics facilitates multimodal prognostication for personalized treatment strategies in low-grade glioma. Scientific Reports, 2023, 13, .	3.3	1
1280	EFPN: Effective medical image detection using feature pyramid fusion enhancement. Computers in Biology and Medicine, 2023, 163, 107149.	7.0	6
1281	Uncertainty quantification and attention-aware fusion guided multi-modal MR brain tumor segmentation. Computers in Biology and Medicine, 2023, 163, 107142.	7.0	0
1282	Segmentation of Brain Tumours from MRI Images Using CNN. Lecture Notes in Networks and Systems, 2023, , 693-706.	0.7	0

	C	itation Ref	PORT	
#	Article		IF	CITATIONS
1283	Advances in Computer-Aided Medical Image Processing. Applied Sciences (Switzerland), 2023, 13, 70)79.	2.5	1
1284	Unsupervised image-to-image translation in multi-parametric MRI of bladder cancer. Engineering Applications of Artificial Intelligence, 2023, 124, 106547.		8.1	1
1285	Cross-dimensional transfer learning in medical image segmentation with deep learning. Medical Imag Analysis, 2023, 88, 102868.	<u>;</u> e	11.6	3
1286	What Matters in Radiological Image Segmentation? Effect of Segmentation Errors on the Diagnostic Related Features. Journal of Digital Imaging, 0, , .		2.9	0
1287	Weakly supervised machine learning. CAAI Transactions on Intelligence Technology, 2023, 8, 549-58	0.	8.1	30
1288	Brain tumour segmentation with incomplete imaging data. Brain Communications, 2023, 5, .		3.3	3
1289	Improved α-GAN architecture for generating 3D connected volumes with an application to radiosurg treatment planning. Applied Intelligence, 0, , .	ery	5.3	0
1290	MimicNet: Mimicking manual delineation of human expert for brain tumor segmentation from multimodal MRIs. Applied Soft Computing Journal, 2023, 143, 110394.		7.2	3
1291	Multi-view Learning with Two-stage Training of 2D CNNs for Tumor Sub-regions Segmentation from 3 Brain MRI Volumes. , 2022, , .	3D		0
1292	Interpretable machine learning model to predict survival days of malignant brain tumor patients. Machine Learning: Science and Technology, 2023, 4, 025025.		5.0	4
1293	Self-supervised Learning for Medical Image Restoration: Investigation and Finding. Lecture Notes in Electrical Engineering, 2023, , 541-552.		0.4	0
1294	Classification of Glioma by Exploring Wavelet-based Radiomic Features and Machine Learning Techniques using Brats Dataset. , 2023, , .			1
1295	GaNDLF: the generally nuanced deep learning framework for scalable end-to-end clinical workflows. , 2023, 2, .			6
1296	Diffusion models in medical imaging: A comprehensive survey. Medical Image Analysis, 2023, 88, 102	2846.	11.6	51
1297	Detection of Brain Tumors Through the Application of Deep Learning and Machine Learning Models. 2023, , .)		3
1298	Brain Tumor Class Detection in Flair/T2 Modality MRI Slices Using Elephant-Herd Algorithm Optimized Features. Diagnostics, 2023, 13, 1832.	d	2.6	1
1299	Contrastive Representations for Unsupervised Anomaly Detection and Localization. Informatik Aktuell, 2023, , 246-252.		0.6	1
1300	Diffusion-tensor imaging and dynamic susceptibility contrast MRIs improve radiomics-based machine learning model of MGMT promoter methylation status in glioblastomas. Biomedical Signal Processing and Control, 2023, 86, 105122.	2	5.7	1

#	Article	IF	CITATIONS
1301	Multimodal Brain Tumor Image Segmentation Based on 3D CTrans U-Net: Replacing Skip Connection with Channel-Wise Attention Module. , 2023, , .		0
1302	Multi-ConDoS: Multimodal Contrastive Domain Sharing Generative Adversarial Networks for Self-Supervised Medical Image Segmentation. IEEE Transactions on Medical Imaging, 2024, 43, 76-95.	8.9	4
1303	Glioma detection using <scp>EHO</scp> based <scp>FLAME</scp> clustering in <scp>MR</scp> brain images. International Journal of Imaging Systems and Technology, 2024, 34, .	4.1	0
1304	Ellipsoidal conformal and area-/volume-preserving parameterizations and associated optimal mass transportations. Advances in Computational Mathematics, 2023, 49, .	1.6	1
1305	3D Brain MRI Segmentation using Deep Neural Network. , 2023, , .		0
1306	Reswave-Net: A wavelet based Residual U-Net for Brain Tumour Segmentation and Overall Survival Prediction. , 2023, , .		0
1307	Skin lesion image segmentation based on lightweight multi-scale U-shaped network. Biomedical Physics and Engineering Express, 0, , .	1.2	0
1308	Optimal MRI undersampling patterns for ultimate benefit of medical vision tasks. Magnetic Resonance Imaging, 2023, 103, 37-47.	1.8	1
1310	Performance Study of Optimizers for Segmentation of Brain Tumors using Atrous Convolution in U-Net. , 2023, , .		0
1311	SEMC-Net: A Shared-Encoder Multi-Class Learner. , 2023, , .		0
1312	ResUNet+: A New Convolutional and Attention Block-Based Approach for Brain Tumor Segmentation. IEEE Access, 2023, 11, 69884-69902.	4.2	6
1313	A transfer learning approach on MRI-based radiomics signature for overall survival prediction of low-grade and high-grade gliomas. Medical and Biological Engineering and Computing, 2023, 61, 2699-2712.	2.8	3
1314	The perils and promises of generative artificial intelligence in neurointerventional surgery. Journal of NeuroInterventional Surgery, 2024, 16, 4-7.	3.3	3
1315	Uncertainty-guided dual-views for semi-supervised volumetric medical image segmentation. Nature Machine Intelligence, 2023, 5, 724-738.	16.0	5
1316	Quantifying the Growth of Glioblastoma Tumors Using Multimodal MRI Brain Images. Cancers, 2023, 15, 3614.	3.7	1
1317	A histogram-driven generative adversarial network for brain MRI to CT synthesis. Knowledge-Based Systems, 2023, 277, 110802.	7.1	0
1318	Joint Learning of Segmentation and Overall Survival for Brain Tumor based on U-Net. , 2023, , .		0
1319	Tuning U-Net forÂBrain Tumor Segmentation. Lecture Notes in Computer Science, 2023, , 162-173.	1.3	1

