Superior Potassium Ion Storage via Vertical MoS<sub>2 Interlayers on Graphene

Small 13, 1701471 DOI: 10.1002/smll.201701471

Citation Report

#	Article	IF	CITATIONS
1	Bismuth Microparticles as Advanced Anodes for Potassiumâ€lon Battery. Advanced Energy Materials, 2018, 8, 1703496.	10.2	306
2	Unilamellar Metallic MoS ₂ /Graphene Superlattice for Efficient Sodium Storage and Hydrogen Evolution. ACS Energy Letters, 2018, 3, 997-1005.	8.8	184
3	Recent Progress in Rechargeable Potassium Batteries. Advanced Functional Materials, 2018, 28, 1802938.	7.8	518
4	Recent Progresses and Prospects of Cathode Materials for Non-aqueous Potassium-Ion Batteries. Electrochemical Energy Reviews, 2018, 1, 548-566.	13.1	48
5	Neuron-Inspired Design of High-Performance Electrode Materials for Sodium-Ion Batteries. ACS Nano, 2018, 12, 11503-11510.	7.3	79
6	Beyond Graphene Anode Materials for Emerging Metal Ion Batteries and Supercapacitors. Nano-Micro Letters, 2018, 10, 70.	14.4	95
7	Phosphorus/Carbon Composite Anode for Potassium-Ion Batteries: Insights into High Initial Coulombic Efficiency and Superior Cyclic Performance. ACS Sustainable Chemistry and Engineering, 2018, 6, 16308-16314.	3.2	50
8	Highâ€Rate and Ultralong Cycleâ€Life Potassium Ion Batteries Enabled by In Situ Engineering of Yolk–Shell FeS ₂ @C Structure on Graphene Matrix. Advanced Energy Materials, 2018, 8, 1802565.	10.2	207
9	A Pseudolayered MoS ₂ as Liâ€lon Intercalation Host with Enhanced Rate Capability and Durability. Small, 2018, 14, e1803344.	5.2	35
10	Improved lithium storage performance of NaTi2(PO4)3/C composite connected by carbon nanotubes. Solid State Ionics, 2018, 325, 189-195.	1.3	12
11	Multirole organic-induced scalable synthesis of a mesoporous MoS2-monolayer/carbon composite for high-performance lithium and potassium storage. Journal of Materials Chemistry A, 2018, 6, 11147-11153.	5.2	77
12	A Dual Carbonâ€Based Potassium Dual Ion Battery with Robust Comprehensive Performance. Small, 2018, 14, e1801836.	5.2	118
13	Mo ₂ C-induced solid-phase synthesis of ultrathin MoS ₂ nanosheet arrays on bagasse-derived porous carbon frameworks for high-energy hybrid sodium-ion capacitors. Journal of Materials Chemistry A, 2018, 6, 14742-14751.	5.2	69
14	Multi-protection from nanochannels and graphene of SnSb-graphene‑carbon composites ensuring high properties for potassium-ion batteries. Solid State Ionics, 2018, 324, 267-275.	1.3	58
15	3D Interconnected MoS ₂ with Enlarged Interlayer Spacing Grown on Carbon Nanofibers as a Flexible Anode Toward Superior Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 26982-26989.	4.0	56
16	Iron sulfide/carbon hybrid cluster as an anode for potassium-ion storage. Journal of Alloys and Compounds, 2018, 766, 1086-1091.	2.8	47
17	Ultrathin WS ₂ nanosheets vertically embedded in a hollow mesoporous carbon framework – a triple-shell structure with enhanced lithium storage and electrocatalytic properties. Journal of Materials Chemistry A, 2018, 6, 19004-19012.	5.2	65
18	Bambooâ€Like Hollow Tubes with MoS ₂ /Nâ€Doped Interfaces Boost Potassiumâ€lon Storage. Advanced Functional Materials, 2018, 28, 1803409.	7.8	263

