The Influence of Type 1 Diabetes Genetic Susceptibility on the Progression From Multiple Autoantibodies to Ty

Diabetes 66, 3122-3129 DOI: 10.2337/db17-0261

Citation Report

#	Article	IF	CITATIONS
1	Precision medicine in diabetes prevention, classification and management. Journal of Diabetes Investigation, 2018, 9, 998-1015.	1.1	69
2	Teasing Diabetes Apart, One Locus at a Time. Diabetes Care, 2018, 41, 224-226.	4.3	2
3	Type 1 Diabetes TrialNet: A Multifaceted Approach to Bringing Disease-Modifying Therapy to Clinical Use in Type 1 Diabetes. Diabetes Care, 2018, 41, 653-661.	4.3	55
4	Accelerated Progression to Type 1 Diabetes in the Presence of <i>HLA-A*24</i> and <i>-B*18</i> Is Restricted to Multiple Islet Autoantibody–Positive Individuals With Distinct <i>HLA-DQ</i> and Autoantibody Risk Profiles. Diabetes Care, 2018, 41, 1076-1083.	4.3	16
5	Aetiology of type 1 diabetes: Physiological growth in children affects disease progression. Diabetes, Obesity and Metabolism, 2018, 20, 775-785.	2.2	9
6	On type 1 diabetes mellitus pathogenesis. Endocrine Connections, 2018, 7, R38-R46.	0.8	145
7	Maternal dietary supplement use and development of islet autoimmunity in the offspring: TEDDY study. Pediatric Diabetes, 2019, 20, 86-92.	1.2	17
8	The Effect of Age on the Progression and Severity of Type 1 Diabetes: Potential Effects on Disease Mechanisms. Current Diabetes Reports, 2018, 18, 115.	1.7	32
9	High prevalence of humoral autoimmunity in first-degree relatives of Mexican type 1 diabetes patients. Acta Diabetologica, 2018, 55, 1275-1282.	1.2	2
10	Inhibitory Receptors and Pathways of Lymphocytes: The Role of PD-1 in Treg Development and Their Involvement in Autoimmunity Onset and Cancer Progression. Frontiers in Immunology, 2018, 9, 2374.	2.2	150
11	The Environmental Determinants of Diabetes in the Young (TEDDY) Study: 2018 Update. Current Diabetes Reports, 2018, 18, 136.	1.7	77
12	Immune Mechanisms and Pathways Targeted in Type 1 Diabetes. Current Diabetes Reports, 2018, 18, 90.	1.7	29
13	Immune Recognition of β-Cells: Neoepitopes as Key Players in the Loss of Tolerance. Diabetes, 2018, 67, 1035-1042.	0.3	74
14	Ethnic differences in progression of islet autoimmunity and type 1 diabetes in relatives at risk. Diabetologia, 2018, 61, 2043-2053.	2.9	26
15	Understanding Pre-Type 1 Diabetes: The Key to Prevention. Frontiers in Endocrinology, 2018, 9, 70.	1.5	25
16	New Horizons in the Treatment of Type 1 Diabetes: More Intense Immunosuppression and Beta Cell Replacement. Frontiers in Immunology, 2018, 9, 1086.	2.2	14
17	Reduction in White Blood Cell, Neutrophil, and Red Blood Cell Counts Related to Sex, HLA, and Islet Autoantibodies in Swedish TEDDY Children at Increased Risk for Type 1 Diabetes. Diabetes, 2018, 67, 2329-2336.	0.3	15
18	Sex as a determinant of type 1 diabetes at diagnosis. Pediatric Diabetes, 2018, 19, 1221-1228.	1.2	17

