The TREM2-APOE Pathway Drives the Transcriptional I in Neurodegenerative Diseases

Immunity 47, 566-581.e9 DOI: 10.1016/j.immuni.2017.08.008

Citation Report

#	Article	IF	CITATIONS
1	TREM2 deficiency attenuates neuroinflammation and protects against neurodegeneration in a mouse model of tauopathy. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11524-11529.	3.3	328
2	Neurodegenerative signature. Nature Immunology, 2017, 18, 1189-1189.	7.0	0
3	A Tale of Two Genes: Microglial Apoe and Trem2. Immunity, 2017, 47, 398-400.	6.6	43
4	Molecular Mechanisms Modulating the Phenotype of Macrophages and Microglia. Frontiers in Immunology, 2017, 8, 1520.	2.2	142
5	Alzheimer's Disease: The Role of Microglia in Brain Homeostasis and Proteopathy. Frontiers in Neuroscience, 2017, 11, 680.	1.4	108
6	Amyloid-β Homeostasis Bridges Inflammation, Synaptic Plasticity Deficits and Cognitive Dysfunction in Multiple Sclerosis. Frontiers in Molecular Neuroscience, 2017, 10, 390.	1.4	21
7	The Role of Microglia and Macrophages in CNS Homeostasis, Autoimmunity, and Cancer. Journal of Immunology Research, 2017, 2017, 1-12.	0.9	140
8	Lysophosphatidic acid via LPA-receptor 5/protein kinase D-dependent pathways induces a motile and pro-inflammatory microglial phenotype. Journal of Neuroinflammation, 2017, 14, 253.	3.1	51
9	Microglia-mediated recovery from ALS-relevant motor neuron degeneration in a mouse model of TDP-43 proteinopathy. Nature Neuroscience, 2018, 21, 329-340.	7.1	220
10	The role of TAM family receptors and ligands in the nervous system: From development to pathobiology. , 2018, 188, 97-117.		57
11	Elevated TREM2 Gene Dosage Reprograms Microglia Responsivity and Ameliorates Pathological Phenotypes in Alzheimer's Disease Models. Neuron, 2018, 97, 1032-1048.e5.	3.8	246
12	TREM2 and Amyloid Beta: A Love-Hate Relationship. Neuron, 2018, 97, 991-993.	3.8	18
13	ApoE facilitates the microglial response to amyloid plaque pathology. Journal of Experimental Medicine, 2018, 215, 1047-1058.	4.2	194
14	Neurodegenerative diseases have genetic hallmarks of autoinflammatory disease. Human Molecular Genetics, 2018, 27, R108-R118.	1.4	21
15	The G protein-coupled receptor GPR34 – The past 20†years of a grownup. , 2018, 189, 71-88.		29
16	Fatal demyelinating disease is induced by monocyte-derived macrophages in the absence of TGF-Î ² signaling. Nature Immunology, 2018, 19, 1-7.	7.0	62
17	Innate immune memory in the brain shapes neurological disease hallmarks. Nature, 2018, 556, 332-338.	13.7	605
18	Athymic mice reveal a requirement for T-cell–microglia interactions in establishing a microenvironment supportive of <i>Nf1</i> low-grade glioma growth. Genes and Development, 2018, 32, 491-496.	2.7	45

ARTICLE IF CITATIONS # TREM2-activating antibodies abrogate the negative pleiotropic effects of the Alzheimer's disease variant Trem2R47H on murine myeloid cell function. Journal of Biological Chemistry, 2018, 293, 19 75 1.6 12620-12633. Exploring the genetics and non-cell autonomous mechanisms underlying ALS/FTLD. Cell Death and 5.0 Differentiation, 2018, 25, 648-662. High-Dimensional Single-Cell Mapping of Central Nervous System Immune Cells Reveals Distinct 21 6.6 638 Myeloid Subsets in Health, Aging, and Disease. Immunity, 2018, 48, 380-395.e6. Microglial Phenotypes and Functions in Multiple Sclerosis. Cold Spring Harbor Perspectives in 2.9 Medicine, 2018, 8, a028993. Innate immune alterations are elicited in microglial cells before plaque deposition in the Alzheimer's 23 1.6 81 disease mouse model 5xFAD. Scientific Reports, 2018, 8, 1550. Integrated biology approach reveals molecular and pathological interactions among Alzheimer's AÎ²42, Tau, TREM2, and TYROBP in Drosophila models. Genome Medicine, 2018, 10, 26. 3.6 New concepts in macrophage ontogeny in the adult neural retina. Cellular Immunology, 2018, 330, 25 1.4 13 79-85. Cholesterol signaling in single cells: lessons from STAR and sm-FISH. Journal of Molecular 1.1 26 19 Endocrinology, 2018, 60, R213-R235. Functional Studies of Missense TREM2 Mutations in Human Stem Cell-Derived Microglia. Stem Cell 27 2.3 124 Reports, 2018, 10, 1294-1307. Single-Cell RNA-Seq Reveals the Transcriptional Landscape and Heterogeneity of Aortic Macrophages 577 in Murine Atherosclerosis. Circulation Research, 2018, 122, 1661-1674. Microglia-Mediated Synapse Loss in Alzheimer's Disease. Journal of Neuroscience, 2018, 38, 2911-2919. 29 1.7 228 Differential contribution of microglia and monocytes in neurodegenerative diseases. Journal of 30 1.4 84 Neural Transmission, 2018, 125, 809-826. Microglia-Mediated Neuroprotection, TREM2 , and Alzheimer's Disease: Evidence From OpticalÂlmaging. $\mathbf{31}$ 0.7 84 Biological Psychiatry, 2018, 83, 377-387. Microglia in Alzheimer's disease. Journal of Cell Biology, 2018, 217, 459-472. 2.3 1,188 Single-cell RNA sequencing reveals microglia-like cells in cerebrospinal fluid during virologically 33 2.385 suppressed HIV. JCI Insight, 2018, 3, . Partial reduction of microglia does not affect tau pathology in aged mice. Journal of 34 3.1 Neuroinflammation, 2018, 15, 311. Developmental roles of microglia: A window into mechanisms of disease. Developmental Dynamics, 35 0.8 28 2019, 248, 98-117. Rusty Microglia: Trainers of Innate Immunity in Alzheimer's Disease. Frontiers in Neurology, 2018, 9, 1.1 1062

#	Article	IF	Citations
37	<scp>CSF</scp> progranulin increases in the course of Alzheimer's disease and is associated with <scp>sTREM</scp> 2, neurodegeneration and cognitive decline. EMBO Molecular Medicine, 2018, 10, .	3.3	64
38	Peripheral Inflammation Enhances Microglia Response and Nigral Dopaminergic Cell Death in an in vivo MPTP Model of Parkinson's Disease. Frontiers in Cellular Neuroscience, 2018, 12, 398.	1.8	67
39	Diverse Protein Profiles in CNS Myeloid Cells and CNS Tissue From Lipopolysaccharide- and Vehicle-Injected APPSWE/PS1ΔE9 Transgenic Mice Implicate Cathepsin Z in Alzheimer's Disease. Frontiers in Cellular Neuroscience, 2018, 12, 397.	1.8	26
40	Competitive repopulation of an empty microglial niche yields functionally distinct subsets of microglia-like cells. Nature Communications, 2018, 9, 4845.	5.8	148
41	Interplay Between the Unfolded Protein Response and Immune Function in the Development of Neurodegenerative Diseases. Frontiers in Immunology, 2018, 9, 2541.	2.2	32
42	The Role of Glial Cells and Synapse Loss in Mouse Models of Alzheimer's Disease. Frontiers in Cellular Neuroscience, 2018, 12, 473.	1.8	24
43	Genome-wide RNAseq study of the molecular mechanisms underlying microglia activation in response to pathological tau perturbation in the rTg4510 tau transgenic animal model. Molecular Neurodegeneration, 2018, 13, 65.	4.4	62
44	Microglia in Neurological Diseases: A Road Map to Brain-Disease Dependent-Inflammatory Response. Frontiers in Cellular Neuroscience, 2018, 12, 488.	1.8	482
45	Kinase-Based Taming of Brain Microglia Toward Disease-Modifying Therapy. Frontiers in Cellular Neuroscience, 2018, 12, 474.	1.8	10
46	New insights into the role of TREM2 in Alzheimer's disease. Molecular Neurodegeneration, 2018, 13, 66.	4.4	286
47	Molecular Mechanisms of Synaptotoxicity and Neuroinflammation in Alzheimer's Disease. Frontiers in Neuroscience, 2018, 12, 963.	1.4	65
48	Multiscale Analysis of Independent Alzheimer's Cohorts Finds Disruption of Molecular, Genetic, and Clinical Networks by Human Herpesvirus. Neuron, 2018, 99, 64-82.e7.	3.8	558
49	TREM2 in Alzheimer's Disease: Microglial Survival and Energy Metabolism. Frontiers in Aging Neuroscience, 2018, 10, 395.	1.7	64
50	TREM2 triggers microglial density and ageâ€related neuronal loss. Glia, 2019, 67, 539-550.	2.5	84
51	Engrafted parenchymal brain macrophages differ from microglia in transcriptome, chromatin landscape and response to challenge. Nature Communications, 2018, 9, 5206.	5.8	166
52	The Multifarious Role of Microglia in Brain Metastasis. Frontiers in Cellular Neuroscience, 2018, 12, 414.	1.8	25
53	Divergent Effects of Metformin on an Inflammatory Model of Parkinson's Disease. Frontiers in Cellular Neuroscience, 2018, 12, 440.	1.8	43
54	Traumatic Brain Injury in Aged Mice Induces Chronic Microglia Activation, Synapse Loss, and Complement-Dependent Memory Deficits. International Journal of Molecular Sciences, 2018, 19, 3753.	1.8	98

#	Article	IF	CITATIONS
55	Forced turnover of aged microglia induces an intermediate phenotype but does not rebalance CNS environmental cues driving priming to immune challenge. Acta Neuropathologica Communications, 2018, 6, 129.	2.4	96
56	Distinct Microglial Responses in Two Transgenic Murine Models of TAU Pathology. Frontiers in Cellular Neuroscience, 2018, 12, 421.	1.8	23
57	Microglia in Alzheimer's Disease: Risk Factors and Inflammation. Frontiers in Neurology, 2018, 9, 978.	1.1	96
58	Commentary: Multiscale Analysis of Independent Alzheimer's Cohorts Finds Disruption of Molecular, Genetic, and Clinical Networks by Human Herpesvirus. Frontiers in Molecular Neuroscience, 2018, 11, 340.	1.4	3
59	Inflammation: the link between comorbidities, genetics, and Alzheimer's disease. Journal of Neuroinflammation, 2018, 15, 276.	3.1	353
60	Alzheimer's disease (AD) therapeutics – 2: Beyond amyloid – Re-defining AD and its causality to discover effective therapeutics. Biochemical Pharmacology, 2018, 158, 376-401.	2.0	24
61	Caspases orchestrate microglia instrumental functions. Progress in Neurobiology, 2018, 171, 50-71.	2.8	27
62	The identity and function of microglia in neurodegeneration. Nature Immunology, 2018, 19, 1048-1058.	7.0	241
63	Blood-derived plasminogen drives brain inflammation and plaque deposition in a mouse model of Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9687-E9696.	3.3	51
64	Inflammation: Bridging Age, Menopause and APOEε4 Genotype to Alzheimer's Disease. Frontiers in Aging Neuroscience, 2018, 10, 312.	1.7	49
65	Microglia in neurodegeneration. Nature Neuroscience, 2018, 21, 1359-1369.	7.1	1,034
66	Modelling Sporadic Alzheimer's Disease Using Induced Pluripotent Stem Cells. Neurochemical Research, 2018, 43, 2179-2198.	1.6	27
67	VISTA expression by microglia decreases during inflammation and is differentially regulated in CNS diseases. Glia, 2018, 66, 2645-2658.	2.5	57
68	Role of triggering receptor expressed on myeloid cells 2 in neuroinflammation and neurodegeneration of the central nervous system. Clinical and Experimental Neuroimmunology, 2018, 9, 219-224.	0.5	1
69	Distinct microglia profile in Creutzfeldt–Jakob disease and Alzheimer's disease is independent of disease kinetics. Neuropathology, 2018, 38, 591-600.	0.7	3
70	Cytokines as Mediators of Neuroinflammation in Experimental Autoimmune Encephalomyelitis. Biochemistry (Moscow), 2018, 83, 1089-1103.	0.7	9
71	Epothilone B Benefits Nigral Dopaminergic Neurons by Attenuating Microglia Activation in the 6-Hydroxydopamine Lesion Mouse Model of Parkinson's Disease. Frontiers in Cellular Neuroscience, 2018, 12, 324.	1.8	20
72	Microglia in Alzheimer's Disease: A Role for Ion Channels. Frontiers in Neuroscience, 2018, 12, 676.	1.4	31

#	Article	IF	CITATIONS
73	Myeloid-derived suppressor cells control B cell accumulation in the central nervous system during autoimmunity. Nature Immunology, 2018, 19, 1341-1351.	7.0	82
74	Traumatic brain injuryâ€induced neuronal damage in the somatosensory cortex causes formation of rodâ€shaped microglia that promote astrogliosis and persistent neuroinflammation. Clia, 2018, 66, 2719-2736.	2.5	105
75	Insulin Resistance in Alzheimer's Disease. Frontiers in Neuroscience, 2018, 12, 830.	1.4	147
76	Glycoprotein NMB: a novel Alzheimer's disease associated marker expressed in a subset of activated microglia. Acta Neuropathologica Communications, 2018, 6, 108.	2.4	107
77	Rodent models for Alzheimer disease. Nature Reviews Neuroscience, 2018, 19, 583-598.	4.9	240
78	Unique microglia recovery population revealed by single-cell RNAseq following neurodegeneration. Acta Neuropathologica Communications, 2018, 6, 87.	2.4	72
79	How to reprogram microglia toward beneficial functions. Glia, 2018, 66, 2531-2549.	2.5	80
80	Inflammation as a central mechanism in Alzheimer's disease. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2018, 4, 575-590.	1.8	1,254
81	Microglial signatures and their role in health and disease. Nature Reviews Neuroscience, 2018, 19, 622-635.	4.9	599
82	The Trem2 R47H Alzheimer's risk variant impairs splicing and reduces Trem2 mRNA and protein in mice but not in humans. Molecular Neurodegeneration, 2018, 13, 49.	4.4	91
83	Singleâ€cell transcriptomics reveals distinct inflammationâ€induced microglia signatures. EMBO Reports, 2018, 19, .	2.0	186
84	Neurons under T Cell Attack Coordinate Phagocyte-Mediated Synaptic Stripping. Cell, 2018, 175, 458-471.e19.	13.5	136
85	Disease-Associated Microglia: A Universal Immune Sensor of Neurodegeneration. Cell, 2018, 173, 1073-1081.	13.5	765
86	Chronic stress as a risk factor for Alzheimer's disease: Roles of microglia-mediated synaptic remodeling, inflammation, and oxidative stress. Neurobiology of Stress, 2018, 9, 9-21.	1.9	255
87	A20 critically controls microglia activation and inhibits inflammasome-dependent neuroinflammation. Nature Communications, 2018, 9, 2036.	5.8	152
88	A Combination of Ontogeny and CNS Environment Establishes Microglial Identity. Neuron, 2018, 98, 1170-1183.e8.	3.8	371
89	TREMendous 2 Be Social. Immunity, 2018, 48, 842-843.	6.6	3
90	The Microglial Response to Neurodegenerative Disease. Advances in Immunology, 2018, 139, 1-50.	1.1	22

#	Article	IF	CITATIONS
91	Neuronal integrity and complement control synaptic material clearance by microglia after CNS injury. Journal of Experimental Medicine, 2018, 215, 1789-1801.	4.2	85
93	Quantitative proteomics of acutely-isolated mouse microglia identifies novel immune Alzheimer's disease-related proteins. Molecular Neurodegeneration, 2018, 13, 34.	4.4	100
94	Epigenetic regulation of brain region-specific microglia clearance activity. Nature Neuroscience, 2018, 21, 1049-1060.	7.1	318
95	A Perspective of AMD Through the Eyes of Immunology. , 2018, 59, AMD83.		52
96	TREM2-Dependent Effects on Microglia in Alzheimer's Disease. Frontiers in Aging Neuroscience, 2018, 10, 202.	1.7	60
97	Neuroinflammation: Microglia and T Cells Get Ready to Tango. Frontiers in Immunology, 2017, 8, 1905.	2.2	257
98	Brain-Resident Microglia and Blood-Borne Macrophages Orchestrate Central Nervous System Inflammation in Neurodegenerative Disorders and Brain Cancer. Frontiers in Immunology, 2018, 9, 697.	2.2	164
99	Microglia and Beyond: Innate Immune Cells As Regulators of Brain Development and Behavioral Function. Frontiers in Immunology, 2018, 9, 698.	2.2	359
100	Microglia in Alzheimer's Disease: Activated, Dysfunctional or Degenerative. Frontiers in Aging Neuroscience, 2018, 10, 140.	1.7	160
101	Automated Morphological Analysis of Microglia After Stroke. Frontiers in Cellular Neuroscience, 2018, 12, 106.	1.8	169
102	Comparing Effects of Transforming Growth Factor β1 on Microglia From Rat and Mouse: Transcriptional Profiles and Potassium Channels. Frontiers in Cellular Neuroscience, 2018, 12, 115.	1.8	33
103	Neuronal Dysfunction and Behavioral Abnormalities Are Evoked by Neural Cells and Aggravated by Inflammatory Microglia in Peroxisomal β-Oxidation Deficiency. Frontiers in Cellular Neuroscience, 2018, 12, 136.	1.8	13
104	Reconsideration of Amyloid Hypothesis and Tau Hypothesis in Alzheimer's Disease. Frontiers in Neuroscience, 2018, 12, 25.	1.4	591
105	Microglia Gone Rogue: Impacts on Psychiatric Disorders across the Lifespan. Frontiers in Molecular Neuroscience, 2017, 10, 421.	1.4	151
106	Microglial Phagocytosis and Its Regulation: A Therapeutic Target in Parkinson's Disease?. Frontiers in Molecular Neuroscience, 2018, 11, 144.	1.4	130
107	Neuroinflammatory responses in experimental and human stroke lesions. Journal of Neuroimmunology, 2018, 323, 10-18.	1.1	52
108	Microglia and Aging: The Role of the TREM2–DAP12 and CX3CL1-CX3CR1 Axes. International Journal of Molecular Sciences, 2018, 19, 318.	1.8	154
109	Is †friendly fire' in the brain provoking Alzheimer's disease?. Nature, 2018, 556, 426-428.	13.7	38