#	Article	IF	CITATIONS
1320	Unsupervised Anomaly Localization withÂStructural Feature-Autoencoders. Lecture Notes in Computer Science, 2023, , 14-24.	1.3	2
1321	Infusing Domain Knowledge intoÂnnU-Nets forÂSegmenting Brain Tumors inÂMRI. Lecture Notes in Computer Science, 2023, , 186-194.	1.3	1
1322	Diffraction Block in Extended nn-UNet for Brain Tumor Segmentation. Lecture Notes in Computer Science, 2023, , 174-185.	1.3	1
1323	Multi-modal Transformer forÂBrain Tumor Segmentation. Lecture Notes in Computer Science, 2023, , 138-148.	1.3	1
1324	Multimodal CNN Networks for Brain Tumor Segmentation in MRI: A BraTS 2022 Challenge Solution. Lecture Notes in Computer Science, 2023, , 127-137.	1.3	8
1325	Development of an Al-driven system for neurosurgery with a usability study: a step towards minimal invasive robotics. Automatisierungstechnik, 2023, 71, 537-546.	0.8	0
1326	Robustifying Automatic Assessment ofÂBrain Tumor Progression fromÂMRI. Lecture Notes in Computer Science, 2023, , 90-101.	1.3	0
1327	3D CATBraTS: Channel Attention Transformer for Brain Tumour Semantic Segmentation. , 2023, , .		0
1328	An UNet-Based Brain Tumor Segmentation Framework viaÂOptimal Mass Transportation Pre-processing. Lecture Notes in Computer Science, 2023, , 216-228.	1.3	0
1329	Brain Tumor Segmentation Using Neural Ordinary Differential Equations withÂUNet-Context Encoding Network. Lecture Notes in Computer Science, 2023, , 205-215.	1.3	1
1330	Multi-modal Brain Tumour Segmentation Using Transformer withÂOptimal Patch Size. Lecture Notes in Computer Science, 2023, , 195-204.	1.3	1
1331	An Efficient Cascade ofÂU-Net-Like Convolutional Neural Networks Devoted toÂBrain Tumor Segmentation. Lecture Notes in Computer Science, 2023, , 149-161.	1.3	0
1332	Leveraging 2D Deep Learning ImageNet-trained Models forÂNative 3D Medical Image Analysis. Lecture Notes in Computer Science, 2023, , 68-79.	1.3	0
1333	Weighting Schemes forÂFederated Learning inÂHeterogeneous andÂImbalanced Segmentation Datasets. Lecture Notes in Computer Science, 2023, , 45-56.	1.3	0
1334	Deepfake Image Generation for Improved Brain Tumor Segmentation. , 2023, , .		1
1335	Software for brain tumor diagnosis on magnetic resonance imaging. Digital Diagnostics, 2023, 4, 138-140.	0.6	0
1336	AS-3DFCN: Automatically Seeking 3DFCN-Based Brain Tumor Segmentation. Cognitive Computation, 0, , .	5.2	0
1337	Unsupervised Pathology Detection: A Deep Dive Into the State of the Art. IEEE Transactions on Medical Imaging, 2024, 43, 241-252.	8.9	2

