Metallic Snâ€Based Anode Materials: Application in Hig Sodiumâ€Ion Batteries

Advanced Science 4, 1700298 DOI: 10.1002/advs.201700298

Citation Report

#	Article	IF	CITATIONS
1	Metallic Snâ€Based Anode Materials: Application in Highâ€Performance Lithiumâ€Ion and Sodiumâ€Ion Batteries. Advanced Science, 2017, 4, 1700298.	5.6	315
2	Oxidized Co–Sn nanoparticles as long-lasting anode materials for lithium-ion batteries. Nanoscale, 2018, 10, 3777-3783.	2.8	25
3	Carbon and Carbon Hybrid Materials as Anodes for Sodiumâ€ion Batteries. Chemistry - an Asian Journal, 2018, 13, 1248-1265.	1.7	42
4	Unveiling critical size of coarsened Sn nanograins for achieving high round-trip efficiency of reversible conversion reaction in lithiated SnO2 nanocrystals. Nano Energy, 2018, 45, 255-265.	8.2	80
5	Carbon-encapsulated 1D SnO2/NiO heterojunction hollow nanotubes as high-performance anodes for sodium-ion batteries. Chemical Engineering Journal, 2018, 348, 599-607.	6.6	63
6	Direct synthesis of 3D hierarchically porous carbon/Sn composites <i>via in situ</i> generated NaCl crystals as templates for potassium-ion batteries anode. Journal of Materials Chemistry A, 2018, 6, 434-442.	5.2	194
7	Tungstenâ€Based Materials for Lithiumâ€lon Batteries. Advanced Functional Materials, 2018, 28, 1707500.	7.8	114
8	Nâ€Doped Carbonâ€Coated Ni _{1.8} Co _{1.2} Se ₄ Nanoaggregates Encapsulated in Nâ€Doped Carbon Nanoboxes as Advanced Anode with Outstanding Highâ€Rate and Lowâ€Temperature Performance for Sodiumâ€Ion Half/Full Batteries. Advanced Functional Materials, 2018, 28. 1805444.	7.8	228
9	Snâ€based Intermetallic Compounds for Liâ€ion Batteries: Structures, Lithiation Mechanism, and Electrochemical Performances. Energy and Environmental Materials, 2018, 1, 132-147.	7.3	68
10	A Robust Integrated SnO _x /Carbon Composite Anode for Sodium″on Batteries. ChemistrySelect, 2018, 3, 10869-10874.	0.7	7
11	Rational Design of Core–Shell-Structured Particles by a One-Step and Template-Free Process for High-Performance Lithium/Sodium-Ion Batteries. Journal of Physical Chemistry C, 2018, 122, 22232-22240.	1.5	10
12	SnP ₂ O ₇ Covered Carbon Nanosheets as a Longâ€Life and Highâ€Rate Anode Material for Sodiumâ€lon Batteries. Advanced Functional Materials, 2018, 28, 1804672.	7.8	84
13	2D-Pnictogens: alloy-based anode battery materials with ultrahigh cycling stability. Chemical Society Reviews, 2018, 47, 6964-6989.	18.7	100
14	Dual phase enhanced superior electrochemical performance of nanoporous bismuth-tin alloy anodes for magnesium-ion batteries. Energy Storage Materials, 2018, 14, 351-360.	9.5	80
15	Tin sulfide nanoparticles embedded in sulfur and nitrogen dual-doped mesoporous carbon fibers as high-performance anodes with battery-capacitive sodium storage. Energy Storage Materials, 2019, 18, 366-374.	9.5	101
16	Facile hydrogel-derived sub-10Ânm tin–iron alloy embedded in 3D carbon nanocorals with improved cycle life and rate capability. Ionics, 2019, 25, 5287-5295.	1.2	2
17	A long-cycling anode based on a coral-like Sn nanostructure with a binary binder. Chemical Communications, 2019, 55, 10460-10463.	2.2	10
18	Double-shelled hollow carbon spheres confining tin as high-performance electrodes for lithium ion batteries. Electrochimica Acta, 2019, 321, 134672.	2.6	42

#	Article	IF	Citations
19	Sn nanocrystals embedded in porous TiO ₂ /C with improved capacity for sodium-ion batteries. Inorganic Chemistry Frontiers, 2019, 6, 2675-2681.	3.0	13
20	Crumpled Nitrogen-Doped Graphene-Wrapped Phosphorus Composite as a Promising Anode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 30858-30864.	4.0	50
21	Tin Oxide Based Nanomaterials and Their Application as Anodes in Lithiumâ€lon Batteries and Beyond. ChemSusChem, 2019, 12, 4140-4159.	3.6	82
22	Reactive and Nonreactive Ball Milling of Tinâ€Antimony (Snâ€6b) Composites and Their Use as Electrodes for Sodiumâ€Ion Batteries with Glyme Electrolyte. Energy Technology, 2019, 7, 1900389.	1.8	22
23	Nanostructured FeSn2/SnO2-based composites as high-performance anodes for lithium-ion batteries. Journal of Alloys and Compounds, 2019, 803, 80-87.	2.8	7
24	Silicon Oxycarbide—Tin Nanocomposite as a Highâ€Powerâ€Đensity Anode for Liâ€Ion Batteries. Advanced Science, 2019, 6, 1901220.	5.6	30
25	Sodium-ion battery anodes: Status and future trends. EnergyChem, 2019, 1, 100012.	10.1	217
26	Hierarchical Sulfur-Doped Graphene Foam Embedded with Sn Nanoparticles for Superior Lithium Storage in LiFSI-Based Electrolyte. ACS Applied Materials & Interfaces, 2019, 11, 30500-30507.	4.0	27
27	Tin nanoparticles embedded in a carbon buffer layer as preferential nucleation sites for stable sodium metal anodes. Journal of Materials Chemistry A, 2019, 7, 23747-23755.	5.2	77
28	Application of Sn-Ni Alloy as an Anode for Lithium-Ion Capacitors with Improved Volumetric Energy and Power Density. Journal of the Electrochemical Society, 2019, 166, A3615-A3619.	1.3	11
29	Milled-Si@C Composites as Potential Anode Materials for Li- ion Batteries. International Journal of Electrochemical Science, 2019, , 9838-9849.	0.5	2
30	ZnSnSb2 anode: A solid solution behavior enabling high rate capability in Li-ion batteries. Journal of Power Sources, 2019, 441, 227165.	4.0	7
31	Superior Cycling and Rate Performance of Micron‣ized Tin Using Aqueousâ€Based Binder as a Sustainable Anode for Lithiumâ€ion Batteries. Energy Technology, 2019, 7, 1900849.	1.8	4
32	High-performance tin-titanium thin-film anodes prepared by magnetron co-sputtering for lithium-ion microbatteries. Journal of Solid State Electrochemistry, 2019, 23, 2835-2841.	1.2	3
33	Co–Sn Nanocrystalline Solid Solutions as Anode Materials in Lithiumâ€lon Batteries with High Pseudocapacitive Contribution. ChemSusChem, 2019, 12, 1451-1458.	3.6	38
34	Core‣hell Structure of SnO ₂ @C/PEDOT : PSS Microspheres with Dual Protection Layers for Enhanced Lithium Storage Performance. ChemElectroChem, 2019, 6, 2182-2188.	1.7	10
35	Exploring the sodium ion storage mechanism of gallium sulfide (Ga ₂ S ₃): a combined experimental and theoretical approach. Nanoscale, 2019, 11, 3208-3215.	2.8	24
36	Dual-carbon confined SnO2 as ultralong-life anode for Li-ion batteries. Ceramics International, 2019, 45, 7830-7838.	2.3	31