#	Article	IF	CITATIONS
19	MoSe ₂ /Nâ€Doped Carbon as Anodes for Potassiumâ€lon Batteries. Advanced Energy Materials, 2018, 8, 1801477.	10.2	391
20	Recent Progress on Two-Dimensional Nanoflake Ensembles for Energy Storage Applications. Nano-Micro Letters, 2018, 10, 66.	14.4	71
21	Vitamin K as a high-performance organic anode material for rechargeable potassium ion batteries. Journal of Materials Chemistry A, 2018, 6, 12559-12564.	5.2	83
22	Rhenium Diselenide Anchored on Reduced Graphene Oxide as Anode with Cyclic Stability for Potassium″on Battery. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900329.	1.2	18
23	Yolk–shell NiS _x @C nanosheets as K-ion battery anodes with high rate capability and ultralong cycle life. Journal of Materials Chemistry A, 2019, 7, 18932-18939.	5.2	45
24	Great Enhancement of Carbon Energy Storage through Narrow Pores and Hydrogen-Containing Functional Groups for Aqueous Zn-Ion Hybrid Supercapacitor. Molecules, 2019, 24, 2589.	1.7	38
25	Encapsulation of MoSe ₂ in carbon fibers as anodes for potassium ion batteries and nonaqueous battery–supercapacitor hybrid devices. Nanoscale, 2019, 11, 13511-13520.	2.8	109
26	Chemical bonding boosts nano-rose-like MoS2 anchored on reduced graphene oxide for superior potassium-ion storage. Nano Energy, 2019, 63, 103868.	8.2	153
27	Carbon confinement synthesis of interlayer-expanded and sulfur-enriched MoS2+x nanocoating on hollow carbon spheres for advanced Li-S batteries. Nano Research, 2019, 12, 2908-2917.	5.8	36
28	Solventâ€Exchange Strategy toward Aqueous Dispersible MoS ₂ Nanosheets and Their Nitrogenâ€Rich Carbon Sphere Nanocomposites for Efficient Lithium/Sodium Ion Storage. Small, 2019, 15, e1903816.	5.2	31
29	Encapsulating Carbonâ€Coated MoS ₂ Nanosheets within a Nitrogenâ€Doped Graphene Network for Highâ€Performance Potassiumâ€ion Storage. Advanced Materials Interfaces, 2019, 6, 1901066.	1.9	36
30	A Robust Solid Electrolyte Interphase Layer Augments the Ion Storage Capacity of Bimetallicâ€Sulfideâ€Containing Potassiumâ€Ion Batteries. Angewandte Chemie, 2019, 131, 14882-14889.	1.6	27
31	Unexpected intercalation-dominated potassium storage in WS2 as a potassium-ion battery anode. Nano Research, 2019, 12, 2997-3002.	5.8	77
32	A Robust Solid Electrolyte Interphase Layer Augments the Ion Storage Capacity of Bimetallicâ€Sulfideâ€Containing Potassiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2019, 58, 14740-14747.	7.2	153
33	Multidimensional Integrated Chalcogenides Nanoarchitecture Achieves Highly Stable and Ultrafast Potassiumâ€ion Storage. Small, 2019, 15, e1903720.	5.2	49
34	Sn nanoparticles anchored on N doped porous carbon as an anode for potassium ion batteries. Materials Letters, 2019, 256, 126613.	1.3	30
35	Preserved Layered Structure Enables Stable Cyclic Performance of MoS ₂ upon Potassium Insertion. Chemistry of Materials, 2019, 31, 8801-8809.	3.2	39
36	Anion Vacancies Regulating Endows MoSSe with Fast and Stable Potassium Ion Storage. ACS Nano, 2019, 13, 11843-11852.	7.3	210