#	Article	IF	CITATIONS
1338	DU-DANet: Efficient 3D Automatic Brain Tumor Segmentation Based on Dual Attention. Lecture Notes in Computer Science, 2023, , 791-802.	1.3	0
1339	Curriculum label distribution learning for imbalanced medical image segmentation. Medical Image Analysis, 2023, 89, 102911.	11.6	1
1340	A comprehensive analysis of recent advancements in cancer detection using machine learning and deep learning models for improved diagnostics. Journal of Cancer Research and Clinical Oncology, 2023, 149, 14365-14408.	2.5	2
1341	Contrastâ€enhanced MRI synthesis using denseâ€dilated residual convolutions based 3D network toward elimination of gadolinium in neuroâ€oncology. Journal of Applied Clinical Medical Physics, 2023, 24, .	1.9	1
1342	Use of Radiomics Models in Preoperative Grading of Cerebral Gliomas and Comparison with Three-dimensional Arterial Spin Labelling. Clinical Oncology, 2023, , .	1.4	0
1343	Brain tumor image segmentation based on prior knowledge via transformer. International Journal of Imaging Systems and Technology, 0, , .	4.1	0
1344	USE-Evaluator: Performance metrics for medical image segmentation models supervised by uncertain, small or empty reference annotations in neuroimaging. Medical Image Analysis, 2023, 90, 102927.	11.6	3
1345	A Multi Brain Tumor Region Segmentation Model Based on 3D U-Net. Applied Sciences (Switzerland), 2023, 13, 9282.	2.5	0
1346	Adaptive Decomposition and Shared Weight Volumetric Transformer Blocks for Efficient Patch-Free 3D Medical Image Segmentation. IEEE Journal of Biomedical and Health Informatics, 2023, 27, 4854-4865.	6.3	0
1347	Overall survival prediction for high-grade glioma patients using mathematical modeling of tumor cell infiltration. Physica Medica, 2023, 113, 102669.	0.7	1
1348	An active learning approach to train a deep learning algorithm for tumor segmentation from brain MR images. Insights Into Imaging, 2023, 14, .	3.4	2
1349	Enhanced U-Net++ for brain tumor segmentation based on data enhancement. , 2023, , .		0
1350	Denoising Diffusion Adversarial Models for Unconditional Medical Image Generation. , 2023, , .		0
1352	A systematic analysis of magnetic resonance images and deep learning methods used for diagnosis of brain tumor. Multimedia Tools and Applications, 2024, 83, 23929-23966.	3.9	1
1353	High-Performance Method for Brain Tumor Feature Extraction in MRI Using Complex Network. Applied Bionics and Biomechanics, 2023, 2023, 1-13.	1.1	0
1354	Prediction of Rapid Early Progression and Survival Risk with Pre-Radiation MRI in WHO Grade 4 Glioma Patients. Cancers, 2023, 15, 4636.	3.7	0
1355	Brain Pathology Classification of MR Images Using Machine Learning Techniques. Computers, 2023, 12, 167.	3.3	0
1356	Automatic Brain Tumor Detection and Volume Estimation in Multimodal MRI Scans via a Symmetry Analysis. Symmetry, 2023, 15, 1586.	2.2	0
#		IE	CITATIONS
-----------	---	------	-----------
π 1357	Advancements in hybrid approaches for brain tumor segmentation in MRI: a comprehensive review of machine learning and deep learning techniques. Multimedia Tools and Applications, 2024, 83, 30505-30539.	3.9	0
1358	Mining multi-center heterogeneous medical data with distributed synthetic learning. Nature Communications, 2023, 14, .	12.8	1
1359	The role of noise in denoising models for anomaly detection in medical images. Medical Image Analysis, 2023, 90, 102963.	11.6	4
1360	Recent progress in transformer-based medical image analysis. Computers in Biology and Medicine, 2023, 164, 107268.	7.0	14
1361	Neuralizer: General Neuroimage Analysis without Re-Training. , 2023, , .		1
1362	Fundamental Theory and R-linear Convergence of Stretch Energy Minimization for Spherical Equiareal Parameterization. Journal of Numerical Mathematics, 2023, .	3.5	0
1363	SDS-Net: A lightweight 3D convolutional neural network with multi-branch attention for multimodal brain tumor accurate segmentation. Mathematical Biosciences and Engineering, 2023, 20, 17384-17406.	1.9	1
1364	Advances in medical image analysis with vision Transformers: A comprehensive review. Medical Image Analysis, 2024, 91, 103000.	11.6	12
1365	Learning Representations for MR Image Retrieval: Contrastive Models Versus Other Supervision Strategies. , 2023, , .		0
1366	Thermal Noise Removal of Magnetic Resonance Images: A Deep Learning Approach Based on an Attentive Residue Multi-Dilated Network with Adaptive Filtering and Discrete Cosine Transform. , 2023, , .		0
1367	Developing and deploying deep learning models in brain magnetic resonance imaging: A review. NMR in Biomedicine, 0, , .	2.8	3
1368	Morphometry-based radiomics for predicting therapeutic response in patients with gliomas following radiotherapy. Frontiers in Oncology, 0, 13, .	2.8	0
1369	Feature-aware unsupervised lesion segmentation for brain tumor images using fast data density functional transform. Scientific Reports, 2023, 13, .	3.3	1
1370	A Late Fusion Deep CNN Model for the Classification of Brain Tumors from Multi-Parametric MRI Images. , 2023, , .		3
1371	Data-Free Knowledge Distillation via Feature Exchange and Activation Region Constraint. , 2023, , .		4
1372	Cross-Modality Fourier Feature for Medical Image Synthesis. , 2023, , .		0
1373	Federated Alternate Training (Fat): Leveraging Unannotated Data Silos in Federated Segmentation for Medical Imaging. , 2023, , .		1
1374	Ensemble Learning with Residual Transformer for Brain Tumor Segmentation. , 2023, , .		0