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
37	In-situ fabrication of heterostructured SnOx@C/rGO composite with durable cycling life for improved lithium storage. Ceramics International, 2019, 45, 18743-18750.	2.3	11
38	A Confined Replacement Synthesis of Bismuth Nanodots in MOF Derived Carbon Arrays as Binderâ€Free Anodes for Sodiumâ€Ion Batteries. Advanced Science, 2019, 6, 1900162.	5.6	90
39	Enhancement Effects of Co Doping on Interfacial Properties of Sn Electrodeâ^'Collector: A First-Principles Study. ACS Applied Materials & Interfaces, 2019, 11, 24648-24658.	4.0	19
40	Electrode Materials for High-Performance Sodium-Ion Batteries. Materials, 2019, 12, 1952.	1.3	62
41	Vanadium-based polyoxometalate as electron/ion sponge for lithium-ion storage. Journal of Power Sources, 2019, 435, 226702.	4.0	30
42	Heterostructured SnO2-SnS2@C Embedded in Nitrogen-Doped Graphene as a Robust Anode Material for Lithium-Ion Batteries. Frontiers in Chemistry, 2019, 7, 339.	1.8	27
43	Surface-Modified Tin Nanoparticles and Their Electrochemical Performance in Lithium Ion Battery Cells. ACS Applied Nano Materials, 2019, 2, 3577-3589.	2.4	19
44	Tin-based nanomaterials: colloidal synthesis and battery applications. Chemical Communications, 2019, 55, 8683-8694.	2.2	18
45	Polyanions Enhance Conversion Reactions for Lithium/Sodiumâ€lon Batteries: The Case of SbVO ₄ Nanoparticles on Reduced Graphene Oxide. Small Methods, 2019, 3, 1900231.	4.6	31
46	Simultaneous Realization of Direct Photoinduced Deposition and Improved H ₂ -Evolution Performance of Sn-Nanoparticle-Modified TiO ₂ Photocatalyst. ACS Sustainable Chemistry and Engineering, 2019, 7, 10084-10094.	3.2	81
47	Electrospun Co/Co3SnC0.7@N-CNFs as free-standing anode for advanced lithium-ion batteries. Journal of Alloys and Compounds, 2019, 793, 646-652.	2.8	8
48	Nitrogen-Doped Carbon-Encapsulated Antimony Sulfide Nanowires Enable High Rate Capability and Cyclic Stability for Sodium-Ion Batteries. ACS Applied Nano Materials, 2019, 2, 1457-1465.	2.4	40
49	Nanocrystal Conversion-Assisted Design of Sn–Fe Alloy with a Core–Shell Structure as High-Performance Anodes for Lithium-Ion Batteries. ACS Omega, 2019, 4, 4888-4895.	1.6	25
50	Sodium Storage and Electrode Dynamics of Tin–Carbon Composite Electrodes from Bulk Precursors for Sodiumâ€ion Batteries. Advanced Functional Materials, 2019, 29, 1900790.	7.8	107
51	Sodium Metal Anodes: Emerging Solutions to Dendrite Growth. Chemical Reviews, 2019, 119, 5416-5460.	23.0	572
52	Anode Interface Engineering and Architecture Design for Highâ€Performance Lithium–Sulfur Batteries. Advanced Materials, 2019, 31, e1806532.	11.1	172
53	Niobiumâ€Based Oxides Toward Advanced Electrochemical Energy Storage: Recent Advances and Challenges. Small, 2019, 15, e1804884.	5.2	130
54	Chemical-enzymatic fractionation to unlock the potential of biomass-derived carbon materials for sodium ion batteries. Journal of Materials Chemistry A, 2019, 7, 26954-26965.	5.2	41

#	Article	IF	CITATIONS
55	Hydrogel-derived foams of nitrogen-doped carbon loaded with Sn nanodots for high-mass-loading Na-ion storage. Energy Storage Materials, 2019, 16, 519-526.	9.5	47
56	Sn@C evolution from yolk-shell to core-shell in carbon nanofibers with suppressed degradation of lithium storage. Energy Storage Materials, 2019, 18, 229-237.	9.5	18
57	Encapsulating highly crystallized mesoporous Fe3O4 in hollow N-doped carbon nanospheres for high-capacity long-life sodium-ion batteries. Nano Energy, 2019, 56, 426-433.	8.2	111
58	Review and prospect of Li2ZnTi3O8-based anode materials for Li-ion battery. Ionics, 2019, 25, 373-397.	1.2	20
59	Sn-based submicron-particles encapsulated in porous reduced graphene oxide network: Advanced anodes for high-rate and long life potassium-ion batteries. Applied Materials Today, 2019, 15, 58-66.	2.3	69
60	Carbon particles modified macroporous Si/Ni composite as an advanced anode material for lithium ion batteries. International Journal of Hydrogen Energy, 2019, 44, 1078-1087.	3.8	22
61	Lithiation-induced interfacial failure of electrode-collector: A first-principles study. Materials Chemistry and Physics, 2019, 222, 193-199.	2.0	9
62	Crystalline Sb or Bi in amorphous Ti-based oxides as anode materials for sodium storage. Chemical Engineering Journal, 2020, 380, 122624.	6.6	22
63	Fe ₃ SnC@CNF: A 3 D Antiperovskite Intermetallic Carbide System as a New Robust High apacity Lithiumâ€ion Battery Anode. ChemSusChem, 2020, 13, 196-204.	3.6	11
64	In Situ Construction of Multibuffer Structure 3D CoSn@SnO x /CoO x @C Anode Material for Ultralong Life Lithium Storage. Energy Technology, 2020, 8, 1900829.	1.8	11
65	Monodisperse CoSn and NiSn Nanoparticles Supported on Commercial Carbon as Anode for Lithium- and Potassium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 4414-4422.	4.0	46
66	Mechanochemically synthesized Cu3P/C composites as a conversion electrode for Li-ion and Na-ion batteries in different electrolytes. Journal of Power Sources Advances, 2020, 6, 100031.	2.6	7
67	Solvothermal synthesis of Sn ₃ N ₄ as a high capacity sodium-ion anode: theoretical and experimental study of its storage mechanism. Journal of Materials Chemistry A, 2020, 8, 16437-16450.	5.2	4
68	Electrodeposited binder-free Sb/NiSb anode of sodium-ion batteries with excellent cycle stability and rate capability and new insights into its reaction mechanism by operando XRD analysis. Nano Energy, 2020, 77, 105123.	8.2	51
69	The progress on aluminum-based anode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 25649-25662.	5.2	53
70	Recent Developments of Nanomaterials and Nanostructures for Highâ€Rate Lithium Ion Batteries. ChemSusChem, 2020, 13, 5361-5407.	3.6	46
71	Suppression of formation of lithium dendrite via surface modification by 2-D lithium phosphorous oxynitride as a highly stable anode for metal lithium batteries. Journal of Alloys and Compounds, 2020, 845, 156280.	2.8	8
72	Insights into the enhanced sodium storage property and kinetics based on the Zr/Si codoped Na3V2(PO4)3/C cathode with superior rate capability and long lifespan. Journal of Power Sources, 2020, 474, 228632.	4.0	39

