Directed emission of CdSe nanoplatelets originating fro electronic structure

Nature Nanotechnology 12, 1155-1160 DOI: 10.1038/nnano.2017.177

Citation Report

#	Article	IF	CITATIONS
3	Origin of Shape-Dependent Fluorescence Polarization from CdSe Nanoplatelets. Journal of Physical Chemistry C, 2017, 121, 24837-24844.	3.1	33
4	Directed Two-Photon Absorption in CdSe Nanoplatelets Revealed by <i>k</i> -Space Spectroscopy. Nano Letters, 2017, 17, 6321-6329.	9.1	35
5	Dualâ€Hole Excitons Activated Photoelectrolysis in Neutral Solution. Small, 2018, 14, e1704047.	10.0	0
6	sp–d Exchange Interactions in Wave Function Engineered Colloidal CdSe/Mn:CdS Hetero-Nanoplatelets. Nano Letters, 2018, 18, 2047-2053.	9.1	32
7	Effect of Dangling Bond Spins on the Dark Exciton Recombination and Spin Polarization in CdSe Colloidal Nanostructures. Journal of Electronic Materials, 2018, 47, 4338-4344.	2.2	5
8	Anisotropy of Structure and Optical Properties of Self-Assembled and Oriented Colloidal CdSe Nanoplatelets. Zeitschrift Fur Physikalische Chemie, 2018, 232, 1619-1630.	2.8	4
9	Influence of morphology on the blinking mechanisms and the excitonic fine structure of single colloidal nanoplatelets. Nanoscale, 2018, 10, 22861-22870.	5.6	11
10	Weak Exciton–Phonon Coupling in CdSe Nanoplatelets from Quantitative Resonance Raman Intensity Analysis. Journal of Physical Chemistry C, 2018, 122, 27100-27106.	3.1	12
11	Distinct Excitonic Circular Dichroism between Wurtzite and Zincblende CdSe Nanoplatelets. Nano Letters, 2018, 18, 6665-6671.	9.1	68
12	Impact of Shell Growth on Recombination Dynamics and Exciton–Phonon Interaction in CdSe–CdS Core–Shell Nanoplatelets. ACS Nano, 2018, 12, 9476-9483.	14.6	39
13	Tunable Out-of-Plane Excitons in 2D Single-Crystal Perovskites. ACS Photonics, 2018, 5, 4179-4185.	6.6	67
14	Near-Unity Efficiency Energy Transfer from Colloidal Semiconductor Quantum Wells of CdSe/CdS Nanoplatelets to a Monolayer of MoS ₂ . ACS Nano, 2018, 12, 8547-8554.	14.6	34
15	Anisotropic Photoluminescence from Isotropic Optical Transition Dipoles in Semiconductor Nanoplatelets. Nano Letters, 2018, 18, 4647-4652.	9.1	38
16	Colloidal branched CdSe/CdS â€~nanospiders' with 2D/1D heterostructure. Nanotechnology, 2018, 29, 395604.	2.6	3
17	Tuning Intraband and Interband Transition Rates via Excitonic Correlation in Low-Dimensional Semiconductors. ACS Photonics, 2018, 5, 3680-3688.	6.6	28
18	Insights into the Formation Mechanism of CdSe Nanoplatelets Using in Situ X-ray Scattering. Nano Letters, 2019, 19, 6466-6474.	9.1	26
19	Exciton Localization and Radiative Lifetimes in CdSe Nanoplatelets. Journal of Physical Chemistry C, 2019, 123, 18665-18675.	3.1	19
20	Uniaxial transition dipole moments in semiconductor quantum rings caused by broken rotational symmetry. Nature Communications, 2019, 10, 3253.	12.8	19