#	Article	IF	CITATIONS
110	Identification and therapeutic modulation of a pro-inflammatory subset of disease-associated-microglia in Alzheimer's disease. Molecular Neurodegeneration, 2018, 13, 24.	4.4	267
111	The role of TREM2 in Alzheimer's disease and other neurodegenerative disorders. Lancet Neurology, The, 2018, 17, 721-730.	4.9	161
112	The Trem2 R47H variant confers loss-of-function-like phenotypes in Alzheimer's disease. Molecular Neurodegeneration, 2018, 13, 29.	4.4	147
113	Highâ€density lipoprotein mimetic peptide 4F mitigates amyloidâ€Î²â€induced inhibition of apolipoprotein E secretion and lipidation in primary astrocytes and microglia. Journal of Neurochemistry, 2018, 147, 647-662.	2.1	31
114	Apolipoprotein E Deficiency Exacerbates Spinal Cord Injury in Mice: Inflammatory Response and Oxidative Stress Mediated by NF-1ºB Signaling Pathway. Frontiers in Cellular Neuroscience, 2018, 12, 142.	1.8	35
115	The Microglial Innate Immune Receptor TREM2 Is Required for Synapse Elimination and Normal Brain Connectivity. Immunity, 2018, 48, 979-991.e8.	6.6	436
116	Reduced Smoothened level rescues AÎ ² -induced memory deficits and neuronal inflammation in animal models of Alzheimer's disease. Journal of Genetics and Genomics, 2018, 45, 237-246.	1.7	8
117	CD200-, CX3CL1-, and TREM2-mediated neuron-microglia interactions and their involvements in Alzheimer's disease. Reviews in the Neurosciences, 2018, 29, 837-848.	1.4	28
118	Orthologous proteins of experimental de- and remyelination are differentially regulated in the CSF proteome of multiple sclerosis subtypes. PLoS ONE, 2018, 13, e0202530.	1.1	28
119	Interplay between innate immunity and Alzheimer disease: APOE and TREM2 in the spotlight. Nature Reviews Immunology, 2018, 18, 759-772.	10.6	394
120	An Overview of in vitro Methods to Study Microglia. Frontiers in Cellular Neuroscience, 2018, 12, 242.	1.8	159
121	The glycoprotein GPNMB is selectively elevated in the substantia nigra of Parkinson's disease patients and increases after lysosomal stress. Neurobiology of Disease, 2018, 120, 1-11.	2.1	85
122	Role of metabolic programming in the modulation of microglia phagocytosis by lipids. Prostaglandins Leukotrienes and Essential Fatty Acids, 2018, 135, 63-73.	1.0	34
123	The Kaleidoscope of Microglial Phenotypes. Frontiers in Immunology, 2018, 9, 1753.	2.2	221
124	Microglial TREM2/DAP12 Signaling: A Double-Edged Sword in Neural Diseases. Frontiers in Cellular Neuroscience, 2018, 12, 206.	1.8	186
125	NFâ€ÎºB activation in astrocytes drives a stageâ€specific beneficial neuroimmunological response in ALS. EMBO Journal, 2018, 37, .	3.5	108
126	Triggering receptor expressed on myeloid cells 2 (TREM2): a potential therapeutic target for Alzheimer disease?. Expert Opinion on Therapeutic Targets, 2018, 22, 587-598.	1.5	27
127	The Neuro-Immune-Regulators (NIREGs) Promote Tissue Resilience; a Vital Component of the Host's Defense Strategy against Neuroinflammation. Journal of NeuroImmune Pharmacology, 2018, 13, 309-329.	2.1	17

#	Article	IF	CITATIONS
128	Microglia inhibit photoreceptor cell death and regulate immune cell infiltration in response to retinal detachment. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6264-E6273.	3.3	104
129	Proâ€inflammatory activation of microglia in the brain of patients with sepsis. Neuropathology and Applied Neurobiology, 2019, 45, 278-290.	1.8	76
130	Prospects and challenges of imaging neuroinflammation beyond TSPO in Alzheimer's disease. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 2831-2847.	3.3	45
131	Hypothesis: cerebrospinal fluid protein markers suggest a pathway toward symptomatic resilience to AD pathology. Alzheimer's and Dementia, 2019, 15, 1160-1171.	0.4	12
132	The <i>MS4A</i> gene cluster is a key modulator of soluble TREM2 and Alzheimer's disease risk. Science Translational Medicine, 2019, 11, .	5.8	170
133	Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nature Reviews Neurology, 2019, 15, 501-518.	4.9	734
134	Small Molecule Binding to Alzheimer Risk Factor CD33 Promotes Aβ Phagocytosis. IScience, 2019, 19, 110-118.	1.9	59
135	The interplay between microglial states and major risk factors in Alzheimer's disease through the eyes of single-cell RNA-sequencing: beyond black and white. Journal of Neurophysiology, 2019, 122, 1291-1296.	0.9	7
136	Microglial subtypes: diversity within the microglial community. EMBO Journal, 2019, 38, e101997.	3.5	345
137	Sustained microglial depletion with CSF1R inhibitor impairs parenchymal plaque development in an Alzheimer's disease model. Nature Communications, 2019, 10, 3758.	5.8	478
138	Blood-brain barrier and innate immunity in the pathogenesis of Alzheimer's disease. Progress in Molecular Biology and Translational Science, 2019, 168, 99-145.	0.9	23
139	Neuroinflammation in frontotemporal dementia. Nature Reviews Neurology, 2019, 15, 540-555.	4.9	159
140	Transcriptional regulation of homeostatic and diseaseâ€associatedâ€microglial genes by IRF1, LXRβ, and CEBPα. Glia, 2019, 67, 1958-1975.	2.5	48
141	Recent Developments in TSPO PET Imaging as A Biomarker of Neuroinflammation in Neurodegenerative Disorders. International Journal of Molecular Sciences, 2019, 20, 3161.	1.8	173
142	TREM2 Acts Downstream of CD33 in Modulating Microglial Pathology in Alzheimer's Disease. Neuron, 2019, 103, 820-835.e7.	3.8	222
143	Targeting apolipoprotein E for treating Alzheimer's disease. Neuroscience Letters, 2019, 709, 134366.	1.0	6
144	Differential Signaling Mediated by ApoE2, ApoE3, and ApoE4 in Human Neurons Parallels Alzheimer's Disease Risk. Journal of Neuroscience, 2019, 39, 7408-7427.	1.7	85
145	Impact of TREM2 risk variants on brain region-specific immune activation and plaque microenvironment in Alzheimer's disease patient brain samples. Acta Neuropathologica, 2019, 138, 613-630.	3.9	68

#	Article	IF	CITATIONS
146	Non-coding variability at the APOE locus contributes to the Alzheimer's risk. Nature Communications, 2019, 10, 3310.	5.8	91
147	Development of a Chimeric Model to Study and Manipulate Human Microglia InÂVivo. Neuron, 2019, 103, 1016-1033.e10.	3.8	218
148	Molecular Mechanisms of Microglial Motility: Changes in Ageing and Alzheimer's Disease. Cells, 2019, 8, 639.	1.8	93
150	Direct and indirect effects of lipids on microglia function. Neuroscience Letters, 2019, 708, 134348.	1.0	23
151	The pro-remyelination properties of microglia in the central nervous system. Nature Reviews Neurology, 2019, 15, 447-458.	4.9	230
152	TREM2 is required for microglial instruction of astrocytic synaptic engulfment in neurodevelopment. Clia, 2019, 67, 1873-1892.	2.5	54
153	Intersection of pathological tau and microglia at the synapse. Acta Neuropathologica Communications, 2019, 7, 109.	2.4	119
154	Lack of hepatic apoE does not influence early Aβ deposition: observations from a new APOE knock-in model. Molecular Neurodegeneration, 2019, 14, 37.	4.4	76
155	Myeloperoxidase Deficiency Inhibits Cognitive Decline in the 5XFAD Mouse Model of Alzheimer's Disease. Frontiers in Neuroscience, 2019, 13, 990.	1.4	39
156	Reformulating Pro-Oxidant Microglia in Neurodegeneration. Journal of Clinical Medicine, 2019, 8, 1719.	1.0	47
157	Microglia and the aging brain: are senescent microglia the key to neurodegeneration?. Journal of Neurochemistry, 2019, 151, 676-688.	2.1	150
158	TET2 Regulates the Neuroinflammatory Response in Microglia. Cell Reports, 2019, 29, 697-713.e8.	2.9	74
159	Microglia: Same same, but different. Journal of Experimental Medicine, 2019, 216, 2223-2225.	4.2	13
160	Microglia as Dynamic Cellular Mediators of Brain Function. Trends in Molecular Medicine, 2019, 25, 967-979.	3.5	107
161	Microglia drive APOE-dependent neurodegeneration in a tauopathy mouse model. Journal of Experimental Medicine, 2019, 216, 2546-2561.	4.2	244
162	Phenotypic Expansion in Nasu-Hakola Disease: Immunological Findings in Three Patients and Proposal of a Unifying Pathogenic Hypothesis. Frontiers in Immunology, 2019, 10, 1685.	2.2	15
163	<i>N</i> , <i>N</i> ′-Diacetyl- <i>p</i> -phenylenediamine restores microglial phagocytosis and improves cognitive defects in Alzheimer's disease transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23426-23436.	3.3	34
164	Decreased microglial Wnt/ \hat{l}^2 -catenin signalling drives microglial pro-inflammatory activation in the developing brain. Brain, 2019, 142, 3806-3833.	3.7	97

#	Article	IF	CITATIONS
165	Heterozygous <i>Tbk1</i> loss has opposing effects in early and late stages of ALS in mice. Journal of Experimental Medicine, 2019, 216, 267-278.	4.2	57
166	Increased soluble TREM2 in cerebrospinal fluid is associated with reduced cognitive and clinical decline in Alzheimer's disease. Science Translational Medicine, 2019, 11, .	5.8	192
167	Dietary inulin alters the gut microbiome, enhances systemic metabolism and reduces neuroinflammation in an APOE4 mouse model. PLoS ONE, 2019, 14, e0221828.	1.1	78
169	Neurodegeneration and Neuro-Regeneration—Alzheimer's Disease and Stem Cell Therapy. International Journal of Molecular Sciences, 2019, 20, 4272.	1.8	78
170	Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer's disease progression. Cell Research, 2019, 29, 787-803.	5.7	706
171	CSF1R inhibitor JNJ-40346527 attenuates microglial proliferation and neurodegeneration in P301S mice. Brain, 2019, 142, 3243-3264.	3.7	156
172	Microglia in Brain Development, Homeostasis, and Neurodegeneration. Annual Review of Genetics, 2019, 53, 263-288.	3.2	121
173	Nutrients in the Prevention of Alzheimer's Disease. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-20.	1.9	66
174	PSEN1ΔE9, APPswe, and APOE4 Confer Disparate Phenotypes in Human iPSC-Derived Microglia. Stem Cell Reports, 2019, 13, 669-683.	2.3	132
175	When encephalitogenic T cells collaborate with microglia in multiple sclerosis. Nature Reviews Neurology, 2019, 15, 704-717.	4.9	100
176	Central Nervous System Remyelination: Roles of Glia and Innate Immune Cells. Frontiers in Molecular Neuroscience, 2019, 12, 225.	1.4	49
177	TREM Receptors Connecting Bowel Inflammation to Neurodegenerative Disorders. Cells, 2019, 8, 1124.	1.8	35
178	Alzheimer Disease: An Update on Pathobiology and Treatment Strategies. Cell, 2019, 179, 312-339.	13.5	1,675
179	Shared pathways for neuroprogression and somatoprogression in neuropsychiatric disorders. Neuroscience and Biobehavioral Reviews, 2019, 107, 862-882.	2.9	74
180	Microglia Biology: One Century of Evolving Concepts. Cell, 2019, 179, 292-311.	13.5	772
181	C9ORF72 protein function and immune dysregulation in amyotrophic lateral sclerosis. Neuroscience Letters, 2019, 713, 134523.	1.0	19
182	Anti-neuroinflammatory effects of a food-grade phenolic-enriched maple syrup extract in a mouse model of Alzheimer's disease. Nutritional Neuroscience, 2021, 24, 710-719.	1.5	20
183	Microglia in Alzheimer Disease: Well-Known Targets and New Opportunities. Frontiers in Aging Neuroscience, 2019, 11, 233.	1.7	228

#	Article	IF	CITATIONS
184	Microglial nodules provide the environment for pathogenic T cells in human encephalitis. Acta Neuropathologica, 2019, 137, 619-635.	3.9	51
185	Ion Channels and Receptors as Determinants of Microglial Function. Trends in Neurosciences, 2019, 42, 278-292.	4.2	69
186	Human iPSC application in Alzheimer's disease and Tau-related neurodegenerative diseases. Neuroscience Letters, 2019, 699, 31-40.	1.0	27
187	Inflammatory mechanisms in neurodegeneration. Journal of Neurochemistry, 2019, 149, 562-581.	2.1	85
188	Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation. Science, 2019, 363, .	6.0	583
189	Neuropathological correlates and genetic architecture of microglial activation in elderly human brain. Nature Communications, 2019, 10, 409.	5.8	121
190	Involvement of AMPâ€activated protein kinase in neuroinflammation and neurodegeneration in the adult and developing brain. International Journal of Developmental Neuroscience, 2019, 77, 48-59.	0.7	43
191	Complement 3+-astrocytes are highly abundant in prion diseases, but their abolishment led to an accelerated disease course and early dysregulation of microglia. Acta Neuropathologica Communications, 2019, 7, 83.	2.4	84
192	Microglial clearance of focal apoptotic synapses. Neuroscience Letters, 2019, 707, 134317.	1.0	46
193	C3- and CR3-dependent microglial clearance protects photoreceptors in retinitis pigmentosa. Journal of Experimental Medicine, 2019, 216, 1925-1943.	4.2	82
194	Proteomic signatures of neuroinflammation in Alzheimer's disease, multiple sclerosis and ischemic stroke. Expert Review of Proteomics, 2019, 16, 601-611.	1.3	14
195	Microglial Trem2 induces synaptic impairment at early stage and prevents amyloidosis at late stage in APP/PS1 mice. FASEB Journal, 2019, 33, 10425-10442.	0.2	42
196	Microglia express GPNMB in the brains of Alzheimer's disease and Nasu-Hakola disease. Intractable and Rare Diseases Research, 2019, 8, 120-128.	0.3	21
197	Do Microglial Sex Differences Contribute to Sex Differences in Neurodegenerative Diseases?. Trends in Molecular Medicine, 2019, 25, 741-749.	3.5	84
198	Central nervous system regeneration is driven by microglia necroptosis and repopulation. Nature Neuroscience, 2019, 22, 1046-1052.	7.1	215
199	Peripheral versus central nervous system APOE in Alzheimer's disease: Interplay across the blood-brain barrier. Neuroscience Letters, 2019, 708, 134306.	1.0	38
200	The A1 astrocyte paradigm: New avenues for pharmacological intervention in neurodegeneration. Movement Disorders, 2019, 34, 959-969.	2.2	68
201	Opposite microglial activation stages upon loss of <scp>PGRN</scp> or <scp>TREM</scp> 2 result in reduced cerebral glucose metabolism. EMBO Molecular Medicine, 2019, 11, .	3.3	87

#	Article	IF	CITATIONS
202	Phagocytosis of Apoptotic Cells Is Specifically Upregulated in ApoE4 Expressing Microglia in vitro. Frontiers in Cellular Neuroscience, 2019, 13, 181.	1.8	26
203	Microglia-neuron crosstalk: Signaling mechanism and control of synaptic transmission. Seminars in Cell and Developmental Biology, 2019, 94, 138-151.	2.3	124
204	Penehyclidine hydrochloride suppressed peripheral nerve injury-induced neuropathic pain by inhibiting microglial MAPK/p-p38/IL-1β pathway activation. Molecular Pain, 2019, 15, 174480691985826.	1.0	3
205	The Transcriptional Landscape of Microglial Genes in Aging and Neurodegenerative Disease. Frontiers in Immunology, 2019, 10, 1170.	2.2	51
206	Temporal profiling of Kv1.3 channel expression in brain mononuclear phagocytes following ischemic stroke. Journal of Neuroinflammation, 2019, 16, 116.	3.1	19
207	Endo-lysosomal dysregulations and late-onset Alzheimer's disease: impact of genetic risk factors. Molecular Neurodegeneration, 2019, 14, 20.	4.4	144
208	Apolipoprotein E4, inhibitory network dysfunction, and Alzheimer's disease. Molecular Neurodegeneration, 2019, 14, 24.	4.4	111
209	Single-cell transcriptomic analysis of Alzheimer's disease. Nature, 2019, 570, 332-337.	13.7	1,528
210	Updating Neuroimmune Targets in Central Nervous System Dysfunction. Trends in Pharmacological Sciences, 2019, 40, 482-494.	4.0	19
211	APOE genotype and sex affect microglial interactions with plaques in Alzheimer's disease mice. Acta Neuropathologica Communications, 2019, 7, 82.	2.4	64
212	Developmental Apoptosis Promotes a Disease-Related Gene Signature and Independence from CSF1R Signaling in Retinal Microglia. Cell Reports, 2019, 27, 2002-2013.e5.	2.9	53
213	Sex-specific effects of microbiome perturbations on cerebral Aβ amyloidosis and microglia phenotypes. Journal of Experimental Medicine, 2019, 216, 1542-1560.	4.2	165
214	Next Generation Precision Medicine: CRISPR-mediated Genome Editing for the Treatment of Neurodegenerative Disorders. Journal of NeuroImmune Pharmacology, 2019, 14, 608-641.	2.1	22
215	The Major Risk Factors for Alzheimer's Disease: Age, Sex, and Genes Modulate the Microglia Response to Aβ Plaques. Cell Reports, 2019, 27, 1293-1306.e6.	2.9	527
216	Functional microglia neurotransmitters in amyotrophic lateral sclerosis. Seminars in Cell and Developmental Biology, 2019, 94, 121-128.	2.3	17
217	Ultrastructural evidence of microglial heterogeneity in Alzheimer's disease amyloid pathology. Journal of Neuroinflammation, 2019, 16, 87.	3.1	73
218	Galectin-3, a novel endogenous TREM2 ligand, detrimentally regulates inflammatory response in Alzheimer's disease. Acta Neuropathologica, 2019, 138, 251-273.	3.9	187
219	A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nature Neuroscience, 2019, 22, 1021-1035.	7.1	603