#	Article	IF	CITATIONS
37	Bismuth nanospheres embedded in three-dimensional (3D) porous graphene frameworks as high performance anodes for sodium- and potassium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 4913-4921.	5.2	160
38	Fewâ€Layered Tin Sulfide Nanosheets Supported on Reduced Graphene Oxide as a Highâ€Performance Anode for Potassiumâ€Ion Batteries. Small, 2019, 15, e1804806.	5.2	160
39	Recent developments in electrode materials for potassium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 4334-4352.	5.2	214
40	A universal graphene oxide protective umbrella to achieve electrode surface engineering via spraying technique. Ceramics International, 2019, 45, 19567-19571.	2.3	0
41	Control of SEI Formation for Stable Potassium-Ion Battery Anodes by Bi-MOF-Derived Nanocomposites. ACS Applied Materials & Interfaces, 2019, 11, 22474-22480.	4.0	117
42	Influence of KPF ₆ and KFSI on the Performance of Anode Materials for Potassium-Ion Batteries: A Case Study of MoS ₂ . ACS Applied Materials & Interfaces, 2019, 11, 22449-22456.	4.0	97
43	Enhanced sodium storage performance of NASICON-structured NaTi2(PO4)3/C decorated with graphene. Solid State Ionics, 2019, 336, 139-145.	1.3	3
44	Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Science Advances, 2019, 5, eaav7412.	4.7	790
45	Nitrogenâ€Doped MoS ₂ Foam for Fast Sodium Ion Storage. Advanced Materials Interfaces, 2019, 6, 1900460.	1.9	39
46	Advanced Carbonâ€Based Anodes for Potassiumâ€lon Batteries. Advanced Energy Materials, 2019, 9, 1900343.	10.0	398
		10.2	070
47	Insights into the Crystallinity of Layer‣tructured Transition Metal Dichalcogenides on Potassium Ion Battery Performance: A Case Study of Molybdenum Disulfide. Small, 2019, 15, e1900497.	5.2	62
47 48	Insights into the Crystallinity of Layerâ€6tructured Transition Metal Dichalcogenides on Potassium Ion		
	Insights into the Crystallinity of Layerâ€Structured Transition Metal Dichalcogenides on Potassium Ion Battery Performance: A Case Study of Molybdenum Disulfide. Small, 2019, 15, e1900497. Development status and future prospect of non-aqueous potassium ion batteries for large scale	5.2	62
48	Insights into the Crystallinity of Layerâ€6tructured Transition Metal Dichalcogenides on Potassium Ion Battery Performance: A Case Study of Molybdenum Disulfide. Small, 2019, 15, e1900497. Development status and future prospect of non-aqueous potassium ion batteries for large scale energy storage. Nano Energy, 2019, 60, 340-361. Magnéli Phase Titanium Oxide as a Novel Anode Material for Potassium-Ion Batteries. ACS Omega, 2019,	5.2 8.2	62 146
48 49	Insights into the Crystallinity of Layer‣tructured Transition Metal Dichalcogenides on Potassium Ion Battery Performance: A Case Study of Molybdenum Disulfide. Small, 2019, 15, e1900497. Development status and future prospect of non-aqueous potassium ion batteries for large scale energy storage. Nano Energy, 2019, 60, 340-361. Magnéli Phase Titanium Oxide as a Novel Anode Material for Potassium-Ion Batteries. ACS Omega, 2019, 4, 5304-5309. Defect-rich MoS _{2(1â[°]x)} Se _{2x} few-layer nanocomposites: a superior anode material for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7,	5.2 8.2 1.6	62 146 35
48 49 50	Insights into the Crystallinity of Layerâ€6tructured Transition Metal Dichalcogenides on Potassium Ion Battery Performance: A Case Study of Molybdenum Disulfide. Small, 2019, 15, e1900497. Development status and future prospect of non-aqueous potassium ion batteries for large scale energy storage. Nano Energy, 2019, 60, 340-361. Magnéli Phase Titanium Oxide as a Novel Anode Material for Potassium-Ion Batteries. ACS Omega, 2019, 4, 5304-5309. Defect-rich MoS _{2(1â°'x)} Se _{2x} few-layer nanocomposites: a superior anode material for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 9837-9843. Rational design of a tubular, interlayer expanded MoS ₂ –N/O doped carbon composite for	 5.2 8.2 1.6 5.2 	62 146 35 35
48 49 50 51	Insights into the Crystallinity of Layer‣tructured Transition Metal Dichalcogenides on Potassium Ion Battery Performance: A Case Study of Molybdenum Disulfide. Small, 2019, 15, e1900497. Development status and future prospect of non-aqueous potassium ion batteries for large scale energy storage. Nano Energy, 2019, 60, 340-361. Magnéli Phase Titanium Oxide as a Novel Anode Material for Potassium-Ion Batteries. ACS Omega, 2019, 4, 5304-5309. Defect-rich MoS _{2(1â[°]x)} Se _{2x} few-layer nanocomposites: a superior anode material for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 9837-9843. Rational design of a tubular, interlayer expanded MoS ₂ –N/O doped carbon composite for excellent potassium-ion storage. Journal of Materials Chemistry A, 2019, 7, 9305-9315. K2Ti6O13 nanorods for potassium-ion battery anodes. Journal of Electroanalytical Chemistry, 2019,	 5.2 8.2 1.6 5.2 5.2 	 62 146 35 35 97

		CITATION REPORT		
#	Article	IF		CITATIONS
55	<i>In Situ</i> Alloying Strategy for Exceptional Potassium Ion Batteries. ACS Nano, 2019, 13	3, 3703-3713. 7.	3	194
56	Carbon-Coated MoSe ₂ /MXene Hybrid Nanosheets for Superior Potassium Stora Nano, 2019, 13, 3448-3456.	age. ACS 7.	3	372
57	Engineering MoS2 Nanosheets Anchored on Metal Organic Frameworks Derived Carbon Poly Superior Lithium and Potassium Storage. Frontiers in Energy Research, 2019, 7, .	yhedra for 1.	2	18
58	Conjugated Microporous Polymers with Tunable Electronic Structure for High-Performance Potassium-Ion Batteries. ACS Nano, 2019, 13, 745-754.	7.:	3	162
59	Flexible Sub-Micro Carbon Fiber@CNTs as Anodes for Potassium-Ion Batteries. ACS Applied N & Interfaces, 2019, 11, 5015-5021.	Materials 4.	.0	69
60	Sn-interspersed MoS2/C nanosheets with high capacity for Na+/K+ storage. Journal of Physic Chemistry of Solids, 2019, 126, 72-77.	s and 1.	9	30
61	Enhancing potassium-ion battery performance by defect and interlayer engineering. Nanosca Horizons, 2019, 4, 202-207.	ale 4.	.1	105
62	Layered Transition Metal Dichalcogenideâ€Based Nanomaterials for Electrochemical Energy Advanced Materials, 2020, 32, e1903826.	Storage. 11	1.1	329
63	Improving compactness and reaction kinetics of MoS2@C anodes by introducing Fe9S10 cc superior volumetric sodium/potassium storage. Energy Storage Materials, 2020, 24, 208-219		.5	140
64	Boosting potassium storage in nanosheet assembled MoSe2 hollow sphere through surface decoration of MoO2 nanoparticles. Applied Surface Science, 2020, 505, 144573.	3.	.1	19
65	Prepotassiated V ₂ O ₅ as the Cathode Material for Highâ€Voltage I Batteries. Energy Technology, 2020, 8, 1900796.	Potassiumâ€ l on 1.	8	27
66	Hierarchical chrysanthemum-like MoS2/Sb heterostructure encapsulated into N-doped graph framework for superior potassium-ion storage. Chemical Engineering Journal, 2020, 387, 124	nene 6. 4060. 6.	.6	71
67	Engineering Hollow Porous Carbon-Sphere-Confined MoS ₂ with Expanded (002 for Boosting Potassium-Ion Storage. ACS Applied Materials & (01) amp; Interfaces, 2020, 12, 123	2) Planes 4. 2-1240. 4.	.0	79
68	The Advances of Metal Sulfides and In Situ Characterization Methods beyond Li Ion Batteries Potassium, and Aluminum Ion Batteries. Small Methods, 2020, 4, 1900648.	s: Sodium, 4.	.6	106
69	In situ TEM observation of controlled growth of two-dimensional WS2 with vertically aligned and high-temperature stability. Nano Energy, 2020, 67, 104221.	l layers 8.	.2	26
70	Interlayer-expanded MoS2 assemblies for enhanced electrochemical storage of potassium io Research, 2020, 13, 225-230.	ns. Nano 5.	.8	47
71	Confined growth of 2D MoS ₂ nanosheets in N-doped pearl necklace-like struct carbon nanofibers with boosted lithium and sodium storage performance. Chemical Commu 2020, 56, 141-144.	ured nications, 2.	.2	56
72	Dual anionic vacancies on carbon nanofiber threaded MoSSe arrays: A free-standing anode fo high-performance potassium-ion storage. Energy Storage Materials, 2020, 27, 591-598.	or 9.	.5	69