ARTICLE IF CITATIONS # Review on comprehending and enhancing the initial Coulombic efficiency of anode materials in 73 8.2 282 lithium-ion/sodium-ion batteries. Nano Energy, 2020, 77, 105143. Recent advances and perspectives of 2D silicon: Synthesis and application for energy storage and conversion. Energy Storage Materials, 2020, 32, 115-150. 74 74 N-doped carbon-coated ultrasmall Nb₂O₅ nanocomposite with excellent long 75 2.8 18 cyclability for sodium storage. Nanoscale, 2020, 12, 18673-18681. Understanding Stabilization in Nanoporous Intermetallic Alloy Anodes for Li-Ion Batteries Using <i>Operando </i> Transmission X-ray Microscopy. ACS Nano, 2020, 14, 14820-14830. Dual Buffering Inverse Design of Threeâ€Dimensional Grapheneâ€Supported Snâ€TiO 2 Anodes for Durable 77 5.2 13 Lithiumâ€Ion Batteries. Small, 2020, 16, 2004861. Keplerate-type polyoxometalate {Mo72Fe30} nanoparticle anodes for high-energy lithium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 21623-21633. 5.2 Stabilization of Sn Anode through Structural Reconstruction of a Cu–Sn Intermetallic Coating Layer. 79 11.1 53 Advanced Materials, 2020, 32, e2003684. <i>In</i> <i>Operando</i> X-ray Studies of High-Performance Lithium-Ion Storage in Keplerate-Type Polyoxometalate Anodes. ACS Ápplied Materials & amp; Interfaces, 2020, 12, 40296-40309. Tin Nanodots Derived From Sn 2+ /Graphene Quantum Dot Complex as Pillars into Graphene Blocks for 81 5.2 22 Ultrafast and Ultrastable Sodiumâ€Ion Storage. Small, 2020, 16, 2003557. Rational Design of Pillared SnS/Ti₃C₂T_{<i>x</i>} MXene for Superior Lithium-Ion Storage. ACS Nano, 2020, 14, 17665-17674. Carbon-Coated Self-Assembled Ultrathin T-Nb₂O₅ Nanosheets for High-Rate 83 2.5 26 Lithium-Ion Storage with Superior Cycling Stability. ACS Applied Energy Materials, 2020, 3, 12037-12045. Dual Immobilization of SnO_{<i>x</i>} Nanoparticles by N-Doped Carbon and TiO₂ for High-Performance Lithium-Ion Battery Anodes. ACS Applied Materials & amp; 84 4.0 Interfaces, 2020, 12, 55820-55829. Double coreâ€"shell nanostructured Sn-Cu alloy as enhanced anode materials for lithium and sodium 85 1.1 7 storage. Frontiers of Materials Science, 2020, 14, 133-144. Cavity containing core-shell Bi@C nanowires toward high performance lithium ion batteries. Journal of Alloys and Compounds, 2020, 842, 155796. 2.8 Constitutional under-potential plating (CUP) †New insights for predicting the morphological stability of deposited lithium anodes in lithium metal batteries. Journal of Power Sources, 2020, 467, 87 4.0 7 228243. TMDs beyond MoS₂ for Electrochemical Energy Storage. Chemistry - A European Journal, 2020, 26, 6320-6341. Nanospaceâ€Confinement Synthesis: Designing Highâ€Energy Anode Materials toward Ultrastable 89 5.213 Lithiumâ€Ion Batteries. Small, 2020, 16, e2002351. Rapid preparation of ultra-fine and well-dispersed SnO2 nanoparticles via a double hydrolysis 90 2.8 reaction for lithium storage. Nanoscale, 2020, 12, 15697-15705.

#	Article	IF	CITATIONS
91	Enhancing lithium titanite (Li4Ti5O12) nanorods performance with graphite and nano tin as anode for lithium-ion batteries. AIP Conference Proceedings, 2020, , .	0.3	2
92	Investigation on synthesis of SnO2 nano-particles using sol–gel process for energy storage application. Australian Journal of Electrical and Electronics Engineering, 2020, 17, 114-121.	0.7	0
93	High Areal Capacity Porous Sn-Au Alloys with Long Cycle Life for Li-ion Microbatteries. Scientific Reports, 2020, 10, 10405.	1.6	9
94	Tin asymmetric membranes for high capacity sodium ion battery anodes. Materials Today Communications, 2020, 24, 100998.	0.9	1
95	Lithium-driven conversion and alloying mechanisms in core-shell Sn/SnOx nanoparticles. Solid State Sciences, 2020, 101, 106153.	1.5	2
96	Advanced porous graphene materials: from in-plane pore generation to energy storage applications. Journal of Materials Chemistry A, 2020, 8, 6125-6143.	5.2	65
97	Allylimidazolium-Based Poly(ionic liquid) Anodic Binder for Lithium-Ion Batteries with Enhanced Cyclability. ACS Applied Energy Materials, 2020, 3, 3337-3346.	2.5	15
98	Tin and Tin Compound Materials as Anodes in Lithium-Ion and Sodium-Ion Batteries: A Review. Frontiers in Chemistry, 2020, 8, 141.	1.8	60
99	Encapsulating Tin Nanoflowers into Microcapsules for Highâ€Rateâ€Performance Secondary Battery Anodes through In Situ Polymerizing Oilâ€inâ€Water Interface. Energy Technology, 2020, 8, 1901404.	1.8	2
100	Recent progress on metallic Sn- and Sb-based anodes for sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 2913-2933.	5.2	91
101	Ultrafine Cu6Sn5 nanoalloys supported on nitrogen and sulfur-doped carbons as robust electrode materials for oxygen reduction and Li-ion battery. Journal of Alloys and Compounds, 2020, 824, 153958.	2.8	7
102	Advantageous Functional Integration of Adsorptionâ€Intercalationâ€Conversion Hybrid Mechanisms in 3D Flexible Nb ₂ O ₅ @Hard Carbon@MoS ₂ @Soft Carbon Fiber Paper Anodes for Ultrafast and Superâ€Stable Sodium Storage. Advanced Functional Materials, 2020, 30, 1908665.	7.8	67
103	Hollow Bio-derived Polymer Nanospheres with Ordered Mesopores for Sodium-Ion Battery. Nano-Micro Letters, 2020, 12, 31.	14.4	19
104	Ultrahigh and Durable Volumetric Lithium/Sodium Storage Enabled by a Highly Dense Graphene-Encapsulated Nitrogen-Doped Carbon@Sn Compact Monolith. Nano Letters, 2020, 20, 2034-2046.	4.5	74
105	Multilayered structure of N-carbonenvelopediron oxide/graphene nanocomposites as an improved anode for Li-ion battery. Chinese Chemical Letters, 2020, 31, 2333-2338.	4.8	18
106	Cyanometallic framework-derived dual-buffer structure of Sn-Co based nanocomposites for high-performance lithium storage. Journal of Alloys and Compounds, 2020, 830, 154680.	2.8	12
107	A Nano-Rattle SnO2@carbon Composite Anode Material for High-Energy Li-ion Batteries by Melt Diffusion Impregnation. Nanomaterials, 2020, 10, 804.	1.9	8
108	Manipulating the stress of Sn in carbon structure to realize long-life high performance sodium ion battery anode material Journal of Alloys and Compounds, 2020, 834, 155177	2.8	11

