Layer-by-layer assembly of two-dimensional materials

Nature 550, 229-233 DOI: 10.1038/nature23905

Citation Report

#	Article	IF	CITATIONS
1	Complexity of two-dimensional self-assembled arrays at surfaces. Chemical Communications, 2017, 53, 11528-11539.	2.2	18
2	The intrinsic interface properties of the top and edge 1T/2H <i>MoS</i> 2 contact: A first-principles study. Journal of Applied Physics, 2018, 123, .	1.1	19
3	Materials-by-design: computation, synthesis, and characterization from atoms to structures. Physica Scripta, 2018, 93, 053003.	1.2	32
4	Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices. Nature Communications, 2018, 9, 1413.	5.8	212
5	Minimizing residues and strain in 2D materials transferred from PDMS. Nanotechnology, 2018, 29, 265203.	1.3	108
6	Exploring Two-Dimensional Materials toward the Next-Generation Circuits: From Monomer Design to Assembly Control. Chemical Reviews, 2018, 118, 6236-6296.	23.0	410
7	Structural Engineering of 2D Nanomaterials for Energy Storage and Catalysis. Advanced Materials, 2018, 30, e1706347.	11.1	297
8	Surfaceâ€Functionalizationâ€Mediated Direct Transfer of Molybdenum Disulfide for Largeâ€Area Flexible Devices. Advanced Functional Materials, 2018, 28, 1706231.	7.8	66
9	One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy. Nature, 2018, 553, 63-67.	13.7	394
10	Atomic Insights into Phase Evolution in Ternary Transitionâ€Metal Dichalcogenides Nanostructures. Small, 2018, 14, e1800780.	5.2	13
11	Interlocking Friction Governs the Mechanical Fracture of Bilayer MoS ₂ . ACS Nano, 2018, 12, 3600-3608.	7.3	40
12	Prediction of a Large-Gap and Switchable Kane-Mele Quantum Spin Hall Insulator. Physical Review Letters, 2018, 120, 117701.	2.9	79
13	Ultrafast Charge Transfer in Perovskite Nanowire/2D Transition Metal Dichalcogenide Heterostructures. Journal of Physical Chemistry Letters, 2018, 9, 1655-1662.	2.1	75
14	Chemical synthesis of two-dimensional atomic crystals, heterostructures and superlattices. Chemical Society Reviews, 2018, 47, 3129-3151.	18.7	132
15	Spin-valley decoupling in magnetic silicene superlattices. Journal Physics D: Applied Physics, 2018, 51, 045303.	1.3	3
16	Time milling influence on the size of the Lemabang iron sand powder synthesized by using high energy milling method. Journal of Physics: Conference Series, 2018, 1091, 012008.	0.3	0
17	Mixed-dimensional 2D/3D heterojunctions between MoS ₂ and Si(100). Physical Chemistry Chemical Physics, 2018, 20, 25240-25245.	1.3	7
18	Visible-light initiated polymerization of dopamine in a neutral environment for surface coating and visual protein detection. Polymer Chemistry, 2018, 9, 5242-5247.	1.9	17

#	Article	IF	CITATIONS
19	Conforming nanoparticle sheets to surfaces with Gaussian curvature. Soft Matter, 2018, 14, 9107-9117.	1.2	7
20	Interlayer interactions in 2D WS ₂ /MoS ₂ heterostructures monolithically grown by <i>in situ</i> physical vapor deposition. Nanoscale, 2018, 10, 22927-22936.	2.8	62
22	Recent Advances in Synthesis and Assembly of van der Waals Materials. Journal of the Korean Physical Society, 2018, 73, 805-816.	0.3	11
23	Charge carrier injection and transport engineering in two-dimensional transition metal dichalcogenides. Chemical Science, 2018, 9, 7727-7745.	3.7	70
24	Ultrathin van der Waals Metalenses. Nano Letters, 2018, 18, 6961-6966.	4.5	55
25	Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials. Science, 2018, 362, 665-670.	6.0	208
26	Metrology for the next generation of semiconductor devices. Nature Electronics, 2018, 1, 532-547.	13.1	249
27	Synthesis and Properties of 2D Semiconductors. Springer Theses, 2018, , 21-43.	0.0	1
28	CVD Technology for 2-D Materials. IEEE Transactions on Electron Devices, 2018, 65, 4040-4052.	1.6	47
29	Tailoring the mechanical properties of 2D materials and heterostructures. 2D Materials, 2018, 5, 032005.	2.0	128
30	Monolayer Molybdenum Disulfide Transistors with Single-Atom-Thick Gates. Nano Letters, 2018, 18, 3807-3813.	4.5	88
31	Coherent control of thermal phonon transport in van der Waals superlattices. Nanoscale, 2018, 10, 14432-14440.	2.8	13
32	Homeotropic alignment of liquid crystals on ITO surface using LBL assembly. Journal of the Society for Information Display, 2018, 26, 413-418.	0.8	1
33	Semiconductor Nanomembrane Materials for High-Performance Soft Electronic Devices. Journal of the American Chemical Society, 2018, 140, 9001-9019.	6.6	34
34	Chemically Derived Kirigami of WSe ₂ . Journal of the American Chemical Society, 2018, 140, 10980-10987.	6.6	33
35	Interface Characterization and Control of 2D Materials and Heterostructures. Advanced Materials, 2018, 30, e1801586.	11.1	134
36	Electronics and Optoelectronics Based on Two-Dimensional Materials. Journal of the Korean Physical Society, 2018, 73, 1-15.	0.3	16
37	Nondestructive Thickness Mapping of Wafer-Scale Hexagonal Boron Nitride Down to a Monolayer. ACS Applied Materials & Interfaces, 2018, 10, 25804-25810.	4.0	17

#	Article	IF	CITATIONS
38	Wafer-recyclable, environment-friendly transfer printing for large-scale thin-film nanoelectronics. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7236-E7244.	3.3	43
39	Lowâ€Temperature Heteroepitaxy of 2D PbI ₂ /Graphene for Largeâ€Area Flexible Photodetectors. Advanced Materials, 2018, 30, e1803194.	11.1	93
40	2D library beyond graphene and transition metal dichalcogenides: a focus on photodetection. Chemical Society Reviews, 2018, 47, 6296-6341.	18.7	207
41	Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion. Chemical Society Reviews, 2018, 47, 4981-5037.	18.7	344
42	Bringing nanomagnetism to the mesoscale with artificial amorphous structures. Physical Review B, 2018, 97, .	1.1	8
43	Borophene as a prototype for synthetic 2D materials development. Nature Nanotechnology, 2018, 13, 444-450.	15.6	392
44	Large-area borophene sheets on sacrificial Cu(111) films promoted by recrystallization from subsurface boron. Npj Quantum Materials, 2019, 4, .	1.8	34
45	Wafer-scale and deterministic patterned growth of monolayer MoS ₂ <i>via</i> vapor–liquid–solid method. Nanoscale, 2019, 11, 16122-16129.	2.8	76
46	Two-dimensional materials. , 2019, , 165-189.		0
47	2D materials for quantum information science. Nature Reviews Materials, 2019, 4, 669-684.	23.3	305
48	Synergistic additive-mediated CVD growth and chemical modification of 2D materials. Chemical Society Reviews, 2019, 48, 4639-4654.	18.7	108
49	Superlattices based on van der Waals 2D materials. Chemical Communications, 2019, 55, 11498-11510.	2.2	48
50	Multiple roles of a heterointerface in two-dimensional van der Waals heterostructures: insights into energy-related applications. Journal of Materials Chemistry A, 2019, 7, 23577-23603.	5.2	43
51	2D materials as an emerging platform for nanopore-based power generation. Nature Reviews Materials, 2019, 4, 588-605.	23.3	253
52	Van der Waals Heterostructured MOFâ€onâ€MOF Thin Films: Cascading Functionality to Realize Advanced Chemiresistive Sensing. Angewandte Chemie, 2019, 131, 15057-15061.	1.6	45
53	Light-Induced Interfacial Phenomena in Atomically Thin 2D van der Waals Material Hybrids and Heterojunctions. ACS Energy Letters, 2019, 4, 2323-2335.	8.8	31
54	Pbl ₂ –MoS ₂ Heterojunction: van der Waals Epitaxial Growth and Energy Band Alignment. Journal of Physical Chemistry Letters, 2019, 10, 4203-4208.	2.1	25
55	Molecular bilayer graphene. Nature Communications, 2019, 10, 3057.	5.8	51