# 1375	ARTICLE Reproducibility of Tumor Segmentation Outcomes with a Deep Learning Model. , 2023, , .	IF	CITATIONS 0
1376	Digest: Deeply Supervised Knowledge Transfer Network Learning for Brain Tumor Segmentation with Incomplete Multi-Modal MRI Scans. , 2023, , .		1
1377	Convergence Analysis of Volumetric Stretch Energy Minimization and Its Associated Optimal Mass Transport. SIAM Journal on Imaging Sciences, 2023, 16, 1825-1855.	2.2	0
1379	Forward Diffusion Guided Reconstruction as a Multi-Modal Multi-Task Learning Scheme. , 2023, , .		0
1380	SCAU-net: 3D self-calibrated attention U-Net for brain tumor segmentation. Neural Computing and Applications, 2023, 35, 23973-23985.	5.6	1
1381	BrainSegNeT: A Lightweight Brain Tumor Segmentation Model Based onÂU-Net andÂProgressive Neuron Expansion. Lecture Notes in Computer Science, 2023, , 249-260.	1.3	3
1382	Deep wavelet scattering orthogonal fusion network for glioma IDH mutation status prediction. Computers in Biology and Medicine, 2023, 166, 107493.	7.0	0
1384	Masked image modeling-based boundary reconstruction for 3D medical image segmentation. Computers in Biology and Medicine, 2023, 166, 107526.	7.0	0
1385	MFD-Net: Modality Fusion Diffractive Network for Segmentation of Multimodal Brain Tumor Image. IEEE Journal of Biomedical and Health Informatics, 2023, 27, 5958-5969.	6.3	0
1386	ARM-Net: Attention-guided residual multiscale CNN for multiclass brain tumor classification using MR images. Biomedical Signal Processing and Control, 2024, 87, 105421.	5.7	2
1387	A survey of multimodal information fusion for smart healthcare: Mapping the journey from data to wisdom. Information Fusion, 2024, 102, 102040.	19.1	5
1388	Systematic Literature Review of Machine Learning Algorithms Using Pretherapy Radiologic Imaging for Glioma Molecular Subtype Prediction. American Journal of Neuroradiology, 2023, 44, 1126-1134.	2.4	1
1389	Hippocampus segmentation after brain tumor resection via postoperative region synthesis. BMC Medical Imaging, 2023, 23, .	2.7	0
1390	Unraveling the Heterogeneity of Lower-Grade Gliomas: Deep Learning-Assisted Flair Segmentation and Genomic Analysis of Brain MR Images. EAI Endorsed Transactions on Pervasive Health and Technology, 0, 9, .	0.9	20
1391	Key information-guided networks for medical image segmentation in medical systems. Expert Systems With Applications, 2024, 238, 121851.	7.6	0
1392	FedGrav: An Adaptive Federated Aggregation Algorithm forÂMulti-institutional Medical Image Segmentation. Lecture Notes in Computer Science, 2023, , 170-180.	1.3	Ο
1393	Learning Reliability ofÂMulti-modality Medical Images forÂTumor Segmentation viaÂEvidence-Identified Denoising Diffusion Probabilistic Models. Lecture Notes in Computer Science, 2023, , 682-691.	1.3	1
1394	Trust Your Neighbours: Penalty-Based Constraints forÂModel Calibration. Lecture Notes in Computer Science, 2023, , 572-581.	1.3	2

#	Article	IF	CITATIONS
1395	Unsupervised Discovery ofÂ3D Hierarchical Structure withÂGenerative Diffusion Features. Lecture Notes in Computer Science, 2023, , 320-330.	1.3	0
1396	An Explainable Deep Framework: Towards Task-Specific Fusion forÂMulti-to-One MRI Synthesis. Lecture Notes in Computer Science, 2023, , 45-55.	1.3	0
1397	AME-CAM: Attentive Multiple-Exit CAM forÂWeakly Supervised Segmentation onÂMRI Brain Tumor. Lecture Notes in Computer Science, 2023, , 173-182.	1.3	0
1398	M-GenSeg: Domain Adaptation forÂTarget Modality Tumor Segmentation withÂAnnotation-Efficient Supervision. Lecture Notes in Computer Science, 2023, , 141-151.	1.3	0
1399	DBTrans: A Dual-Branch Vision Transformer for Multi-Modal Brain Tumor Segmentation. Lecture Notes in Computer Science, 2023, , 502-512.	1.3	0
1400	Conditional Diffusion Models forÂWeakly Supervised Medical Image Segmentation. Lecture Notes in Computer Science, 2023, , 756-765.	1.3	Ο
1401	LKDA-GAN: Cross-modality image synthesis via Generative Adversarial Network aggregating large kernel decomposable attention bottleneck block. Computer Vision and Image Understanding, 2023, 237, 103856.	4.7	0
1402	Feature-Based Pipeline forÂlmproving Unsupervised Anomaly Segmentation onÂMedical Images. Lecture Notes in Computer Science, 2023, , 115-125.	1.3	0
1403	MPSurv: End-to-End Multi-model Pseudo-Label Model forÂBrain Tumor Survival Prediction withÂPopulation Information Integration. Lecture Notes in Computer Science, 2023, , 120-130.	1.3	0
1404	Combining Weakly Supervised Segmentation withÂMultitask Learning forÂlmproved 3D MRI Brain Tumour Classification. Lecture Notes in Computer Science, 2023, , 171-180.	1.3	Ο
1405	Brain Tumor Segmentation Based on Zernike Moments, Enhanced Ant Lion Optimization, and Convolutional Neural Network in MRI Images. Lecture Notes in Electrical Engineering, 2023, , 345-366.	0.4	1
1406	SEL-Net: a multimodal image segmentation method based on spatial attention mechanism. , 2023, , .		Ο
1407	Does Pre-training onÂBrain-Related Tasks Results inÂBetter Deep-Learning-Based Brain Age Biomarkers?. Lecture Notes in Computer Science, 2023, , 181-194.	1.3	0
1408	Self-supervised medical slice interpolation network using controllable feature flow. Expert Systems With Applications, 2024, 238, 121943.	7.6	0
1409	Hybrid deep neural network with clustering algorithms for effective gliomas segmentation. International Journal of Systems Assurance Engineering and Management, 0, , .	2.4	0
1410	Black-Box Unsupervised Domain Adaptation forÂMedical Image Segmentation. Lecture Notes in Computer Science, 2024, , 22-30.	1.3	Ο
1411	Compositional Representation Learning forÂBrain Tumour Segmentation. Lecture Notes in Computer Science, 2024, , 41-51.	1.3	0
1412	MagNET: Modality-Agnostic Network forÂBrain Tumor Segmentation andÂCharacterization withÂMissing Modalities. Lecture Notes in Computer Science, 2024, , 361-371.	1.3	0