# 109	ARTICLE Influences of carbon nanotubes in Tin nanocomposite active plate on the diffusion induced stresses and curvature in bilayer lithium-ion battery electrodes. Solid State Ionics, 2020, 349, 115315.	IF 1.3	CITATIONS
110	A general method to synthesize metal/N-doped carbon nanocomposites with advanced sodium storage properties. Journal of Alloys and Compounds, 2021, 858, 157686.	2.8	10
111	Compact Co3O4/Co in-situ nanocomposites prepared by pulsed laser sintering as anode materials for lithium-ion batteries. Journal of Energy Chemistry, 2021, 58, 386-390.	7.1	29
112	Challenges of today for Na-based batteries of the future: From materials to cell metrics. Journal of Power Sources, 2021, 482, 228872.	4.0	169
113	Atomic Layer Deposition of Highâ€Capacity Anodes for Nextâ€Generation Lithiumâ€Ion Batteries and Beyond. Energy and Environmental Materials, 2021, 4, 363-391.	7.3	43
114	Disodium‧ubstituted Tetrahydroxybenzoquinone Salt as an Organic Electrode for Highâ€Performance Lithiumâ€Ion Batteries. Energy Technology, 2021, 9, 2000840.	1.8	2
115	Recent development of Sn–Fe-based materials as a substitute for Sn–Co–C anodes in Li-ion batteries: a review. Materials Chemistry Frontiers, 2021, 5, 1185-1204.	3.2	17
116	Tin nanoparticle/3D framework carbon composite derived from sodium citrate as the stable anode of lithium-ion batteries. Ionics, 2021, 27, 1003-1011.	1.2	6
117	A sustainable strategy for fabricating porous carbon supported Sn submicron spheres by self-generated Na ₂ CO ₃ as templates for lithium-ion battery anode. Green Chemistry, 2021, 23, 6490-6500.	4.6	14
118	Composites of SnSb Nanoparticles Embedded in Porous Carbon Nanofibers Wrapped with Reduced Graphene Oxide for Sodium Storage. ACS Applied Nano Materials, 2021, 4, 826-833.	2.4	4
119	Recent developments in carbon-based materials as high-rate anode for sodium ion batteries. Materials Chemistry Frontiers, 2021, 5, 4089-4106.	3.2	25
120	Improved tin oxide nanosphere material via co-precipitation method as an anode for energy storage application in Li-ion batteries. Ionics, 2021, 27, 1049-1059.	1.2	4
121	Nanoporous Metallic Foams for Energy Applications: Electrochemical Approaches for Synthesizing and Characterization. , 2021, , 489-511.		2
122	Regulating the carbon distribution of anode materials in lithium-ion batteries. Nanoscale, 2021, 13, 3937-3947.	2.8	21
123	Sn@C composite for lithium ion batteries: amorphous vs. crystalline structures. lonics, 2021, 27, 1403-1412.	1.2	6
124	Hybrid perovskite-like iodobismuthates as low-cost and stable anode materials for lithium-ion battery applications. Journal of Materials Chemistry A, 2021, 9, 2689-2693.	5.2	24
125	New rationally designed hybrid polypyrrole@SnCoS4 as an efficient anode for lithium-ion batteries. New Journal of Chemistry, 2021, 45, 11737-11751.	1.4	7
126	Electrospun Tin Based Composites as Anodes for Lithium-Ion Batteries. Materials Horizons, 2021, , 373-392.	0.3	0