#	Article	IF	CITATIONS
73	A Flexible Potassium-Ion Hybrid Capacitor with Superior Rate Performance and Long Cycling Life. ACS Applied Materials & Interfaces, 2020, 12, 2424-2431.	4.0	59
74	Engineering of nanonetwork-structured carbon to enable high-performance potassium-ion storage. Journal of Colloid and Interface Science, 2020, 561, 195-202.	5.0	13
75	Controllable synthesis of hierarchical MoS2 nanotubes with ultra-uniform and superior storage potassium properties. Journal of Colloid and Interface Science, 2020, 561, 593-600.	5.0	31
76	Nanosheets assembled layered MoS2/MXene as high performance anode materials for potassium ion batteries. Journal of Power Sources, 2020, 449, 227481.	4.0	125
77	Intercalation-Induced Conversion Reactions Give High-Capacity Potassium Storage. ACS Nano, 2020, 14, 14026-14035.	7.3	42
78	VS2 nanosheets vertically grown on graphene as high-performance cathodes for aqueous zinc-ion batteries. Journal of Power Sources, 2020, 477, 228652.	4.0	74
79	Bottomâ€Up Synthesis of MoS ₂ /CNTs Hollow Polyhedron with 1T/2H Hybrid Phase for Superior Potassiumâ€Ion Storage. Small, 2020, 16, e2004178.	5.2	44
80	Rational design of vanadium chalcogenides for sodium-ion batteries. Journal of Power Sources, 2020, 478, 228769.	4.0	21
81	Pyrrhotite Fe1â^'xS microcubes as a new anode material in potassium-ion batteries. Microsystems and Nanoengineering, 2020, 6, 75.	3.4	12
84	Amorphous cobalt sulfide/N-doped carbon core/shell nanoparticles as an anode material for potassium-ion storage. Journal of Materials Science, 2020, 55, 15213-15221.	1.7	12
85	Engineering ultra-enlarged interlayer carbon-containing vanadium disulfide composite for high-performance sodium and potassium ion storage. Journal of Alloys and Compounds, 2020, 847, 156288.	2.8	29
86	Design, characterization, and application of elemental 2D materials for electrochemical energy storage, sensing, and catalysis. Materials Advances, 2020, 1, 2562-2591.	2.6	21
87	Pushing the Energy Output and Cycling Lifespan of Potassiumâ€Ion Capacitor to High Level through Metal–Organic Framework Derived Porous Carbon Microsheets Anode. Advanced Functional Materials, 2020, 30, 2006561.	7.8	75
88	Space onfined Fabrication of MoS ₂ @Carbon Tubes with Semienclosed Architecture Achieving Superior Cycling Capability for Sodium Ion Storage. Advanced Materials Interfaces, 2020, 7, 2000953.	1.9	10
89	State-of-the-Art Applications of 2D Nanomaterials in Energy Storage. ACS Symposium Series, 2020, , 253-293.	0.5	5
90	A Robust Strategy for Engineering Fe ₇ S ₈ /C Hybrid Nanocages Reinforced by Defect-Rich MoS ₂ Nanosheets for Superior Potassium-Ion Storage. ACS Nano, 2020, 14, 16046-16056.	7.3	90
91	Densified Metallic MoS ₂ /Graphene Enabling Fast Potassiumâ€Ion Storage with Superior Gravimetric and Volumetric Capacities. Advanced Functional Materials, 2020, 30, 2001484.	7.8	82
92	Niâ€Based Coordination Polymer as a Promising Anode Material for Potassium Batteries. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1901050.	0.8	11