#	Article	IF	CITATIONS
1413	An Improved Cuttlefish Optimization Algorithm Based Faster R-CNN for Brain Tumour Detection. , 2023,		0
1414	MUBT: An Effective Deep Learning Method for Nidus Segmentation of Brain Tumor MRI Scans. , 2023, , .		0
1415	Federated Learning for Healthcare Applications. IEEE Internet of Things Journal, 2024, 11, 7339-7358.	8.7	3
1416	Handling Missing <scp>MRI</scp> Data in Brain Tumors Classification Tasks: Usage of Synthetic Images vs. Duplicate Images and Empty Images. Journal of Magnetic Resonance Imaging, 0, , .	3.4	1
1417	GSNet: A Multi-class 3D Attention-based Hybrid Glioma Segmentation Network. Optics Express, 0, , .	3.4	0
1418	Multi-class glioma segmentation on real-world data with missing MRI sequences: comparison of three deep learning algorithms. Scientific Reports, 2023, 13, .	3.3	2
1419	RFS+: A Clinically Adaptable and Computationally Efficient Strategy for Enhanced Brain Tumor Segmentation. Cancers, 2023, 15, 5620.	3.7	0
1420	Multi-modal medical Transformers: A meta-analysis for medical image segmentation in oncology. Computerized Medical Imaging and Graphics, 2023, 110, 102308.	5.8	4
1421	Brain Tumour—Augmentation, Segmentation and Classification Using Deep Learning—A Review. Lecture Notes in Electrical Engineering, 2024, , 209-229.	0.4	0
1422	A SwinTransformer-Based Segmentation Framework With Self-Supervised Strategy for Post-Operative Prostate Cancer Radiotherapy. IEEE Journal of Biomedical and Health Informatics, 2023, , 1-12.	6.3	0
1423	Comparison of Activation Functions in Brain Tumour Segmentation Using Deep Learning. Algorithms for Intelligent Systems, 2023, , 387-399.	0.6	0
1424	Federated Learning for Medical Applications: A Taxonomy, Current Trends, Challenges, and Future Research Directions. IEEE Internet of Things Journal, 2024, 11, 7374-7398.	8.7	5
1426	ABFNet: Attention Bottlenecks Fusion Network forÂMultimodal Brain Tumor Segmentation. Lecture Notes in Computer Science, 2023, , 312-325.	1.3	0
1427	MMFA-Net: A New Brain Tumor Segmentation Method Based onÂMulti-modal Multi-scale Feature Aggregation. Lecture Notes in Computer Science, 2023, , 355-366.	1.3	0
1428	RegAgg: A Scalable Approach for Efficient Weight Aggregation in Federated Lesion Segmentation of Brain MRIs. , 2023, , .		0
1429	TransDoubleU-Net: Dual Scale Swin Transformer With Dual Level Decoder for 3D Multimodal Brain Tumor Segmentation. IEEE Access, 2023, 11, 125511-125518.	4.2	0
1430	Multitask Learning with Multiscale Residual Attention for Brain Tumor Segmentation and Classification. , 2023, 20, 897-908.		0
1431	Reducing annotation burden in MR: A novel MRâ€contrast guided contrastive learning approach for image segmentation. Medical Physics, 0, , .	3.0	0

#	Article	IF	CITATIONS
1433	MAU-Net: Mixed attention U-Net for MRI brain tumor segmentation. Mathematical Biosciences and Engineering, 2023, 20, 20510-20527.	1.9	1
1434	<scp>MAEUâ€NET</scp> : A novel supervised architecture for brain tumor segmentation. International Journal of Imaging Systems and Technology, 2024, 34, .	4.1	Ο
1435	3D Brain Tumour Segmentation Using UNet with Quantitative Analysis of the Tumour Features. Journal of Physics: Conference Series, 2023, 2622, 012015.	0.4	0
1436	Detection andÂSegmentation ofÂBrain Tumors onÂ3D MR Images Using 3D U-Net. Communications in Computer and Information Science, 2023, , 528-541.	0.5	0
1437	HUT: Hybrid UNet transformer for brain lesion and tumour segmentation. Heliyon, 2023, 9, e22412.	3.2	1
1439	Deep multi-task learning structure for segmentation and classification of supratentorial brain tumors in MR images. Interdisciplinary Neurosurgery: Advanced Techniques and Case Management, 2024, 36, 101931.	0.3	1
1440	Brain tumour segmentation of MR images based on custom attention mechanism with transferâ€learning. IET Image Processing, 2024, 18, 886-896.	2.5	0
1442	Synthesis-based imaging-differentiation representation learning for multi-sequence 3D/4D MRI. Medical Image Analysis, 2024, 92, 103044.	11.6	2
1443	ReFit: A Framework forÂRefinement ofÂWeakly Supervised Semantic Segmentation Using Object Border Fitting forÂMedical Images. Lecture Notes in Computer Science, 2023, , 44-55.	1.3	0
1444	Building novel approach for context-based image retrieval in the area of healthcare. AIP Conference Proceedings, 2023, , .	0.4	0
1445	3D Brain Tumor Segmentation Using Modified U-Net Architecture. , 2023, , .		0
1447	QMLS: quaternion mutual learning strategy for multi-modal brain tumor segmentation. Physics in Medicine and Biology, 0, , .	3.0	0
1448	Encrypted federated learning for secure decentralized collaboration in cancer image analysis. Medical Image Analysis, 2024, 92, 103059.	11.6	3
1449	Segment anything model for medical images?. Medical Image Analysis, 2024, 92, 103061.	11.6	14
1450	Comparative Study on Architecture of Deep Neural Networks for Segmentation of Brain Tumor using Magnetic Resonance Images. IEEE Access, 2023, 11, 138549-138567.	4.2	0
1451	Editorial for "Glioma Tumor Grading Using Radiomics on <scp>MRI</scp> : A Comparative Study of <scp>WHO</scp> 2021 and <scp>WHO</scp> 2016 Classification of Central Nervous Tumorsâ€. Journal of Magnetic Resonance Imaging, 0, , .	3.4	0
1452	Sketch-based semantic retrieval of medical images. Medical Image Analysis, 2024, 92, 103060.	11.6	0
1453	Survival and grade of the glioma prediction using transfer learning. PeerJ Computer Science, 0, 9, e1723.	4.5	2