#	Article	IF	Citations
220	Microglia responses to interleukinâ€6 and type I interferons in neuroinflammatory disease. Glia, 2019, 67, 1821-1841.	2.5	63
221	Phagocytosis in the Brain: Homeostasis and Disease. Frontiers in Immunology, 2019, 10, 790.	2.2	206
222	Immune Signaling in Neurodegeneration. Immunity, 2019, 50, 955-974.	6.6	217
223	Essential contributions of enhancer genomic regulatory elements to microglial cell identity and functions. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2019, 11, e1449.	6.6	1
224	Regional vulnerability and spreading of hyperphosphorylated tau in seeded mouse brain. Neurobiology of Disease, 2019, 127, 398-409.	2.1	30
225	A Quarter Century of APOE and Alzheimer's Disease: Progress to Date and the Path Forward. Neuron, 2019, 101, 820-838.	3.8	338
226	Impaired αVβ8 and TGFβ signaling lead to microglial dysmaturation and neuromotor dysfunction. Journal of Experimental Medicine, 2019, 216, 900-915.	4.2	35
227	Soluble TREM2 ameliorates pathological phenotypes by modulating microglial functions in an Alzheimer's disease model. Nature Communications, 2019, 10, 1365.	5.8	217
228	Alzheimer's disease phospholipase C-gamma-2 (PLCG2) protective variant is a functional hypermorph. Alzheimer's Research and Therapy, 2019, 11, 16.	3.0	100
229	Gene-environment interactions in Alzheimer's disease: A potential path to precision medicine. , 2019, 199, 173-187.		90
230	Senescence in aging and disorders of the central nervous system. Translational Medicine of Aging, 2019, 3, 17-25.	0.6	17
231	Transcriptional profiling of human microglia reveals grey–white matter heterogeneity and multiple sclerosis-associated changes. Nature Communications, 2019, 10, 1139.	5.8	214
232	Microglia lacking a peroxisomal β-oxidation enzyme chronically alter their inflammatory profile without evoking neuronal and behavioral deficits. Journal of Neuroinflammation, 2019, 16, 61.	3.1	20
233	Microglial Function Is Distinct in Different Anatomical Locations during Retinal Homeostasis and Degeneration. Immunity, 2019, 50, 723-737.e7.	6.6	235
234	Exploiting microglial and peripheral immune cell crosstalk to treat Alzheimer's disease. Journal of Neuroinflammation, 2019, 16, 74.	3.1	125
235	Insulin Signaling Impairment in the Brain as a Risk Factor in Alzheimer's Disease. Frontiers in Aging Neuroscience, 2019, 11, 88.	1.7	77
236	Fragment-Based Discovery of an Apolipoprotein E4 (apoE4) Stabilizer. Journal of Medicinal Chemistry, 2019, 62, 4120-4130.	2.9	17
237	CD22 blockade restores homeostatic microglial phagocytosis in ageing brains. Nature, 2019, 568, 187-192.	13.7	283

# 238	ARTICLE Spatiotemporal dynamics of molecular pathology in amyotrophic lateral sclerosis. Science, 2019, 364, 89-93.	IF 6.0	Citations 297
239	Curcumin restores innate immune Alzheimer's disease risk gene expression to ameliorate Alzheimer pathogenesis. Neurobiology of Disease, 2019, 127, 432-448.	2.1	70
240	Microglia: Brain cells on the move. Progress in Neurobiology, 2019, 178, 101612.	2.8	75
241	A core transcriptional signature of human microglia: Derivation and utility in describing regionâ€dependent alterations associated with Alzheimer's disease. Glia, 2019, 67, 1240-1253.	2.5	67
242	Microglia in Alzheimer's disease: A target for immunotherapy. Journal of Leukocyte Biology, 2019, 106, 219-227.	1.5	78
243	The Role of APOE4 in Disrupting the Homeostatic Functions of Astrocytes and Microglia in Aging and Alzheimer's Disease. Frontiers in Aging Neuroscience, 2019, 11, 14.	1.7	174
244	Identification of Alzheimer's Disease-Related Genes Based on Data Integration Method. Frontiers in Genetics, 2018, 9, 703.	1.1	42
245	Microglia in Alzheimer's Disease: Exploring How Genetics and Phenotype Influence Risk. Journal of Molecular Biology, 2019, 431, 1805-1817.	2.0	166
246	Microglial inflammation and phagocytosis in Alzheimer's disease: Potential therapeutic targets. British Journal of Pharmacology, 2019, 176, 3515-3532.	2.7	85
247	Glial Contribution to Excitatory and Inhibitory Synapse Loss in Neurodegeneration. Frontiers in Cellular Neuroscience, 2019, 13, 63.	1.8	99
248	Priming Microglia for Innate Immune Memory in the Brain. Trends in Immunology, 2019, 40, 358-374.	2.9	145
249	The role of astroglia in Alzheimer's disease: pathophysiology and clinical implications. Lancet Neurology, The, 2019, 18, 406-414.	4.9	227
250	Genetic Risk Factors for Alzheimer Disease: Emerging Roles of Microglia in Disease Pathomechanisms. Advances in Experimental Medicine and Biology, 2019, 1118, 83-116.	0.8	34
251	Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature, 2019, 566, 388-392.	13.7	853
252	The Role of Apolipoprotein E Isoforms in Alzheimer's Disease. Journal of Alzheimer's Disease, 2019, 68, 459-471.	1.2	21
253	Microglia express TMEM119 in the brains of Nasu-Hakola disease. Intractable and Rare Diseases Research, 2019, 8, 260-265.	0.3	4
254	Estrés oxidativo, respuesta inmune, plasticidad sináptica y cognición en modelos transgénicos de la enfermedad de Alzheimer. NeurologÃa, 2019, , .	0.3	11
255	Unique primed status of microglia under the systemic autoimmune condition of lupus-prone mice. Arthritis Research and Therapy, 2019, 21, 303.	1.6	16

#	Article	IF	CITATIONS
256	The microbiota regulates murine inflammatory responses to toxin-induced CNS demyelination but has minimal impact on remyelination. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25311-25321.	3.3	29
257	Immunological signatures in frontotemporal lobar degeneration. Current Opinion in Neurology, 2019, 32, 272-278.	1.8	6
258	Comparative iTRAQ proteomics revealed proteins associated with lobed fin regeneration in Bichirs. Proteome Science, 2019, 17, 6.	0.7	0
259	Genetic perturbations of disease risk genes in mice capture transcriptomic signatures of late-onset Alzheimer's disease. Molecular Neurodegeneration, 2019, 14, 50.	4.4	31
260	Comparative profiling of the synaptic proteome from Alzheimer's disease patients with focus on the APOE genotype. Acta Neuropathologica Communications, 2019, 7, 214.	2.4	63
261	New insights on the disease contribution of neuroinflammation in amyotrophic lateral sclerosis. Current Opinion in Neurology, 2019, 32, 764-770.	1.8	20
262	IL-1β-driven amyloid plaque clearance is associated with an expansion of transcriptionally reprogrammed microglia. Journal of Neuroinflammation, 2019, 16, 261.	3.1	38
263	The Rules of Engagement: Do Microglia Seal the Fate in the Inverse Relation of Glioma and Alzheimer's Disease?. Frontiers in Cellular Neuroscience, 2019, 13, 522.	1.8	6
264	Frequency of the TREM2 R47H Variant in Various Neurodegenerative Disorders. Alzheimer Disease and Associated Disorders, 2019, 33, 327-330.	0.6	6
265	HHV-6A infection induces amyloid-beta expression and activation of microglial cells. Alzheimer's Research and Therapy, 2019, 11, 104.	3.0	48
266	A single-cell atlas of entorhinal cortex from individuals with Alzheimer's disease reveals cell-type-specific gene expression regulation. Nature Neuroscience, 2019, 22, 2087-2097.	7.1	591
267	The Role of APOE and TREM2 in Alzheimer′s Disease—Current Understanding and Perspectives. International Journal of Molecular Sciences, 2019, 20, 81.	1.8	123
268	Transcriptional and Epigenetic Regulation of Microglia in Health and Disease. Trends in Molecular Medicine, 2019, 25, 96-111.	3.5	76
269	Microglia in Central Nervous System Inflammation and Multiple Sclerosis Pathology. Trends in Molecular Medicine, 2019, 25, 112-123.	3.5	318
270	Developmental Heterogeneity of Microglia and Brain Myeloid Cells Revealed by Deep Single-Cell RNA Sequencing. Neuron, 2019, 101, 207-223.e10.	3.8	695
271	Microglia and amyloid precursor protein coordinate control of transient Candida cerebritis with memory deficits. Nature Communications, 2019, 10, 58.	5.8	78
272	Invited Review: APOE at the interface of inflammation, neurodegeneration and pathological protein spread in Alzheimer's disease. Neuropathology and Applied Neurobiology, 2019, 45, 327-346.	1.8	96
273	Sexual differentiation of microglia. Frontiers in Neuroendocrinology, 2019, 52, 156-164.	2.5	97

#	Article	IF	CITATIONS
274	Isolation and Culture of Microglia. Current Protocols in Immunology, 2019, 125, e70.	3.6	81
275	Activated toll-like receptor 4 is involved in oridonin-induced phagocytosis via promotion of migration and autophagy-lysosome pathway in RAW264.7 macrophages. International Immunopharmacology, 2019, 66, 99-108.	1.7	13
276	Human stem cell–derived monocytes and microgliaâ€like cells reveal impaired amyloid plaque clearance upon heterozygous or homozygous loss of TREM2. Alzheimer's and Dementia, 2019, 15, 453-464.	0.4	55
277	The involvement of microglia in Alzheimer's disease: a new dog in the fight. British Journal of Pharmacology, 2019, 176, 3533-3543.	2.7	27
278	Microglia metabolism in health and disease. Neurochemistry International, 2019, 130, 104331.	1.9	56
279	Loss of TREM2 function increases amyloid seeding but reduces plaque-associated ApoE. Nature Neuroscience, 2019, 22, 191-204.	7.1	358
280	Glycoprotein Non-Metastatic Protein B: An Emerging Biomarker for Lysosomal Dysfunction in Macrophages. International Journal of Molecular Sciences, 2019, 20, 66.	1.8	58
281	Beyond the neuron–cellular interactions early in Alzheimer disease pathogenesis. Nature Reviews Neuroscience, 2019, 20, 94-108.	4.9	237
282	Early increase of CSF sTREM2 in Alzheimer's disease is associated with tau related-neurodegeneration but not with amyloid-β pathology. Molecular Neurodegeneration, 2019, 14, 1.	4.4	253
283	Microglia Express Mu Opioid Receptor: Insights From Transcriptomics and Fluorescent Reporter Mice. Frontiers in Psychiatry, 2018, 9, 726.	1.3	54
284	Restoring microglial and astroglial homeostasis using DNA immunization in a Down Syndrome mouse model. Brain, Behavior, and Immunity, 2019, 75, 163-180.	2.0	19
285	Role of the CD200-CD200R Axis During Homeostasis and Neuroinflammation. Neuroscience, 2019, 405, 118-136.	1.1	76
286	Enforced microglial depletion and repopulation as a promising strategy for the treatment of neurological disorders. Glia, 2019, 67, 217-231.	2.5	79
287	Proteomics of neurodegenerative diseases: analysis of human postâ€mortem brain. Journal of Neurochemistry, 2019, 151, 435-445.	2.1	48
288	Dual functions of microglia in the formation and refinement of neural circuits during development. International Journal of Developmental Neuroscience, 2019, 77, 18-25.	0.7	19
289	The Evolving Dialogue of Microglia and Neurons in Alzheimer's Disease: Microglia as Necessary Transducers of Pathology. Neuroscience, 2019, 405, 24-34.	1.1	60
290	<i><scp>APOE</scp></i> ε <i>4</i> is also required in <i><scp>TREM</scp>2 R47H</i> variant carriers for Alzheimer's disease to develop. Neuropathology and Applied Neurobiology, 2019, 45, 183-186.	1.8	12
291	Could Alzheimer's Disease Originate in the Periphery and If So How So?. Molecular Neurobiology, 2019, 56, 406-434.	1.9	71

#	Article	IF	CITATIONS
292	Proteome-Scale Mapping of Perturbed Proteostasis in Living Cells. Cold Spring Harbor Perspectives in Biology, 2020, 12, a034124.	2.3	6
293	The role of TREM2 in Alzheimer's disease; evidence from transgenic mouse models. Neurobiology of Aging, 2020, 86, 39-53.	1.5	25
294	Innate immune response in retinal homeostasis and inflammatory disorders. Progress in Retinal and Eye Research, 2020, 74, 100778.	7.3	63
295	Microglia, autonomic nervous system, immunity and hypertension: Is there a link?. Pharmacological Research, 2020, 155, 104451.	3.1	26
296	KCNH2-3.1 mediates aberrant complement activation and impaired hippocampal-medial prefrontal circuitry associated with working memory deficits. Molecular Psychiatry, 2020, 25, 206-229.	4.1	13
297	Microglia in developing white matter and perinatal brain injury. Neuroscience Letters, 2020, 714, 134539.	1.0	25
298	Linking APOE-ε4, blood-brain barrier dysfunction, and inflammation to Alzheimer's pathology. Neurobiology of Aging, 2020, 85, 96-103.	1.5	41
299	Microglia Adopt Longitudinal Transcriptional Changes After Traumatic Brain Injury. Journal of Surgical Research, 2020, 246, 113-122.	0.8	18
300	Propranolol diminished severity of rat EAE by enhancing immunoregulatory/protective properties of spinal cord microglia. Neurobiology of Disease, 2020, 134, 104665.	2.1	15
301	Inhibition of inflammatory cells delays retinal degeneration in experimental retinal vein occlusion in mice. Glia, 2020, 68, 574-588.	2.5	22
302	NG2 glia are required for maintaining microglia homeostatic state. Glia, 2020, 68, 345-355.	2.5	52
303	Pathology of inflammatory diseases of the nervous system: Human disease versus animal models. Glia, 2020, 68, 830-844.	2.5	33
304	A rare heterozygous <i>TREM2</i> coding variant identified in familial clustering of dementia affects an intrinsically disordered protein region and function of TREM2. Human Mutation, 2020, 41, 169-181.	1.1	4
305	A 20-Year Journey from Axonal Injury to Neurodegenerative Diseases and the Prospect of Immunotherapy for Combating Alzheimer's Disease. Journal of Immunology, 2020, 204, 243-250.	0.4	26
306	Neuroimmunity in amyotrophic lateral sclerosis: focus on microglia. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2020, 21, 159-166.	1.1	10
307	Brain Parenchymal and Extraparenchymal Macrophages in Development, Homeostasis, and Disease. Journal of Immunology, 2020, 204, 294-305.	0.4	40
308	TREM2 Regulates Microglial Cholesterol Metabolism upon Chronic Phagocytic Challenge. Neuron, 2020, 105, 837-854.e9.	3.8	391
309	Transglutaminase 2 limits the extravasation and the resultant myocardial fibrosis associated with factor XIII-A deficiency. Atherosclerosis, 2020, 294, 1-9.	0.4	10

#	Article	IF	CITATIONS
310	Targeted Complement Inhibition at Synapses Prevents Microglial Synaptic Engulfment and Synapse Loss in Demyelinating Disease. Immunity, 2020, 52, 167-182.e7.	6.6	244
311	Plasma biomarkers of astrocytic and neuronal dysfunction in early―and lateâ€onset Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, 681-695.	0.4	143
312	Cerebrospinal fluid progranulin is associated with increased cortical thickness in early stages of Alzheimer's disease. Neurobiology of Aging, 2020, 88, 61-70.	1.5	23
313	Diabetes as a risk factor for Alzheimer's disease in the Middle East and its shared pathological mediators. Saudi Journal of Biological Sciences, 2020, 27, 736-750.	1.8	53
314	Microglial microRNAs mediate sex-specific responses to tau pathology. Nature Neuroscience, 2020, 23, 167-171.	7.1	79
315	The role of gut microbiota, butyrate and proton pump inhibitors in amyotrophic lateral sclerosis: a systematic review. International Journal of Neuroscience, 2020, 130, 727-735.	0.8	14
316	Species differences in immuneâ€mediated CNS tissue injury and repair: A (neuro)inflammatory topic. Glia, 2020, 68, 811-829.	2.5	28
317	Gut Microbiota: From the Forgotten Organ to a Potential Key Player in the Pathology of Alzheimer's Disease. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 1232-1241.	1.7	61
318	Microglia, Lifestyle Stress, and Neurodegeneration. Immunity, 2020, 52, 222-240.	6.6	174
319	The effects of statins on microglial cells to protect against neurodegenerative disorders: A mechanistic review. BioFactors, 2020, 46, 309-325.	2.6	75
320	Longitudinal transcriptomic analysis of altered pathways in a CHMP2Bintron5-based model of ALS-FTD. Neurobiology of Disease, 2020, 136, 104710.	2.1	3
321	CSF sTREM2 and Tau Work Together in Predicting Increased Temporal Lobe Atrophy in Older Adults. Cerebral Cortex, 2020, 30, 2295-2306.	1.6	15
322	Amyloid-β-independent regulators of tau pathology in Alzheimer disease. Nature Reviews Neuroscience, 2020, 21, 21-35.	4.9	338
323	Peripherally derived angiotensin converting enzyme-enhanced macrophages alleviate Alzheimer-related disease. Brain, 2020, 143, 336-358.	3.7	52
324	Infiltrating Hematogenous Macrophages Aggregate Around β-Amyloid Plaques in an Age- and Sex-Dependent Manner in a Mouse Model of Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 2020, 79, 1147-1162.	0.9	6
325	Single-Cell RNA Sequencing Reveals the Diversity of the Immunological Landscape following Central Nervous System Infection by a Murine Coronavirus. Journal of Virology, 2020, 94, .	1.5	19
326	Astaxanthin Suppresses PM2.5-Induced Neuroinflammation by Regulating Akt Phosphorylation in BV-2 Microglial Cells. International Journal of Molecular Sciences, 2020, 21, 7227.	1.8	45
327	Metabolic needs of brainâ€infiltrating leukocytes and microglia in multiple sclerosis. Journal of Neurochemistry, 2021, 158, 14-24.	2.1	8

#	Article	IF	CITATIONS
328	Regulator of G protein signaling 10: Structure, expression and functions in cellular physiology and diseases. Cellular Signalling, 2020, 75, 109765.	1.7	20
329	The microbiota–microglia axis in central nervous system disorders. Brain Pathology, 2020, 30, 1159-1177.	2.1	52
330	Microglial autophagy–associated phagocytosis is essential for recovery from neuroinflammation. Science Immunology, 2020, 5, .	5.6	89
331	Serial Systemic Injections of Endotoxin (LPS) Elicit Neuroprotective Spinal Cord Microglia through IL-1-Dependent Cross Talk with Endothelial Cells. Journal of Neuroscience, 2020, 40, 9103-9120.	1.7	23
332	Microglia in Alzheimer's Disease in the Context of Tau Pathology. Biomolecules, 2020, 10, 1439.	1.8	56
333	Microglia and Macrophages in the Pathological Central and Peripheral Nervous Systems. Cells, 2020, 9, 2132.	1.8	43
334	Microglia and Astrocytes in Disease: Dynamic Duo or Partners in Crime?. Trends in Immunology, 2020, 41, 820-835.	2.9	146
335	Longitudinal monitoring of microglial/macrophage activation in ischemic rat brain using Iba-1-specific nanoparticle-enhanced magnetic resonance imaging. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, S117-S133.	2.4	17
336	BV-2 Microglial Cells Respond to Rotenone Toxic Insult by Modifying Pregnenolone, 5α-Dihydroprogesterone and Pregnanolone Levels. Cells, 2020, 9, 2091.	1.8	20
337	Microglia as therapeutic target in central nervous system disorders. Journal of Pharmacological Sciences, 2020, 144, 102-118.	1.1	19
338	Negative feedback control of neuronal activity by microglia. Nature, 2020, 586, 417-423.	13.7	520
339	Ketotherapeutics for neurodegenerative diseases. International Review of Neurobiology, 2020, 155, 141-168.	0.9	16
340	Single-Nucleus RNA-Seq Is Not Suitable for Detection of Microglial Activation Genes in Humans. Cell Reports, 2020, 32, 108189.	2.9	201
341	Deciphering the heterogeneity of myeloid cells during neuroinflammation in the singleâ€cell era. Brain Pathology, 2020, 30, 1192-1207.	2.1	9
342	Emerging Microglia Biology Defines Novel Therapeutic Approaches for Alzheimer's Disease. Neuron, 2020, 108, 801-821.	3.8	132
343	Transcription Factor Bhlhe40 in Immunity and Autoimmunity. Trends in Immunology, 2020, 41, 1023-1036.	2.9	67
344	The CNS and the Brain Tumor Microenvironment: Implications for Glioblastoma Immunotherapy. International Journal of Molecular Sciences, 2020, 21, 7358.	1.8	48
345	Network analysis of the progranulin-deficient mouse brain proteome reveals pathogenic mechanisms shared in human frontotemporal dementia caused by GRN mutations. Acta Neuropathologica Communications, 2020, 8, 163.	2.4	49