#	Article	IF	CITATIONS
94	Efficient Raman Enhancement in Molybdenum Disulfide by Tuning the Interlayer Spacing. ACS Applied Materials & Interfaces, 2020, 12, 28474-28483.	4.0	23
95	Carbon Dots@rGO Paper as Freestanding and Flexible Potassium″on Batteries Anode. Advanced Science, 2020, 7, 2000470.	5.6	95
96	Anode materials for potassiumâ€ion batteries: Current status and prospects. , 2020, 2, 350-369.		73
97	Hierarchically Structured Nitrogen-Doped Carbon Microspheres for Advanced Potassium Ion Batteries. , 2020, 2, 853-860.		70
99	Twoâ€Dimensional Transition Metal Chalcogenides for Alkali Metal Ions Storage. ChemSusChem, 2020, 13, 1114-1154.	3.6	69
100	Molybdenum disulfide with enlarged interlayer spacing decorated on reduced graphene oxide for efficient electrocatalytic hydrogen evolution. Journal of Materials Science, 2020, 55, 6637-6647.	1.7	59
101	MoS2/N-doped graphene aerogles composite anode for high performance sodium/potassium ion batteries. Electrochimica Acta, 2020, 339, 135932.	2.6	59
102	Vertically aligned VS ₂ on graphene as a 3D heteroarchitectured anode material with capacitance-dominated lithium storage. Journal of Materials Chemistry A, 2020, 8, 5882-5889.	5.2	68
103	Comprehensive insights and perspectives into the recent progress of electrode materials for non-aqueous K-ion battery. Journal of Materiomics, 2020, 6, 431-454.	2.8	22
104	Research Development on K-Ion Batteries. Chemical Reviews, 2020, 120, 6358-6466.	23.0	804
105	Spatially confined synthesis of a flexible and hierarchically porous three-dimensional graphene/FeP hollow nanosphere composite anode for highly efficient and ultrastable potassium ion storage. Journal of Materials Chemistry A, 2020, 8, 3369-3378.	5.2	58
106	Recent Research Progress of Anode Materials for Potassiumâ€ion Batteries. Energy and Environmental Materials, 2020, 3, 105-120.	7.3	103
107	Flexible N doped carbon/bubble-like MoS2 core/sheath framework: Buffering volume expansion for potassium ion batteries. Journal of Colloid and Interface Science, 2020, 566, 427-433.	5.0	78
108	Controlled Design of Wellâ€Ðispersed Ultrathin MoS ₂ Nanosheets inside Hollow Carbon Skeleton: Toward Fast Potassium Storage by Constructing Spacious "Houses―for K Ions. Advanced Functional Materials, 2020, 30, 1908755.	7.8	138
109	Transition metal dichalcogenides for alkali metal ion batteries: engineering strategies at the atomic level. Energy and Environmental Science, 2020, 13, 1096-1131.	15.6	266
110	Molybdenum Disulfide Based Nanomaterials for Rechargeable Batteries. Chemistry - A European Journal, 2020, 26, 6296-6319.	1.7	49
111	How does Molybdenum Disulfide Store Charge: A Minireview. ChemSusChem, 2020, 13, 1354-1365.	3.6	30
112	Controllable synthesis of tunable few-layered MoS2 chemically bonding with in situ conversion nitrogen-doped carbon for ultrafast reversible sodium and potassium storage. Chemical Engineering Journal, 2020, 393, 124703.	6.6	42