#	Article	IF	CITATIONS
21	Ultrathin Highly Luminescent Twoâ€Monolayer Colloidal CdSe Nanoplatelets. Advanced Functional Materials, 2019, 29, 1901028.	14.9	56
22	CdSe@CdS Dot@Platelet Nanocrystals: Controlled Epitaxy, Monoexponential Decay of Two-Dimensional Exciton, and Nonblinking Photoluminescence of Single Nanocrystal. Journal of the American Chemical Society, 2019, 141, 17617-17628.	13.7	25
23	Electrically control amplified spontaneous emission in colloidal quantum dots. Science Advances, 2019, 5, eaav3140.	10.3	43
24	Optical Constants and Effective-Medium Origins of Large Optical Anisotropies in Layered Hybrid Organic/Inorganic Perovskites. ACS Nano, 2019, 13, 10745-10753.	14.6	24
25	Two-photon based pulse autocorrelation with CdSe nanoplatelets. Nanoscale, 2019, 11, 17293-17300.	5.6	11
26	Out-of-plane orientation of luminescent excitons in two-dimensional indium selenide. Nature Communications, 2019, 10, 3913.	12.8	70
27	Polarized near-infrared intersubband absorptions in CdSe colloidal quantum wells. Nature Communications, 2019, 10, 4511.	12.8	34
28	Tunable and Efficient Red to Near-Infrared Photoluminescence by Synergistic Exploitation of Core and Surface Silver Doping of CdSe Nanoplatelets. Chemistry of Materials, 2019, 31, 1450-1459.	6.7	64
29	Contrasting Anisotropy of Light Absorption and Emission by Semiconductor Nanoparticles. ACS Photonics, 2019, 6, 1146-1152.	6.6	9
30	Ultrahigh-efficiency aqueous flat nanocrystals of CdSe/CdS@Cd _{1â^'x} Zn _x S colloidal core/crown@alloyed-shell quantum wells. Nanoscale, 2019, 11, 301-310.	5.6	44
31	Size-dependent exciton substructure in CdSe nanoplatelets and its relation to photoluminescence dynamics. Nanoscale, 2019, 11, 12230-12241.	5.6	19
32	Detecting electronic structure evolution of semiconductor nanocrystals by magnetic circular dichroism spectroscopy. Nanoscale, 2019, 11, 19380-19386.	5.6	6
33	Photoluminescent Colloidal Nanohelices Self-Assembled from CdSe Magic-Size Clusters via Nanoplatelets. Journal of Physical Chemistry Letters, 2019, 10, 2794-2801.	4.6	24
34	Pushing the Efficiency Envelope for Semiconductor Nanocrystal-Based Electroluminescence Devices Using Anisotropic Nanocrystals. Chemistry of Materials, 2019, 31, 3066-3082.	6.7	51
35	Synthesis of Type I PbSe/CdSe Dot-on-Plate Heterostructures with Near-Infrared Emission. Journal of the American Chemical Society, 2019, 141, 5092-5096.	13.7	25
36	Atomically Thin Population of Colloidal CdSe Nanoplatelets: Growth of Rolled-up Nanosheets and Strong Circular Dichroism Induced by Ligand Exchange. Chemistry of Materials, 2019, 31, 9652-9663.	6.7	31
37	Impurity incorporation and exchange interactions in Co2+-doped CdSe/CdS core/shell nanoplatelets. Journal of Chemical Physics, 2019, 151, 224708.	3.0	4
38	Room-Temperature Strong Coupling of CdSe Nanoplatelets and Plasmonic Hole Arrays. Nano Letters, 2019, 19, 108-115.	9.1	23