#	Article	IF	CITATIONS
346	Distinct non-inflammatory signature of microglia in post-mortem brain tissue of patients with major depressive disorder. Molecular Psychiatry, 2021, 26, 3336-3349.	4.1	40
347	Higher CSF sTREM2 attenuates ApoE4-related risk for cognitive decline and neurodegeneration. Molecular Neurodegeneration, 2020, 15, 57.	4.4	33
348	Interleukin-10 Prevents Pathological Microglia Hyperactivation following Peripheral Endotoxin Challenge. Immunity, 2020, 53, 1033-1049.e7.	6.6	93
349	Non-pathological roles of microglial TREM2/DAP12: TREM2/DAP12 regulates the physiological functions of microglia from development to aging. Neurochemistry International, 2020, 141, 104878.	1.9	17
350	Association of plasma YKL-40 with brain amyloid-β levels, memory performance, and sex in subjective memory complainers. Neurobiology of Aging, 2020, 96, 22-32.	1.5	18
351	Genetic Rescue of X-Linked Retinoschisis Mouse (<i>Rs1</i> ^{â^'/y}) Retina Induces Quiescence of the Retinal Microglial Inflammatory State Following AAV8- <i>RS1</i> Gene Transfer and Identifies Gene Networks Underlying Retinal Recovery. Human Gene Therapy, 2021, 32, 667-681.	1.4	21
352	Immunity in amyotrophic lateral sclerosis: blurred lines between excessive inflammation and inefficient immune responses. Brain Communications, 2020, 2, fcaa124.	1.5	53
353	Haploinsufficiency of TANK-binding kinase 1 prepones age-associated neuroinflammatory changes without causing motor neuron degeneration in aged mice. Brain Communications, 2020, 2, fcaa133.	1.5	9
354	Alzheimer's Patient Microglia Exhibit Enhanced Aging and Unique Transcriptional Activation. Cell Reports, 2020, 31, 107843.	2.9	222
355	Spatial Transcriptomics and In Situ Sequencing to Study Alzheimer's Disease. Cell, 2020, 182, 976-991.e19.	13.5	491
356	The endogenous neuronal complement inhibitor SRPX2 protects against complement-mediated synapse elimination during development. Nature Neuroscience, 2020, 23, 1067-1078.	7.1	66
357	miR155 regulation of behavior, neuropathology, and cortical transcriptomics in Alzheimer's disease. Acta Neuropathologica, 2020, 140, 295-315.	3.9	23
358	The role of glia in protein aggregation. Neurobiology of Disease, 2020, 143, 105015.	2.1	28
359	Meta-Analysis of Leukocyte Diversity in Atherosclerotic Mouse Aortas. Circulation Research, 2020, 127, 402-426.	2.0	207
360	From beta amyloid to altered proteostasis in Alzheimer's disease. Ageing Research Reviews, 2020, 64, 101126.	5.0	31
361	Analyzing microglial-associated Aβ in Alzheimer's disease transgenic mice with a novel mid-domain Aβ-antibody. Scientific Reports, 2020, 10, 10590.	1.6	3
362	NPC1 deficiency impairs cerebellar postnatal development of microglia and climbing fiber refinement in a mouse model of Niemann-Pick Type C disease. Development (Cambridge), 2020, 147, .	1.2	9
363	The Dueling Duo: IL10 and TNF Face Off in Microglial Recovery from Endotoxin Challenge. Immunity, 2020, 53, 897-899.	6.6	0

#	Article	IF	CITATIONS
364	An Overview on the Differential Interplay Among Neurons–Astrocytes–Microglia in CA1 and CA3 Hippocampus in Hypoxia/Ischemia. Frontiers in Cellular Neuroscience, 2020, 14, 585833.	1.8	48
365	Integrated Proteogenomic Characterization across Major Histological Types of Pediatric Brain Cancer. Cell, 2020, 183, 1962-1985.e31.	13.5	177
366	Modulation of β-Amyloid Fibril Formation in Alzheimer's Disease by Microglia and Infection. Frontiers in Molecular Neuroscience, 2020, 13, 609073.	1.4	35
367	Essential omega-3 fatty acids tune microglial phagocytosis of synaptic elements in the mouse developing brain. Nature Communications, 2020, 11, 6133.	5.8	88
368	Tauopathies: Deciphering Disease Mechanisms to Develop Effective Therapies. International Journal of Molecular Sciences, 2020, 21, 8948.	1.8	53
369	Microglia and Inflammatory Responses in Diabetic Retinopathy. Frontiers in Immunology, 2020, 11, 564077.	2.2	129
370	Potential caveats of putative microglia-specific markers for assessment of age-related cerebrovascular neuroinflammation. Journal of Neuroinflammation, 2020, 17, 366.	3.1	45
371	Do Alzheimer's Disease Risk Gene Products Actually Act in Microglia?. Frontiers in Aging Neuroscience, 2020, 12, 589196.	1.7	4
372	Danger-Sensing/Patten Recognition Receptors and Neuroinflammation in Alzheimer's Disease. International Journal of Molecular Sciences, 2020, 21, 9036.	1.8	30
373	Diabetic phenotype in mouse and humans reduces the number of microglia around β-amyloid plaques. Molecular Neurodegeneration, 2020, 15, 66.	4.4	22
374	Microglia Diversity in Health and Multiple Sclerosis. Frontiers in Immunology, 2020, 11, 588021.	2.2	44
375	A human cell atlas of fetal gene expression. Science, 2020, 370, .	6.0	436
376	High-Resolution Transcriptomic and Proteomic Profiling of Heterogeneity of Brain-Derived Microglia in Multiple Sclerosis. Frontiers in Molecular Neuroscience, 2020, 13, 583811.	1.4	18
377	TREM2 Alzheimer's variant R47H causes similar transcriptional dysregulation to knockout, yet only subtle functional phenotypes in human iPSC-derived macrophages. Alzheimer's Research and Therapy, 2020, 12, 151.	3.0	35
378	Interleukinâ€12/23 deficiency differentially affects pathology in male and female Alzheimer's diseaseâ€like mice. EMBO Reports, 2020, 21, e48530.	2.0	24
379	Profiling Microglia From Alzheimer's Disease Donors and Non-demented Elderly in Acute Human Postmortem Cortical Tissue. Frontiers in Molecular Neuroscience, 2020, 13, 134.	1.4	51
380	Novel therapeutic targets for amyotrophic lateral sclerosis: ribonucleoproteins and cellular autonomy. Expert Opinion on Therapeutic Targets, 2020, 24, 971-984.	1.5	3
381	Baicalein Attenuates Neuroinflammation by Inhibiting NLRP3/Caspase-1/GSDMD Pathway in MPTP-Induced Mice Model of Parkinson's Disease. International Journal of Neuropsychopharmacology, 2020, 23, 762-773.	1.0	94

#	Article	IF	CITATIONS
382	Trem2 deficiency differentially affects phenotype and transcriptome of human APOE3 and APOE4 mice. Molecular Neurodegeneration, 2020, 15, 41.	4.4	43
383	Interaction of Microglia and Astrocytes in the Neurovascular Unit. Frontiers in Immunology, 2020, 11, 1024.	2.2	265
384	Microglia: Agents of the CNS Pro-Inflammatory Response. Cells, 2020, 9, 1717.	1.8	174
385	Investigating Microglia in Health and Disease: Challenges and Opportunities. Trends in Immunology, 2020, 41, 785-793.	2.9	35
386	Mitochondrial Dysfunction, Neurogenesis, and Epigenetics: Putative Implications for Amyotrophic Lateral Sclerosis Neurodegeneration and Treatment. Frontiers in Neuroscience, 2020, 14, 679.	1.4	38
387	Human fetal microglia acquire homeostatic immune-sensing properties early in development. Science, 2020, 369, 530-537.	6.0	104
388	The Role of TGFÎ ² Signaling in Microglia Maturation and Activation. Trends in Immunology, 2020, 41, 836-848.	2.9	60
389	Different effects of constitutive and induced microbiota modulation on microglia in a mouse model of Alzheimer's disease. Acta Neuropathologica Communications, 2020, 8, 119.	2.4	75
390	Neurofibromatosis 1 - Mutant microglia exhibit sexually-dimorphic cyclic AMP-dependent purinergic defects. Neurobiology of Disease, 2020, 144, 105030.	2.1	10
391	Microglia facilitate loss of perineuronal nets in the Alzheimer's disease brain. EBioMedicine, 2020, 58, 102919.	2.7	123
392	A1 reactive astrocytes and a loss of TREM2 are associated with an early stage of pathology in a mouse model of cerebral amyloid angiopathy. Journal of Neuroinflammation, 2020, 17, 223.	3.1	36
393	Ubiquitin Ligase COP1 Suppresses Neuroinflammation by Degrading c/EBPβ in Microglia. Cell, 2020, 182, 1156-1169.e12.	13.5	77
394	Higher CSF sTREM2 and microglia activation are associated with slower rates of betaâ€amyloid accumulation. EMBO Molecular Medicine, 2020, 12, e12308.	3.3	73
395	Microglia Gone Awry: Linking Immunometabolism to Neurodegeneration. Frontiers in Cellular Neuroscience, 2020, 14, 246.	1.8	30
396	HighÂGlucose and Hypoxia-Mediated Damage to Human Brain Microvessel Endothelial Cells Induces an Altered, Pro-Inflammatory Phenotype in BV-2 Microglia In Vitro. Cellular and Molecular Neurobiology, 2022, 42, 985-996.	1.7	11
397	Loss of TREM2 Confers Resilience to Synaptic and Cognitive Impairment in Aged Mice. Journal of Neuroscience, 2020, 40, 9552-9563.	1.7	32
398	CSF1R signaling is a regulator of pathogenesis in progressive MS. Cell Death and Disease, 2020, 11, 904.	2.7	74
399	Gene expression and functional deficits underlie TREM2-knockout microglia responses in human models of Alzheimer's disease. Nature Communications, 2020, 11, 5370.	5.8	160

#	Article	IF	CITATIONS
400	Heterogeneity of Neuroinflammatory Responses in Amyotrophic Lateral Sclerosis: A Challenge or an Opportunity?. International Journal of Molecular Sciences, 2020, 21, 7923.	1.8	15
401	Microglial Phagocytosis: A Disease-Associated Process Emerging from Alzheimer's Disease Genetics. Trends in Neurosciences, 2020, 43, 965-979.	4.2	104
402	Sex- and region-biased depletion of microglia/macrophages attenuates CLN1 disease in mice. Journal of Neuroinflammation, 2020, 17, 323.	3.1	20
403	Enhanced expression of complement and microglial-specific genes prior to clinical progression in the MOC-experimental autoimmune encephalomyelitis model of multiple sclerosis. Brain Research Bulletin, 2020, 165, 63-69.	1.4	6
404	BV-2 Microglial Cells Overexpressing C9orf72 Hexanucleotide Repeat Expansion Produce DPR Proteins and Show Normal Functionality but No RNA Foci. Frontiers in Neurology, 2020, 11, 550140.	1.1	4
405	CELF2 regulates the species-specific alternative splicing of TREM2. Scientific Reports, 2020, 10, 17995.	1.6	14
406	Aging-Exacerbated Acute Axon and Myelin Injury Is Associated with Microglia-Derived Reactive Oxygen Species and Is Alleviated by the Generic Medication Indapamide. Journal of Neuroscience, 2020, 40, 8587-8600.	1.7	13
407	Plaque-associated myeloid cells derive from resident microglia in an Alzheimer's disease model. Journal of Experimental Medicine, 2020, 217, .	4.2	45
408	<i>Trem2</i> promotes anti-inflammatory responses in microglia and is suppressed under pro-inflammatory conditions. Human Molecular Genetics, 2020, 29, 3224-3248.	1.4	76
409	Human Pluripotent Stem Cell-Derived Neural Cells as a Relevant Platform for Drug Screening in Alzheimer's Disease. International Journal of Molecular Sciences, 2020, 21, 6867.	1.8	26
410	Microglial-associated responses to comorbid amyloid pathology and hyperhomocysteinemia in an aged knock-in mouse model of Alzheimer's disease. Journal of Neuroinflammation, 2020, 17, 274.	3.1	12
411	APOE and TREM2 regulate amyloid-responsive microglia in Alzheimer's disease. Acta Neuropathologica, 2020, 140, 477-493.	3.9	117
412	Mitochondrial Dysfunction and Alzheimer's Disease: Role of Microglia. Frontiers in Aging Neuroscience, 2020, 12, 252.	1.7	95
413	Exploring the VISTA of microglia: immune checkpoints in CNS inflammation. Journal of Molecular Medicine, 2020, 98, 1415-1430.	1.7	17
414	Single-cell mass cytometry of microglia in major depressive disorder reveals a non-inflammatory phenotype with increased homeostatic marker expression. Translational Psychiatry, 2020, 10, 310.	2.4	56
415	The Alzheimer's disease-associated protective Plcγ2-P522R variant promotes immune functions. Molecular Neurodegeneration, 2020, 15, 52.	4.4	48
416	Sex-dependent effect of <i>APOE</i> on Alzheimer's disease and other age-related neurodegenerative disorders. DMM Disease Models and Mechanisms, 2020, 13, .	1.2	49
417	Transcriptome Analyses in BV2 Microglial Cells Following Treatment With Amino-Terminal Fragments of Apolipoprotein E. Frontiers in Aging Neuroscience, 2020, 12, 256.	1.7	10

#	Article	IF	CITATIONS
418	Microglia Demonstrate Local Mixed Inflammation and a Defined Morphological Shift in an APP/PS1 Mouse Model. Journal of Alzheimer's Disease, 2020, 77, 1765-1781.	1.2	4
419	Hyperinflammation and Fibrosis in Severe COVID-19 Patients: Galectin-3, a Target Molecule to Consider. Frontiers in Immunology, 2020, 11, 2069.	2.2	66
420	Microglia-targeting nanotherapeutics for neurodegenerative diseases. APL Bioengineering, 2020, 4, 030902.	3.3	49
421	Innate immune response in neuronopathic forms of Gaucher disease confers resistance against viral-induced encephalitis. Acta Neuropathologica Communications, 2020, 8, 144.	2.4	8
422	Commentary: Trem2 Deletion Reduces Late-Stage Amyloid Plaque Accumulation, Elevates the Aβ42:Aβ40 Ratio, and Exacerbates Axonal Dystrophy and Dendritic Spine Loss in the PS2APP Alzheimer's Mouse Model. Frontiers in Aging Neuroscience, 2020, 12, 219.	1.7	11
423	A transcriptional toolbox for exploring peripheral neuroimmune interactions. Pain, 2020, 161, 2089-2106.	2.0	26
424	Single-cell mass cytometry reveals complex myeloid cell composition in active lesions of progressive multiple sclerosis. Acta Neuropathologica Communications, 2020, 8, 136.	2.4	35
425	Allelic Distribution of Genes for Apolipoprotein E and MTHFR in Patients with Alzheimer's Disease and Their Epistatic Interaction. Journal of Alzheimer's Disease, 2020, 77, 1095-1105.	1.2	3
426	γ-Secretase Modulatory Proteins: The Guiding Hand Behind the Running Scissors. Frontiers in Aging Neuroscience, 2020, 12, 614690.	1.7	12
427	How Microglia Manages Non-cell Autonomous Vicious Cycling of Aβ Toxicity in the Pathogenesis of AD. Frontiers in Molecular Neuroscience, 2020, 13, 593724.	1.4	7
428	Molecular Dysfunctions of Mitochondria-Associated Membranes (MAMs) in Alzheimer's Disease. International Journal of Molecular Sciences, 2020, 21, 9521.	1.8	34
429	Non-genetic Heterogeneity of Macrophages in Diseases—A Medical Perspective. Frontiers in Cell and Developmental Biology, 2020, 8, 613116.	1.8	10
430	Immovable Object Meets Unstoppable Force? Dialogue Between Resident and Peripheral Myeloid Cells in the Inflamed Brain. Frontiers in Immunology, 2020, 11, 600822.	2.2	10
431	Differential Roles of TREM2+ Microglia in Anterograde and Retrograde Axonal Injury Models. Frontiers in Cellular Neuroscience, 2020, 14, 567404.	1.8	12
432	Organotypic Brain Slice Culture Microglia Exhibit Molecular Similarity to Acutely-Isolated Adult Microglia and Provide a Platform to Study Neuroinflammation. Frontiers in Cellular Neuroscience, 2020, 14, 592005.	1.8	29
433	Synaptic Loss in Alzheimer's Disease: Mechanistic Insights Provided by Two-Photon in vivo Imaging of Transgenic Mouse Models. Frontiers in Cellular Neuroscience, 2020, 14, 592607.	1.8	47
434	A Diversity of Cell Types, Subtypes and Phenotypes in the Central Nervous System: The Importance of Studying Their Complex Relationships. Frontiers in Cellular Neuroscience, 2020, 14, 628347.	1.8	11
435	A high cerebrospinal fluid soluble TREM2 level is associated with slow clinical progression of Alzheimer's disease. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2020, 12, e12128.	1.2	16