#	Article	IF	CITATIONS
127	Strategies, design and synthesis of advanced nanostructured electrodes for rechargeable batteries. Materials Chemistry Frontiers, 2021, 5, 5897-5931.	3.2	15
128	Oxygen vacancies boosted the electrochemical kinetics of Nb ₂ O _{5â^'<i>x</i>} for superior lithium storage. Chemical Communications, 2021, 57, 8182-8185.	2.2	14
129	Intercalation and delamination of Ti ₂ SnC with high lithium ion storage capacity. Nanoscale, 2021, 13, 7355-7361.	2.8	22
130	Inside the failure mechanism of tin oxide as anode for sodium ion batteries. Journal of Solid State Electrochemistry, 2021, 25, 1401-1410.	1.2	7
131	Prelithiation: A Crucial Strategy for Boosting the Practical Application of Next-Generation Lithium Ion Battery. ACS Nano, 2021, 15, 2197-2218.	7.3	192
132	Recent advances in semimetallic pnictogen (As, Sb, Bi) based anodes for sodium-ion batteries: Structural design, charge storage mechanisms, key challenges and perspectives. Nano Research, 2021, 14, 3690-3723.	5.8	30
133	Towards stable and highâ€capacity anode materials for sodiumâ€ion batteries by embedding of Sb/Sn nanoparticles into electrospun mesoporous carbon fibers. Electrochemical Science Advances, 0, , e2100010.	1.2	1
134	Concurrent diffusion and creep in lithium-ion batteries. Mechanics of Materials, 2021, 155, 103731.	1.7	1
135	Dealloying: An effective method for scalable fabrication of 0D, 1D, 2D, 3D materials and its application in energy storage. Nano Today, 2021, 37, 101094.	6.2	93
136	Controllable construction of yolk–shell Sn–Co@void@C and its advantages in Na-ion storage. Rare Metals, 2021, 40, 2392-2401.	3.6	21
137	Refined Tin Nanoparticles by Oxidation–Reduction Treatment for Use in Potassium-Ion Batteries. ACS Applied Nano Materials, 2021, 4, 4432-4440.	2.4	1
138	Reversible formation of coordination bonds in Sn-based metal-organic frameworks for high-performance lithium storage. Nature Communications, 2021, 12, 3131.	5.8	80
139	Layered Structure Na ₂ Ti ₃ O ₇ as a Promising Anode Material for Sodiumâ€ion Batteries. Advanced Energy and Sustainability Research, 2021, 2, 2000095.	2.8	7
140	119Sn and 7Li Solid-State NMR of the Binary Li–Sn Intermetallics: Structural Fingerprinting and Impact on the Isotropic 119Sn Shift via DFT Calculations. Chemistry of Materials, 2021, 33, 3499-3514.	3.2	10
141	Metal–organic framework-derived carbon decorated Ni–Sn nanostructures for ultrastable metal-ion batteries. Composites Communications, 2021, 25, 100724.	3.3	2
142	A Robust Solid–Solid Interface Using Sodium–Tin Alloy Modified Metallic Sodium Anode Paving Way for Allâ€Solidâ€State Battery. Advanced Energy Materials, 2021, 11, 2101228.	10.2	39
143	Differences and Similarities of Photocatalysis and Electrocatalysis in Two-Dimensional Nanomaterials: Strategies, Traps, Applications and Challenges. Nano-Micro Letters, 2021, 13, 156.	14.4	71
144	Atomic Welded Dual-Wall Hollow Nanospheres for Three-in-One Hybrid Storage Mechanism of Alkali Metal Ion Batteries. ACS Nano, 2021, 15, 14125-14136.	7.3	34

#	Article	IF	CITATIONS
145	Electrochemical Characteristics of Micrometer-sized Sn and Acetylene Black Composites Prepared by Mechanical Milling for Sodium-ion Battery Anodes. Electrochemistry, 2021, 89, 370-376.	0.6	2
146	Versatile Interfacial Self-Assembly of Ti ₃ C ₂ T _{<i>x</i>} MXene Based Composites with Enhanced Kinetics for Superior Lithium and Sodium Storage. ACS Nano, 2021, 15, 12140-12150.	7.3	70
147	Unraveling the mechanical origin of stable solid electrolyte interphase. Joule, 2021, 5, 1860-1872.	11.7	89
148	Tailored synthesis of molybdenum-selenide/selenium/sodium-molybdate hybrid composites as a promising anode for lithium-ion and sodium-ion batteries. Chemical Engineering Journal, 2021, 415, 128813.	6.6	9
149	Identification of Li _{<i>x</i>} Sn Phase Transitions During Lithiation of Tin Nanoparticle-Based Negative Electrodes from Ex Situ ¹¹⁹ Sn MAS NMR and Operando ⁷ Li NMR and XRD. ACS Applied Energy Materials, 2021, 4, 7278-7287.	2.5	8
150	Interfacial Protection Engineering of Sodium Nanoparticles toward Dendriteâ€Free and Longâ€Life Sodium Metal Battery. Small, 2021, 17, e2102400.	5.2	7
151	Low-cost and highly safe solid-phase sodium ion battery with a Sn–C nanocomposite anode. Journal of Industrial and Engineering Chemistry, 2021, 100, 112-118.	2.9	8
152	Stressâ€Regulation Design of Lithium Alloy Electrode toward Stable Battery Cycling. Energy and Environmental Materials, 2023, 6, .	7.3	11
153	Sn-based metal oxides and sulfides anode materials for Na ion battery. Energy Storage Materials, 2021, 39, 21-44.	9.5	54
154	The γ-brass type Cu–rich complex intermetallic phase Cu41Sn11: Structure and electrochemical study. Solid State Sciences, 2021, 119, 106682.	1.5	2
155	Superstructured mesocrystals through multiple inherent molecular interactions for highly reversible sodium ion batteries. Science Advances, 2021, 7, eabh3482.	4.7	74
156	Self-standing and high-performance B4C/Sn/acetylene black@reduced graphene oxide films as sodium-ion half/full battery anodes. Applied Materials Today, 2021, 24, 101137.	2.3	5
157	Ultrafine SnSSe/multilayer graphene nanosheet nanocomposite as a high-performance anode material for potassium-ion half/full batteries. Journal of Energy Chemistry, 2021, 60, 241-248.	7.1	54
158	Remarkably improved cycling stability of 3D porous Cu–Sn anode for lithium-ion full cells by adjusting working voltage range. Journal of the Indian Chemical Society, 2021, 98, 100137.	1.3	0
159	Heterostructured multi-yolk-shell SnO2/Mn2SnO4@C nanoboxes for stable and highly efficient Li/Na storage. Journal of Power Sources, 2021, 506, 230243.	4.0	19
160	Synthesis and electrochemical analysis of Sn2Fe-TiOx-C composite as a high-performance anode material for Li-ion batteries. Ceramics International, 2022, 48, 597-603.	2.3	1
161	High-Performance Potassium-Ion-Based Full Battery Enabled by an Ionic-Drill Strategy. CCS Chemistry, 2021, 3, 85-94.	4.6	22
162	A Novel Solid Solution Mn1-xVxP Anode with Tunable Alloying/Insertion Hybrid Electrochemical Reaction for High Performance Lithium Ion Batteries. Energy Storage Materials, 2021, 41, 310-320.	9.5	6