#	Article	IF	CITATIONS
113	Heterostructures of 2D Molybdenum Dichalcogenide on 2D Nitrogenâ€Doped Carbon: Superior Potassiumâ€lon Storage and Insight into Potassium Storage Mechanism. Advanced Materials, 2020, 32, e2000958.	11.1	192
114	Boosting the Potassium-Ion Storage Performance in Soft Carbon Anodes by the Synergistic Effect of Optimized Molten Salt Medium and N/S Dual-Doping. ACS Applied Materials & Interfaces, 2020, 12, 20838-20848.	4.0	88
115	Confining FeS in graphitized carbon with void space for high and stable electrochemical storage performance of Na + and K +. International Journal of Energy Research, 2020, 44, 6595-6607.	2.2	6
116	Potassium-ion storage mechanism of MoS2-WS2-C microspheres and their excellent electrochemical properties. Chemical Engineering Journal, 2021, 408, 127278.	6.6	37
117	Rational design of carbon materials as anodes for potassium-ion batteries. Energy Storage Materials, 2021, 34, 483-507.	9.5	130
118	Significantly enhanced lithium storage by in situ grown CoS2@MoS2 core–shell nanorods anchored on carbon cloth. Chemical Engineering Journal, 2021, 420, 127714.	6.6	33
119	A comprehensive review of carbons anode for potassium-ion battery: fast kinetic, structure stability and electrochemical. Journal of Power Sources, 2021, 484, 229244.	4.0	48
120	2D interspace confined growth of ultrathin MoS2-intercalated graphite hetero-layers for high-rate Li/K storage. Nano Research, 2021, 14, 1061-1068.	5.8	19
121	A Highâ€Performance Lithium Metal Battery with Ionâ€5elective Nanofluidic Transport in a Conjugated Microporous Polymer Protective Layer. Advanced Materials, 2021, 33, e2006323.	11.1	64
122	Advanced Anode Materials of Potassium Ion Batteries: from Zero Dimension to Three Dimensions. Nano-Micro Letters, 2021, 13, 12.	14.4	121
123	Recent progress in electrochemical performance of binder-free anodes for potassium-ion batteries. Nanoscale, 2021, 13, 5965-5984.	2.8	15
124	Ellipsometric Investigation of Thick Vertically Oriented MoS2 Films Grown on Mo Foil at High Temperatures. Journal of Physical Chemistry C, 2021, 125, 2005-2014.	1.5	1
125	Defect engineering of molybdenum disulfide for energy storage. Materials Chemistry Frontiers, 2021, 5, 5880-5896.	3.2	25
126	Carbon-coated WS ₂ nanosheets supported on carbon nanofibers for high-rate potassium-ion capacitors. Energy and Environmental Science, 2021, 14, 3184-3193.	15.6	100
127	Expanded MoSe ₂ Nanosheets Vertically Bonded on Reduced Graphene Oxide for Sodium and Potassium-Ion Storage. ACS Applied Materials & Interfaces, 2021, 13, 13158-13169.	4.0	83
128	Metallic-State MoS ₂ Nanosheets with Atomic Modification for Sodium Ion Batteries with a High Rate Capability and Long Lifespan. ACS Applied Materials & Interfaces, 2021, 13, 19894-19903.	4.0	20
129	Energy storage mechanisms of anode materials for potassium ion batteries. Materials Today Energy, 2021, 21, 100747.	2.5	38
130	Recent advances in anode materials for potassium-ion batteries: A review. Nano Research, 2021, 14, 4442-4470.	5.8	76

#	Article	IF	Citations
131	Enhanced Potassium Storage Capability of Two-Dimensional Transition-Metal Chalcogenides Enabled by a Collective Strategy. ACS Applied Materials & amp; Interfaces, 2021, 13, 18838-18848.	4.0	21
132	Crystal, interfacial and morphological control of electrode materials for nonaqueous potassium-ion batteries. Nano Today, 2021, 37, 101074.	6.2	30
133	Status of rechargeable potassium batteries. Nano Energy, 2021, 83, 105792.	8.2	113
134	Fast and Durable Potassium Storage Enabled by Constructing Stress-Dispersed Co ₃ Se ₄ Nanocrystallites Anchored on Graphene Sheets. ACS Nano, 2021, 15, 10107-10118.	7.3	57
135	Progress and perspectives of 2D materials as anodes for potassium-ion batteries. Energy Storage Materials, 2021, 38, 354-378.	9.5	41
136	N, P-codoped graphene supported few-layered MoS2 as a long-life and high-rate anode materials for potassium-ion storage. Nano Research, 2021, 14, 3523-3530.	5.8	41
137	Realizing Fast Diffusion Kinetics Based on Three-Dimensional Ordered Macroporous Cu ₉ S ₅ @C for Potassium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 36982-36991.	4.0	27
138	Facile Preparation of MoS ₂ Nanocomposites for Efficient Potassiumâ€lon Batteries by Grindingâ€Promoted Intercalation Exfoliation. Small, 2021, 17, e2102263.	5.2	30
139	Amorphous CoS1.4 ultrathin nanosheets/amorphous N-doped carbon nanobox: A dual-amorphous confined structure for superior potassium storage. Journal of Power Sources, 2021, 506, 230117.	4.0	11
140	Carbon Coated MoS2 Hierarchical Microspheres Enabling Fast and Durable Potassium Ion Storage. Applied Surface Science, 2021, 564, 150387.	3.1	17
141	Recent progress and challenges on the bismuth-based anode for sodium-ion batteries and potassium-ion batteries. Materials Today Physics, 2021, 21, 100486.	2.9	29
142	Improvement in potassium ion batteries electrodes: Recent developments and efficient approaches. Journal of Energy Chemistry, 2021, 62, 307-337.	7.1	73
143	Understanding lithium, sodium, and potassium storage mechanisms in silicon oxycarbide. Chemical Engineering Journal, 2022, 428, 131072.	6.6	20
144	Construction of MoS2/Mxene heterostructure on stress-modulated kapok fiber for high-rate sodium-ion batteries. Journal of Colloid and Interface Science, 2022, 605, 472-482.	5.0	48
145	Boosting potassium-storage performance via confining highly dispersed molybdenum dioxide nanoparticles within N-doped porous carbon nano-octahedrons. Journal of Colloid and Interface Science, 2022, 607, 1109-1119.	5.0	4
146	Construction of NiS Nanosheets Anchored on the Inner Surface of Nitrogen-Doped Hollow Carbon Matrixes with Enhanced Sodium and Potassium Storage Performances. ACS Applied Energy Materials, 2021, 4, 662-670.	2.5	27
147	Potassium-ion batteries: outlook on present and future technologies. Energy and Environmental Science, 2021, 14, 2186-2243.	15.6	402
148	Van der Waals heterostructure engineering by 2D space-confinement for advanced potassium-ion storage. Nano Research, 2021, 14, 3854-3863.	5.8	26