#	Article	IF	CITATIONS
436	Space-Dependent Glia–Neuron Interplay in the Hippocampus of Transgenic Models of β-Amyloid Deposition. International Journal of Molecular Sciences, 2020, 21, 9441.	1.8	9
437	TLR4 Targeting as a Promising Therapeutic Strategy for Alzheimer Disease Treatment. Frontiers in Neuroscience, 2020, 14, 602508.	1.4	46
438	An epoxide hydrolase inhibitor reduces neuroinflammation in a mouse model of Alzheimer's disease. Science Translational Medicine, 2020, 12, .	5.8	77
439	Astrocyte-Derived Estrogen Regulates Reactive Astrogliosis and is Neuroprotective following Ischemic Brain Injury. Journal of Neuroscience, 2020, 40, 9751-9771.	1.7	70
440	APOE2: protective mechanism and therapeutic implications for Alzheimer's disease. Molecular Neurodegeneration, 2020, 15, 63.	4.4	110
441	Multi-omic comparison of Alzheimer's variants in human ESC–derived microglia reveals convergence at <i>APOE</i> . Journal of Experimental Medicine, 2020, 217, .	4.2	41
442	Axl receptor tyrosine kinase is a regulator of apolipoprotein E. Molecular Brain, 2020, 13, 66.	1.3	12
443	Cellular and Molecular Changes of Brain Metastases-Associated Myeloid Cells during Disease Progression and Therapeutic Response. IScience, 2020, 23, 101178.	1.9	32
444	Loss of homeostatic microglial phenotype in CSF1R-related Leukoencephalopathy. Acta Neuropathologica Communications, 2020, 8, 72.	2.4	42
445	Transcriptomics in Alzheimer's Disease: Aspects and Challenges. International Journal of Molecular Sciences, 2020, 21, 3517.	1.8	37
446	RNA-seq and network analysis reveal unique glial gene expression signatures during prion infection. Molecular Brain, 2020, 13, 71.	1.3	36
447	C9orf72 suppresses systemic and neural inflammation induced by gut bacteria. Nature, 2020, 582, 89-94.	13.7	182
448	Behavioral and electrophysiological evidence for a neuroprotective role of aquaporin-4 in the 5xFAD transgenic mice model. Acta Neuropathologica Communications, 2020, 8, 67.	2.4	27
449	Microglia depletion rapidly and reversibly alters amyloid pathology by modification of plaque compaction and morphologies. Neurobiology of Disease, 2020, 142, 104956.	2.1	76
450	Microglia and Wnt Pathways: Prospects for Inflammation in Alzheimer's Disease. Frontiers in Aging Neuroscience, 2020, 12, 110.	1.7	38
451	Mechanisms underlying progression in multiple sclerosis. Current Opinion in Neurology, 2020, 33, 277-285.	1.8	88
452	N-AS-triggered SPMs are direct regulators of microglia in a model of Alzheimer's disease. Nature Communications, 2020, 11, 2358.	5.8	31
453	The Role of P2X7 Receptor in Alzheimer's Disease. Frontiers in Molecular Neuroscience, 2020, 13, 94.	1.4	44

#	Article	IF	CITATIONS
454	The role of microglia in the development of neurodegeneration. Neurological Sciences, 2020, 41, 3609-3615.	0.9	36
455	Ocular hypertension suppresses homeostatic gene expression in optic nerve head microglia of DBA/2 J mice. Molecular Brain, 2020, 13, 81.	1.3	31
456	TREM2 activation attenuates neuroinflammation and neuronal apoptosis via PI3K/Akt pathway after intracerebral hemorrhage in mice. Journal of Neuroinflammation, 2020, 17, 168.	3.1	156
457	APOE ε4 genotype-dependent cerebrospinal fluid proteomic signatures in Alzheimer's disease. Alzheimer's Research and Therapy, 2020, 12, 65.	3.0	28
458	Time Course of Peripheral and Central Immune System Alterations in Paclitaxel-Treated Mice: Possible Involvement of Dysfunctional Microglia. Neurochemical Journal, 2020, 14, 204-214.	0.2	0
459	Shifting paradigms: The central role of microglia in Alzheimer's disease. Neurobiology of Disease, 2020, 143, 104962.	2.1	60
460	Vitamin D Regulates MerTK-Dependent Phagocytosis in Human Myeloid Cells. Journal of Immunology, 2020, 205, 398-406.	0.4	10
461	Differential regulation of TREM2 and CSF1R in CNS macrophages in an SIV/macaque model of HIV CNS disease. Journal of NeuroVirology, 2020, 26, 511-519.	1.0	6
462	Protective Role of Cerebrospinal Fluid Inflammatory Cytokines in Patients with Amnestic Mild Cognitive Impairment and Early Alzheimer's Disease Carrying Apolipoprotein E4 Genotype. Journal of Alzheimer's Disease, 2020, 76, 681-689.	1.2	27
463	The Physiology, Pathology, and Potential Therapeutic Applications of the TREM2 Signaling Pathway. Cell, 2020, 181, 1207-1217.	13.5	279
464	Radiation Triggers a Dynamic Sequence of Transient Microglial Alterations in Juvenile Brain. Cell Reports, 2020, 31, 107699.	2.9	23
465	Glia in neurodegeneration: Drivers of disease or along for the ride?. Neurobiology of Disease, 2020, 142, 104957.	2.1	56
466	Alzheimer's-associated PLCγ2 is a signaling node required for both TREM2 function and the inflammatory response in human microglia. Nature Neuroscience, 2020, 23, 927-938.	7.1	142
467	Evaluating the Effect of Interleukin-4 in the 3xTg Mouse Model of Alzheimer's Disease. Frontiers in Neuroscience, 2020, 14, 441.	1.4	9
468	Expedition into Taurine Biology: Structural Insights and Therapeutic Perspective of Taurine in Neurodegenerative Diseases. Biomolecules, 2020, 10, 863.	1.8	18
469	25-Hydroxycholesterol amplifies microglial IL-1β production in an apoE isoform-dependent manner. Journal of Neuroinflammation, 2020, 17, 192.	3.1	57
470	Microglia clear neuron-released α-synuclein via selective autophagy and prevent neurodegeneration. Nature Communications, 2020, 11, 1386.	5.8	279
471	A Novel Microglia-Specific Transcriptional Signature Correlates With Behavioral Deficits in Neuropsychiatric Lupus. Frontiers in Immunology, 2020, 11, 230.	2.2	27

#	Article	IF	CITATIONS
472	How microbiota shape microglial phenotypes and epigenetics. Clia, 2020, 68, 1655-1672.	2.5	44
473	Enhancing protective microglial activities with a dual function <scp>TREM</scp> 2 antibody to the stalk region. EMBO Molecular Medicine, 2020, 12, e11227.	3.3	155
474	<i>Toxoplasma</i> infection induces microgliaâ€neuron contact and the loss of perisomatic inhibitory synapses. Glia, 2020, 68, 1968-1986.	2.5	39
475	West Nile Virus-Induced Neurologic Sequelae—Relationship to Neurodegenerative Cascades and Dementias. Current Tropical Medicine Reports, 2020, 7, 25-36.	1.6	13
476	Neuroimmune Connections in Aging and Neurodegenerative Diseases. Trends in Immunology, 2020, 41, 300-312.	2.9	111
477	CD300f immunoreceptor is associated with major depressive disorder and decreased microglial metabolic fitness. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6651-6662.	3.3	21
478	Metabolic Reprograming of Microglia in the Regulation of the Innate Inflammatory Response. Frontiers in Immunology, 2020, 11, 493.	2.2	152
479	Chronic Peripheral Inflammation Causes a Region-Specific Myeloid Response in the Central Nervous System. Cell Reports, 2020, 30, 4082-4095.e6.	2.9	56
480	The Loss of TBK1 Kinase Activity in Motor Neurons or in All Cell Types Differentially Impacts ALS Disease Progression in SOD1 Mice. Neuron, 2020, 106, 789-805.e5.	3.8	69
481	Protective Microglial Subset in Development, Aging, and Disease: Lessons From Transcriptomic Studies. Frontiers in Immunology, 2020, 11, 430.	2.2	77
482	n-3 Polyunsaturated Fatty Acids and Their Derivates Reduce Neuroinflammation during Aging. Nutrients, 2020, 12, 647.	1.7	34
483	Progressive longâ€ŧerm spatial memory loss following repeat concussive and subconcussive brain injury in mice, associated with dorsal hippocampal neuron loss, microglial phenotype shift, and vascular abnormalities. European Journal of Neuroscience, 2021, 54, 5844-5879.	1.2	12
484	Microglial Homeostasis Requires Balanced CSF-1/CSF-2 Receptor Signaling. Cell Reports, 2020, 30, 3004-3019.e5.	2.9	53
485	SFPQ and Tau: critical factors contributing to rapid progression of Alzheimer's disease. Acta Neuropathologica, 2020, 140, 317-339.	3.9	45
486	Cellular senescence and Alzheimer disease: the egg and the chicken scenario. Nature Reviews Neuroscience, 2020, 21, 433-444.	4.9	132
487	HIV-1 Persistence and Chronic Induction of Innate Immune Responses in Macrophages. Viruses, 2020, 12, 711.	1.5	17
488	Association of <i>APOE</i> With Primary Open-Angle Glaucoma Suggests a Protective Effect for <i>APOE Îμ4</i> . , 2020, 61, 3.		23
489	Low-Dose Ionizing Radiation Modulates Microglia Phenotypes in the Models of Alzheimer's Disease. International Journal of Molecular Sciences, 2020, 21, 4532.	1.8	35

#	Article	IF	CITATIONS
490	Invited Review – Understanding cause and effect in Alzheimer's pathophysiology: Implications for clinical trials. Neuropathology and Applied Neurobiology, 2020, 46, 623-640.	1.8	20
491	TREM2 ectodomain and its soluble form in Alzheimer's disease. Journal of Neuroinflammation, 2020, 17, 204.	3.1	55
492	Functional analysis of CX3CR1 in human induced pluripotent stem (iPS) cellâ€derived microgliaâ€like cells. European Journal of Neuroscience, 2020, 52, 3667-3678.	1.2	14
493	The role of innate immunity in Alzheimer's disease. Immunological Reviews, 2020, 297, 225-246.	2.8	70
494	Microglia heterogeneity and neurodegeneration: The emerging paradigm of the role of immunity in Alzheimer's disease. Journal of Neuroimmunology, 2020, 341, 577185.	1.1	58
495	Amyloid-β, tau, and the cholinergic system in Alzheimer's disease: seeking direction in a tangle of clues. Reviews in the Neurosciences, 2020, 31, 391-413.	1.4	56
496	Using human induced pluripotent stem cells (hiPSCs) to investigate the mechanisms by which Apolipoprotein E (APOE) contributes to Alzheimer's disease (AD) risk. Neurobiology of Disease, 2020, 138, 104788.	2.1	23
497	Investigating microglia during motor neuron degeneration using a zebrafish model. Micron, 2020, 133, 102852.	1.1	4
498	Inhibition of colony stimulating factor 1 receptor corrects maternal inflammation-induced microglial and synaptic dysfunction and behavioral abnormalities. Molecular Psychiatry, 2021, 26, 1808-1831.	4.1	44
499	Activated Bone Marrow-Derived Macrophages Eradicate Alzheimer's-Related AÎ ² 42 Oligomers and Protect Synapses. Frontiers in Immunology, 2020, 11, 49.	2.2	32
500	Plasma membrane receptors of tissue macrophages: functions and role in pathology. Journal of Pathology, 2020, 250, 656-666.	2.1	14
501	Beyond the CNS: The many peripheral roles of APOE. Neurobiology of Disease, 2020, 138, 104809.	2.1	68
502	Region-specific glial homeostatic signature in prion diseases is replaced by a uniform neuroinflammation signature, common for brain regions and prion strains with different cell tropism. Neurobiology of Disease, 2020, 137, 104783.	2.1	35
503	Immune cell regulation of glia during CNS injury and disease. Nature Reviews Neuroscience, 2020, 21, 139-152.	4.9	230
504	Absence of microglia or presence of peripherallyâ€derived macrophages does not affect tau pathology in young or old hTau mice. Glia, 2020, 68, 1466-1478.	2.5	10
505	Innate sensing of mechanical properties of brain tissue by microglia. Current Opinion in Immunology, 2020, 62, 123-130.	2.4	32
506	Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer's disease. Nature Medicine, 2020, 26, 131-142.	15.2	641
507	Microglia response following acute demyelination is heterogeneous and limits infiltrating macrophage dispersion. Science Advances, 2020, 6, eaay6324.	4.7	130

#	Article	IF	CITATIONS
508	Nrf2 Suppresses Oxidative Stress and Inflammation in <i>App</i> Knock-In Alzheimer's Disease Model Mice. Molecular and Cellular Biology, 2020, 40, .	1.1	98
509	Therapeutic IDOL Reduction Ameliorates Amyloidosis and Improves Cognitive Function in APP/PS1 Mice. Molecular and Cellular Biology, 2020, 40, .	1.1	8
510	Trem2 Deletion Reduces Late-Stage Amyloid Plaque Accumulation, Elevates the Aβ42:Aβ40 Ratio, and Exacerbates Axonal Dystrophy and Dendritic Spine Loss in the PS2APP Alzheimer's Mouse Model. Journal of Neuroscience, 2020, 40, 1956-1974.	1.7	114
511	Epigenomic and transcriptional determinants of microglial cell identity. Glia, 2020, 68, 1643-1654.	2.5	6
512	Novel Alzheimer risk genes determine the microglia response to amyloidâ€Î² but not to TAU pathology. EMBO Molecular Medicine, 2020, 12, e10606.	3.3	182
513	Lipid-droplet-accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain. Nature Neuroscience, 2020, 23, 194-208.	7.1	558
514	Apolipoprotein E: Cholesterol metabolism and Alzheimer's pathology. Neuroforum, 2020, 26, 25-30.	0.2	0
515	Human iPSCâ€derived microglia: A growing toolset to study the brain's innate immune cells. Glia, 2020, 68, 721-739.	2.5	77
516	Therapeutic approaches targeting Apolipoprotein E function in Alzheimer's disease. Molecular Neurodegeneration, 2020, 15, 8.	4.4	89
517	Microglia Heterogeneity in the Single-Cell Era. Cell Reports, 2020, 30, 1271-1281.	2.9	421
518	<i>APOE</i> genotype regulates pathology and disease progression in synucleinopathy. Science Translational Medicine, 2020, 12, .	5.8	102
518 519		5.8 1.5	102 43
	Translational Medicine, 2020, 12, . Microglial activation arises after aggregation of phosphorylated-tau in a neuron-specific P301S		
519	Translational Medicine, 2020, 12, . Microglial activation arises after aggregation of phosphorylated-tau in a neuron-specific P301S tauopathy mouse model. Neurobiology of Aging, 2020, 89, 89-98. The Amyloid-beta rich CNS environment alters myeloid cell functionality independent of their origin.	1.5	43
519 520	 Translational Medicine, 2020, 12, . Microglial activation arises after aggregation of phosphorylated-tau in a neuron-specific P301S tauopathy mouse model. Neurobiology of Aging, 2020, 89, 89-98. The Amyloid-beta rich CNS environment alters myeloid cell functionality independent of their origin. Scientific Reports, 2020, 10, 7152. Potential of activated microglia as a source of dysregulated extracellular microRNAs contributing to 	1.5 1.6	43 3
519 520 521	 Translational Medicine, 2020, 12, . Microglial activation arises after aggregation of phosphorylated-tau in a neuron-specific P301S tauopathy mouse model. Neurobiology of Aging, 2020, 89, 89-98. The Amyloid-beta rich CNS environment alters myeloid cell functionality independent of their origin. Scientific Reports, 2020, 10, 7152. Potential of activated microglia as a source of dysregulated extracellular microRNAs contributing to neurodegeneration in amyotrophic lateral sclerosis. Journal of Neuroinflammation, 2020, 17, 135. CCR2 is localized in microglia and neurons, as well as infiltrating monocytes, in the lumbar spinal 	1.5 1.6 3.1	43 3 25
519520521522	 Translational Medicine, 2020, 12,	1.5 1.6 3.1 1.3	43 3 25 24

#	Article	IF	CITATIONS
526	Leveraging preclinical models for the development of Alzheimer disease therapeutics. Nature Reviews Drug Discovery, 2020, 19, 447-462.	21.5	73
527	Transcriptional profiling and therapeutic targeting of oxidative stress in neuroinflammation. Nature Immunology, 2020, 21, 513-524.	7.0	118
528	Investigation of pathology, expression and proteomic profiles in human <i>TREM2</i> variant postmortem brains with and without Alzheimer's disease. Brain Pathology, 2020, 30, 794-810.	2.1	10
529	Apolipoprotein E Facilitates Amyloid-β Oligomer-Induced Tau Phosphorylation. Journal of Alzheimer's Disease, 2020, 74, 521-534.	1.2	9
530	The Important Interface Between Apolipoprotein E and Neuroinflammation in Alzheimer's Disease. Frontiers in Immunology, 2020, 11, 754.	2.2	100
531	Perivascular Unit: This Must Be the Place. The Anatomical Crossroad Between the Immune, Vascular and Nervous System. Frontiers in Neuroanatomy, 2020, 14, 17.	0.9	46
532	Astrocytes and Microglia as Major Players of Myelin Production in Normal and Pathological Conditions. Frontiers in Cellular Neuroscience, 2020, 14, 79.	1.8	112
533	Neuroprotective and Anti—Neuroinflammatory Effects of a Poisonous Plant Croton tiglium Linn. Extract. Toxins, 2020, 12, 261.	1.5	9
534	IL-33-PU.1 Transcriptome Reprogramming Drives Functional State Transition and Clearance Activity of Microglia in Alzheimer's Disease. Cell Reports, 2020, 31, 107530.	2.9	65
535	Microglia versus Monocytes: Distinct Roles in Degenerative Diseases of the Retina. Trends in Neurosciences, 2020, 43, 433-449.	4.2	74
536	The therapeutic potential of galectin-1 and galectin-3 in the treatment of neurodegenerative diseases. Expert Review of Neurotherapeutics, 2020, 20, 439-448.	1.4	16
537	Glioblastoma hijacks microglial gene expression to support tumor growth. Journal of Neuroinflammation, 2020, 17, 120.	3.1	71
538	Reparative Effects of Stem Cell Factor and Granulocyte Colony-Stimulating Factor in Aged APP/PS1 Mice. , 2020, 11, 1423.		9
539	Apolipoprotein E4 and meningeal lymphatics in Alzheimer disease: a conceptual framework. Molecular Psychiatry, 2021, 26, 1075-1097.	4.1	42
540	Microglia and lipids: how metabolism controls brain innate immunity. Seminars in Cell and Developmental Biology, 2021, 112, 137-144.	2.3	75
541	Sleep Fragmentation and Cognitive Trajectories After Critical Illness. Chest, 2021, 159, 366-381.	0.4	19
542	Intrinsic <scp>DNA</scp> damage repair deficiency results in progressive microglia loss and replacement. Glia, 2021, 69, 729-745.	2.5	15
543	The role of disabled-2 (Dab2) in diseases. Gene, 2021, 769, 145202.	1.0	11