#	Article	IF	CITATIONS
56	Strong-coupled hybrid structure of carbon nanotube and MoS ₂ monolayer with ultrafast interfacial charge transfer. Nanoscale, 2019, 11, 17195-17200.	2.8	17
57	Layer-by-Layer Assembly of High-Performance Electroactive Composites Using a Multiple Charged Small Molecule. Langmuir, 2019, 35, 10367-10373.	1.6	5
58	Layer Rotation-Angle-Dependent Excitonic Absorption in van der Waals Heterostructures Revealed by Electron Energy Loss Spectroscopy. ACS Nano, 2019, 13, 9541-9550.	7.3	25
59	Van der Waals Heterostructured MOFâ€onâ€MOF Thin Films: Cascading Functionality to Realize Advanced Chemiresistive Sensing. Angewandte Chemie - International Edition, 2019, 58, 14915-14919.	7.2	186
60	Chemical Identification of Interlayer Contaminants within van der Waals Heterostructures. ACS Applied Materials & Interfaces, 2019, 11, 25578-25585.	4.0	43
61	Van der Waals Heterostructures for Highâ€Performance Device Applications: Challenges and Opportunities. Advanced Materials, 2020, 32, e1903800.	11.1	304
62	Integration of single photon emitters in 2D layered materials with a silicon nitride photonic chip. Nature Communications, 2019, 10, 4435.	5.8	168
63	Phase-field crystal model for heterostructures. Physical Review B, 2019, 100, .	1.1	10
64	Two-Dimensional Material Tunnel Barrier for Josephson Junctions and Superconducting Qubits. Nano Letters, 2019, 19, 8287-8293.	4.5	29
65	Hierarchical assembly of polystyrene/graphitic carbon nitride/reduced graphene oxide nanocomposites toward high fire safety. Composites Part B: Engineering, 2019, 179, 107541.	5.9	51
66	Wafer-scale synthesis of monolayer two-dimensional porphyrin polymers for hybrid superlattices. Science, 2019, 366, 1379-1384.	6.0	178
67	Vaporâ€phase growth of highâ€quality waferâ€scale twoâ€dimensional materials. InformaÄnÃ-Materiály, 2019, 460-478.	¹ , _{8.5}	46
68	Vertically Stacked CVD-Grown 2D Heterostructure for Wafer-Scale Electronics. ACS Applied Materials & Interfaces, 2019, 11, 35444-35450.	4.0	27
69	Scaling-up Atomically Thin Coplanar Semiconductor–Metal Circuitry via Phase Engineered Chemical Assembly. Nano Letters, 2019, 19, 6845-6852.	4.5	46
70	Graphene and two-dimensional materials for silicon technology. Nature, 2019, 573, 507-518.	13.7	936
71	Probing and controlling magnetic states in 2D layered magnetic materials. Nature Reviews Physics, 2019, 1, 646-661.	11.9	290
72	Tunable Chemical Coupling in Two-Dimensional van der Waals Electrostatic Heterostructures. ACS Nano, 2019, 13, 11214-11223.	7.3	13
73	Probing Interfacial Surface State Excitons in Nanoscale Synthesized Cu <i>_x</i> S/MoS ₂ Heterostructure. Advanced Materials Interfaces, 2019, 6, 1801771.	1.9	2

#	Article	IF	CITATIONS
74	Nonvolatile Memories Based on Graphene and Related 2D Materials. Advanced Materials, 2019, 31, e1806663.	11.1	230
75	Carbonâ€Nanomaterialâ€Based Flexible Batteries for Wearable Electronics. Advanced Materials, 2019, 31, e1800716.	11.1	228
76	Interface-Engineering-Induced Electric Field Effect and Atomic Disorder in Cobalt Selenide for High-Rate and Large-Capacity Lithium Storage. ACS Sustainable Chemistry and Engineering, 2019, 7, 4657-4665.	3.2	33
77	Atomicâ€Level Customization of 4 in. Transition Metal Dichalcogenide Multilayer Alloys for Industrial Applications. Advanced Materials, 2019, 31, e1901405.	11.1	52
78	Wrapâ€Around Core–Shell Heterostructures of Layered Crystals. Advanced Materials, 2019, 31, e1902166.	11.1	28
79	Ultrastiff, Strong, and Highly Thermally Conductive Crystalline Graphitic Films with Mixed Stacking Order. Advanced Materials, 2019, 31, e1903039.	11.1	49
80	Electronic Devices and Circuits Based on Waferâ€Scale Polycrystalline Monolayer MoS ₂ by Chemical Vapor Deposition. Advanced Electronic Materials, 2019, 5, 1900393.	2.6	57
81	Bonding in 2D Donor–Acceptor Heterostructures. Journal of the American Chemical Society, 2019, 141, 10300-10308.	6.6	42
82	Devices and Circuits Using Novel 2-D Materials: A Perspective for Future VLSI Systems. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27, 1486-1503.	2.1	30
83	Disorder in van der Waals heterostructures of 2D materials. Nature Materials, 2019, 18, 541-549.	13.3	390
84	Metalloâ€Hydrogelâ€Assisted Synthesis and Direct Writing of Transition Metal Dichalcogenides. Advanced Functional Materials, 2019, 29, 1807612.	7.8	12
85	Direct In Situ Growth of Centimeterâ€Scale Multiâ€Heterojunction MoS ₂ /WS ₂ /WSe ₂ Thinâ€Film Catalyst for Photoâ€Electrochemical Hydrogen Evolution. Advanced Science, 2019, 6, 1900301.	5.6	60
86	SbSI whisker/PbI ₂ flake mixed-dimensional van der Waals heterostructure for photodetection. CrystEngComm, 2019, 21, 3779-3787.	1.3	24
87	Probing Exfoliated Graphene Layers and Their Lithiation with Microfocused X-rays. Nano Letters, 2019, 19, 3634-3640.	4.5	10
88	Strong and tunable interlayer coupling of infrared-active phonons to excitons in van der Waals heterostructures. Physical Review B, 2019, 99, .	1.1	17
89	All-Dry Transfer of Graphene Film by van der Waals Interactions. Nano Letters, 2019, 19, 3590-3596.	4.5	36
90	Pulsed thermal deposition of binary and ternary transition metal dichalcogenide monolayers and heterostructures. Applied Physics Letters, 2019, 114, .	1.5	14
91	Chiral twisted van der Waals nanowires. Nature, 2019, 570, 354-357.	13.7	117