# 149	ARTICLE Recent progress of nanostructured metal chalcogenides and their carbon-based hybrids for advanced potassium battery anodes. Materials Chemistry Frontiers, 2021, 5, 4401-4423.	IF 3.2	Citations 29
150	Recent Advances in Stability of Carbonâ€Based Anodes for Potassiumâ€Ion Batteries. Batteries and Supercaps, 2021, 4, 554-570.	2.4	25
151	Superior electrochemical performance of layered WTe ₂ as potassium-ion battery electrode. Nanotechnology, 2020, 31, 455406.	1.3	20
152	2D MoS 2 Heterostructures on Epitaxial and Self‣tanding Graphene for Energy Storage: From Growth Mechanism to Application. Advanced Materials Technologies, 0, , 2100963.	3.0	1
153	Inâ€Depth Mechanism Understanding for Potassiumâ€ion Batteries by Electroanalytical Methods and Advanced In Situ Characterization Techniques. Small Methods, 2021, 5, e2101130.	4.6	18
154	S, N co-doped pitch-based composite carbon nanofibers with enlarged interlayer distance as a superior potassium ion batteries anode. E3S Web of Conferences, 2020, 213, 02003.	0.2	1
157	A review on carbon nanomaterials for <scp>Kâ€ion</scp> battery anode: Progress and perspectives. International Journal of Energy Research, 2022, 46, 4033-4070.	2.2	9
158	Intercalation in two-dimensional transition metal chalcogenides: interlayer engineering and applications. Progress in Energy, 2022, 4, 022001.	4.6	2
159	Prospects of Electrode Materials and Electrolytes for Practical Potassiumâ€Based Batteries. Small Methods, 2021, 5, e2101131.	4.6	129
160	Electrode materials for K-ion batteries. , 2023, , 83-127.		3
161	Ultrathin metallic phase MoS2 nanosheets decorated hollow carbon spheres for sodium and potassium ions storage. Solid State Ionics, 2022, 375, 115853.	1.3	1
162	Understanding electrolyte salt chemistry for advanced potassium storage performances of transitionâ€metal sulfides. , 2022, 4, 332-345.		10
163	High-capacity polymer electrodes for potassium batteries. Journal of Materials Chemistry A, 2022, 10, 3044-3050.	5.2	5
164	ZIF67@MoO3 NSs@NF composite electrocatalysts reinforced by chemical bonds and oxygen vacancy for efficient oxygen evolution reaction and overall water-splitting. International Journal of Hydrogen Energy, 2022, 47, 9606-9615.	3.8	13
165	Recent Advances in 2D Heterostructures as Advanced Electrode Materials for Potassiumâ€ion Batteries. Small Structures, 2022, 3, .	6.9	31
166	Scalable waste-plastic-derived carbon nanosheets with high contents of inbuilt nitrogen/sulfur sites for high performance potassium-ion hybrid capacitors. Nano Energy, 2022, 95, 107015.	8.2	18
167	CoSnO3/C nanocubes with oxygen vacancy as high-capacity cathode materials for rechargeable aluminum batteries. Green Energy and Environment, 2023, 8, 883-892.	4.7	7
168	Carbon-Coated Three-Dimensional MXene/Iron Selenide Ball with Core–Shell Structure for High-Performance Potassium-Ion Batteries. Nano-Micro Letters, 2022, 14, 17.	14.4	61