#	Article	IF	CITATIONS
544	Hemizygous deletion of Tbk1 worsens neuromuscular junction pathology in TDP-43 transgenic mice. Experimental Neurology, 2021, 335, 113496.	2.0	15
545	Tissue-specific features of microglial innate immune responses. Neurochemistry International, 2021, 142, 104924.	1.9	8
546	Alzheimer's disease brain-derived extracellular vesicles spread tau pathology in interneurons. Brain, 2021, 144, 288-309.	3.7	132
547	Acute and non-resolving inflammation associate with oxidative injury after human spinal cord injury. Brain, 2021, 144, 144-161.	3.7	95
548	<i>Agaricus blazei</i> polypeptide exerts a protective effect on Dâ€galactoseâ€induced aging mice via the Keap1/Nrf2/ARE and P53/Trim32 signaling pathways. Journal of Food Biochemistry, 2021, 45, e13555.	1.2	6
549	Type I interferonâ€activated microglia are critical for neuromyelitis optica pathology. Glia, 2021, 69, 943-953.	2.5	11
550	Apolipoprotein E: Structural Insights and Links to Alzheimer Disease Pathogenesis. Neuron, 2021, 109, 205-221.	3.8	139
551	Alzheimer's-associated PU.1 expression levels regulate microglial inflammatory response. Neurobiology of Disease, 2021, 148, 105217.	2.1	55
552	Microglial innate memory and epigenetic reprogramming in neurological disorders. Progress in Neurobiology, 2021, 200, 101971.	2.8	21
553	Acute neuroinflammation, sickness behavior and working memory responses to acute systemic LPS challenge following noradrenergic lesion in mice. Brain, Behavior, and Immunity, 2021, 94, 357-368.	2.0	22
554	APOE and Alzheimer's disease: advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurology, The, 2021, 20, 68-80.	4.9	399
555	Reactive or transgenic increase in microglial TYROBP reveals a TREM2â€independent TYROBP–APOE link in wildâ€type and Alzheimer'sâ€related mice. Alzheimer's and Dementia, 2021, 17, 149-163.	0.4	30
556	Changes in the brain transcriptome after DNA Aβ42 trimer immunization in a 3xTg-AD mouse model. Neurobiology of Disease, 2021, 148, 105221.	2.1	9
557	Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here?. Nature Reviews Neurology, 2021, 17, 157-172.	4.9	1,242
558	Microglial Responses to Brain Injury and Disease: Functional Diversity and New Opportunities. Translational Stroke Research, 2021, 12, 474-495.	2.3	36
559	The endoplasmic reticulum Ca ²⁺ â€ <scp>ATPase SERCA2b</scp> is upregulated in activated microglia and its inhibition causes opposite effects on migration and phagocytosis. Glia, 2021, 69, 842-857.	2.5	10
560	Novel Targets for Alzheimer's Disease: A View Beyond Amyloid. Annual Review of Medicine, 2021, 72, 15-28.	5.0	22
561	Systems-based proteomics to resolve the biology of Alzheimer's disease beyond amyloid and tau. Neuropsychopharmacology, 2021, 46, 98-115.	2.8	70

# 562	ARTICLE Immunological Genes Expression in the Aged Brain. , 2021, , 15-27.	IF	CITATIONS
563	TREM2 Sensing of Tumor Cell Efferocytosis Promotes a Macrophage Molecular State that Limits NK Cell Antitumor Immunity. SSRN Electronic Journal, 0, , .	0.4	2
564	Decoding Mast Cell-Microglia Communication in Neurodegenerative Diseases. International Journal of Molecular Sciences, 2021, 22, 1093.	1.8	40
565	Microglia in neurodegenerative diseases. Neural Regeneration Research, 2021, 16, 270.	1.6	59
566	Immune Regulation of Adult Neurogenic Niches in Health and Disease. Frontiers in Cellular Neuroscience, 2020, 14, 571071.	1.8	13
567	Arginase 1 Insufficiency Precipitates Amyloid-β Deposition and Hastens Behavioral Impairment in a Mouse Model of Amyloidosis. Frontiers in Immunology, 2020, 11, 582998.	2.2	15
570	A genetic link between risk for Alzheimer's disease and severe COVID-19 outcomes via the <i>OAS1</i> gene. Brain, 2021, 144, 3727-3741.	3.7	65
571	Microglia Control CNS T Regulatory Cell Activity During Remission From EAE Pathology. SSRN Electronic Journal, 0, , .	0.4	0
573	Dendrimer–tesaglitazar conjugate induces a phenotype shift of microglia and enhances β-amyloid phagocytosis. Nanoscale, 2021, 13, 939-952.	2.8	20
574	Defining the Neuropathological Aggresome across <i>in Silico</i> , <i>in Vitro</i> , and <i>ex Vivo</i> Experiments. Journal of Physical Chemistry B, 2021, 125, 1974-1996.	1.2	5
575	White matter injury in the neonatal hypoxicâ€ischemic brain and potential therapies targeting microglia. Journal of Neuroscience Research, 2021, 99, 991-1008.	1.3	23
576	The role of purinergic signaling in microglial responses. Stress and Brain, 2021, , 46.	0.3	1
577	miRNAs in Microglia: Important Players in Multiple Sclerosis Pathology. ASN Neuro, 2021, 13, 175909142098118.	1.5	12
578	Positive Feedback Regulation of Microglial Glucose Metabolism by Histone H4 Lysine 12 Lactylation in Alzheimer's Disease. SSRN Electronic Journal, 0, , .	0.4	49
579	Little Helpers or Mean Rogue—Role of Microglia in Animal Models of Amyotrophic Lateral Sclerosis. International Journal of Molecular Sciences, 2021, 22, 993.	1.8	8
580	Phagocyte-mediated synapse removal in cortical neuroinflammation is promoted by local calcium accumulation. Nature Neuroscience, 2021, 24, 355-367.	7.1	49
581	Microglial gene signature reveals loss of homeostatic microglia associated with neurodegeneration of Alzheimer's disease. Acta Neuropathologica Communications, 2021, 9, 1.	2.4	172
583	Sex differences in microglia as a risk factor for Alzheimer's disease. , 2021, , 79-104.		1

#	Article	IF	CITATIONS
584	Role of Adaptive Immune and Impacts of Risk Factors on Adaptive Immune in Alzheimer's Disease: Are Immunotherapies Effective or Off-Target?. Neuroscientist, 2022, 28, 254-270.	2.6	9
585	Apolipoprotein E4 Reduction with Antisense Oligonucleotides Decreases Neurodegeneration in a Tauopathy Model. Annals of Neurology, 2021, 89, 952-966.	2.8	36
586	Neuroinflammation in Alzheimer's disease and beneficial action of luteolin. BioFactors, 2021, 47, 207-217.	2.6	21
587	Diversified transcriptional responses of myeloid and glial cells in spinal cord injury shaped by HDAC3 activity. Science Advances, 2021, 7, .	4.7	35
588	Distinct amyloid-β and tau-associated microglia profiles in Alzheimer's disease. Acta Neuropathologica, 2021, 141, 681-696.	3.9	167
589	Comparative Analysis Identifies Similarities between the Human and Murine Microglial Sensomes. International Journal of Molecular Sciences, 2021, 22, 1495.	1.8	22
590	Enrichment of Neurodegenerative Microglia Signature in Brain-Derived Extracellular Vesicles Isolated from Alzheimer's Disease Mouse Models. Journal of Proteome Research, 2021, 20, 1733-1743.	1.8	34
591	Strategies and Tools for Studying Microglial-Mediated Synapse Elimination and Refinement. Frontiers in Immunology, 2021, 12, 640937.	2.2	10
592	Mitochondriaâ€associated endoplasmic reticulum membranes: At the crossroad between familiar and sporadic Alzheimer's disease. Synapse, 2021, 75, e22196.	0.6	8
593	APOE immunotherapy reduces cerebral amyloid angiopathy and amyloid plaques while improving cerebrovascular function. Science Translational Medicine, 2021, 13, .	5.8	76
595	Alzheimer's Risk Gene TREM2 Determines Functional Properties of New Type of Human iPSC-Derived Microglia. Frontiers in Immunology, 2020, 11, 617860.	2.2	32
596	Targeting Microglia-Synapse Interactions in Alzheimer's Disease. International Journal of Molecular Sciences, 2021, 22, 2342.	1.8	36
597	Two macrophages, osteoclasts and microglia: from development to pleiotropy. Bone Research, 2021, 9, 11.	5.4	22
598	Peroxisome Proliferator-Activated Receptor-δDeficiency in Microglia Results in Exacerbated Axonal Injury and Tissue Loss in Experimental Autoimmune Encephalomyelitis. Frontiers in Immunology, 2021, 12, 570425.	2.2	10
600	Microglia control small vessel calcification via TREM2. Science Advances, 2021, 7, .	4.7	22
601	Diet-dependent regulation of TGFÎ ² impairs reparative innate immune responses after demyelination. Nature Metabolism, 2021, 3, 211-227.	5.1	41
602	Mitochondrial Regulation of Microglial Immunometabolism in Alzheimer's Disease. Frontiers in Immunology, 2021, 12, 624538.	2.2	48
603	Defective Lysosomal Lipid Catabolism as a Common Pathogenic Mechanism for Dementia. NeuroMolecular Medicine, 2021, 23, 1-24.	1.8	9

#	Article	IF	CITATIONS
604	Prion protein oligomers cause neuronal cytoskeletal damage in rapidly progressive Alzheimer's disease. Molecular Neurodegeneration, 2021, 16, 11.	4.4	15
605	Loss of NPC1 enhances phagocytic uptake and impairs lipid trafficking in microglia. Nature Communications, 2021, 12, 1158.	5.8	58
606	Non-cell autonomous astrocyte-mediated neuronal toxicity in prion diseases. Acta Neuropathologica Communications, 2021, 9, 22.	2.4	25
607	Iron loading is a prominent feature of activated microglia in Alzheimer's disease patients. Acta Neuropathologica Communications, 2021, 9, 27.	2.4	79
608	The role of innate immune genes in Alzheimer's disease. Current Opinion in Neurology, 2021, 34, 228-236.	1.8	95
610	Apoptotic neurons and amyloid-beta clearance by phagocytosis in Alzheimer's disease: Pathological mechanisms and therapeutic outlooks. European Journal of Pharmacology, 2021, 895, 173873.	1.7	24
611	AIM2 controls microglial inflammation to prevent experimental autoimmune encephalomyelitis. Journal of Experimental Medicine, 2021, 218, .	4.2	51
612	Microglia Biomarkers in Alzheimer's Disease. Molecular Neurobiology, 2021, 58, 3388-3404.	1.9	8
613	Microglial identity and inflammatory responses are controlled by the combined effects of neurons and astrocytes. Cell Reports, 2021, 34, 108882.	2.9	61
614	Multiple sclerosis risk gene Mertk is required for microglial activation and subsequent remyelination. Cell Reports, 2021, 34, 108835.	2.9	61
615	Microglia Diversity in Healthy and Diseased Brain: Insights from Single-Cell Omics. International Journal of Molecular Sciences, 2021, 22, 3027.	1.8	33
616	Microglial phagocytosis of neurons in neurodegeneration, and its regulation. Journal of Neurochemistry, 2021, 158, 621-639.	2.1	120
617	A RIPK1-regulated inflammatory microglial state in amyotrophic lateral sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	36
619	Macrophages in SHH subgroup medulloblastoma display dynamic heterogeneity that varies with treatment modality. Cell Reports, 2021, 34, 108917.	2.9	27
620	Delivery Platforms for CRISPR/Cas9 Genome Editing of Glial Cells in the Central Nervous System. Frontiers in Genome Editing, 2021, 3, 644319.	2.7	11
621	Microglial Pruning: Relevance for Synaptic Dysfunction in Multiple Sclerosis and Related Experimental Models. Cells, 2021, 10, 686.	1.8	28
622	Meningeal inflammation in multiple sclerosis induces phenotypic changes in cortical microglia that differentially associate with neurodegeneration. Acta Neuropathologica, 2021, 141, 881-899.	3.9	47
623	P-selectin axis plays a key role in microglia immunophenotype and glioblastoma progression. Nature Communications, 2021, 12, 1912.	5.8	37

#	Article	IF	CITATIONS
625	Unique molecular characteristics and microglial origin of Kv1.3 channel–positive brain myeloid cells in Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	25
627	Maternal antibodies facilitate Amyloid-β clearance by activating Fc-receptor-Syk-mediated phagocytosis. Communications Biology, 2021, 4, 329.	2.0	8
628	Alzheimer's Disease Pathogenesis: Role of Autophagy and Mitophagy Focusing in Microglia. International Journal of Molecular Sciences, 2021, 22, 3330.	1.8	71
629	Plaque associated microglia hyper-secrete extracellular vesicles and accelerate tau propagation in a humanized APP mouse model. Molecular Neurodegeneration, 2021, 16, 18.	4.4	97
630	Extracellular signalâ€regulated kinase regulates microglial immune responses in Alzheimer's disease. Journal of Neuroscience Research, 2021, 99, 1704-1721.	1.3	43
631	The Leukotriene Receptor Antagonist Montelukast Attenuates Neuroinflammation and Affects Cognition in Transgenic 5xFAD Mice. International Journal of Molecular Sciences, 2021, 22, 2782.	1.8	15
632	Microglia in Health and Disease: The Strength to Be Diverse and Reactive. Frontiers in Cellular Neuroscience, 2021, 15, 660523.	1.8	27
633	Diversity and Function of Glial Cell Types in Multiple Sclerosis. Trends in Immunology, 2021, 42, 228-247.	2.9	41
635	Interplay Between Microglia and Alzheimer's Disease—Focus on the Most Relevant Risks: APOE Genotype, Sex and Age. Frontiers in Aging Neuroscience, 2021, 13, 631827.	1.7	23
636	Trem2 restrains the enhancement of tau accumulation and neurodegeneration by β-amyloid pathology. Neuron, 2021, 109, 1283-1301.e6.	3.8	137
637	Recent advances in pre-clinical diagnosis of Alzheimer's disease. Metabolic Brain Disease, 2021, , 1.	1.4	3
638	Obesity Prevents S-Adenosylmethionine-Mediated Improvements in Age-Related Peripheral and Hippocampal Outcomes. Nutrients, 2021, 13, 1201.	1.7	3
639	Role of triggering receptor expressed on myeloid cells 2 (TREM2) in neurodegenerative dementias. European Journal of Neuroscience, 2021, 53, 3294-3310.	1.2	10
640	Microglia Specific Drug Targeting Using Natural Products for the Regulation of Redox Imbalance in Neurodegeneration. Frontiers in Pharmacology, 2021, 12, 654489.	1.6	24
641	Meningeal lymphatics affect microglia responses and anti-A \hat{I}^2 immunotherapy. Nature, 2021, 593, 255-260.	13.7	179
642	Cytokine signaling convergence regulates the microglial state transition in Alzheimer's disease. Cellular and Molecular Life Sciences, 2021, 78, 4703-4712.	2.4	23
643	Apolipoprotein E Gene Revisited: Contribution of Rare Variants to Alzheimer's Disease Susceptibility in Southern Chinese. Current Alzheimer Research, 2021, 18, 67-79.	0.7	3
644	Precision Nutrition for Alzheimer's Prevention in ApoE4 Carriers. Nutrients, 2021, 13, 1362.	1.7	36

#	Article	IF	CITATIONS
646	Transcriptome of microglia reveals a speciesâ€specific expression profile in bovines with conserved and new signature genes. Clia, 2021, 69, 1932-1949.	2.5	3
647	Microglia use TAM receptors to detect and engulf amyloid \hat{I}^2 plaques. Nature Immunology, 2021, 22, 586-594.	7.0	228
648	Comorbidity between Alzheimer's disease and major depression: a behavioural and transcriptomic characterization study in mice. Alzheimer's Research and Therapy, 2021, 13, 73.	3.0	18
650	White matter aging drives microglial diversity. Neuron, 2021, 109, 1100-1117.e10.	3.8	208
651	Microglial Function and Regulation during Development, Homeostasis and Alzheimer's Disease. Cells, 2021, 10, 957.	1.8	24
653	Microglia and Central Nervous System–Associated Macrophages—From Origin to Disease Modulation. Annual Review of Immunology, 2021, 39, 251-277.	9.5	228
654	Senescent Microglia: The Key to the Ageing Brain?. International Journal of Molecular Sciences, 2021, 22, 4402.	1.8	30
655	Soluble α-synuclein–antibody complexes activate the NLRP3 inflammasome in hiPSC-derived microglia. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	69
656	Hypoxia compromises the mitochondrial metabolism of Alzheimer's disease microglia via HIF1. Nature Aging, 2021, 1, 385-399.	5.3	43
657	TREM2, microglia, and Alzheimer's disease. Mechanisms of Ageing and Development, 2021, 195, 111438.	2.2	74
658	Microglia Phenotypes Converge in Aging and Neurodegenerative Disease. Frontiers in Neurology, 2021, 12, 660720.	1.1	26
661	Aging-associated deficit in CCR7 is linked to worsened glymphatic function, cognition, neuroinflammation, and β-amyloid pathology. Science Advances, 2021, 7, .	4.7	73
662	Divergent Functions of Tissue-Resident and Blood-Derived Macrophages in the Hemorrhagic Brain. Stroke, 2021, 52, 1798-1808.	1.0	20
663	Evaluation of cerebrospinal fluid glycoprotein NMB (GPNMB) as a potential biomarker for Alzheimer's disease. Alzheimer's Research and Therapy, 2021, 13, 94.	3.0	12
664	The Role of GPNMB in Inflammation. Frontiers in Immunology, 2021, 12, 674739.	2.2	78
665	VISTA regulates microglia homeostasis and myelin phagocytosis, and is associated with MS lesion pathology. Acta Neuropathologica Communications, 2021, 9, 91.	2.4	5
666	The Therapeutic Potential of Galectin-3 in the Treatment of Intrahepatic Cholangiocarcinoma Patients and Those Compromised With COVID-19. Frontiers in Molecular Biosciences, 2021, 8, 666054.	1.6	1
667	Biomimetic Dendrimer–Peptide Conjugates for Early Multiâ€Target Therapy of Alzheimer's Disease by Inflammatory Microenvironment Modulation. Advanced Materials, 2021, 33, e2100746.	11.1	50

#	Article	IF	CITATIONS
669	Microglial Lipid Biology in the Hypothalamic Regulation of Metabolic Homeostasis. Frontiers in Endocrinology, 2021, 12, 668396.	1.5	18
670	Single-cell protein activity analysis identifies recurrence-associated renal tumor macrophages. Cell, 2021, 184, 2988-3005.e16.	13.5	166
671	Transcriptional signature in microglia associated with $A\hat{l}^2$ plaque phagocytosis. Nature Communications, 2021, 12, 3015.	5.8	142
672	Targeting Impaired Antimicrobial Immunity in the Brain for the Treatment of Alzheimer's Disease. Neuropsychiatric Disease and Treatment, 2021, Volume 17, 1311-1339.	1.0	13
675	Personalizing the Care and Treatment of Alzheimer's Disease: An Overview. Pharmacogenomics and Personalized Medicine, 2021, Volume 14, 631-653.	0.4	3
676	Isoform-Specific Effects of Apolipoprotein E on Markers of Inflammation and Toxicity in Brain Glia and Neuronal Cells In Vitro. Current Issues in Molecular Biology, 2021, 43, 215-225.	1.0	18
677	Distinct Features of Brain-Resident Macrophages: Microglia and Non-Parenchymal Brain Macrophages. Molecules and Cells, 2021, 44, 281-291.	1.0	36
678	Contribution of astrocytes to neuropathology of neurodegenerative diseases. Brain Research, 2021, 1758, 147291.	1.1	62
679	The Microbiota–Gut–Brain Axis and Alzheimer Disease. From Dysbiosis to Neurodegeneration: Focus on the Central Nervous System Glial Cells. Journal of Clinical Medicine, 2021, 10, 2358.	1.0	23
680	The Mononuclear Phagocyte System of the Rat. Journal of Immunology, 2021, 206, 2251-2263.	0.4	15
682	An overview of microglia ontogeny and maturation in the homeostatic and pathological brain. European Journal of Neuroscience, 2021, 53, 3525-3547.	1.2	16
683	NEBULA is a fast negative binomial mixed model for differential or co-expression analysis of large-scale multi-subject single-cell data. Communications Biology, 2021, 4, 629.	2.0	50
684	Synaptic and behavioral effects of chronic stress are linked to dynamic and sex-specific changes in microglia function and astrocyte dystrophy. Neurobiology of Stress, 2021, 14, 100312.	1.9	52
685	Myeloid Arginase 1 Insufficiency Exacerbates Amyloid-β Associated Neurodegenerative Pathways and Glial Signatures in a Mouse Model of Alzheimer's Disease: A Targeted Transcriptome Analysis. Frontiers in Immunology, 2021, 12, 628156.	2.2	6
686	Haploinsufficiency of microglial MyD88 ameliorates Alzheimer's pathology and vascular disorders in APP / PS1 â€ŧransgenic mice. Glia, 2021, 69, 1987-2005.	2.5	6
687	Selective removal of astrocytic APOE4 strongly protects against tau-mediated neurodegeneration and decreases synaptic phagocytosis by microglia. Neuron, 2021, 109, 1657-1674.e7.	3.8	151
688	Large-scale plasma proteomic analysis identifies proteins and pathways associated with dementia risk. Nature Aging, 2021, 1, 473-489.	5.3	69
689	The effect of dipeptidyl peptidase IV on disease-associated microglia phenotypic transformation in epilepsy. Journal of Neuroinflammation, 2021, 18, 112.	3.1	13