#	Article	IF	CITATIONS
92	Novel 10-nm Gate Length MoS ₂ Transistor Fabricated on Si Fin Substrate. IEEE Journal of the Electron Devices Society, 2019, 7, 483-488.	1.2	14
93	Nanoscale electronic devices based on transition metal dichalcogenides. 2D Materials, 2019, 6, 032004.	2.0	51
94	Electronic structure of designed [(SnSe)1+Î]m[TiSe2]2 heterostructure thin films with tunable layering sequence. Journal of Materials Research, 2019, 34, 1965-1975.	1.2	4
95	Nonvolatile Electrical Control and Heterointerfaceâ€Induced Halfâ€Metallicity of 2D Ferromagnets. Advanced Functional Materials, 2019, 29, 1901420.	7.8	109
96	Liquid–Solid Interfacial Assemblies of Soft Materials for Functional Freestanding Layered Membrane–Based Devices toward Electrochemical Energy Systems. Advanced Energy Materials, 2019, 9, 1804005.	10.2	18
97	Vertical MoS ₂ Double-Layer Memristor with Electrochemical Metallization as an Atomic-Scale Synapse with Switching Thresholds Approaching 100 mV. Nano Letters, 2019, 19, 2411-2417.	4.5	288
98	Van der Waals integration before and beyond two-dimensional materials. Nature, 2019, 567, 323-333.	13.7	946
99	Suppression of the shear Raman mode in defective bilayer MoS2. Journal of Applied Physics, 2019, 125, .	1.1	5
100	Scalable Synthesis of Ultrathin Mn ₃ N ₂ Exhibiting Roomâ€Temperature Antiferromagnetism. Advanced Functional Materials, 2019, 29, 1809001.	7.8	67
101	Wafer-Scale Growth of Single-Crystal 2D Semiconductor on Perovskite Oxides for High-Performance Transistors. Nano Letters, 2019, 19, 2148-2153.	4.5	82
102	Negative transconductance and negative differential resistance in asymmetric narrow bandgap 2D–3D heterostructures. Nanoscale, 2019, 11, 4701-4706.	2.8	20
103	Lipase Immobilized on Layer-by-Layer Polysaccharide-Coated Fe ₃ O ₄ @SiO ₂ Microspheres as a Reusable Biocatalyst for the Production of Structured Lipids. ACS Sustainable Chemistry and Engineering, 2019, 7, 6685-6695.	3.2	48
104	Physics of Graphene: Basic to FET Application. , 2019, , 29-63.		0
105	Employing a Bifunctional Molybdate Precursor To Grow the Highly Crystalline MoS ₂ for High-Performance Field-Effect Transistors. ACS Applied Materials & Interfaces, 2019, 11, 14239-14248.	4.0	10
106	Atomically Thin Nanoribbons by Exfoliation of Hydrogen-Bonded Organic Frameworks for Drug Delivery. ACS Applied Nano Materials, 2019, 2, 2437-2445.	2.4	52
107	Electrostatically Induced Phononic Crystal. Physical Review Applied, 2019, 11, .	1.5	26
108	Thickness Tunable Wedding-Cake-like MoS ₂ Flakes for High-Performance Optoelectronics. ACS Nano, 2019, 13, 3649-3658.	7.3	75
109	Strained 2D Layered Materials and Heterojunctions. Annalen Der Physik, 2019, 531, 1800465.	0.9	20

ARTICLE IF CITATIONS Centimeter-scale Green Integration of Layer-by-Layer 2D TMD vdW Heterostructures on Arbitrary 110 1.6 44 Substrates by Water-Assisted Layer Transfer. Scientific Reports, 2019, 9, 1641. PtTe₂â€Based Typeâ€II Dirac Semimetal and Its van der Waals Heterostructure for Sensitive 5.2 98 Room Temperature Terahertz Photodetection. Small, 2019, 15, e1903362. Position-Selective Growth of 2D WS₂-Based Vertical Heterostructures via a One-Step CVD 112 1.5 28 Approach. Journal of Physical Chemistry C, 2019, 123, 30519-30527. Self-organized twist-heterostructures via aligned van der Waals epitaxy and solid-state 5.8 transformations. Nature Communications, 2019, 10, 5528. A new metal transfer process for van der Waals contacts to vertical Schottky-junction transition 114 4.7 74 metal dichalcogenide photovoltaics. Science Advances, 2019, 5, eaax6061. Heterogeneous Integration of 2D Materials: Recent Advances in Fabrication and Functional Device Applications. Nano, 2019, 14, 1930009. Near-ideal subthreshold swing MoS₂ back-gate transistors with an optimized ultrathin 116 1.3 34 HfO₂ dielectric layer. Nanotechnology, 2019, 30, 095202. Wafer-Scale van der Waals Heterostructures with Ultraclean Interfaces via the Aid of Viscoelastic Polymer. ACS Applied Materials & amp; Interfaces, 2019, 11, 1579-1586. Plan-view transmission electron microscopy specimen preparation for atomic layer materials using a 118 0.8 11 focused ion beam approach. Ultramicroscopy, 2019, 197, 95-99. Synthetic WSe ₂ monolayers with high photoluminescence quantum yield. Science Ádvances, 2019, 5, eaau4728. Synthesis and Assembly. SpringerBriefs in Materials, 2019, , 7-51. 121 0 0.1 Pushing boundaries: High pressure, supercritical optical floating zone materials discovery. Journal of Solid State Chemistry, 2019, 270, 705-709. 1.4 Two-dimensional black phosphorus: A new star in energy applications and the barrier to stability. 123 2.3 48 Applied Materials Today, 2019, 14, 51-58. Epitaxially grown semi-vertical and aligned GaTe two dimensional sheets on ZnO substrate for energy harvesting applications. Nano Energy, 2019, 56, 294-299. 124 8.2 Controllable preparation of 2D metal-semiconductor layered metal dichalcogenides 125 4.2 9 heterostructures. Science China Chemistry, 2019, 62, 295-298. Two-dimensional heterostructures based on graphene and transition metal dichalcogenides: 53 Synthesis, transfer and applications. Carbon, 2019, 145, 240-250. A novel multilayer sandwich fabric-based composite material for infrared stealth and super thermal 127 3.159 insulation protection. Composite Structures, 2019, 212, 58-65.

CITATION REPORT

Wafer-scale transferred multilayer MoS₂ for high performance field effect transistors. 1.3 Nanotechnology, 2019, 30, 174002.

#

#	Article	IF	CITATIONS
129	Recent Advances in Lowâ€Dimensional Heterojunctionâ€Based Tunnel Field Effect Transistors. Advanced Electronic Materials, 2019, 5, 1800569.	2.6	53
130	Controlled Doping of Waferâ€Scale PtSe ₂ Films for Device Application. Advanced Functional Materials, 2019, 29, 1805614.	7.8	87
131	Laser Shock Tuning Dynamic Interlayer Coupling in Graphene–Boron Nitride Moiré Superlattices. Nano Letters, 2019, 19, 283-291.	4.5	31
132	Ultrahigh‧ensitive Broadband Photodetectors Based on Dielectric Shielded MoTe ₂ /Graphene/SnS ₂ p–g–n Junctions. Advanced Materials, 2019, 31, e1805656.	11.1	138
133	WSe ₂ homojunctions and quantum dots created by patterned hydrogenation of epitaxial graphene substrates. 2D Materials, 2019, 6, 021001.	2.0	7
134	Optical Properties and Light-Emission Device Applications of 2-D Layered Semiconductors. Proceedings of the IEEE, 2020, 108, 676-703.	16.4	19
135	Mechanoluminescent, Air-Dielectric MoS ₂ Transistors as Active-Matrix Pressure Sensors for Wide Detection Ranges from Footsteps to Cellular Motions. Nano Letters, 2020, 20, 66-74.	4.5	80
136	Interlayer Transition in a vdW Heterostructure toward Ultrahigh Detectivity Shortwave Infrared Photodetectors. Advanced Functional Materials, 2020, 30, 1905687.	7.8	52
137	2D Superlattices for Efficient Energy Storage and Conversion. Advanced Materials, 2020, 32, e1902654.	11.1	117
138	Geometric Control of Fracture and Topological Metamaterials. Springer Theses, 2020, , .	0.0	0
139	Advances of 2D bismuth in energy sciences. Chemical Society Reviews, 2020, 49, 263-285.	18.7	138
140	Spatiotemporal Mapping of a Photocurrent Vortex in Monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>MoS</mml:mi></mml:mrow><mml:mrow><mm Using Diamond Quantum Sensors, Physical Review X, 2020, 10, .</mm </mml:mrow></mml:msub></mml:mrow></mml:math 	າໃ:mn>2 <td>15 mml:mn><!--</td--></td>	15 mml:mn> </td
141	Deeply Exploring Anisotropic Evolution toward Large-Scale Growth of Monolayer ReS ₂ . ACS Applied Materials & Interfaces, 2020, 12, 2862-2870.	4.0	21
142	Ultrashort Verticalâ€Channel van der Waals Semiconductor Transistors. Advanced Science, 2020, 7, 1902964.	5.6	24
143	Engineering grain boundaries at theÂ2D limit for theÂhydrogen evolution reaction. Nature Communications, 2020, 11, 57.	5.8	153
144	High-Performance Logic and Memory Devices Based on a Dual-Gated MoS ₂ Architecture. ACS Applied Electronic Materials, 2020, 2, 111-119.	2.0	26
145	2D semiconducting materials for electronic and optoelectronic applications: potential and challenge. 2D Materials, 2020, 7, 022003.	2.0	168
146	Assembly of van der Waals heterostructures: exfoliation, searching, and stacking of 2D materials. Japanese Journal of Applied Physics, 2020, 59, 010101.	0.8	41