#	Article	IF	CITATIONS
19	Type 1 diabetes. Lancet, The, 2018, 391, 2449-2462.	6.3	888
20	Genetic and Environmental Interaction in Type 1 Diabetes: a Relationship Between Genetic Risk Alleles and Molecular Traits of Enterovirus Infection?. Current Diabetes Reports, 2019, 19, 82.	1.7	33
21	Characteristics of familial type 1 diabetes: effects of the relationship to the affected family member on phenotype and genotype at diagnosis. Diabetologia, 2019, 62, 2025-2039.	2.9	24
22	Metabolite-related dietary patterns and the development of islet autoimmunity. Scientific Reports, 2019, 9, 14819.	1.6	34
23	Changing the landscape for type 1 diabetes: the first step to prevention. Lancet, The, 2019, 394, 1286-1296.	6.3	63
24	The heterogeneous pathogenesis of type 1 diabetes mellitus. Nature Reviews Endocrinology, 2019, 15, 635-650.	4.3	249
25	Role of healthcare databases and registries for surveillance of orphan drugs in the real-world setting: the Italian case study. Expert Opinion on Drug Safety, 2019, 18, 497-509.	1.0	24
26	Predicting Islet Cell Autoimmunity and Type 1 Diabetes: An 8-Year TEDDY Study Progress Report. Diabetes Care, 2019, 42, 1051-1060.	4.3	75
27	Prospective virome analyses in young children at increased genetic risk for type 1 diabetes. Nature Medicine, 2019, 25, 1865-1872.	15.2	161
28	Predicting progression to type 1 diabetes from ages 3 to 6 in islet autoantibody positive TEDDY children. Pediatric Diabetes, 2019, 20, 263-270.	1.2	31
29	Disease-Modifying Therapies in Type 1 Diabetes: A Look into the Future of Diabetes Practice. Drugs, 2019, 79, 43-61.	4.9	37
30	Stem-cell based organ-on-a-chip models for diabetes research. Advanced Drug Delivery Reviews, 2019, 140, 101-128.	6.6	55
31	Time-Resolved Autoantibody Profiling Facilitates Stratification of Preclinical Type 1 Diabetes in Children. Diabetes, 2019, 68, 119-130.	0.3	28
32	Progression from islet autoimmunity to clinical type 1 diabetes is influenced by genetic factors: results from the prospective TEDDY study. Journal of Medical Genetics, 2019, 56, 602-605.	1.5	22
33	Autoimmune (Type 1) Diabetes. , 2020, , 769-787.		4
34	Plasma ascorbic acid and the risk of islet autoimmunity and type 1 diabetes: the TEDDY study. Diabetologia, 2020, 63, 278-286.	2.9	18
35	Predictive Modeling of Type 1 Diabetes Stages Using Disparate Data Sources. Diabetes, 2020, 69, 238-248.	0.3	26
36	Introducing the Endotype Concept to Address the Challenge of Disease Heterogeneity in Type 1 Diabetes. Diabetes Care, 2020, 43, 5-12.	4.3	220

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
37	Characterization of plasma lipidomics in adolescent subjects with increased risk for type 1 diabetes in the DiPiS cohort. Metabolomics, 2020, 16, 109.	1.4	1
38	Efficacy of GAD-alum immunotherapy associated with HLA-DR3-DQ2 in recently diagnosed type 1 diabetes. Diabetologia, 2020, 63, 2177-2181.	2.9	38
39	Distinct Growth Phases in Early Life Associated With the Risk of Type 1 Diabetes: The TEDDY Study. Diabetes Care, 2020, 43, 556-562.	4.3	28
40	Longitudinal Metabolome-Wide Signals Prior to the Appearance of a First Islet Autoantibody in Children Participating in the TEDDY Study. Diabetes, 2020, 69, 465-476.	0.3	30
41	Decreased HLA-DQ expression on peripheral blood cells in children with varying number of beta cell autoantibodies. Journal of Translational Autoimmunity, 2020, 3, 100052.	2.0	5
42	Prediction and Prevention of Type 1 Diabetes. Frontiers in Endocrinology, 2020, 11, 248.	1.5	41
43	Type 1 diabetes—early life origins and changing epidemiology. Lancet Diabetes and Endocrinology,the, 2020, 8, 226-238.	5.5	187
44	Genetics of Type 1 Diabetes Comes of Age. Diabetes Care, 2020, 43, 16-18.	4.3	11
45	Targeting Glycoproteins as a therapeutic strategy for diabetes mellitus and its complications. DARU, Journal of Pharmaceutical Sciences, 2020, 28, 333-358.	0.9	14
46	Motifs of Three HLA-DQ Amino Acid Residues (α44, β57, β135) Capture Full Association With the Risk of Type 1 Diabetes in DQ2 and DQ8 Children. Diabetes, 2020, 69, 1573-1587.	0.3	17
47	Association Between Severity of Diabetic Ketoacidosis at Diagnosis and Multiple Autoimmunity in Children With Type 1 Diabetes Mellitus: A Study From a Greek Tertiary Centre. Canadian Journal of Diabetes, 2021, 45, 33-38.e2.	0.4	3
48	Haploinsufficiency of the NF1 gene is associated with protection against diabetes. Journal of Medical Genetics, 2021, 58, 378-384.	1.5	4
49	Association between family history, early growth and the risk of beta cell autoimmunity in children at risk for type 1 diabetes. Diabetologia, 2021, 64, 119-128.	2.9	12
50	Prediction of the development of islet autoantibodies through integration of environmental, genetic, and metabolic markers. Journal of Diabetes, 2021, 13, 143-153.	0.8	25
51	Insulitis in the pancreas of non-diabetic organ donors under age 25 years with multiple circulating autoantibodies against islet cell antigens. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2021, 479, 295-304.	1.4	7
52	Maternal food consumption during late pregnancy and offspring risk of islet autoimmunity and type 1 diabetes. Diabetologia, 2021, 64, 1604-1612.	2.9	5
53	Diabetes type 1: Can it be treated as an autoimmune disorder?. Reviews in Endocrine and Metabolic Disorders, 2021, 22, 859-876.	2.6	8
54	Transcriptional networks in at-risk individuals identify signatures of type 1 diabetes progression. Science Translational Medicine, 2021, 13, .	5.8	22