	Сітаті	ION REPORT	
#	Article	IF	CITATIONS
690	Glial Purinergic Signaling in Neurodegeneration. Frontiers in Neurology, 2021, 12, 654850.	1.1	17
691	Neuroendocrine, neuroinflammatory and pathological outcomes of chronic stress: A story of microglial remodeling. Neurochemistry International, 2021, 145, 104987.	1.9	44
692	Metabolic Control of Smoldering Neuroinflammation. Frontiers in Immunology, 2021, 12, 705920.	2.2	19
693	ADAM17 Boosts Cholesterol Efflux and Downstream Effects of High-Density Lipoprotein on Inflammatory Pathways in Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1854-1873.	1.1	4
694	Microglia RAGE exacerbates the progression of neurodegeneration within the SOD1G93A murine model of amyotrophic lateral sclerosis in a sex-dependent manner. Journal of Neuroinflammation, 2021, 18, 139.	3.1	16
695	Lipid droplets in the nervous system. Journal of Cell Biology, 2021, 220, .	2.3	82
696	The Impact of Obesity on Microglial Function: Immune, Metabolic and Endocrine Perspectives. Cells, 2021, 10, 1584.	1.8	31
697	Acute <i>Trem2</i> reduction triggers increased microglial phagocytosis, slowing amyloid deposition in mice. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	40
698	INPP5D expression is associated with risk for Alzheimer's disease and induced by plaque-associated microglia. Neurobiology of Disease, 2021, 153, 105303.	2.1	63
699	Understanding polyomavirus CNS disease – a perspective from mouse models. FEBS Journal, 2022, 289, 5744-5761.	, 2.2	5
700	The cannabinoid system and microglia in health and disease. Neuropharmacology, 2021, 190, 108555.	2.0	49
701	Neurodegenerative Disease Risk in Carriers of Autosomal Recessive Disease. Frontiers in Neurology, 2021, 12, 679927.	1.1	6
702	Reassessment of Pioglitazone for Alzheimer's Disease. Frontiers in Neuroscience, 2021, 15, 666958.	1.4	30
703	Role of Neuron and Glia in Alzheimer's Disease and Associated Vascular Dysfunction. Frontiers in Aging Neuroscience, 2021, 13, 653334.	1.7	28
704	The CXCL12/CXCR4/ACKR3 Response Axis in Chronic Neurodegenerative Disorders of the Central Nervous System: Therapeutic Target and Biomarker. Cellular and Molecular Neurobiology, 2022, 42, 2147-2156.	1.7	8
705	CSF1R inhibition rescues tau pathology and neurodegeneration in an A/T/N model with combined AD pathologies, while preserving plaque associated microglia. Acta Neuropathologica Communications, 2021, 9, 108.	2.4	22
706	Regulation of microglia population dynamics throughout development, health, and disease. Glia, 2021, 69, 2771-2797.	2.5	29
707	Atg7 deficiency in microglia drives an altered transcriptomic profile associated with an impaired neuroinflammatory response. Molecular Brain, 2021, 14, 87.	1.3	6

#	Article	IF	CITATIONS
708	Microglial metabolism is a pivotal factor in sexual dimorphism in Alzheimer's disease. Communications Biology, 2021, 4, 711.	2.0	61
709	Microglia show differential transcriptomic response to Aβ peptide aggregates ex vivo and in vivo. Life Science Alliance, 2021, 4, e202101108.	1.3	17
711	Replicative senescence dictates the emergence of disease-associated microglia and contributes to AÎ ² pathology. Cell Reports, 2021, 35, 109228.	2.9	113
712	Activated microglia mitigate Aβ-associated tau seeding and spreading. Journal of Experimental Medicine, 2021, 218, .	4.2	94
714	A multifaceted role of progranulin in regulating amyloid-beta dynamics and responses. Life Science Alliance, 2021, 4, e202000874.	1.3	10
715	The Phagocytic Code Regulating Phagocytosis of Mammalian Cells. Frontiers in Immunology, 2021, 12, 629979.	2.2	44
716	Decreased MEF2A Expression Regulated by Its Enhancer Methylation Inhibits Autophagy and May Play an Important Role in the Progression of Alzheimer's Disease. Frontiers in Neuroscience, 2021, 15, 682247.	1.4	9
717	Phospholipids of APOE lipoproteins activate microglia in an isoform-specific manner in preclinical models of Alzheimer's disease. Nature Communications, 2021, 12, 3416.	5.8	57
718	C9orf72 deficiency promotes microglial-mediated synaptic loss in aging and amyloid accumulation. Neuron, 2021, 109, 2275-2291.e8.	3.8	78
720	<i>TREM2</i> splicing emerges as crucial aspect to understand TREM2 biology. Journal of Leukocyte Biology, 2021, 110, 827-828.	1.5	1
721	Identifying individuals with high risk of Alzheimer's disease using polygenic risk scores. Nature Communications, 2021, 12, 4506.	5.8	91
722	The role of P2Y12 in the kinetics of microglial self-renewal and maturation in the adult visual cortex in vivo. ELife, 2021, 10, .	2.8	19
723	Acute TBK1/IKK-ε Inhibition Enhances the Generation of Disease-Associated Microglia-Like Phenotype Upon Cortical Stab-Wound Injury. Frontiers in Aging Neuroscience, 2021, 13, 684171.	1.7	11
724	Association of apolipoprotein E Îμ4 allele and amyotrophic lateral sclerosis in Chinese population. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2022, 23, 399-406.	1.1	3
726	Selection and structural characterization of anti-TREM2 scFvs that reduce levels of shed ectodomain. Structure, 2021, 29, 1241-1252.e5.	1.6	9
727	Diversity of transcriptomic microglial phenotypes in aging and Alzheimer's disease. Alzheimer's and Dementia, 2022, 18, 360-376.	0.4	46
728	Development of grape polyphenols as multi-targeting strategies for Alzheimer's disease. Neurochemistry International, 2021, 147, 105046.	1.9	16
729	Plaque-associated human microglia accumulate lipid droplets in a chimeric model of Alzheimer's disease. Molecular Neurodegeneration, 2021, 16, 50.	4.4	65

#	Article	IF	CITATIONS
730	Little cells of the little brain: microglia in cerebellar development and function. Trends in Neurosciences, 2021, 44, 564-578.	4.2	23
733	Microglial heterogeneity in aging and Alzheimer's disease: Is sex relevant?. Journal of Pharmacological Sciences, 2021, 146, 169-181.	1.1	21
734	GABA-receptive microglia selectively sculpt developing inhibitory circuits. Cell, 2021, 184, 4048-4063.e32.	13.5	142
735	Hippocampal Transcriptome Changes After Subarachnoid Hemorrhage in Mice. Frontiers in Neurology, 2021, 12, 691631.	1.1	4
736	Microglia: The Real Foe in HIV-1-Associated Neurocognitive Disorders?. Biomedicines, 2021, 9, 925.	1.4	9
737	The old guard: Age-related changes in microglia and their consequences. Mechanisms of Ageing and Development, 2021, 197, 111512.	2.2	32
738	High-parameter cytometry unmasks microglial cell spatio-temporal response kinetics in severe neuroinflammatory disease. Journal of Neuroinflammation, 2021, 18, 166.	3.1	17
739	Microglia in Alzheimer's disease at single-cell level. Are there common patterns in humans and mice?. Journal of Experimental Medicine, 2021, 218, .	4.2	147
741	APOE genotype dependent molecular abnormalities in the cerebrovasculature of Alzheimer's disease and age-matched non-demented brains. Molecular Brain, 2021, 14, 110.	1.3	14
743	Exploiting dynamic enhancer landscapes to decode macrophage and microglia phenotypes in health and disease. Molecular Cell, 2021, 81, 3888-3903.	4.5	29
744	APOE signaling in neurodegenerative diseases: an integrative approach targeting APOE coding and noncoding variants for disease intervention. Current Opinion in Neurobiology, 2021, 69, 58-67.	2.0	14
745	Microglial activation and tau propagate jointly across Braak stages. Nature Medicine, 2021, 27, 1592-1599.	15.2	235
746	Modulation of Glial Function in Health, Aging, and Neurodegenerative Disease. Frontiers in Cellular Neuroscience, 2021, 15, 718324.	1.8	22
747	Galectin-3 Deletion Reduces LPS and Acute Colitis-Induced Pro-Inflammatory Microglial Activation in the Ventral Mesencephalon. Frontiers in Pharmacology, 2021, 12, 706439.	1.6	6
748	Beyond Activation: Characterizing Microglial Functional Phenotypes. Cells, 2021, 10, 2236.	1.8	75
749	The influence of ApoE4 on the clinical outcomes and pathophysiology of degenerative cervical myelopathy. JCI Insight, 2021, 6, .	2.3	14
750	Segmented Linear Mixed Model Analysis Reveals Association of the APOE ɛ4 Allele with Faster Rate of Alzheimer's Disease Dementia Progression. Journal of Alzheimer's Disease, 2021, 82, 921-937.	1.2	13
751	Apolipoprotein E and Alzheimer's Disease: Findings, Hypotheses, and Potential Mechanisms. Annual Review of Pathology: Mechanisms of Disease, 2022, 17, 73-99.	9.6	81

	Cı	CITATION REPORT		
#	Article	IF	Citations	
753	Induction of an effective anti-Amyloid- \hat{l}^2 humoral response in aged mice. Vaccine, 2021, 39, 4817-482	29. 1.7	7	
754	Single-cell multimodal analysis in a case with reduced penetrance of Progranulin-Frontotemporal Dementia. Acta Neuropathologica Communications, 2021, 9, 132.	2.4	3	
755	Spinal Cord Injury Induces Permanent Reprogramming of Microglia into a Disease-Associated State Which Contributes to Functional Recovery. Journal of Neuroscience, 2021, 41, 8441-8459.	1.7	25	
758	Exploring reported genes of microglia RNA â€sequencing data: Uses and considerations. Glia, 2021, 6 2933-2946.	59, <u>2.</u> 5	5	
759	Molecular regulation of neuroinflammation in glaucoma: Current knowledge and the ongoing search for new treatment targets. Progress in Retinal and Eye Research, 2022, 87, 100998.	7.3	55	
760	Microglial heterogeneity in chronic pain. Brain, Behavior, and Immunity, 2021, 96, 279-289.	2.0	24	
761	Subventricular zone/white matter microglia reconstitute the empty adult microglial niche in a dynamic wave. ELife, 2021, 10, .	2.8	19	
762	TREM2 is thyroid hormone regulated making the TREM2 pathway druggable with ligands for thyroid hormone receptor. Cell Chemical Biology, 2022, 29, 239-248.e4.	2.5	11	
764	The feeding behaviour of Amyotrophic Lateral Sclerosis mouse models is modulated by the Ca ²⁺ â€activated K _{Ca} 3.1 channels. British Journal of Pharmacology, 2021, 4891-4906.	178, 2.7	8	
765	Advances in Genetic and Molecular Understanding of Alzheimer's Disease. Genes, 2021, 12, 1247	7. 1.0	9	
766	Invasion of phagocytic Galectin 3 expressing macrophages in the diabetic brain disrupts vascular repair. Science Advances, 2021, 7, .	4.7	21	
768	Microglial dyshomeostasis drives perineuronal net and synaptic loss in a CSF1R ^{+/â^'} mo model of ALSP, which can be rescued via CSF1R inhibitors. Science Advances, 2021, 7, .	use 4.7	28	
769	An early proinflammatory transcriptional response to tau pathology is ageâ€specific and foreshadows reduced tau burden. Brain Pathology, 2022, 32, e13018.	s 2.1	7	
770	Overexpressing low-density lipoprotein receptor reduces tau-associated neurodegeneration in relation to apoE-linked mechanisms. Neuron, 2021, 109, 2413-2426.e7.	3.8	57	
771	Cross-tissue single-cell landscape of human monocytes and macrophages in health and disease. Immunity, 2021, 54, 1883-1900.e5.	6.6	233	
772	Microglial TREM2 at the Intersection of Brain Aging and Alzheimer's Disease. Neuroscientist, 202 302-316.	3, 29, 2.6	7	
773	Brain Microenvironment Heterogeneity: Potential Value for Brain Tumors. Frontiers in Oncology, 2021, 11, 714428.	1.3	1	
774	Specific microglial phagocytic phenotype and decrease of lipid oxidation in white matter areas during aging: Implications of different microenvironments. Neurobiology of Aging, 2021, 105, 280-295.	1.5	7	

	CITATION REI	ration Report		
Article		IF	CITATIONS	
Human microglia states are conserved across experimental models and regulate neural st responses in chimeric organoids. Cell Stem Cell, 2021, 28, 2153-2166.e6.	em cell	5.2	98	
Pro-inflammatory and proliferative microglia drive progression of glioblastoma. Cell Repor 36, 109718.	ts, 2021,	2.9	72	
Western diet as a trigger of Alzheimer's disease: From metabolic syndrome and syste to neuroinflammation and neurodegeneration. Ageing Research Reviews, 2021, 70, 1013		5.0	130	
Effects of microglial depletion and TREM2 deficiency on AÎ ² plaque burden and neuritic pl pathology in 5XFAD mice. Acta Neuropathologica Communications, 2021, 9, 150.	aque tau	2.4	19	
TAMs in Brain Metastasis: Molecular Signatures in Mouse and Man. Frontiers in Immunolo 716504.	ogy, 2021, 12,	2.2	8	
Clial and myeloid heterogeneity in the brain tumour microenvironment. Nature Reviews C 21, 786-802.	ancer, 2021,	12.8	83	
Cellular senescence at the crossroads of inflammation and Alzheimer's disease. Trends in Neurosciences, 2021, 44, 714-727.		4.2	108	
Control of Neuroinflammation through Radiation-Induced Microglial Changes. Cells, 2021	., 10, 2381.	1.8	24	
Immune modulations and immunotherapies for Alzheimerâ \in ^{Ms} disease: a comprehensive the Neurosciences, 2022, 33, 365-381.	review. Reviews in	1.4	5	
The role of the immune system in Alzheimer's disease. Ageing Research Reviews, 202	1, 70, 101409.	5.0	57	
Oxidative stress, the immune response, synaptic plasticity, and cognition in transgenic m Alzheimer disease. NeurologÃa (English Edition), 2022, 37, 682-690.	odels of	0.2	9	
Current tools to interrogate microglial biology. Neuron, 2021, 109, 2805-2819.		3.8	30	
Innate Immune System Activation and Neuroinflammation in Down Syndrome and Neuro Therapeutic Targets or Partners?. Frontiers in Aging Neuroscience, 2021, 13, 718426.	degeneration:	1.7	17	
Adult-onset CNS myelin sulfatide deficiency is sufficient to cause Alzheimer's disease- neuroinflammation and cognitive impairment. Molecular Neurodegeneration, 2021, 16, 6		4.4	52	
Novel insights into RIPK1 as a promising target for future Alzheimer's disease treatme 107979.	ent. , 2022, 231,		26	
Plasticity of microglia. Biological Reviews, 2022, 97, 217-250.		4.7	44	

791	Absence of Apolipoprotein E is associated with exacerbation of prion pathology and promotes microglial neurodegenerative phenotype. Acta Neuropathologica Communications, 2021, 9, 157.	2.4	6	
792	A lymphocyte–microglia–astrocyte axis in chronic active multiple sclerosis. Nature, 2021, 597, 709-714.	13.7	307	

#

775

777

779

781

783

785

787

789

#	Article	IF	CITATIONS
793	Computational Interspecies Translation Between Alzheimer's Disease Mouse Models and Human Subjects Identifies Innate Immune Complement, TYROBP, and TAM Receptor Agonist Signatures, Distinct From Influences of Aging. Frontiers in Neuroscience, 2021, 15, 727784.	1.4	4
794	Microglia, TREM2, and Therapeutic Methods of Alzheimer's Disease. , 0, , .		Ο
795	Inflammatory Pathways Are Impaired in Alzheimer Disease and Differentially Associated With Apolipoprotein E Status. Journal of Neuropathology and Experimental Neurology, 2021, 80, 922-932.	0.9	12
796	Random forest-integrated analysis in AD and LATE brain transcriptome-wide data to identify disease-specific gene expression. PLoS ONE, 2021, 16, e0256648.	1.1	5
797	Roles of microglia in Alzheimer's disease and impact of new findings on microglial heterogeneity as a target for therapeutic intervention. Biochemical Pharmacology, 2021, 192, 114754.	2.0	24
798	Emerging roles of Dectin-1 in noninfectious settings and in the CNS. Trends in Immunology, 2021, 42, 891-903.	2.9	23
799	Microglial functional alteration and increased diversity in the challenged brain: Insights into novel targets for intervention. Brain, Behavior, & Immunity - Health, 2021, 16, 100301.	1.3	15
801	The Impact of Apolipoprotein E Allelic Variants on Alzheimer's Disease. , 2021, , 397-418.		1
802	Molecular mechanisms of neurodegeneration in neurodegenerative diseases. , 2021, , 117-148.		0
803	Microglial Turnover in Ageing-Related Neurodegeneration: Therapeutic Avenue to Intervene in Disease Progression. Cells, 2021, 10, 150.	1.8	23
804	Traumatic Brain Injury Causes Chronic Cortical Inflammation and Neuronal Dysfunction Mediated by Microglia. Journal of Neuroscience, 2021, 41, 1597-1616.	1.7	168
805	Prior activation state shapes the microglia response to antihuman TREM2 in a mouse model of Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	66
806	Combination of Hydroxychloroquine and Indapamide Attenuates Neurodegeneration in Models Relevant to Multiple Sclerosis. Neurotherapeutics, 2021, 18, 387-400.	2.1	12
807	Dysregulated follicular regulatory T cells and antibody responses exacerbate experimental autoimmune encephalomyelitis. Journal of Neuroinflammation, 2021, 18, 27.	3.1	9
809	A loss of mature microglial markers without immune activation in schizophrenia. Glia, 2021, 69, 1251-1267.	2.5	43
810	Alterations in Chromatin Structure and Function in the Microglia. Frontiers in Cell and Developmental Biology, 2020, 8, 626541.	1.8	7
811	Distinct microglial response against Alzheimer's amyloid and tau pathologies characterized by P2Y12 receptor. Brain Communications, 2021, 3, fcab011.	1.5	41
812	Changing Functional Signatures of Microglia along the Axis of Brain Aging. International Journal of Molecular Sciences, 2021, 22, 1091.	1.8	18