#	Article	IF	CITATIONS
147	Memristors Based on 2D Materials as an Artificial Synapse for Neuromorphic Electronics. Advanced Materials, 2020, 32, e2002092.	11.1	241
148	Vertical Integration of 2D Building Blocks for Allâ€2D Electronics. Advanced Electronic Materials, 2020, 6, 2000550.	2.6	20
149	1T GdN2 monolayer — Spin-orbit induced magnetic Dirac semiconductor stable at room temperature. Applied Surface Science, 2020, 529, 147129.	3.1	3
150	FeCl ₂ monolayer on HOPG: art of growth and momentum filtering effect. Nanoscale, 2020, 12, 16041-16045.	2.8	34
151	Schottky-barrier quantum well in two-dimensional semiconductor nanotransistors. Materials Today Physics, 2020, 15, 100275.	2.9	4
152	Frontiers in hybrid and interfacial materials chemistry research. MRS Bulletin, 2020, 45, 951-964.	1.7	6
153	Scalable lateral heterojunction by chemical doping of 2D TMD thin films. Scientific Reports, 2020, 10, 12970.	1.6	30
154	Interfacial Thermal Conductance between Monolayer WSe ₂ and SiO ₂ under Consideration of Radiative Electron–Hole Recombination. ACS Applied Materials & Interfaces, 2020, 12, 51069-51081.	4.0	18
155	Phaseâ€Dependent Band Gap Engineering in Alloys of Metalâ€5emiconductor Transition Metal Dichalcogenides. Advanced Functional Materials, 2020, 30, 2004912.	7.8	13
156	Supported and Suspended 2D Material-Based FET Biosensors. Electrochem, 2020, 1, 260-277.	1.7	15
157	Large-Scale Vertical 1T′/2H MoTe ₂ Nanosheet-Based Heterostructures for Low Contact Resistance Transistors. ACS Applied Nano Materials, 2020, 3, 10411-10417.	2.4	19
158	Bioelectronicsâ€Related 2D Materials Beyond Graphene: Fundamentals, Properties, and Applications. Advanced Functional Materials, 2020, 30, 2003732.	7.8	39
159	Energy-Efficient Tunneling Field-Effect Transistors for Low-Power Device Applications: Challenges and Opportunities. ACS Applied Materials & Interfaces, 2020, 12, 47127-47163.	4.0	51
160	Substrates in the Synthesis of Two-Dimensional Materials via Chemical Vapor Deposition. Chemistry of Materials, 2020, 32, 10321-10347.	3.2	72
161	Growth and Interlayer Engineering of 2D Layered Semiconductors for Future Electronics. ACS Nano, 2020, 14, 16266-16300.	7.3	30
162	Multifunctional layered black phosphorene-based nanoplatform for disease diagnosis and treatment: a review. Frontiers of Optoelectronics, 2020, 13, 327-351.	1.9	9
163	Refractive Uses of Layered and Two-Dimensional Materials for Integrated Photonics. ACS Photonics, 2020, 7, 3270-3285.	3.2	23
164	Tuning Electrical Conductance of MoS ₂ Monolayers through Substitutional Doping. Nano Letters, 2020, 20, 4095-4101.	4.5	100

#	Article	IF	CITATIONS
165	Layer-by-Layer Assembly of Two-Dimensional Materials: Meticulous Control on the Nanoscale. Matter, 2020, 2, 1148-1165.	5.0	106
166	Versatile construction of van der Waals heterostructures using a dual-function polymeric film. Nature Communications, 2020, 11, 3029.	5.8	41
167	Layer-Selective Synthesis of MoS ₂ and WS ₂ Structures under Ambient Conditions for Customized Electronics. ACS Nano, 2020, 14, 8485-8494.	7.3	41
168	Electrochemical exfoliation of two-dimensional layered black phosphorus and applications. Journal of Energy Chemistry, 2020, 49, 365-374.	7.1	35
169	General synthesis of two-dimensional van der Waals heterostructure arrays. Nature, 2020, 579, 368-374.	13.7	393
170	Gate-Tunable Semiconductor Heterojunctions from 2D/3D van der Waals Interfaces. Nano Letters, 2020, 20, 2907-2915.	4.5	69
171	Xenes as an Emerging 2D Monoelemental Family: Fundamental Electrochemistry and Energy Applications. Advanced Functional Materials, 2020, 30, 2002885.	7.8	66
172	Manufacturing strategies for wafer-scale two-dimensional transition metal dichalcogenide heterolayers. Journal of Materials Research, 2020, 35, 1350-1368.	1.2	12
173	Transfer assembly for two-dimensional van der Waals heterostructures. 2D Materials, 2020, 7, 022005.	2.0	87
174	Molecular Nanowire Bonding to Epitaxial Single‣ayer MoS 2 by an On‣urface Ullmann Coupling Reaction. Small, 2020, 16, 1906892.	5.2	6
175	How Clean Is Clean? Recipes for van der Waals Heterostructure Cleanliness Assessment. ACS Applied Materials & Interfaces, 2020, 12, 7701-7709.	4.0	20
176	Layer-by-layer technique for enhancing physicochemical properties of actives. Journal of Drug Delivery Science and Technology, 2020, 56, 101519.	1.4	14
177	Ultrathin Scattering Spin Filter and Magnetic Tunnel Junction Implemented by Ferromagnetic 2D van der Waals Material. Advanced Electronic Materials, 2020, 6, 1900968.	2.6	31
178	One-dimensional van der Waals heterostructures. Science, 2020, 367, 537-542.	6.0	238
179	Twoâ€Dimensional Superstructures of Silica Cages. Advanced Materials, 2020, 32, e1908362.	11.1	20
180	Functional hetero-interfaces in atomically thin materials. Materials Today, 2020, 37, 74-92.	8.3	21
181	Atomicâ€Precision Repair of a Few‣ayer 2Hâ€MoTe ₂ Thin Film by Phase Transition and Recrystallization Induced by a Heterophase Interface. Advanced Materials, 2020, 32, e2000236.	11.1	16
182	Synthesis, modular composition, and electrochemical properties of lamellar iron sulfides. Journal of Materials Chemistry A, 2020, 8, 15834-15844.	5.2	10

#		IF	CITATIONS
π 109	Direct Growth of Multi‣ayer Graphene on Quartz Glass for Highâ€Performance Broadband Neutral	9.6	12
183	Density Filter Applications. Ádvanced Optical Materials, 2020, 8, 2000166.	3.0	13
184	Automated Assembly of Wafer-Scale 2D TMD Heterostructures of Arbitrary Layer Orientation and Stacking Sequence Using Water Dissoluble Salt Substrates. Nano Letters, 2020, 20, 3925-3934.	4.5	25
185	Enhanced In-Plane Thermal Conductance of Thin Films Composed of Coaxially Combined Single-Walled Carbon Nanotubes and Boron Nitride Nanotubes. ACS Nano, 2020, 14, 4298-4305.	7.3	36
186	2D WS ₂ : From Vapor Phase Synthesis to Device Applications. Advanced Electronic Materials, 2021, 7, 2000688.	2.6	63
187	Avalanche photodetectors based on two-dimensional layered materials. Nano Research, 2021, 14, 1878-1888.	5.8	44
188	Van der Waals Nanowires with Continuously Variable Interlayer Twist and Twist Homojunctions. Advanced Functional Materials, 2021, 31, 2006412.	7.8	22
189	Structure, Preparation, and Applications of 2D Materialâ€Based Metal–Semiconductor Heterostructures. Small Structures, 2021, 2, 2000093.	6.9	71
190	<scp>Waferâ€scale</scp> vertical van der <scp>Waals</scp> heterostructures. InformaÄnÃ-Materiály, 2021, 3, 3-21.	8.5	70
191	Reconfigurable photo-induced doping of two-dimensional van der Waals semiconductors using different photon energies. Nature Electronics, 2021, 4, 38-44.	13.1	42
192	Quantum spin Hall insulators and topological Rashba-splitting edge states in two-dimensional CX ₃ (X = Sb, Bi). Physical Chemistry Chemical Physics, 2021, 23, 2134-2140.	1.3	7
193	Enhanced Exciton–Exciton Collisions in an Ultraflat Monolayer MoSe ₂ Prepared through Deterministic Flattening. ACS Nano, 2021, 15, 1370-1377.	7.3	9
194	Two-dimensional WS ₂ /MoS ₂ heterostructures: properties and applications. Nanoscale, 2021, 13, 5594-5619.	2.8	73
195	Methods of transferring two-dimensional materials. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 028201.	0.2	4
196	Non-destructive thickness characterisation of 3D multilayer semiconductor devices using optical spectral measurements and machine learning. Light Advanced Manufacturing, 2021, 2, 9.	2.2	13
197	Synthesis and characterization of GaN/ReS2, ZnS/ReS2 and ZnO/ReS2 core/shell nanowire heterostructures. Applied Surface Science, 2021, 536, 147841.	3.1	13
198	High-quality borophene quantum dot realization and their application in a photovoltaic device. Journal of Materials Chemistry A, 2021, 9, 24036-24043.	5.2	14
199	Review and comparison of layer transfer methods for two-dimensional materials for emerging applications. Chemical Society Reviews, 2021, 50, 11032-11054.	18.7	61
200	Ti ₃ C ₂ T _x MXene for electrode materials of supercapacitors. Journal of Materials Chemistry A, 2021, 9, 11501-11529.	5.2	181