#	Article	IF	CITATIONS
1454	Masked Autoencoders for Unsupervised Anomaly Detection in Medical Images. Procedia Computer Science, 2023, 225, 969-978.	2.0	0
1455	Discovering Genetic Subtype of Glioblastoma from MRI Scans using Sparse Autoencoders. , 2023, , .		0
1456	Comparison of Tumor Segmentation Techniques from Medical Images. , 2023, , .		0
1457	Brain tumor image pixel segmentation and detection using an aggregation of <scp>GAN</scp> models with vision transformer. International Journal of Imaging Systems and Technology, 2024, 34, .	4.1	1
1458	mResU-Net: multi-scale residual U-Net-based brain tumor segmentation from multimodal MRI. Medical and Biological Engineering and Computing, 2024, 62, 641-651.	2.8	0
1459	A Review on Machine Learning and Deep Learning Based Systems for the Diagnosis of Brain Cancer. SN Computer Science, 2024, 5, .	3.6	0
1460	Automatic Visual Acuity Loss Prediction in Children with Optic Pathway Gliomas using Magnetic Resonance Imaging. , 2023, , .		0
1461	Brain tumor grade classification using multiâ€step preâ€training. International Journal of Imaging Systems and Technology, 2024, 34, .	4.1	0
1462	Hybrid-Fusion Transformer for Multisequence MRI. Lecture Notes in Electrical Engineering, 2023, , 477-487.	0.4	1
1463	Differentiable Uncalibrated Imaging. IEEE Transactions on Computational Imaging, 2024, 10, 1-16.	4.4	1
1464	Brain Tumor Image Segmentation Based onÂGlobal-Local Dual-Branch Feature Fusion. Lecture Notes in Computer Science, 2024, , 381-393.	1.3	0
1465	A Simple and Robust Framework for Cross-Modality Medical Image Segmentation applied to Vision Transformers. , 2023, , .		0
1466	Toward image-based personalization of glioblastoma therapy: A clinical and biological validation study of a novel, deep learning-driven tumor growth model. Neuro-Oncology Advances, 2024, 6, .	0.7	0
1467	DAUnet: A U-shaped network combining deep supervision and attention for brain tumor segmentation. Knowledge-Based Systems, 2024, 285, 111348.	7.1	1
1468	A novel enhancement-based rapid kernel-induced intuitionistic fuzzy c-means clustering for brain tumor image. Soft Computing, 0, , .	3.6	0
1469	Unified fair federated learning for digital healthcare. Patterns, 2023, , 100907.	5.9	0
1471	Contrast-Enhanced MRI Synthesis on Glioma Subjects Using Generative Adversarial Networks. , 2023, , .		0
1472	Glioma Tumor Grading Using Radiomics on Conventional <scp>MRI</scp> : A Comparative Study of <scp>WHO</scp> 2021 and <scp>WHO</scp> 2016 Classification of Central Nervous Tumors. Journal of Magnetic Resonance Imaging, 0, , .	3.4	1

#	Article	IF	CITATIONS
1473	Sparse annotation learning for dense volumetric MR image segmentation with uncertainty estimation. Physics in Medicine and Biology, 2024, 69, 015009.	3.0	0
1474	Multi-task Model for Glioma Segmentation and Isocitrate Dehydrogenase Status Prediction Using Global and Local Features. , 2023, , .		0
1475	A Deep Learning Framework for Skull Stripping in Brain MRI. , 2023, , .		0
1476	Convergence of Dirichlet Energy Minimization for Spherical Conformal Parameterizations. Journal of Scientific Computing, 2024, 98, .	2.3	0
1477	Evaluating the clinical utility of artificial intelligence assistance and its explanation on the glioma grading task. Artificial Intelligence in Medicine, 2024, 148, 102751.	6.5	1
1478	Brain tumor segmentation using U-Net in conjunction with EfficientNet. PeerJ Computer Science, 0, 10, e1754.	4.5	1
1479	Survival Prediction in Glioblastoma Using Combination of Deep Learning and Hand-Crafted Radiomic Features in MRI Images. Journal of Advances in Information Technology, 2023, 14, 1461-1469.	2.9	0
1480	MetaSwin: a unified meta vision transformer model for medical image segmentation. PeerJ Computer Science, 0, 10, e1762.	4.5	0
1481	Biomedical Image Segmentation Using Denoising Diffusion Probabilistic Models: A Comprehensive Review and Analysis. Applied Sciences (Switzerland), 2024, 14, 632.	2.5	0
1482	Multi-modal brain tumor segmentation via disentangled representation learning and region-aware contrastive learning. Pattern Recognition, 2024, 149, 110282.	8.1	0
1483	Development of End-to-End Al–Based MRI Image Analysis System for Predicting IDH Mutation Status of Patients with Gliomas: Multicentric Validation. , 2024, 37, 31-44.		0
1484	M ³ CI-Net: Multi-Modal MRI-Based Characteristics Inspired Network for IDH Genotyping. , 2023, , .		0
1485	Medical image synthesis via conditional GANs: Application to segmenting brain tumours. Computers in Biology and Medicine, 2024, 170, 107982.	7.0	0
1486	Investigating Consistency Constraints in Heterogeneous Multi-task Learning for Medical Image Processing. , 2023, , .		0
1487	Multimodal brain tumor image segmentation based on DenseNet. PLoS ONE, 2024, 19, e0286125.	2.5	0
1488	Deep Learning Auto-Segmentation Network for Pediatric Computed Tomography Data Sets: Can We Extrapolate From Adults?. International Journal of Radiation Oncology Biology Physics, 2024, , .	0.8	0
1489	High-resolution MRI synthesis using a data-driven framework with denoising diffusion probabilistic modeling. Physics in Medicine and Biology, 2024, 69, 045001.	3.0	0
1490	SLf-UNet: Improved UNet forÂBrain MRI Segmentation byÂCombining Spatial andÂLow-Frequency Domain Features. Lecture Notes in Computer Science, 2024, , 415-426.	1.3	0