#		IE	CITATIONS
#	Verification of electrolyte decomposition in lithium-ion batteries: Based on the unique bowling-like	IF	CHATIONS
163	Sn@C/EG-S composite. Chemical Engineering Journal, 2021, 422, 130520.	6.6	9
164	Amorphous Sn–Ni islets with high structural integrity as an anode material for lithium-ion storage. Journal of Alloys and Compounds, 2021, 879, 160416.	2.8	10
165	SnSe nanocomposite chemically-bonded with carbon-coating as an anode material for K-ion batteries with outstanding capacity and cyclability. Chemical Engineering Journal, 2021, 421, 129988.	6.6	48
166	Circumventing chemo-mechanical failure of Sn foil battery anode by grain refinement and elaborate porosity design. Journal of Energy Chemistry, 2021, 62, 477-484.	7.1	19
167	Coupling Fe3O4/Fe1-xS@Carbon with carbon-coated MoS2 nanosheets as a superior anode for sodium-ion batteries. Chemical Engineering Journal, 2022, 427, 131652.	6.6	10
168	A diffusion encouraged core–shell heterostructured Co ₃ Sn ₂ @SnO ₂ anode towards emerging dual ion batteries with high energy density. Journal of Materials Chemistry A, 2021, 9, 14991-15002.	5.2	11
169	Potassium-ion batteries: outlook on present and future technologies. Energy and Environmental Science, 2021, 14, 2186-2243.	15.6	402
170	Coupling hierarchical iron cobalt selenide arrays with N-doped carbon as advanced anodes for sodium ion storage. Journal of Materials Chemistry A, 2021, 9, 7248-7256.	5.2	54
171	Biomass-based materials for green lithium secondary batteries. Energy and Environmental Science, 2021, 14, 1326-1379.	15.6	157
172	Carbon Nanofibers with Embedded Sb ₂ Se ₃ Nanoparticles as Highly Reversible Anodes for Naâ€ion Batteries. Small, 2021, 17, e2006016.	5.2	54
173	Nanoporous Metallic Foams for Energy Applications: Electrochemical Approaches for Synthesizing and Characterization. , 2020, , 1-24.		1
174	Defect-rich Ni3Sn4 quantum dots anchored on graphene sheets exhibiting unexpected reversible conversion reactions with exceptional lithium and sodium storage performance. Applied Surface Science, 2020, 526, 146756.	3.1	12
175	Effect of Mass Balancing on Cell Performance and Electrochemical Investigation of Sn–Ni Alloy as Anode for Li-Ion Capacitors. Journal of the Electrochemical Society, 2020, 167, 130512.	1.3	3
176	A review for modified Li composite anode: Principle, preparation and challenge. Nanotechnology Reviews, 2020, 9, 1610-1624.	2.6	15
177	Phase Control of Co-Sn Alloys through Direct Electro-Deoxidation of Co ₃ O ₄ /SnO ₂ in LiCl-KCl Molten Salt. Journal of the Electrochemical Society, 2021, 168, 103505.	1.3	3
178	Sodium-Ion Battery Anode Construction with SnP <i> _x </i> Crystal Domain in Amorphous Phosphorus Matrix. Energy Material Advances, 2021, 2021, .	4.7	8
179	A Comprehensive Review of Graphene-Based Anode Materials for Lithium-ion Capacitors. Chemistry, 2021, 3, 1215-1246.	0.9	14
180	Lithiation Mechanism and Improved Electrochemical Performance of TiSnSb-Based Negative Electrodes for Lithium-Ion Batteries. Chemistry of Materials, 2021, 33, 8173-8182.	3.2	2

#	ARTICLE	IF	CITATIONS
181	MOFs and their derivatives as Sn-based anode materials for lithium/sodium ion batteries. Journal of Materials Chemistry A, 2021, 9, 27234-27251.	5.2	33
182	Evidence for stepwise formation of solid electrolyte interphase in a Li-ion battery. Energy Storage Materials, 2022, 44, 156-167.	9.5	20
183	Dealloying approach for the rapid synthesis of Sn-based intermetallic electrodes for lithium-ion batteries. Materials Today Communications, 2021, 29, 102965.	0.9	4
184	Construting stable 2 × 2 tunnel-structured K1.28Ti8O16@N-doped carbon nanofibers for ultralong cycling sodium-ion batteries. Electrochimica Acta, 2021, , 139522.	2.6	2
185	Titanates for sodium-ion storage. Nano Today, 2022, 42, 101349.	6.2	45
186	Tinâ€Based Anode Materials for Stable Sodium Storage: Progress and Perspective. Advanced Materials, 2022, 34, e2106895.	11.1	68
187	3D multicore-shell CoSn nanoboxes encapsulated in porous carbon as anode for lithium-ion batteries. Chinese Chemical Letters, 2022, 33, 3925-3930.	4.8	14
188	Metal-Complex-Assisted Synthesis of SnSe Nanorods for Lithium-Ion-Battery Anodes. ACS Applied Nano Materials, 2021, 4, 13010-13017.	2.4	6
189	Strategies for improving rechargeable lithium-ion batteries: From active materials to CO ₂ emissions. Nanotechnology Reviews, 2021, 10, 1993-2026.	2.6	9
190	Stabilizing Sn anodes nanostructure: Structure optimization and interfacial engineering to boost lithium storage. Electrochimica Acta, 2022, 405, 139789.	2.6	17
191	External pressure: An overlooked metric in evaluating next-generation battery performance. Current Opinion in Electrochemistry, 2022, 31, 100916.	2.5	3
192	A room-temperature liquid-metal composite anode for dendrite-free lithium-ion batteries. Materials Today Communications, 2022, 30, 103062.	0.9	1
193	Lithium and sodium storage performance of tin oxyphosphate anode materials. Applied Surface Science, 2022, 579, 152126.	3.1	4
194	Long Cycle Life and Highâ€Rate Sodium Metal Batteries Enabled by Regulating 3D Frameworks with Artificial Solid‧tate Interphases. Advanced Energy Materials, 2022, 12, .	10.2	29
195	Revisiting the Roles of Natural Graphite in Ongoing Lithiumâ€lon Batteries. Advanced Materials, 2022, 34, e2106704.	11.1	99
196	Spatially Confined Synthesis of SnSe Spheres Encapsulated in N, Se Dual-Doped Carbon Networks toward Fast and Durable Sodium Storage. ACS Applied Materials & Interfaces, 2022, 14, 4230-4241.	4.0	43
197	Nitrogen, Oxygen odoped Vertical Graphene Arrays Coated 3D Flexible Carbon Nanofibers with High Silicon Content as an Ultrastable Anode for Superior Lithium Storage. Advanced Science, 2022, 9, e2104685.	5.6	42
198	From Dough to Porous Nanostructured Snâ^'C Framework: A Green Anode Material for Lithium Ion Battery. ChemistrySelect, 2022, 7, .	0.7	0