#	ARTICLE	IF	CITATIONS
201	Electron-beam-irradiated rhenium disulfide memristors with low variability for neuromorphic computing. Npj 2D Materials and Applications, 2021, 5, .	3.9	69
202	Synthesis of Large-Scale Monolayer 1T′-MoTe ₂ and Its Stabilization <i>via</i> Scalable hBN Encapsulation. ACS Nano, 2021, 15, 4213-4225.	7.3	61
203	Tip-Based Cleaning and Smoothing Improves Performance in Monolayer MoS ₂ Devices. ACS Omega, 2021, 6, 4013-4021.	1.6	13
204	Emerging Opportunities for 2D Semiconductor/Ferroelectric Transistor tructure Devices. Advanced Materials, 2021, 33, e2005620.	11.1	76
205	In Situ Ultrafast and Patterned Growth of Transition Metal Dichalcogenides from Inkjetâ€Printed Aqueous Precursors. Advanced Materials, 2021, 33, e2100260.	11.1	36
206	Layer-Scale and Chip-Scale Transfer Techniques for Functional Devices and Systems: A Review. Nanomaterials, 2021, 11, 842.	1.9	22
207	Stackingâ€Engineered Heterostructures in Transition Metal Dichalcogenides. Advanced Materials, 2021, 33, e2005735.	11.1	47
208	Operando Study of Thermal Oxidation of Monolayer MoS ₂ . Advanced Science, 2021, 8, 2002768.	5.6	35
210	Laser printed two-dimensional transition metal dichalcogenides. Scientific Reports, 2021, 11, 5211.	1.6	14
211	Arrayed MoS ₂ –In _{0.53} Ga _{0.47} As van der Waals Heterostructure for High‧peed and Broadband Detection from Visible to Shortwaveâ€Infrared Light. Small, 2021, 17, e2007357.	5.2	20
212	Lateral Interfaces between Monolayer MoS2 Edges and Armchair Graphene Nanoribbons on Au(111). ACS Nano, 2021, 15, 6699-6708.	7.3	4
213	High-order superlattices by rolling up van der Waals heterostructures. Nature, 2021, 591, 385-390.	13.7	163
214	Photoresponse of Stacked, Multilayer MoS2 Films Assembled from Solution-Processed MoS2 Flakes. ACS Applied Nano Materials, 2021, 4, 3087-3094.	2.4	0
215	Promises and prospects of two-dimensional transistors. Nature, 2021, 591, 43-53.	13.7	548
216	Polymerâ€Coated Organic Crystals with Solventâ€Resistant Capacity and Optical Waveguiding Function. Angewandte Chemie, 2021, 133, 11383-11387.	1.6	7
217	Identification of Point Defects in Atomically Thin Transition-Metal Dichalcogenide Semiconductors as Active Dopants. Nano Letters, 2021, 21, 3341-3354.	4.5	19
218	Atomically Thin Nanosheets Confined in 2D Heterostructures: Metalâ€Ion Batteries Prospective. Advanced Energy Materials, 2021, 11, 2100451.	10.2	35
219	Polymerâ€Coated Organic Crystals with Solventâ€Resistant Capacity and Optical Waveguiding Function. Angewandte Chemie - International Edition, 2021, 60, 11283-11287.	7.2	28

#	Article	IF	CITATIONS
220	Seeded 2D epitaxy of large-area single-crystal films of the van der Waals semiconductor 2H MoTe ₂ . Science, 2021, 372, 195-200.	6.0	143
221	Synthesis of Highâ€Performance Monolayer Molybdenum Disulfide at Low Temperature. Small Methods, 2021, 5, e2000720.	4.6	27
222	Origin of itinerant ferromagnetism in two-dimensional Fe ₃ GeTe ₂ *. Chinese Physics B, 2021, 30, 047502.	0.7	6
223	The More, the Better–Recent Advances in Construction of 2D Multiâ€Heterostructures. Advanced Functional Materials, 2021, 31, 2102049.	7.8	27
224	Mechanically sensing and tailoring electronic properties in two-dimensional atomic membranes. Current Opinion in Solid State and Materials Science, 2021, 25, 100900.	5.6	7
225	Atomically sharp interface enabled ultrahigh-speed non-volatile memory devices. Nature Nanotechnology, 2021, 16, 882-887.	15.6	105
226	Rapid Growth of Monolayer MoSe ₂ Films for Largeâ€Area Electronics. Advanced Electronic Materials, 2021, 7, 2001219.	2.6	14
227	Synthesis of lateral heterostructure of 2D materials for optoelectronic devices: challenges and opportunities. Emergent Materials, 2021, 4, 923-949.	3.2	14
228	Mechanical exfoliation of large area 2D materials from vdW crystals. Progress in Surface Science, 2021, 96, 100626.	3.8	45
229	Nanohybrid Photodetectors. Advanced Photonics Research, 2021, 2, 2100015.	1.7	9
230	Low-Temperature and High-Quality Growth of Bi ₂ O ₂ Se Layered Semiconductors <i>via</i> Cracking Metal–Organic Chemical Vapor Deposition. ACS Nano, 2021, 15, 8715-8723.	7.3	35
231	Damage-free transfer mechanics of 2-dimensional materials: competition between adhesion instability and tensile strain. NPG Asia Materials, 2021, 13, .	3.8	20
232	Weak Kondo effect in the monocrystalline transition metal dichalcogenide <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Zr</mml:mi><mml:msub><mml:m Physical Review B, 2021, 103, .</mml:m </mml:msub></mml:mrow></mml:math 	i> Te <td>l:mutos <mml:m< td=""></mml:m<></td>	l:mutos <mml:m< td=""></mml:m<>
233	Transfer of large-scale two-dimensional semiconductors: challenges and developments. 2D Materials, 2021, 8, 032001.	2.0	81
234	Sub-10 fs Intervalley Exciton Coupling in Monolayer MoS ₂ Revealed by Helicity-Resolved Two-Dimensional Electronic Spectroscopy. ACS Nano, 2021, 15, 10253-10263.	7.3	14
235	Direct Identification of Surface Bound MoO ₃ on Single MoS ₂ Flakes Heated in Dry and Humid Air. Advanced Materials Interfaces, 2021, 8, 2100328.	1.9	11
236	Contaminant-Free Wafer-Scale Assembled h-BN/Graphene van der Waals Heterostructures for Graphene Field-Effect Transistors. ACS Applied Nano Materials, 2021, 4, 5677-5684.	2.4	4
237	Aligned Ti ₃ C ₂ T _{<i>x</i>} MXene for 3D Micropatterning <i>via</i> Additive Manufacturing. ACS Nano, 2021, 15, 12057-12068.	7.3	23