~		~	
		REPO	TDL
\sim	IIAI	IVE FV	

#	Article	IF	CITATIONS
39	Dipole Orientation Shift of Ga ₂ Se ₂ by Quantum Confinement. ACS Nano, 2020, 14, 1027-1032.	14.6	6
40	Emission State Structure and Linewidth Broadening Mechanisms in Type-II CdSe/CdTe Core–Crown Nanoplatelets: A Combined Theoretical–Single Nanocrystal Optical Study. Journal of Physical Chemistry C, 2020, 124, 17352-17363.	3.1	13
41	Emitters with different dimensionality: 2D cadmium chalcogenide nanoplatelets and 0D quantum dots in non-specific cell labeling and two-photon imaging. Nanotechnology, 2020, 31, 435102.	2.6	5
42	Tuning exciton diffusion, mobility and emission line width in CdSe nanoplatelets via lateral size. Nanoscale, 2020, 12, 23521-23531.	5.6	9
43	Circularly Polarized Optical Stark Effect in CdSe Colloidal Quantum Wells. Nano Letters, 2020, 20, 7889-7895.	9.1	11
44	Resonant plasmon enhancement of light emission from CdSe/CdS nanoplatelets on Au nanodisk arrays. Journal of Chemical Physics, 2020, 153, 164708.	3.0	9
45	Giant Quantum Yield Enhancement in CdS/MgF ₂ /Ag Hybrid Nanobelt under Two-Photon Excitation. ACS Photonics, 2020, 7, 2987-2994.	6.6	2
46	Photoactivation of CdSe Quantum Nanoplatelet Luminescence. Optics and Spectroscopy (English) Tj ETQq1 1 C).784314 r 0.6	gBT /Overloc
47	Fourier-Imaging of Single Self-Assembled CdSe Nanoplatelet Chains and Clusters Reveals out-of-Plane Dipole Contribution. ACS Photonics, 2020, 7, 2825-2833.	6.6	8
48	Lateral Size Dependence in FRET between Semiconductor Nanoplatelets and Conjugated Fluorophores. Journal of Physical Chemistry C, 2020, 124, 25028-25037.	3.1	7
49	Nanophotonic Emission Control for Improved Photovoltaic Efficiency. ACS Photonics, 2020, 7, 1589-1602.	6.6	14
50	Printing and <i>In Situ</i> Assembly of CdSe/CdS Nanoplatelets as Uniform Films with Unity In-Plane Transition Dipole Moment. Journal of Physical Chemistry Letters, 2020, 11, 4524-4529.	4.6	15
51	Kinetic Control over Self-Assembly of Semiconductor Nanoplatelets. Nano Letters, 2020, 20, 4102-4110.	9.1	57
52	Optical Spectroscopy of Single Colloidal CsPbBr ₃ Perovskite Nanoplatelets. Nano Letters, 2020, 20, 3673-3680.	9.1	47
53	Let There Be Order, in Films of Colloidal CdSe 2D Nanocrystals. Nano Letters, 2020, 20, 2941-2942.	9.1	1
54	Tuning trion binding energy and oscillator strength in a laterally finite 2D system: CdSe nanoplatelets as a model system for trion properties. Nanoscale, 2020, 12, 14448-14458.	5.6	37
55	Bright magnetic dipole radiation from two-dimensional lead-halide perovskites. Science Advances, 2020, 6, eaay4900.	10.3	24
56	Quantized Reaction Pathways for Solution Synthesis of Colloidal ZnSe Nanostructures: A Connection between Clusters, Nanowires, and Two-Dimensional Nanoplatelets. ACS Nano, 2020, 14, 3847-3857.	14.6	51