#	Article	IF	CITATIONS
199	Realizing remarkable sodium storage performance of a Sn-based anode material with an oxide-alloy intergrowth structure. Rare Metals, 2022, 41, 1512-1519.	3.6	7
200	One-step in-situ synthesis of Sn-nanoconfined Ti3C2Tx MXene composites for Li-ion battery anode. Electrochimica Acta, 2022, 407, 139916.	2.6	25
201	A microstructure engineered perovskite super anode with Li-storage life of exceeding 10,000 cycles. Nano Energy, 2022, 94, 106972.	8.2	19
202	Electrochemical Role of Transition Metals in Sn–Fe Alloy Revealed by Operando Magnetometry. Chinese Physics Letters, 2022, 39, 028202.	1.3	1
203	Tin-cobalt bimetals in 2D leaf-like MOF-derived carbon for advanced lithium storage applications. Electrochimica Acta, 2022, 410, 140036.	2.6	5
204	A Microstructure Engineered Perovskite Super Anode with Li-Storage Life of Exceeding 10000 Cycles. SSRN Electronic Journal, 0, , .	0.4	0
205	Design Strategy for Mxene and Metal Chalcogenides/Oxides Hybrids for Energy Storage and Conversion. SSRN Electronic Journal, 0, , .	0.4	1
206	Preparation and controllable prelithiation of core–shell SnO _{<i>x</i>} @C composites for high-performance lithium-ion batteries. CrystEngComm, 2022, 24, 3189-3198.	1.3	4
207	Facile surface engineering of bio-waste derived amorphous carbon with SnO ₂ nanowires to enhance the efficacy of Li/Na storage. Energy Advances, 0, , .	1.4	0
208	Compact Sn/C composite realizes long-life sodium-ion batteries. Nano Research, 2023, 16, 3804-3813.	5.8	11
209	Stable Sandwich-Like Biomass Carbon@MoS ₂ Composite Material with Enhanced Sodium Storage Performance. Energy & Fuels, 2022, 36, 3954-3963.	2.5	6
210	Surfactant-derived porous Sn2Nb2O7-graphene oxide composite as Li- and Na-ion storage materials. Journal of Alloys and Compounds, 2022, , 164943.	2.8	1
211	Electrochemical Activation, Sintering, and Reconstruction in Energy‧torage Technologies: Origin, Development, and Prospects. Advanced Energy Materials, 2022, 12, .	10.2	40
212	Highly-conductive Ti3C2 sheets in boosting sodium-ion storage performances of Sn2S3 anode. Ceramics International, 2022, 48, 11074-11084.	2.3	3
213	One-step facile fabrication of N, S co-doped carbon modified NiS/MoS2 heterostructure microspheres with improved sodium storage performance. Journal of Power Sources, 2022, 529, 231282.	4.0	12
214	Red Phosphorus Anchored on Nitrogenâ€Doped Carbon Bubbleâ€Carbon Nanotube Network for Highly Stable and Fastâ€Charging Lithiumâ€ion Batteries. Small, 2022, 18, e2105866.	5.2	16
215	Reduced Graphene Oxide (rGO)‧upported and Pyrolytic Carbon (PC) oated γâ€Fe ₂ O ₃ /PCâ€rGO Composite Anode Material with Enhanced Li Storage Performance. Chemistry - an Asian Journal, 2022, 17, .	1.7	4
216	Sodium-ion battery from sea salt: a review. Materials for Renewable and Sustainable Energy, 2022, 11, 71-89.	1.5	13

#	Article	IF	CITATIONS
218	Understanding the phenomenon of capacity increasing along cycles: in the case of an ultralong-life and high-rate SnSe-Mo-C anode for lithium storage. Journal of Energy Chemistry, 2022, , .	7.1	4
219	Bean Podâ€Like SbSn/Nâ€Doped Carbon Fibers toward a Binder Free, Freeâ€Standing, and Highâ€Performance Anode for Sodiumâ€Ion Batteries. Small, 2022, 18, e2107869.	5.2	22
220	Nitrogen-doped carbon hollow spheres packed with multiple nano Sn particles for enhanced lithium storage. Chemical Engineering Journal, 2022, 446, 136768.	6.6	4
221	Tin nanoparticle in-situ decorated on nitrogen-deficient carbon nitride with excellent sodium storage performance. Journal of Colloid and Interface Science, 2022, 624, 40-50.	5.0	9
222	Leveraging Impurities in Recycled Lead Anodes for Sodium-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
223	Advancing Performance and Unfolding Mechanism of Lithium and Sodium Storage in SnO ₂ via Precision Synthesis of Monodisperse PEGâ€Ligated Nanoparticles. Advanced Energy Materials, 2022, 12, .	10.2	34
224	Perspective: Design of cathode materials for sustainable sodium-ion batteries. MRS Energy & Sustainability, 2022, 9, 183-197.	1.3	22
225	Atomic Interface Catalytically Synthesizing SnP/CoP Hetero-Nanocrystals within Dual-Carbon Hybrids for Ultrafast Lithium-Ion Batteries. Engineering, 2022, 18, 154-160.	3.2	18
226	Atomicâ€Scale Laminated Structure of Oâ€Doped WS ₂ and Carbon Layers with Highly Enhanced Ion Transfer for Fastâ€Charging Lithiumâ€Ion Batteries. Small, 2022, 18, .	5.2	8
227	Deformation and Stresses During Alkali Metal Alloying/Dealloying of Sn-Based Electrodes. Applied Mechanics Reviews, 2022, 74, .	4.5	5
228	Reaction mechanisms, recent progress and future prospects of tin selenide-based composites for alkali-metal-ion batteries. Composites Part B: Engineering, 2022, 242, 110045.	5.9	5
229	Unraveling the Evolution of Transition Metals during Li Alloying–Dealloying by In-Operando Magnetometry. Chemistry of Materials, 2022, 34, 5852-5859.	3.2	19
231	Biomassâ€Assisted Synthesis of Tiny Tin Nanoparticles Embedded in Nitrogen/Oxygen Selfâ€Doped Carbon Nanosheets as High Performance Anode Materials for Sodiumâ€Ion Batteries. ChemistrySelect, 2022, 7, .	0.7	2
232	Fundamentals and recent progress of Sn-based electrode materials for supercapacitors: A comprehensive review. Journal of Energy Storage, 2022, 53, 105187.	3.9	41
233	Recent Progress of Novel Non-Carbon Anode Materials for Potassium-Ion Battery. Energy Storage Materials, 2022, 51, 327-360.	9.5	19
234	Encapsulating Sn-Cu alloy particles into carbon nanofibers as improved performance anodes for lithium-ion batteries. Journal of Alloys and Compounds, 2022, 922, 166176.	2.8	13
235	Facile Synthesis of Hybrid Anodes with Enhanced Lithium-Storage Performance Realized by a "Synergistic Effect― ACS Applied Materials & Interfaces, 2022, 14, 35769-35779.	4.0	6
236	Constructing a Micrometer-Sized Structure through an Initial Electrochemical Process for Ultrahigh-Performance Li ⁺ Storage. ACS Applied Materials & Interfaces, 2022, 14, 35522-35533.	4.0	4