#	Article	IF	CITATIONS
238	Heteroepitaxial van der Waals semiconductor superlattices. Nature Nanotechnology, 2021, 16, 1092-1098.	15.6	54
239	A review of optics-based methods for thickness and surface characterization of two-dimensional materials. Journal Physics D: Applied Physics, 2021, 54, 393001.	1.3	9
240	p-/n-Type modulation of 2D transition metal dichalcogenides for electronic and optoelectronic devices. Nano Research, 2022, 15, 123-144.	5.8	20
241	Enhancing and quantifying spatial homogeneity in monolayer WS2. Scientific Reports, 2021, 11, 14831.	1.6	7
242	High-yield exfoliation of 2D semiconductor monolayers and reassembly of organic/inorganic artificial superlattices. CheM, 2021, 7, 1887-1902.	5.8	36
243	Spontaneous Polarity Flipping in a 2D Heterobilayer Induced by Fluctuating Interfacial Carrier Flows. Nano Letters, 2021, 21, 6773-6780.	4.5	7
244	Heating-driven assembly of covalent organic framework nanosheets for gas separation. Journal of Membrane Science, 2021, 632, 119326.	4.1	30
245	Atomically Thin, Optically Isotropic Films with 3D Nanotopography. Nano Letters, 2021, 21, 7291-7297.	4.5	1
246	Wafer-scale integration of graphene for waveguide-integrated optoelectronics. Applied Physics Letters, 2021, 119, 050501.	1.5	7
247	Two-dimensional heterostructures and their device applications: progress, challenges and opportunities—review. Journal Physics D: Applied Physics, 2021, 54, 433001.	1.3	30
248	Nanoscale axial position and orientation measurement of hexagonal boron nitride quantum emitters using a tunable nanophotonic environment. Nanotechnology, 2022, 33, 015001.	1.3	7
249	Extremely anisotropic van der Waals thermal conductors. Nature, 2021, 597, 660-665.	13.7	127
250	High-Speed Efficient On-Chip Electro-Optic Modulator Based on Midinfrared Hyperbolic Metamaterials. Physical Review Applied, 2021, 16, .	1.5	6
251	Van der Waals organic/inorganic heterostructures in the two-dimensional limit. CheM, 2021, 7, 2989-3026.	5.8	19
252	Strategy of Fabricating Flexible Strain Sensor via Layer-by-Layer Assembly of Conductive Hydrogels. ACS Applied Electronic Materials, 2021, 3, 3889-3897.	2.0	10
253	2D titanium and vanadium carbide MXene heterostructures for electrochemical energy storage. Energy Storage Materials, 2021, 41, 554-562.	9.5	57
254	Recent advances of atomically thin 2D heterostructures in sensing applications. Nano Today, 2021, 40, 101287.	6.2	41
255	Nonvolatile electrical control of 2D Cr ₂ Ge ₂ Te ₆ and intrinsic half metallicity in multiferroic hetero-structures. Nanoscale, 2021, 13, 1069-1076.	2.8	13

#	Article	IF	CITATIONS
256	Atomic Layer Deposition of 2D Metal Dichalcogenides for Electronics, Catalysis, Energy Storage, and Beyond. Advanced Materials Interfaces, 2021, 8, 2001677.	1.9	39
257	High performance sub-bandgap photodetection <i>via</i> internal photoemission based on ideal metal/2D-material van der Waals Schottky interface. Nanoscale, 2021, 13, 16448-16456.	2.8	14
258	Interface chemistry of two-dimensional heterostructures – fundamentals to applications. Chemical Society Reviews, 2021, 50, 4684-4729.	18.7	152
259	Synthesis of emerging 2D layered magnetic materials. Nanoscale, 2021, 13, 2157-2180.	2.8	35
260	Design and tailoring of two-dimensional Schottky, PN and tunnelling junctions for electronics and optoelectronics. Nanoscale, 2021, 13, 6713-6751.	2.8	30
261	High-quality electrical transport using scalable CVD graphene. 2D Materials, 2020, 7, 041003.	2.0	35
262	Achieving accurate energetics beyond (semi-)local density functional theory: Illustrated with transition metal disulfides, Cu2ZnSnS4 , and Na3PS4 related semiconductors. Physical Review Materials, 2019, 3, .	0.9	6
263	Deterministic Assembly of Arrays of Lithographically Defined WS2 and MoS2 Monolayer Features Directly From Multilayer Sources Into Van Der Waals Heterostructures. Journal of Micro and Nano-Manufacturing, 2019, 7, .	0.8	12
264	Hybrid silicon photonic devices with two-dimensional materials. Nanophotonics, 2020, 9, 2295-2314.	2.9	20
265	Research progress of high-quality monolayer MoS2 films. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 128103.	0.2	7
266	Local Interactions of Atmospheric Oxygen with MoS2 Crystals. Materials, 2021, 14, 5979.	1.3	13
267	Progress in Fabrication of Nanosheet Membranes with Two-Dimensional Materials. Material Sciences, 2018, 08, 736-741.	0.0	0
268	Sequential growth of two-dimensional MoSe2-WSe2 lateral heterojunctions. AIP Conference Proceedings, 2020, , .	0.3	2
269	Conforming Nanoparticle Sheets to Surfaces with Gaussian Curvature. Springer Theses, 2020, , 31-51.	0.0	0
270	Recent progress in the CVD growth of 2D vertical heterostructures based on transition-metal dichalcogenides. CrystEngComm, 2021, 23, 8239-8254.	1.3	14
271	Growth of Transition Metal Dichalcogenide Heterojunctions with Metal Oxides for Metal–Insulator–Semiconductor Capacitors. ACS Applied Nano Materials, 2021, 4, 12017-12023.	2.4	6
272	Borophene: Two-dimensional Boron Monolayer: Synthesis, Properties, and Potential Applications. Chemical Reviews, 2022, 122, 1000-1051.	23.0	106
273	The Road for 2D Semiconductors in the Silicon Age. Advanced Materials, 2022, 34, e2106886.	11.1	57

#	Article	IF	CITATIONS
274	Nucleation, growth, and stability of WSe2 thin films deposited on HOPG examined using in situ, real-time synchrotron x-ray radiation. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, 012201.	0.9	1
275	Passivated 2D Janus borophene as unique Dirac anodes for Na- and K-ion batteries: A first-principle investigation. Applied Surface Science, 2022, 578, 151994.	3.1	12
276	High‣peed Ionic Synaptic Memory Based on 2D Titanium Carbide MXene. Advanced Functional Materials, 2022, 32, 2109970.	7.8	33
277	Scalable Characterization of 2D Gallium-Intercalated Epitaxial Graphene. ACS Applied Materials & Interfaces, 2021, 13, 55428-55439.	4.0	5
278	High Performance Broadband Polarized Photodetectors Based on InSe/ReSe ₂ Van Der Waals Heterostructures. SSRN Electronic Journal, 0, , .	0.4	0
279	Fabrication Technologies for the On hip Integration of 2D Materials. Small Methods, 2022, 6, e2101435.	4.6	39
280	Perspective on 2D material polaritons and innovative fabrication techniques. Applied Physics Letters, 2022, 120, .	1.5	11
281	There is still plenty of room for layer-by-layer assembly for constructing nanoarchitectonics-based materials and devices. Physical Chemistry Chemical Physics, 2022, 24, 4097-4115.	1.3	75
282	Facile fabrication of 2D material multilayers and vdW heterostructures with multimodal microscopy and AFM characterization. Materials Today, 2022, 52, 31-42.	8.3	6
283	Excitonic devices with van der Waals heterostructures: valleytronics meets twistronics. Nature Reviews Materials, 2022, 7, 449-464.	23.3	94
284	Atomic-scale characterization of structural heterogeny in 2D TMD layers. Materials Advances, 2022, 3, 1401-1414.	2.6	5
285	Flexible 2D Materials beyond Graphene: Synthesis, Properties, and Applications. Small, 2022, 18, e2105383.	5.2	55
286	Aligned Stacking of Nanopatterned 2DÂMaterials for High-Resolution 3DÂDevice Fabrication. ACS Nano, 2022, 16, 1836-1846.	7.3	6
287	Angle-resolved one and Two-Photon absorption spectrum in twisted bilayer graphene quantum dots. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 271, 120894.	2.0	6
288	Wafer-Scale Programmed Assembly of One-Atom-Thick Crystals. Nano Letters, 2022, , .	4.5	11
289	Ultralow lattice thermal conductivity and high thermoelectric performance of the WS2/WTe2 van der Waals superlattice. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 430, 127986.	0.9	3
290	Light–matter coupling in large-area van der Waals superlattices. Nature Nanotechnology, 2022, 17, 182-189.	15.6	49
291	Materials engineering – defect healing & passivation. , 2022, , 195-219.		0