#	Article	IF	CITATIONS
57	Colloidal-ALD-Grown Core/Shell CdSe/CdS Nanoplatelets as Seen by DNP Enhanced PASS–PIETA NMR Spectroscopy. Nano Letters, 2020, 20, 3003-3018.	9.1	24
58	Scalable photonic sources using two-dimensional lead halide perovskite superlattices. Nature Communications, 2020, 11, 387.	12.8	29
59	Probing permanent dipoles in CdSe nanoplatelets with transient electric birefringence. Nanoscale, 2020, 12, 11040-11054.	5.6	7
60	Colloidal quantum wells for optoelectronic devices. Journal of Materials Chemistry C, 2020, 8, 10628-10640.	5.5	30
61	Strong Plasmon-Wannier Mott Exciton Interaction with High Aspect Ratio Colloidal Quantum Wells. Matter, 2020, 2, 1550-1563.	10.0	18
62	Dielectric Confinement Enables Molecular Coupling in Stacked Colloidal Nanoplatelets. Journal of Physical Chemistry Letters, 2020, 11, 3294-3300.	4.6	15
63	Directional Light Emission from Layered Metal Halide Perovskite Crystals. Journal of Physical Chemistry Letters, 2020, 11, 3458-3465.	4.6	23
64	Electron and Hole Spin Relaxation in CdSe Colloidal Nanoplatelets. Journal of Physical Chemistry Letters, 2021, 12, 86-93.	4.6	13
65	Study of Complex Optical Constants of Neat Cadmium Selenide Nanoplatelets Thin Films by Spectroscopic Ellipsometry. Journal of Physical Chemistry Letters, 2021, 12, 191-198.	4.6	17
66	Ultrathin Monolayer Mn ²⁺ â€Alloyed 2D Perovskite Colloidal Quantum Wells. Advanced Optical Materials, 2021, 9, 2001135.	7.3	13
67	Colloidal Metal Chalcogenide Quantum Wells for Laser Applications. Cell Reports Physical Science, 2021, 2, 100308.	5.6	13
68	Ultralow Threshold Optical Gain Enabled by Quantum Rings of Inverted Typeâ€I CdS/CdSe Core/Crown Nanoplatelets in the Blue. Advanced Optical Materials, 2021, 9, 2002220.	7.3	16
69	Recent Trends in Nanoelectronic Device Fabrication. Current Nanoscience, 2021, 16, 851-862.	1.2	0
70	Van Hove Singularities and Trap States in Two-Dimensional CdSe Nanoplatelets. Nano Letters, 2021, 21, 1702-1708.	9.1	9
71	Influence of Shape Anisotropy on the Emission of Low-Dimensional Semiconductors. ACS Nano, 2021, 15, 3568-3577.	14.6	3
72	Zone-Folded Longitudinal Acoustic Phonons Driving Self-Trapped State Emission in Colloidal CdSe Nanoplatelet Superlattices. Nano Letters, 2021, 21, 4137-4144.	9.1	22
73	Atomistics of Asymmetric Lateral Growth of Colloidal Zincblende CdSe Nanoplatelets. Chemistry of Materials, 2021, 33, 4813-4820.	6.7	12
74	Manipulation of the Optical Properties of Colloidal 2D CdSe Nanoplatelets. Advanced Photonics Research, 2021, 2, 2100045.	3.6	10

#	Article	IF	CITATIONS
75	Targeted transfer of self-assembled CdSe nanoplatelet film onto WS2 flakes to construct hybrid heterostructures. Journal of Semiconductors, 2021, 42, 082901.	3.7	3
76	Tailoring Experimental Configurations to Probe Transition Dipoles of Fluorescent Nanoemitters by Polarimetry or Fourier Imaging with Enhanced Sensitivity. Journal of Physical Chemistry A, 2021, 125, 7572-7580.	2.5	1
77	Terahertz Charge Carrier Mobility in 1D and 2D Semiconductor Nanoparticles. Journal of Physical Chemistry Letters, 2021, 12, 7688-7695.	4.6	7
78	Near-Infrared-Emitting Cd <i>_x</i> Hg _{1–<i>x</i>} Se-Based Core/Shell Nanoplatelets. Chemistry of Materials, 2021, 33, 7693-7702.	6.7	11
79	A comparative study demonstrates strong size tunability of carrier–phonon coupling in CdSe-based 2D and 0D nanocrystals. Nanoscale, 2019, 11, 3958-3967.	5.6	24
80	Optical-Frequency Magnetic Polarizability in a Layered Semiconductor. Physical Review Letters, 2021, 127, 173604.	7.8	2
81	Efficient light-emitting diodes based on oriented perovskite nanoplatelets. Science Advances, 2021, 7, eabg8458.	10.3	68
82	Emission Statistics and Optical Transition Dipoles of Semiconductor Nanoplatelets. , 2019, , .		0
83	Directed Two Photon Absorption and Quadratic Volume Scaling in Semiconductor Nanoplatelets. , 2019, , .		0
84	Stimulated Emission through an Electron–Hole Plasma in Colloidal CdSe Quantum Rings. Nano Letters, 2021, 21, 10062-10069.	9.1	3
85	Bright excitonic multiplexing mediated by dark exciton transition in two-dimensional TMDCs at room temperature. Materials Horizons, 2022, 9, 1089-1098.	12.2	8
86	Exciton Cooling in 2D Perovskite Nanoplatelets: Rationalized Carrier-Induced Stark and Phonon Bottleneck Effects. Journal of Physical Chemistry Letters, 2022, 13, 393-399.	4.6	9
87	Curvature and self-assembly of semi-conducting nanoplatelets. Communications Chemistry, 2022, 5, .	4.5	29
88	Light-Emitting Diodes Based on Two-Dimensional Nanoplatelets. Energy Material Advances, 2022, 2022, .	11.0	26
89	Enhanced emission directivity from asymmetrically strained colloidal quantum dots. Science Advances, 2022, 8, eabl8219.	10.3	10
90	Modulating Emission Properties in a Host–Guest Colloidal Quantum Well Superlattice. Advanced Optical Materials, 2022, 10, 2101756.	7.3	4
91	Anisotropic nanocrystal superlattices overcoming intrinsic light outcoupling efficiency limit in perovskite quantum dot light-emitting diodes. Nature Communications, 2022, 13, 2106.	12.8	34
92	Quantum Nature of THz Conductivity: Excitons, Charges, and Trions in 2D Semiconductor Nanoplatelets and Implications for THz Imaging and Solar Hydrogen Generation. ACS Applied Nano Materials, 2022, 5, 8306-8313.	5.0	4