#	Article	IF	CITATIONS
237	Novel Bimetallic Activated Center Alloying Mechanism Positive Electrodes for Aluminum Storage. Small, 2022, 18, .	5.2	7
238	Ultrafine Nanocrystals SnS ₂ Confined on the Inner Wall of Hollow Mesoporous Carbon Nanospheres with Hybrid Storage Mechanism for Highâ€Performance Li ⁺ /Na ⁺ Batteries. Advanced Materials Interfaces, 2022, 9, .	1.9	7
239	Construction of MnCo-BTC@C Microspheres by Annealing a Bimetal–Organic Framework with Enhanced Lithium Storage. Energy & Fuels, 2022, 36, 8471-8479.	2.5	4
240	Single-material aluminum foil as anodes enabling high-performance lithium-ion batteries: The roles of prelithiation and working mechanism. Materials Today, 2022, 58, 80-90.	8.3	11
241	Leveraging impurities in recycled lead anodes for sodium-ion batteries. Energy Storage Materials, 2022, 53, 552-558.	9.5	0
242	Anthracite-based reduced graphene oxide/antimony composites as anode materials for high performance sodium ion batteries. Journal of Alloys and Compounds, 2022, 925, 166631.	2.8	10
243	Confinement sacrifice template synthesis of size controllable heterogeneous double-layer hollow spheres SnO2@Void@HCSs as anode for Li+/Na+ batteries. Journal of Electroanalytical Chemistry, 2022, 923, 116830.	1.9	4
244	Confinement Sacrifice Template Synthesis of Size Controllable Heterogeneous Double-Layer Hollow Spheres Sno2@Void@Hcss as Anode for Li+/Na+ Batteries. SSRN Electronic Journal, 0, , .	0.4	0
245	Snâ€based glass–graphiteâ€composite as a high capacity anode for lithiumâ€ion batteries. Journal of the American Ceramic Society, 2023, 106, 330-338.	1.9	7
246	Al-induced electroless deposition and characterization of Ni–Sn film anode for Li-ion battery. Journal of Solid State Electrochemistry, 0, , .	1.2	0
247	Ga2Te3-Based Composite Anodes for High-Performance Sodium-Ion Batteries. Materials, 2022, 15, 6231.	1.3	0
248	Electrospun Bi-doped TiO2/C nanofibers as active materials for high-capacity and long-life-stability sodium-ion anodes. Journal of Electroanalytical Chemistry, 2022, 924, 116855.	1.9	3
249	Chalcogenides metal-based heterostructure anode materials toward Na+-storage application. Nano Research, 2023, 16, 2347-2365.	5.8	6
250	Complementary two-phase anode improving stability and conductivity for lithium storage performance. Rare Metals, 2023, 42, 85-99.	3.6	5
251	How to Promote the Industrial Application of SiO <i>_x</i> Anode Prelithiation: Capability, Accuracy, Stability, Uniformity, Cost, and Safety. Advanced Energy Materials, 2022, 12, .	10.2	22
252	SnO2 prepared by ion-exchange method of sodium alginate hydrogel as robust anode material for lithium-ion batteries. Ceramics International, 2023, 49, 8736-8742.	2.3	4
253	Tracking the phase transformation and microstructural evolution of Sn anode using operando synchrotron X-ray energy-dispersive diffraction and X-ray tomography. Journal of Energy Chemistry, 2023, 76, 429-437.	7.1	5
254	Anti-pulverization intermetallic Fe–Sn anchored on N-doped carbon anode boosted superior power and stable lithium storage. Journal of Power Sources, 2023, 553, 232272.	4.0	5

#	Article	IF	Citations
255	Biomass-derived hard carbon microtubes with tunable apertures for high-performance sodium-ion batteries. Nano Research, 2023, 16, 4874-4879.	5.8	9
256	A robust solvothermal-driven solid-to-solid transition route from micron SnC ₂ O ₄ to tartaric acid-capped nano-SnO ₂ anchored on graphene for superior lithium and sodium storage. Journal of Materials Chemistry A, 2022, 11, 53-67.	5.2	13
257	Stabilization of microsized Sn anode with carbon coating and fluoroethylene carbonate additive for high-performance Li-ion batteries. Journal of Electroanalytical Chemistry, 2023, 929, 117066.	1.9	3
258	Electrochemical Failure Results Inevitable Capacity Degradation in Li-Ion Batteries—A Review. Energies, 2022, 15, 9165.	1.6	4
259	Facile construction of CoSn/Co ₃ Sn ₂ @C nanocages as anode for superior lithiumâ€∳sodiumâ€ion storage. , 2023, 2, 54-62.		13
260	Crossâ€Linked Sodium Alginate as A Multifunctional Binder to Achieve Highâ€Rate and Longâ€Cycle Stability for Sodiumâ€Ion Batteries. Small, 2023, 19, .	5.2	10
261	Manipulation of π-aromatic conjugation in two-dimensional Sn-organic materials for efficient lithium storage. EScience, 2023, 3, 100094.	25.0	16
262	温度èºf控å^¶å₱锡æ^–二溧化锡@ä¸ç©ºå¤å"碳纳米纤҉»´ç"µæžç"¨äºŽä¸ªæ€§åŒ–定å^¶é",离å电	ıæ a. 5Scien	ce2 û hina Ma
263	Sn foil as the cathode for a reversible 2.8 V Sn-Li battery. Journal of Materials Chemistry A, 2023, 11, 1482-1490.	5.2	2
264	A review of the effect of external pressure on all-solid-state batteries. ETransportation, 2023, 15, 100220.	6.8	18
265	Flexible Sn-Based Composite Anode with High Cycle Stability for Micro Lithium-Ion Batteries. , 2022, , .		0
266	The Sn–red P–Fe–based alloy materials for efficient Li–ion battery anodes. Journal of Industrial and Engineering Chemistry, 2023, 121, 299-311.	2.9	10
267	Reversible conversion–alloying of cobalt–bismuth oxide nanoneedles for long-life lithium storage anodes. Applied Surface Science, 2023, 623, 157013.	3.1	0
268	Electron and Ion Transport in Lithium and Lithium-Ion Battery Negative and Positive Composite Electrodes. Chemical Reviews, 2023, 123, 1327-1363.	23.0	62
269	Tin Metal Improves the Lithiation Kinetics of High-Capacity Silicon Anodes. Chemistry of Materials, 2023, 35, 2281-2288.	3.2	3
270	Fundamentals, preparation, and mechanism understanding of Li/Na/Mg-Sn alloy anodes for liquid and solid-state lithium batteries and beyond. Nano Research, 2023, 16, 8191-8218.	5.8	6
271	Gram-positive bacteria bacillus subtilis-based carbon @ Sn anode for high-performance Li-ion batteries. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	0
272	Carbon-based nanomaterials for battery applications. , 2023, , 497-514.		0

#	Article	IF	CITATIONS
273	Rational Design and Engineering of 1D Heterostructured Porous Sn/CoSn _{<i>x</i>} @C Nanotubes for Superior Lithium Storage. ACS Applied Energy Materials, 2023, 6, 4942-4951.	2.5	3
280	Review on modification routes for SnOx-based anodes for Li storage: morphological structure tuning and phase structure design. Rare Metals, 0, , .	3.6	0
302	The interface engineering and structure design of an alloying-type metal foil anode for lithium ion batteries: a review. Materials Horizons, 2024, 11, 903-922.	6.4	0
304	Tin as a co-catalyst for electrocatalytic oxidation and reduction reactions. Inorganic Chemistry Frontiers, 2024, 11, 1019-1047.	3.0	0