-		_	
C 1^{-}		Drnc	NDT.
	IAL	REPU	ואכ

#	Article	IF	CITATIONS
1491	A deep convolutional neural network for the automatic segmentation of glioblastoma brain tumor: Joint spatial pyramid module and attention mechanism network. Artificial Intelligence in Medicine, 2024, 148, 102776.	6.5	0
1492	A 3D Framework for Brain Tumor Segmentation from Multi-modal MR Images. , 2023, , .		0
1494	The application value of deep learning in the background of precision medicine in glioblastoma. Science Progress, 2024, 107, .	1.9	0
1495	Multi-view Classifier and Fast Brain Tumor Segmentation Using Geometric Fast Data Density Functional Transform. , 2023, , .		0
1496	Comparative Analysis of Different Deep Convolutional Neural Network Architectures for Classification of Brain Tumor on Magnetic Resonance Images. Archives of Computational Methods in Engineering, 2024, 31, 1959-1978.	10.2	0
1497	Weighted Fuzzy C Means: A Novel Tumor Segmentation Approach in MR Brain Images. , 2023, , .		0
1498	HSA-net with a novel CAD pipeline boosts both clinical brain tumor MR image classification and segmentation. Computers in Biology and Medicine, 2024, 170, 108039.	7.0	0
1499	Uncertainty-Guided Cross-Modality Semi-Supervised Learning for MRI Segmentation. , 2023, , .		0
1500	Ensemble Technique for Brain Tumor Patient Survival Prediction. IEEE Access, 2024, 12, 19285-19298.	4.2	0
1501	Deep Learning Based Lightweight Model for Brain Tumor Classification and Segmentation. Advances in Intelligent Systems and Computing, 2024, , 491-503.	0.6	0
1502	Active Learning on Medical Image. , 2023, , 51-67.		0
1503	Modality Cycles withÂMasked Conditional Diffusion forÂUnsupervised Anomaly Segmentation inÂMRI. Lecture Notes in Computer Science, 2023, , 168-181.	1.3	0
1504	Quality assessment of the MRI-radiomics studies for MGMT promoter methylation prediction in glioma: a systematic review and meta-analysis. European Radiology, 0, , .	4.5	0
1505	Federated Evaluation ofÂnnU-Nets Enhanced withÂDomain Knowledge forÂBrain Tumor Segmentation. Lecture Notes in Computer Science, 2023, , 218-227.	1.3	0
1506	Ensemble Outperforms Single Models inÂBrain Tumor Segmentation. Lecture Notes in Computer Science, 2023, , 142-153.	1.3	0
1507	Experimenting FedML andÂNVFLARE forÂFederated Tumor Segmentation Challenge. Lecture Notes in Computer Science, 2023, , 228-240.	1.3	0
1508	FedPIDAvg: A PID Controller Inspired Aggregation Method forÂFederated Learning. Lecture Notes in Computer Science, 2023, , 209-217.	1.3	0
1509	Regularized Weight Aggregation inÂNetworked Federated Learning forÂGlioblastoma Segmentation. Lecture Notes in Computer Science, 2023, , 121-132.	1.3	0

#	Article	IF	Citations
1510	Efficient Federated Tumor Segmentation viaÂParameter Distance Weighted Aggregation andÂClient Pruning. Lecture Notes in Computer Science, 2023, , 161-172.	1.3	0
1511	A triplanar ensemble model for brain tumor segmentation with volumetric multiparametric magnetic resonance images. Healthcare Analytics, 2024, 5, 100307.	4.3	0
1512	Deformation-aware and reconstruction-driven multimodal representation learning for brain tumor segmentation with missing modalities. Biomedical Signal Processing and Control, 2024, 91, 106012.	5.7	0
1513	Identification of Challenges and Limitations of Current Methods for Detection and Segmentation of Brain Tumor. , 2023, , .		0
1514	WU-Net++: A novel enhanced Weighted U-Net++ model for brain tumor detection and segmentation from multi-parametric magnetic resonance scans. Multimedia Tools and Applications, 0, , .	3.9	0
1515	Brain Tumour Detection and Segmentation using CNN Architecture and U-Net Architecture. , 2023, , .		0
1516	U-Net Based Brain Tumour Segmentation. , 2023, , .		0
1517	Brain Tumor Segmentation Pipeline Model Using U-Net Based Foundation Model. , 0, 2, 197.		0
1518	3DUV-NetR+: A 3D hybrid semantic architecture using transformers for brain tumor segmentation with MultiModal MR images. Results in Engineering, 2024, 21, 101892.	5.1	0
1519	Efficient 3D Brain Tumor Segmentation withÂAxial-Coronal-Sagittal Embedding. Lecture Notes in Computer Science, 2024, , 138-152.	1.3	0
1520	Explainable hybrid vision transformers and convolutional network for multimodal glioma segmentation in brain MRI. Scientific Reports, 2024, 14, .	3.3	0
1521	A comparative study of federated learning methods for COVID-19 detection. Scientific Reports, 2024, 14, .	3.3	0
1522	Generative Adversarial Networks for Brain MRI Synthesis: Impact of Training Set Size on Clinical Application. , 0, , .		0
1523	Rethinking aÂUnified Generative Adversarial Model forÂMRI Modality Completion. Lecture Notes in Computer Science, 2024, , 143-153.	1.3	0
1524	A 3D Generative Model ofÂPathological Multi-modal MR Images andÂSegmentations. Lecture Notes in Computer Science, 2024, , 132-142.	1.3	0
1525	Brain tumor detection based on a novel and high-quality prediction of the tumor pixel distributions. Computers in Biology and Medicine, 2024, 172, 108196.	7.0	0
1526	Segmentation and classification of brain tumour using LRIFCM and LSTM. Multimedia Tools and Applications, 0, , .	3.9	0
1528	Auto-segmentation of Adult-Type Diffuse Gliomas: Comparison of Transfer Learning-Based Convolutional Neural Network Model vs. Radiologists. , 0, , .		0