#	Article	IF	CITATIONS
93	Sensitivity improvement of hybrid active layer containing 2D nanoplatelets for indirect x-ray detector. Nanotechnology, 2022, 33, 405701.	2.6	0
94	CdSe/CdSeS Nanoplatelet Light-Emitting Diodes with Ultrapure Green Color and High External Quantum Efficiency. Journal of Physical Chemistry Letters, 2022, 13, 9051-9057.	4.6	7
95	Layer-by-Layer Deposition of 2D CdSe/CdS Nanoplatelets and Polymers for Photoluminescent Composite Materials. Langmuir, 2022, 38, 11149-11159.	3.5	5
96	Cadmium-Free Colloidal Branched Nanocrystals with Optical Anisotropy Induced by Symmetry Breaking. Journal of Physical Chemistry C, 2022, 126, 17176-17186.	3.1	1
97	Dielectric effects, crystal field, and shape anisotropy tuning of the exciton fine structure of halide perovskite nanocrystals. Physical Review Materials, 2022, 6, .	2.4	2
98	Liquid Interface Self-Assembly of Colloidal Nanoplatelets for Optoelectronics. SpringerBriefs in Applied Sciences and Technology, 2022, , 45-71.	0.4	0
99	Pushing the Emission Envelope for Full-Color Realization of Colloidal Semiconductor Core/Shell Nanoplatelets. Chemistry of Materials, 2022, 34, 9190-9199.	6.7	3
100	Observation of Phonon Cascades in Cu-Doped Colloidal Quantum Wells. Nano Letters, 2022, 22, 10224-10231.	9.1	5
101	Confinement-Tunable Transition Dipole Moment Orientation in Perovskite Nanoplatelet Solids and Binary Blends. ACS Nano, 2022, 16, 18459-18471.	14.6	2
102	CdSe _{<i>x</i>} S _{1–<i>x</i>} Alloyed Nanoplatelets with Continuously Tunable Blue-Green Emission. Chemistry of Materials, 2022, 34, 10361-10372.	6.7	3
103	Orientation-Dependent Image Dipole Interaction for the Tuning of the Excitonic Properties of CdSe Nanoplatelets. Journal of Physical Chemistry C, 2023, 127, 1937-1943.	3.1	1
104	Layer-Structured Anisotropic Metal Chalcogenides: Recent Advances in Synthesis, Modulation, and Applications. Chemical Reviews, 2023, 123, 3329-3442.	47.7	23
105	2D II–VI Semiconductor Nanoplatelets: From Material Synthesis to Optoelectronic Integration. Chemical Reviews, 2023, 123, 3543-3624.	47.7	48
106	Prolonging exciton lifetime of WSe ₂ monolayer through image dipole interaction leading to huge enhancement of photocurrent. Nanophotonics, 2023, 12, 695-703.	6.0	0
107	Gigantic suppression of recombination rate in 3D lead-halide perovskites for enhanced photodetector performance. Nature Photonics, 2023, 17, 236-243.	31.4	13
108	Lateral quantum confinement regulates charge carrier transfer and biexciton interaction in CdSe/CdSeS core/crown nanoplatelets. Nano Research, 2023, 16, 10420-10428.	10.4	3
109	Controlled Assembly and Anomalous Thermal Expansion of Ultrathin Cesium Lead Bromide Nanoplatelets. Nano Letters, 2023, 23, 2148-2157.	9.1	8
110	Highlyâ€Directional, Highlyâ€Efficient Solutionâ€Processed Lightâ€Emitting Diodes of Allâ€Faceâ€Down Orientec Colloidal Quantum Well Selfâ€Assembly. Small, 2023, 19, .	10.0	3