#	Article	IF	CITATIONS
169	Recent Advances and Perspectives of Battery-Type Anode Materials for Potassium Ion Storage. ACS Nano, 2021, 15, 18931-18973.	7.3	160
170	Hollow MoS ₂ Spheres Confined in Carbon Fibers for Ultralong-life Potassium Storage. ACS Applied Energy Materials, 2022, 5, 3605-3614.	2.5	9
171	N, P Codoped Hollow Carbon Nanospheres Decorated with MoSe ₂ Ultrathin Nanosheets for Efficient Potassium-Ion Storage. ACS Applied Materials & Interfaces, 2022, 14, 12551-12561.	4.0	23
172	Recent Advance and Modification Strategies of Transition Metal Dichalcogenides (TMDs) in Aqueous Zinc Ion Batteries. Materials, 2022, 15, 2654.	1.3	25
173	2D molten salt strategy for preparing large-sized MoS2/C sheets with self-adaptive structural deformation for K-ion storage. Chemical Engineering Journal, 2022, 440, 135871.	6.6	2
174	Recent progress and prospective on layered anode materials for potassium-ion batteries. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 1037-1052.	2.4	4
175	2D Graphene/MnO Heterostructure with Strongly Stable Interface Enabling Highâ€Performance Flexible Solidâ€5tate Lithiumâ€ion Capacitors. Advanced Functional Materials, 2022, 32, .	7.8	50
176	Molybdenum chalcogenides based anode materials for alkali metal ions batteries: Beyond lithium ion batteries. Energy Storage Materials, 2022, 50, 308-333.	9.5	46
177	Atomic‣cale Design of Anode Materials for Alkali Metal (Li/Na/K)â€Ion Batteries: Progress and Perspectives. Advanced Energy Materials, 2022, 12, .	10.2	56
178	In2S3 nanosheets array anchored on reduced graphene oxide as high-performance anode for sodium-ion batteries. Journal of Alloys and Compounds, 2022, 918, 165506.	2.8	8
179	Snâ€, Sb―and Biâ€Based Anodes for Potassium Ion Battery. Chemical Record, 2022, 22, .	2.9	13
180	Expanding the ReS ₂ Interlayer Promises High-Performance Potassium-Ion Storage. ACS Applied Materials & Interfaces, 0, , .	4.0	9
181	Pumpkin-like MoP-MoS2@Aspergillus niger spore-derived N-doped carbon heterostructure for enhanced potassium storage. Journal of Energy Chemistry, 2022, 72, 479-486.	7.1	14
182	Recent advances in modulation engineering-enabled metal compounds for potassium-ion storage. Energy Storage Materials, 2022, 51, 815-839.	9.5	25
183	Construction of high conductivity carbon-coated MoS2 on porous carbon nanofibers for synergistic potassium storage. Journal of Power Sources, 2022, 543, 231800.	4.0	14
184	Vacancy engineering in WS2 nanosheets for enhanced potassiumâ€ion storage. Journal of Power Sources, 2022, 542, 231791.	4.0	6
185	Recent Progress of Novel Non-Carbon Anode Materials for Potassium-Ion Battery. Energy Storage Materials, 2022, 51, 327-360.	9.5	19
186	Tailored MoS2 bilayer grafted onto N/S-doped carbon for ultra-stable potassium-ion capacitor. Chemical Engineering Journal, 2022, 450, 137815.	6.6	4

#	Article	IF	CITATIONS
187	Molybdenum sulfide selenide ultrathin nanosheets anchored on carbon tubes for rapid-charging sodium/potassium-ion batteries. Journal of Colloid and Interface Science, 2022, 628, 1041-1048.	5.0	12
188	Tug-of-War in the Selection of Materials for Battery Technologies. Batteries, 2022, 8, 105.	2.1	7
189	Perspective of Vanadium Disulfide: A Rising Star Finds Plenty of Room in Single and Multielectron Energy Storage. Energy & Fuels, 2022, 36, 13931-13955.	2.5	4
190	Heterostructures of 2D materials and their applications in biosensing. Progress in Materials Science, 2023, 132, 101024.	16.0	18
191	Mixed-phase 1T/2H-WS2 nanosheets on N-doped multichannel carbon nanofiber as current collector-integrated electrode for potassium battery anode. Journal of Colloid and Interface Science, 2023, 630, 823-832.	5.0	9
192	Iron carbodiimide as a High-reactivity anode for potassium ion batteries. Chemical Engineering Journal, 2023, 453, 139966.	6.6	12
193	Confining MoS2–C nanoparticles on two-dimensional graphene sheets for high reversible capacity and long-life potassium ions batteries. Composites Part B: Engineering, 2023, 250, 110424.	5.9	8
194	Antimony anchored in MoS2 nanosheets with N-doped carbon coating to boost potassium storage performance. Materials Today Chemistry, 2023, 27, 101300.	1.7	2
195	Recent Advances of Transition Metal Sulfides/Selenides Cathodes for Aqueous Zincâ€lon Batteries. Advanced Energy Materials, 2023, 13, .	10.2	35
196	Self-Standing Soft Carbon-Coated MoS2 Nanofiber Film Anode for Superior Potassium Storage. Coatings, 2022, 12, 1969.	1.2	1
197	Recent Advances in Polymers for Potassium Ion Batteries. Polymers, 2022, 14, 5538.	2.0	5
198	Bi@Bi2O3 anchored on porous graphene prepared by solvothermal method as a high-performance anode material for potassium-ion batteries. Journal of Alloys and Compounds, 2023, 939, 168766.	2.8	9
199	Research Progress of Constructing Anode Materials for Potassium Ion Batteries Based on Electrospinning Technology. , 2023, 4, 8-14.		0
200	High-capacity potassium-ion batteries using new rigid backbone quinone-based polymer electrode materials. Journal of Power Sources, 2023, 562, 232744.	4.0	1
201	Recent Advances in Potassiumâ€lon Batteries: From Material Design to Electrolyte Engineering. Advanced Materials Technologies, 2023, 8, .	3.0	9
202	Construction of MoS ₂ -ZnS@C Heterostructures by Multiple Organic Framework Combination for Fast and Stable Sodium/Potassium Storage. ACS Applied Energy Materials, 2023, 6, 3081-3092.	2.5	2
203	<i>Ex Situ</i> Characterization of 1T/2H MoS ₂ and Their Carbon Composites for Energy Applications, a Review. ACS Nano, 2023, 17, 5163-5186.	7.3	9
216	Basic Information of Electrochemical Energy Storage. , 2023, , 17-48.		ο

ARTICLE

IF CITATIONS