ARTICLE IF CITATIONS # A Key to T1D Prevention: Screening and Monitoring Relatives as Part of Clinical Care. Diabetes, 2021, 70, 0.3 14 55 1029-1037. Neutralizing Ljungan virus antibodies in children with newly diagnosed type 1 diabetes. Journal of 1.3 General Virology, 2021, 102, . The Î² Cell in Diabetes: Integrating Biomarkers With Functional Measures. Endocrine Reviews, 2021, 42, 57 8.9 21 528-583. Etiology of Autoimmune Islet Disease: Timing Is Everything. Diabetes, 2021, 70, 1431-1439. 0.3 Islet Autoimmunity and HLA Markers of Presymptomatic and Clinical Type 1 Diabetes: Joint Analyses of Prospective Cohort Studies in Finland, Germany, Sweden, and the U.S.. Diabetes Care, 2021, 44, 59 4.3 27 2269-2276. Simplifying prediction of disease progression in pre-symptomatic type 1 diabetes using a single blood sample. Diabetologia, 2021, 64, 2432-2444. Genetic variation at ERBB3/IKZF4 and sexual dimorphism in epitope spreading in single 61 2.9 6 autoantibody-positive relatives. Diabetologia, 2021, 64, 2511-2516. Frailty modeling under a selective sampling protocol: anÂapplication to type 1 diabetes related autoantibodies. Statistics in Medicine, 2021, 40, 6410-6420. 0.8 Sex-dependent effects on the gut microbiota and host metabolome in type 1 diabetic mice. Biochimica Et 63 1.8 7 Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166266. Dynamic changes in immune gene co-expression networks predict development of type 1 diabetes. 64 1.6 Scientific Reports, 2021, 11, 22651. Modeling human T1D-associated autoimmune processes. Molecular Metabolism, 2022, 56, 101417. 65 3.013 Characterising the age-dependent effects of risk factors on type 1 diabetes progression. Diabetologia, 66 2022, 65, 684. Diabetes in general., 2022, , 27-92. 67 1 The Association of Human Leukocyte Antigens Complex with Type 1 Diabetes in the Omani Population. Sultan Qaboos University Medical Journal, 2023, 23, 68-75. 0.3 Heterogeneity in the presentation of clinical type 1 diabetes defined by the level of risk conferred by 70 1.2 5 human leukocyte antigen class II genotypes. Pediatric Diabetes, 2022, 23, 219-227. Immunotherapy for type 1 diabetes. British Medical Bulletin, 2021, 140, 76-90. Integration of Infant Metabolite, Genetic, and Islet Autoimmunity Signatures to Predict Type 1 Diabetes 72 1.8 10 by Age 6 Years. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 2329-2338. Non-HLA Gene Polymorphisms in the Pathogenesis of Type 1 Diabetes: Phase and Endotype Specific 2.2 Effects. Frontiers in Immunology, 0, 13, .

CITATION REPORT

#	Article	IF	CITATIONS
74	Possible Relationship between the HLA-DRA1 Intron Haplotype of Three Single-Nucleotide Polymorphisms in Intron 1 of the HLA-DRA1 Gene and Autoantibodies in Children at Increased Genetic Risk for Autoimmune Type 1 Diabetes. ImmunoHorizons, 2022, 6, 614-629.	0.8	0
75	Rising Hemoglobin A1c in the Nondiabetic Range Predicts Progression of Type 1 Diabetes As Well As Oral Glucose Tolerance Tests. Diabetes Care, 2022, 45, 2342-2349.	4.3	4
76	Predictors of the Initiation of Islet Autoimmunity and Progression to Multiple Autoantibodies and Clinical Diabetes: The TEDDY Study. Diabetes Care, 2022, 45, 2271-2281.	4.3	21
77	HbA1c as a time predictive biomarker for an additional islet autoantibody and type 1 diabetes in seroconverted TEDDY children. Pediatric Diabetes, 2022, 23, 1586-1593.	1.2	3
78	<scp>ISPAD</scp> Clinical Practice Consensus Guidelines 2022: Stages of type 1 diabetes in children and adolescents. Pediatric Diabetes, 2022, 23, 1175-1187.	1.2	35
79	Risk Modeling to Reduce Monitoring of an Autoantibody-Positive Population to Prevent DKA at Type 1 Diabetes Diagnosis. Journal of Clinical Endocrinology and Metabolism, 0, , .	1.8	1
80	<i>CTLA4</i> , <i>SH2B3</i> and <i>CLEC16A</i> diversely affect the progression of early islet autoimmunity in relatives of type 1 diabetes patients. Clinical and Experimental Immunology, 0, , .	1.1	0
81	Barriers to Screening: An Analysis of Factors Impacting Screening for Type 1 Diabetes Prevention Trials. Journal of the Endocrine Society, 2023, 7, .	0.1	3
82	Autoimmune diseases. , 2023, , 123-244.		2
83	DAMPs in Organ-Specific Autoimmune Diseases. , 2023, , 569-656.		0
89	Epidemiology and Pathogenesis of Type 1 Diabetes. , 2023, , 13-39.		0

CITATION REPORT