#	Article	lF	Citations
1529	Research on Segmentation Method of Brain Tumor Image Based on Deep Learning. , 2023, , .		0
1530	One model to unite them all: Personalized federated learning of multi-contrast MRI synthesis. Medical Image Analysis, 2024, 94, 103121.	11.6	0
1531	NeuroIGN: Explainable Multimodal Image-Guided System for Precise Brain Tumor Surgery. Journal of Medical Systems, 2024, 48, .	3.6	0
1532	Motion-artifact-augmented pseudo-label network for semi-supervised brain tumor segmentation. Physics in Medicine and Biology, 2024, 69, 055023.	3.0	0
1533	A 3D Multi-Modal Network for MRI Fast Reconstruction. , 2023, , .		0
1534	Advancing glioma diagnosis: Integrating custom U-Net and VGC-16 for improved grading in MR imaging. Mathematical Biosciences and Engineering, 2024, 21, 4328-4350.	1.9	0
1535	Weakly supervised learning for multi-class medical image segmentation via feature decomposition. Computers in Biology and Medicine, 2024, 171, 108228.	7.0	0
1536	HABâ€Net: Hierarchical asymmetric convolution and boundary enhancement network for brain tumor segmentation. IET Image Processing, 0, , .	2.5	0
1537	Brain tumor segmentation using synthetic MR images - A comparison of GANs and diffusion models. Scientific Data, 2024, 11, .	5.3	0
1538	Yaru3DFPN: a lightweight modified 3D UNet with feature pyramid network and combine thresholding for brain tumor segmentation. Neural Computing and Applications, 2024, 36, 7529-7544.	5.6	0
1540	Segmentation and identification of brain tumour in MRI images using PG-OneShot learning CNN model. Multimedia Tools and Applications, 0, , .	3.9	0
1541	Deep CNNs for glioma grading on conventional MRIs: Performance analysis, challenges, and future directions. Mathematical Biosciences and Engineering, 2024, 21, 5250-5282.	1.9	0
1542	Synthesizing Contrast-Enhanced MR Images from Noncontrast MR Images Using Deep Learning. American Journal of Neuroradiology, 2024, 45, 312-319.	2.4	0
1543	Neutrosophic fusion of multimodal brain images: Integrating neutrosophic entropy and feature extraction. Applied Soft Computing Journal, 2024, 155, 111462.	7.2	0
1544	Efficient Brain Tumor Classification with a Hybrid CNN-SVM Approach in MRI. Journal of Advances in Information Technology, 2024, 15, 340-354.	2.9	0
1545	ReeGAN: MRI image edge-preserving synthesis based on GANs trained with misaligned data. Medical and Biological Engineering and Computing, 2024, 62, 1851-1868.	2.8	Ο
1546	Smart system for identifying the various pathologies in MR brain image using Monkey Search based Interval Type-II Fuzzy C-Means technique. Multimedia Tools and Applications, 0, , .	3.9	0
1547	Brain tumor image segmentation algorithm based on multimodal feature fusion of Bayesian weight distribution. International Journal of Imaging Systems and Technology, 2024, 34, .	4.1	0

#	Article	IF	CITATIONS
1548	DeepN4: Learning N4ITK Bias Field Correction for T1-weighted Images. Neuroinformatics, 2024, 22, 193-205.	2.8	0
1549	Dense-sparse representation matters: A point-based method for volumetric medical image segmentation. Journal of Visual Communication and Image Representation, 2024, 100, 104115.	2.8	0
1550	BrainNet: a fusion assisted novel optimal framework of residual blocks and stacked autoencoders for multimodal brain tumor classification. Scientific Reports, 2024, 14, .	3.3	0
1551	Multi-task parallel with feature sharing integrated 3D U-Nets for Glioma Segmentation. Biomedical Signal Processing and Control, 2024, 93, 106178.	5.7	0
1552	Brain magnetic resonance images segmentation via improved mixtures of factor analyzers based on dynamic co-clustering. Neurocomputing, 2024, 583, 127551.	5.9	0
1553	Cross co-teaching for semi-supervised medical image segmentation. Pattern Recognition, 2024, 152, 110426.	8.1	0
1554	Brain tumor segmentation and enhancing prediction using unet deep learning model with additive skip connection. AIP Conference Proceedings, 2024, , .	0.4	0
1555	Multifractal Analysis of Brain Tumor Interface in Glioblastoma. Advances in Neurobiology, 2024, , 487-499.	1.8	0