#	ARTICLE	IF	Citations
292	Magnetic anisotropy and ferroelectric-driven magnetic phase transition in monolayer Cr ₂ Ge ₂ Te ₆ . Nanoscale, 2022, 14, 3632-3643.	2.8	29
293	High Performance Broadband Polarized Photodetectors Based on Inse/Rese2 Van Der Waals Heterostructures. SSRN Electronic Journal, 0, , .	0.4	0
294	Challenges in synthesis of heterostructures. Journal of Materials Chemistry C, 2022, 10, 6546-6562.	2.7	3
295	主æ—å±,状低维åŠå⁻¼ä½"çš,,åæŒ¯å‰æŽ¢æµ‹å™". Chinese Science Bulletin, 2022, , .	0.4	1
296	Single-Photon Emission from Rewritable Nanoimprinted Localized Emitter Arrays in Atomically Thin Crystals. ACS Photonics, 2022, 9, 752-757.	3.2	1
297	Advanced flexible electrode materials and structural designs for sodium ion batteries. Journal of Energy Chemistry, 2022, 71, 108-128.	7.1	37
298	A Novel Methodology of Using Nonsolvent in Achieving Ultraclean Transferred Monolayer MoS ₂ . Advanced Materials Interfaces, 2022, 9, .	1.9	4
299	Ultrasensitive monolayer-MoS2 heterojunction photodetectors realized via an asymmetric Fabry-Perot cavity. Science China Materials, 2022, 65, 1861-1868.	3.5	5
300	Controllable Preparation of 2D Vertical van der Waals Heterostructures and Superlattices for Functional Applications. Small, 2022, 18, e2107059.	5.2	15
301	Highly accurate, reliable, and non-contaminating two-dimensional material transfer system. Applied Physics Reviews, 2022, 9, .	5.5	13
302	Constructing van der Waals heterostructures by dry-transfer assembly for novel optoelectronic device. Nanotechnology, 2022, 33, 465601.	1.3	7
303	Science of 2.5 dimensional materials: paradigm shift of materials science toward future social innovation. Science and Technology of Advanced Materials, 2022, 23, 275-299.	2.8	32
304	Mechanisms of Interface Cleaning in Heterostructures Made from Polymerâ€Contaminated Graphene. Small, 2022, 18, e2201248.	5.2	6
305	Endoepitaxial growth of monolayer mosaic heterostructures. Nature Nanotechnology, 2022, 17, 493-499.	15.6	58
306	Lateral layered semiconductor multijunctions for novel electronic devices. Chemical Society Reviews, 2022, 51, 4000-4022.	18.7	12
307	Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire. Nature, 2022, 605, 69-75.	13.7	174
308	Self-Expanding Molten Salt-Driven Growth of Patterned Transition-Metal Dichalcogenide Crystals. Journal of the American Chemical Society, 2022, 144, 8746-8755.	6.6	15
309	Stacking monolayers at will: A scalable device optimization strategy for two-dimensional semiconductors. Nano Research, 2022, 15, 6620-6627.	5.8	4

#	Article	IF	CITATIONS
310	Nanopatterning Technologies of 2D Materials for Integrated Electronic and Optoelectronic Devices. Advanced Materials, 2022, 34, e2200734.	11.1	25
311	Ultrafast flash memory with large self-rectifying ratio based on atomically thin MoS ₂ -channel transistor. Materials Futures, 2022, 1, 025301.	3.1	12
312	Circuitâ€Level Memory Technologies and Applications based on 2D Materials. Advanced Materials, 2022, 34, .	11.1	17
313	Emergent Multifunctional Magnetic Proximity in van der Waals Layered Heterostructures. Advanced Science, 2022, 9, .	5.6	17
314	Graphene-assisted metal transfer printing for wafer-scale integration of metal electrodes and two-dimensional materials. Nature Electronics, 2022, 5, 275-280.	13.1	61
315	High responsivity and broadband polarized photodetectors based on InSe/ReSe2 van der Waals heterostructures. Journal of Alloys and Compounds, 2022, 919, 165586.	2.8	13
316	Chemically exfoliated inorganic nanosheets for nanoelectronics. Applied Physics Reviews, 2022, 9, .	5.5	15
317	Recent strategies for activating the basal planes of transition metal dichalcogenides towards hydrogen production. Journal of Materials Chemistry A, 2022, 10, 19067-19089.	5.2	27
318	Ultrahigh yield and large-scale fast growth of large-size high-quality van der Waals transition-metal telluride single crystals. Cell Reports Physical Science, 2022, 3, 100953.	2.8	2
319	Two-dimensional materials prospects for non-volatile spintronic memories. Nature, 2022, 606, 663-673.	13.7	116
320	Application of 2D Materials in Hardware Security for Internetâ€ofâ€Things: Progress and Perspective. Small Structures, 2022, 3, .	6.9	9
321	Creating multilayer-structured polystyrene composites for enhanced fire safety and electromagnetic shielding. Composites Part B: Engineering, 2022, 242, 110068.	5.9	18
322	Introduction and investigation of PbI2/NdI2/CuI and PbI2/G/NdI2/B/CuI multilayer for optoelectronic applications. Computational Materials Science, 2022, 212, 111606.	1.4	0
323	Chiral molecular intercalation superlattices. Nature, 2022, 606, 902-908.	13.7	67
324	Large-Scale Multilayer MoS ₂ Nanosheets Grown by Atomic Layer Deposition for Sensitive Photodetectors. ACS Applied Nano Materials, 2022, 5, 10431-10440.	2.4	5
325	Single atom doping in 2D layered MoS2 from a periodic table perspective. Surface Science Reports, 2022, 77, 100567.	3.8	20
326	Van der Waals heterostructures. Nature Reviews Methods Primers, 2022, 2, .	11.8	80
327	Recent Progress in Fabrication and Physical Properties of 2D TMDC-Based Multilayered Vertical Heterostructures. Electronics (Switzerland), 2022, 11, 2401.	1.8	2

#	ARTICLE	IF	CITATIONS
328	Recent Advances of Preparation and Application of Two-Dimension van der Waals Heterostructure. Coatings, 2022, 12, 1152.	1.2	6
329	Emerging reconfigurable electronic devices based on twoâ€dimensional materials: A review. InformaÄnÃ- Materiály, 2022, 4, .	8.5	21
330	Research Progress on MXene-Based Flexible Supercapacitors: A Review. Crystals, 2022, 12, 1099.	1.0	6
331	Graphene-based anti-corrosive coating on steel for reinforced concrete infrastructure applications: Challenges and potential. Construction and Building Materials, 2022, 351, 128947.	3.2	21
332	Rashba Spin-Orbit-Coupling Based Electron-Spin Filter in Double-Layered Semiconductor Nanostructure. IEEE Electron Device Letters, 2022, 43, 1645-1648.	2.2	8
333	A volatile polymer stamp for large-scale, etching-free, and ultraclean transfer and assembly of two-dimensional materials and its heterostructures. Materials Today Physics, 2022, 27, 100834.	2.9	0
334	Variation of magnetism in two-dimensional MnS2 thin films. Journal of Magnetism and Magnetic Materials, 2022, 563, 169966.	1.0	2
335	Controlled growth of organic 2D layered material thin films <i>via</i> interfacial methods. Chemical Communications, 2022, 58, 12384-12398.	2.2	7
336	MoS ₂ oxidative etching caught in the act: formation of single (MoO ₃) _{<i>n</i>} molecules. Nanoscale Advances, 2022, 4, 4517-4525.	2.2	2
337	Probing and Manipulating Noncovalent Interactions in Functional Polymeric Systems. Chemical Reviews, 2022, 122, 14594-14678.	23.0	74
338	Nanomechanical Resonators: Toward Atomic Scale. ACS Nano, 2022, 16, 15545-15585.	7.3	55
339	Two dimensional semiconducting materials for ultimately scaled transistors. IScience, 2022, 25, 105160.	1.9	11
340	The zoology of two-dimensional van der waals materials. , 2023, , 449-498.		1
341	Two-dimensional devices and integration towards the silicon lines. Nature Materials, 2022, 21, 1225-1239.	13.3	79
342	Photo-dynamics in 2D materials: Processes, tunability and device applications. Physics Reports, 2022, 993, 1-70.	10.3	4
343	Electron-spin polarization effect in Rashba spin-orbit coupling modulated single-layered semiconductor nanostructure. Wuli Xuebao/Acta Physica Sinica, 2023, 72, 028503.	0.2	1
344	Perovskite quantum dot-induced monochromatization for broadband photodetection of wafer-scale molybdenum disulfide. NPG Asia Materials, 2022, 14, .	3.8	7
345	Bowing-alleviated continuous bandgap engineering of wafer-scale WS2xSe2(1-x) monolayer alloys and their assembly into hetero-multilayers. NPG Asia Materials, 2022, 14, .	3.8	5