#	Article	IF	CITATIONS
111	Optical anisotropy of CsPbBr3 perovskite nanoplatelets. Nano Convergence, 2023, 10, .	12.1	3
112	Direct nano-imaging of light-matter interactions in nanoscale excitonic emitters. Nature Communications, 2023, 14, .	12.8	2
113	Perpendicular Alignment of 2D Nanoplatelet Emitters in Electrospun Fibers: A Result of the Barus Effect?. Macromolecular Materials and Engineering, 2023, 308, .	3.6	1
114	Giant Out-of-Plane Exciton Emission Enhancement in Two-Dimensional Indium Selenide via a Plasmonic Nanocavity. Nano Letters, 2023, 23, 3716-3723.	9.1	8
115	On the Rational Design of Core/(Multi)-Crown Type-II Heteronanoplatelets. Journal of the American Chemical Society, 2023, 145, 12033-12043.	13.7	2
116	Wavelength-Dependent Spin Excitation with Circularly Polarized Light in CdSe Nanoplatelets. Journal of Physical Chemistry C, 2023, 127, 14317-14325.	3.1	2
117	Polarization-sensitive visible emission of ordered CdSe/CdS nanorod films. Optical Materials, 2023, 143, 114242.	3.6	0
118	Excitons in metal halide perovskite nanoplatelets: an effective mass description of polaronic, dielectric and quantum confinement effects. Nanoscale Advances, 0, , .	4.6	0
119	Tuning the Photoluminescence Anisotropy of Semiconductor Nanocrystals. ACS Nano, 2023, 17, 19109-19120.	14.6	0
120	Electronic Structure and Optical Spectrum of Thick HgTe Colloidal Nanoplatelets. ACS Photonics, 2023, 10, 3763-3771.	6.6	0
121	Colloidal cesium lead bromide-based anisotropic nanorods for improving outcoupling in perovskite light-emitting diodes. Journal of Information Display, 0, , 1-12.	4.0	2
122	Highly Efficient Lightâ€Emitting Diodes Based on Selfâ€Assembled Colloidal Quantum Wells. Advanced Materials, 2023, 35, .	21.0	1
123	Emission Dipole and Pressureâ€Driven Tunability of Second Harmonic Generation in vdWs Ferroelectric NbOI ₂ . Advanced Functional Materials, 2024, 34, .	14.9	4
124	Efficient 2D to 0D Energy Transfer in HgTe Nanoplatelet-Quantum Dot Heterostructures through High-Speed Exciton Diffusion. Journal of Physical Chemistry Letters, 0, , 9456-9463.	4.6	0
125	Temperature-Regulated In-Plane Exciton Dynamics in CdSe/CdSeS Colloidal Quantum Well Heterostructures. ACS Photonics, 2023, 10, 4052-4060.	6.6	1
126	Highly Transparent, Yet Photoluminescent: 2D CdSe/CdS Nanoplateletâ€Zeolitic Imidazolate Framework Composites Sensitive to Gas Adsorption. Small, 0, , .	10.0	1
127	Dipole–dipole-interaction-assisted self-assembly of quantum dots for highly efficient light-emitting diodes. Nature Photonics, 2024, 18, 186-191.	31.4	1
128	Dielectric and Wavefunction Engineering of Electron Spin Lifetime in Colloidal Nanoplatelet Heterostructures. Advanced Science, 2024, 11, .	11.2	0

		CITATION REPORT		
#	Article		IF	CITATIONS
129	Single-photon superradiance in individual caesium lead halide quantum dots. Nature, 20	024, 626, 535-541.	27.8	1
130	Direct linearly polarized electroluminescence from perovskite nanoplatelet superlattice: Photonics, 0, , .	s. Nature	31.4	Ο
131	Fourier imaging for nanophotonics. Nanophotonics, 2024, 13, 841-858.		6.0	0