#	Article	IF	CITATIONS
346	Recent progress in mid-infrared photodetection devices using 2D/nD (n=0, 1, 2, 3) heterostructures. Materials and Design, 2023, 225, 111446.	3.3	4
347	Preparation, properties and applications of two-dimensional superlattices. Materials Horizons, 2023, 10, 722-744.	6.4	4
348	Mixed dimensional Transition Metal Dichalcogenides (TMDs) vdW Heterostructure based Photodetectors: A review. Microelectronic Engineering, 2023, 269, 111926.	1.1	10
349	A review of the synthesis, fabrication, and recent advances in mixed dimensional heterostructures for optoelectronic devices applications. Applied Materials Today, 2023, 30, 101717.	2.3	6
350	mm-band surface acoustic wave devices utilizing two-dimensional boron nitride. Scientific Reports, 2022, 12, .	1.6	0
353	Construction of Metal–Organic Framework Films via Crosslinkingâ€Induced Assembly. Advanced Materials, 2023, 35, .	11.1	6
354	Graphene and Two-Dimensional Materials-Based Flexible Electronics for Wearable Biomedical Sensors. Electronics (Switzerland), 2023, 12, 45.	1.8	3
355	Recent Advances in Stimuliâ€Responsive Smart Membranes for Nanofiltration. Advanced Functional Materials, 2023, 33, .	7.8	24
357	Heterogeneous complementary field-effect transistors based on silicon and molybdenum disulfide. Nature Electronics, 0, , .	13.1	8
358	Optical reflectance imaging reveals interlayer coupling in mechanically stacked MoSâ,, and WSâ,, bilayers. Optics Express, 0, , .	1.7	0
359	Wafer-scale integration of transition metal dichalcogenide field-effect transistors using adhesion lithography. Nature Electronics, 2023, 6, 146-153.	13.1	9
360	Opportunities and challenges in integrating 2D materials with inorganic 1DÂandÂ0D layered nanostructures. Journal of Materials Research, 2023, 38, 267-280.	1.2	1
361	An ultra-high vacuum system for fabricating clean two-dimensional material devices. Review of Scientific Instruments, 2023, 94, .	0.6	2
362	Progress on 2D–2D heterostructured hybrid materials for efficient electrocatalysis. Energy Advances, 2023, 2, 280-292.	1.4	1
363	Transition metal dichalcogenide-based functional membrane: Synthesis, modification, and water purification applications. Matter, 2023, 6, 59-96.	5.0	11
364	Analysis of hydrogen storage mechanism in bilayer double-vacancy defective graphene modified using transition metals: Insights from Ti-BDVG(Ti)-Ti. International Journal of Hydrogen Energy, 2023, 48, 14322-14336.	3.8	4
366	2D heterostructures for advanced logic and memory devices. , 2023, , 141-167.		0
367	Density Functional Theory Studies on Magnetic Manipulation in Nil ₂ Layers. ACS Applied Electronic Materials, 2023, 5, 920-927.	2.0	6

#	Article	IF	CITATIONS
368	Van der Waals Layer Transfer of 2D Materials for Monolithic 3D Electronic System Integration: Review and Outlook. ACS Nano, 2023, 17, 1831-1844.	7.3	22
369	Electron-Spin Filter Based on Dresselhaus Spin-Orbit-Coupling Modulated Single-Layered Semiconductor Nanostructure. IEEE Transactions on Electron Devices, 2023, 70, 1401-1405.	1.6	3
370	Helical Trilayer Nanographenes with Tunable Interlayer Overlaps. Journal of the American Chemical Society, 2023, 145, 2815-2821.	6.6	10
371	Layer-Structured Anisotropic Metal Chalcogenides: Recent Advances in Synthesis, Modulation, and Applications. Chemical Reviews, 2023, 123, 3329-3442.	23.0	23
372	Breaking the symmetry of colloidal 2D nanoplatelets: Twist induced quantum coupling. Nano Research, 2023, 16, 10522-10529.	5.8	1
373	Deterministic Fabrication of Twisted Van Der Waals Structures. Advanced Functional Materials, 2023, 33, .	7.8	4
374	Terminal Atomâ€Controlled Etching of 2Dâ€TMDs. Advanced Materials, 2023, 35, .	11.1	9
375	Controlling quantum phases of electrons and excitons in moir \tilde{A} © superlattices. Journal of Applied Physics, 2023, 133, 080901.	1.1	1
376	Lateral quantum confinement regulates charge carrier transfer and biexciton interaction in CdSe/CdSeS core/crown nanoplatelets. Nano Research, 2023, 16, 10420-10428.	5.8	3
377	Nonvolatile Electrical Control and Reversible Gas Capture by Ferroelectric Polarization Switching in 2D Fel ₂ /In ₂ S ₃ van der Waals Heterostructures. ACS Sensors, 2023, 8, 1440-1449.	4.0	13
378	Fabrication and applications of van der Waals heterostructures. International Journal of Extreme Manufacturing, 2023, 5, 022007.	6.3	6
379	Local dielectric function of hBN-encapsulated WS ₂ flakes grown by chemical vapor deposition. Journal of Physics Condensed Matter, 2023, 35, 274001.	0.7	0
380	Two-dimensional transition metal dichalcogenides for post-silicon electronics. , 2023, , 20230015.		2
381	Halide vapor phase epitaxy of monolayer molybdenum diselenide single crystals. , 2023, 2, 20220055.		2
382	A brief review on thermally induced oxidation and oxidative etching of thin MoS ₂ crystals. Physical Chemistry Chemical Physics, 2023, 25, 12555-12564.	1.3	2
385	Semiconductor Multilayer Nanometrology with Machine Learning. Nanomanufacturing and Metrology, 2023, 6, .	1.5	4
386	Interfacial Interaction in Colloidal Heteronanostructures of Tb ³⁺ -Complex and Eu ³⁺ -Doped Nanosheets: Implications for Bioprobes. ACS Applied Nano Materials, 2023, 6, 10023-10032.	2.4	0
401	Porous crystalline materials for memories and neuromorphic computing systems. Chemical Society Reviews, 2023, 52, 7071-7136.	18.7	14

#	Article	IF	CITATIONS
402	Uncovering the photoelectronic/catalytic property modulation and applications of 2D MoS ₂ : from the perspective of constructing heterogeneous interfaces. Journal of Materials Chemistry A, 2023, 11, 19736-19763.	5.2	2
405	Colloidal robotics. Nature Materials, 2023, 22, 1453-1462.	13.3	3
418	van der Waals 2D transition metal dichalcogenide/organic hybridized heterostructures: recent breakthroughs and emerging prospects of the device. Nanoscale Horizons, 2023, 9, 44-92.	4.1	1
420	Magnetic characterization techniques and micromagnetic simulations of magnetic nanostructures: from zero to three dimensions. Nanoscale, 0, , .	2.8	0
422	Preparation, modification and antifouling properties of polyaniline conductive membranes for water treatment: a comprehensive review. Environmental Science: Water Research and Technology, 0, , .	1.2	0
432	Stacking of two-dimensional materials. , 2024, , 419-474.		0
434	2D materials–based electronics enabled by transfer printing technologies. , 2024, , 475-493.		0