#	Article	IF	CITATIONS
813	Microglia influence host defense, disease, and repair following murine coronavirus infection of the central nervous system. Glia, 2020, 68, 2345-2360.	2.5	49
814	Multifaceted Involvement of Microglia in Gray Matter Pathology in Multiple Sclerosis. Stem Cells, 2021, 39, 993-1007.	1.4	15
815	Functional Analysis of Brain-Engrafted Monocytes After Microglia Ablation in Mouse Models. Methods in Molecular Biology, 2019, 2034, 293-301.	0.4	1
816	Microglia Reactivity: Heterogeneous Pathological Phenotypes. Methods in Molecular Biology, 2019, 2034, 41-55.	0.4	12
817	QUAKING Regulates Microexon Alternative Splicing of the Rho GTPase Pathway and Controls Microglia Homeostasis. Cell Reports, 2020, 33, 108560.	2.9	19
818	Peripheral nerve resident macrophages share tissue-specific programming and features of activated microglia. Nature Communications, 2020, 11, 2552.	5.8	84
819	Common germline variants of the human APOE gene modulate melanoma progression and survival. Nature Medicine, 2020, 26, 1048-1053.	15.2	57
820	Qki is an essential regulator of microglial phagocytosis in demyelination. Journal of Experimental Medicine, 2021, 218, .	4.2	13
846	Geniposide Enhances Macrophage Autophagy through Downregulation of TREM2 in Atherosclerosis. The American Journal of Chinese Medicine, 2020, 48, 1821-1840.	1.5	17
847	Concurrent cell type–specific isolation and profiling of mouse brains in inflammation and Alzheimer's disease. JCI Insight, 2018, 3, .	2.3	39
848	Angiopoietin-2 blockade ameliorates autoimmune neuroinflammation by inhibiting leukocyte recruitment into the CNS. Journal of Clinical Investigation, 2020, 130, 1977-1990.	3.9	26
849	Type I interferon response drives neuroinflammation and synapse loss in Alzheimer disease. Journal of Clinical Investigation, 2020, 130, 1912-1930.	3.9	268
850	Impact of TREM2R47H variant on tau pathology–induced gliosis and neurodegeneration. Journal of Clinical Investigation, 2020, 130, 4954-4968.	3.9	139
851	Genome-wide transcriptomic analysis of microglia reveals impaired responses in aged mice after cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, S49-S66.	2.4	41
852	Shedding Light on the Dark Side of the Microglia. ASN Neuro, 2020, 12, 175909142092533.	1.5	39
853	Tensor decomposition of stimulated monocyte and macrophage gene expression profiles identifies neurodegenerative disease-specific trans-eQTLs. PLoS Genetics, 2020, 16, e1008549.	1.5	16
854	ApoE4-Induced Cholesterol Dysregulation and Its Brain Cell Type-Specific Implications in the Pathogenesis of Alzheimer's Disease. Molecules and Cells, 2019, 42, 739-746.	1.0	54
855	Loss of <scp>TMEM</scp> 106B and <scp>PGRN</scp> leads to severe lysosomal abnormalities and neurodegeneration in mice. EMBO Reports, 2020, 21, e50219.	2.0	52

# 856	ARTICLE Single-cell RNA Sequencing in Immunology. Current Genomics, 2020, 21, 564-575.	IF 0.7	CITATIONS
857	Microglia in Alzheimer's Disease. Current Alzheimer Research, 2020, 17, 29-43.	0.7	13
858	Angiogenesis and Blood-Brain Barrier Permeability in Vascular Remodeling after Stroke. Current Neuropharmacology, 2020, 18, 1250-1265.	1.4	66
859	Opposing Roles of apolipoprotein E in aging and neurodegeneration. Life Science Alliance, 2019, 2, e201900325.	1.3	20
860	Headmasters: Microglial regulation of learning and memory in health and disease. AIMS Molecular Science, 2018, 5, 63-89.	0.3	5
861	Current status and future prospects of stem cell therapy in Alzheimer's disease. Neural Regeneration Research, 2020, 15, 242.	1.6	32
862	Absence of TGFÎ ² signaling in retinal microglia induces retinal degeneration and exacerbates choroidal neovascularization. ELife, 2019, 8, .	2.8	75
863	Fibrillar Aβ triggers microglial proteome alterations and dysfunction in Alzheimer mouse models. ELife, 2020, 9, .	2.8	80
864	Differential accumulation of storage bodies with aging defines discrete subsets of microglia in the healthy brain. ELife, 2020, 9, .	2.8	49
865	Interleukin-4 and interleukin-13 induce different metabolic profiles in microglia and macrophages that relate with divergent outcomes after spinal cord injury. Theranostics, 2021, 11, 9805-9820.	4.6	21
868	Microglia and CD206+ border-associated mouse macrophages maintain their embryonic origin during Alzheimer's disease. ELife, 2021, 10, .	2.8	16
870	Microglial activation states drive glucose uptake and FDG-PET alterations in neurodegenerative diseases. Science Translational Medicine, 2021, 13, eabe5640.	5.8	108
871	Sphingosine-1-phosphate, a novel TREM2 ligand, promotes microglial phagocytosis to protect against ischemic brain injury. Acta Pharmaceutica Sinica B, 2022, 12, 1885-1898.	5.7	21
872	Novel Balance Mechanism Participates in Stem Cell Therapy to Alleviate Neuropathology and Cognitive Impairment in Animal Models with Alzheimer's Disease. Cells, 2021, 10, 2757.	1.8	3
873	Microgliaâ€specific <scp>ApoE</scp> knockâ€out does not alter Alzheimer's disease plaque pathogenesis or gene expression. Glia, 2022, 70, 287-302.	2.5	20
874	Phagocytic microglia in development: Are they what they eat?. Brain, Behavior, & Immunity - Health, 2021, 18, 100373.	1.3	9
875	Commensal microbiota divergently affect myeloid subsets in the mammalian central nervous system during homeostasis and disease. EMBO Journal, 2021, 40, e108605.	3.5	12
876	Microglia: Immune and non-immune functions. Immunity, 2021, 54, 2194-2208.	6.6	191

#	Article	IF	CITATIONS
877	Enhanced Expression of microRNA-1273g-3p Contributes to Alzheimer's Disease Pathogenesis by Regulating the Expression of Mitochondrial Genes. Cells, 2021, 10, 2697.	1.8	10
879	TSPO PET Imaging as a Biomarker of Neuroinflammation in Neurodegenerative Disorders. Neuromethods, 2022, , 407-427.	0.2	2
880	Activation of and in. Neuromethods, 2022, , 11-38.	0.2	0
881	IKK2/NF-κB Activation in Astrocytes Reduces amyloid β Deposition: A Process Associated with Specific Microglia Polarization. Cells, 2021, 10, 2669.	1.8	13
882	Effect of APOE alleles on the glial transcriptome in normal aging and Alzheimer's disease. Nature Aging, 2021, 1, 919-931.	5.3	13
883	Uncovering Disease Mechanisms in a Novel Mouse Model Expressing Humanized APOEε4 and Trem2*R47H. Frontiers in Aging Neuroscience, 2021, 13, 735524.	1.7	29
884	Microglial transcription profiles in mouse and human are driven by APOE4 and sex. IScience, 2021, 24, 103238.	1.9	9
885	Cellular and molecular influencers of neuroinflammation in Alzheimer's disease: Recent concepts & roles. Neurochemistry International, 2021, 151, 105212.	1.9	23
886	A Reversible Region-Specific Innate Immune Fingerprint in the Brain Induced by Chronic Peripheral Inflammation. SSRN Electronic Journal, 0, , .	0.4	1
897	Magnetofection as a new tool to study microglia biology. Neural Regeneration Research, 2019, 14, 767.	1.6	1
906	Drug development against dementia based on understanding of molecular and cellular pathogenesis. Drug Delivery System, 2019, 34, 346-351.	0.0	0
911	TREM2-Positive Lipid-Associated Macrophages (LAMs) Control White Adipose Tissue Remodeling and Metabolic Adaptation in Obesity. Immunometabolism, 2020, 2, .	0.7	2
917	Microglia-specific overexpression of α-synuclein leads to severe dopaminergic neurodegeneration by phagocytic exhaustion and oxidative toxicity. Nature Communications, 2021, 12, 6237.	5.8	74
918	Microglia and Astrocytes in Alzheimer's Disease in the Context of the Aberrant Copper Homeostasis Hypothesis. Biomolecules, 2021, 11, 1598.	1.8	12
920	Transcriptional characterization of the glial response due to chronic neural implantation of flexible microprobes. Biomaterials, 2021, 279, 121230.	5.7	12
924	Epimedii Folium and Curculiginis Rhizoma ameliorate lipopolysaccharides-induced cognitive impairment by regulating the TREM2 signaling pathway. Journal of Ethnopharmacology, 2022, 284, 114766.	2.0	7
926	Electroacupuncture alleviates neuropathic pain by modulating Th2 infiltration and inhibiting microglial activation in the spinal cord of rats with spared nerve injury. World Journal of Traditional Chinese Medicine, 2020, 6, 448.	0.9	2
930	Intrinsic antiviral immunity drives neurodegeneration in Alzheimer disease. Journal of Clinical Investigation, 2020, 130, 1622-1624.	3.9	3

#	Article	IF	CITATIONS
931	Remote Limb Ischemic Postconditioning Protects Against Ischemic Stroke by Promoting Regulatory T Cells Thriving. Journal of the American Heart Association, 2021, 10, e023077.	1.6	10
932	Rhynchophylline Administration Ameliorates Amyloid-β Pathology and Inflammation in an Alzheimer's Disease Transgenic Mouse Model. ACS Chemical Neuroscience, 2021, 12, 4249-4256.	1.7	11
934	Microglia and its Genetics in Alzheimer's Disease. Current Alzheimer Research, 2021, 18, 676-688.	0.7	10
939	Harnessing cerebral organoids for Alzheimer's disease research. Current Opinion in Neurobiology, 2022, 72, 120-130.	2.0	17
940	Brain Immunoinformatics: A Symmetrical Link between Informatics, Wet Lab and the Clinic. Symmetry, 2021, 13, 2168.	1.1	2
941	Microglial Potassium Channels: From Homeostasis to Neurodegeneration. Biomolecules, 2021, 11, 1774.	1.8	8
942	Triggering Receptor Expressed on Myeloid Cells 2 Protects Dopaminergic Neurons by Promoting Autophagy in the Inflammatory Pathogenesis of Parkinson's Disease. Frontiers in Neuroscience, 2021, 15, 745815.	1.4	9
943	Dietary Fish Hydrolysate Improves Memory Performance Through Microglial Signature Remodeling During Aging. Frontiers in Nutrition, 2021, 8, 750292.	1.6	2
944	Structural biology of cell surface receptors implicated in Alzheimer's disease. Biophysical Reviews, 2022, 14, 233-255.	1.5	5
945	Hydroxysafflor Yellow A Inhibits Aβ1–42-Induced Neuroinflammation by Modulating the Phenotypic Transformation of Microglia via TREM2/TLR4/NF-κB Pathway in BV-2 Cells. Neurochemical Research, 2022, 47, 748-761.	1.6	17
946	Microglia and immunotherapy in Alzheimer's disease. Acta Neurologica Scandinavica, 2022, 145, 273-278.	1.0	20
948	AD-linked R47H- <i>TREM2</i> mutation induces disease-enhancing microglial states via AKT hyperactivation. Science Translational Medicine, 2021, 13, eabe3947.	5.8	55
950	Type I Interferon Signaling Drives Microglial Dysfunction and Senescence in Human iPSC Models of Down Syndrome and Alzheimer's Disease. SSRN Electronic Journal, 0, , .	0.4	0
951	Genetic Deletion of <i>Nt5e</i> Does Not Affect Stroke Size and Inflammation Profile in the Transient Middle Cerebral Artery Occlusion Model of Murine Stroke. SSRN Electronic Journal, 0, , .	0.4	0
952	Disruption of the IL-33-ST2-AKT signaling axis impairs neurodevelopment by inhibiting microglial metabolic adaptation and phagocytic function. Immunity, 2022, 55, 159-173.e9.	6.6	52
953	Elevated microglial oxidative phosphorylation and phagocytosis stimulate post-stroke brain remodeling and cognitive function recovery in mice. Communications Biology, 2022, 5, 35.	2.0	33
955	APOE4 confers transcriptomic and functional alterations to primary mouse microglia. Neurobiology of Disease, 2022, 164, 105615.	2.1	22
956	Triggering receptor expressed on myeloid cells-2 promotes survival of cardiomyocytes after myocardial ischemic injury through PI3K/AKT pathway. Cardiovascular Diagnosis and Therapy, 2022, 12, 24-36	0.7	2

#	Article	IF	CITATIONS
957	Synapses, Microglia, and Lipids in Alzheimer's Disease. Frontiers in Neuroscience, 2021, 15, 778822.	1.4	10
958	Attack of the Clones: Microglia in Health and Disease. Frontiers in Cellular Neuroscience, 2022, 16, 831747.	1.8	4
959	Effects of Natural Polyphenols on Oxidative Stress-Mediated Blood-Brain Barrier Dysfunction. Antioxidants, 2022, 11, 197.	2.2	23
960	The Crosstalk Between Neurons and Glia in Methamphetamine-Induced Neuroinflammation. Neurochemical Research, 2022, 47, 872-884.	1.6	23
961	Neuronal Glial Crosstalk: Specific and Shared Mechanisms in Alzheimer's Disease. Brain Sciences, 2022, 12, 75.	1.1	8
962	Sexâ€specific transcriptome of spinal microglia in neuropathic pain due to peripheral nerve injury. Glia, 2022, 70, 675-696.	2.5	25
963	Loss of TREM2 rescues hyperactivation of microglia, but not lysosomal deficits and neurotoxicity in models of progranulin deficiency. EMBO Journal, 2022, 41, e109108.	3.5	38
964	MORPHIOUS: an unsupervised machine learning workflow to detect the activation of microglia and astrocytes. Journal of Neuroinflammation, 2022, 19, 24.	3.1	5
965	Accumulation of high molecular weight kininogen in the brains of Alzheimer's disease patients may affect microglial function by altering phagocytosis and lysosomal cathepsin activity. Alzheimer's and Dementia, 2022, 18, 1919-1929.	0.4	7
966	Microglia in CNS infections: insights from Toxoplasma gondii and other pathogens. Trends in Parasitology, 2022, 38, 217-229.	1.5	11
968	<scp>MAC2</scp> is a longâ€lasting marker of peripheral cell infiltrates into the mouse <scp>CNS</scp> after bone marrow transplantation and coronavirus infection. Glia, 2022, 70, 875-891.	2.5	11
969	Human neural cell typeâ€specificÂextracellular vesicle proteome defines diseaseâ€related molecules associated with activated astrocytes in Alzheimer's disease brain. Journal of Extracellular Vesicles, 2022, 11, e12183.	5.5	54
970	Age of Rats Affects the Degree of Retinal Neuroinflammatory Response Induced by High Acute Intraocular Pressure. Disease Markers, 2022, 2022, 1-10.	0.6	3
971	Reactive Astrocytes Contribute to Alzheimer's Disease-Related Neurotoxicity and Synaptotoxicity in a Neuron-Astrocyte Co-culture Assay. Frontiers in Cellular Neuroscience, 2021, 15, 739411.	1.8	7
972	Engineered extracellular vesicles encapsulated Bryostatin-1 as therapy for neuroinflammation. Nanoscale, 2022, 14, 2393-2410.	2.8	15
973	Current understandings and perspectives of petroleum hydrocarbons in Alzheimer's disease and Parkinson's disease: a global concern. Environmental Science and Pollution Research, 2022, 29, 10928-10949.	2.7	9
974	Galectin-3 in Microglia-Mediated Neuroinflammation: Implications for Central Nervous System Diseases. Current Neuropharmacology, 2022, 20, 2066-2080.	1.4	7
976	Selective reduction of astrocyte apoE3 and apoE4 strongly reduces Aβ accumulation and plaque-related pathology in a mouse model of amyloidosis. Molecular Neurodegeneration, 2022, 17, 13.	4.4	44

#	Article	IF	CITATIONS
977	Minocycline suppresses disease-associated microglia (DAM) in a model of photoreceptor cell degeneration. Experimental Eye Research, 2022, 217, 108953.	1.2	15
978	iPSC-based disease modeling and drug discovery in cardinal neurodegenerative disorders. Cell Stem Cell, 2022, 29, 189-208.	5.2	71
979	The Regulation of Microglial Cell Polarization in the Tumor Microenvironment: A New Potential Strategy for Auxiliary Treatment of Glioma—A Review. Cellular and Molecular Neurobiology, 2023, 43, 193-204.	1.7	1
980	GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas. Nature, 2022, 603, 934-941.	13.7	339
981	Central nervous system macrophages in progressive multiple sclerosis: relationship to neurodegeneration and therapeutics. Journal of Neuroinflammation, 2022, 19, 45.	3.1	51
982	Untangling senescent and damageâ€associated microglia in the aging and diseased brain. FEBS Journal, 2023, 290, 1326-1339.	2.2	20
983	Microglia-like Cells Promote Neuronal Functions in Cerebral Organoids. Cells, 2022, 11, 124.	1.8	50
984	Defining Microglial States and Nomenclature: A Roadmap to 2030. SSRN Electronic Journal, 0, , .	0.4	21
985	Neurodegenerative phagocytes mediate synaptic stripping in Neuro-HIV. Brain, 2022, 145, 2730-2741.	3.7	7
986	APOE Is a Prognostic Biomarker and Correlates with Immune Infiltrates in Papillary Thyroid Carcinoma. Journal of Cancer, 2022, 13, 1652-1663.	1.2	4
987	Disease-associated microglial activation prevents photoreceptor degeneration by suppressing the accumulation of cell debris and neutrophils in degenerating rat retinas. Theranostics, 2022, 12, 2687-2706.	4.6	8
988	Are apolipoprotein E fragments a promising new therapeutic target for Alzheimer's disease?. Therapeutic Advances in Chronic Disease, 2022, 13, 204062232210816.	1.1	8
989	Function and therapeutic value of astrocytes in neurological diseases. Nature Reviews Drug Discovery, 2022, 21, 339-358.	21.5	160
990	Microglia and Astrocyte Function and Communication: What Do We Know in Humans?. Frontiers in Neuroscience, 2022, 16, 824888.	1.4	39
991	APOE mediated neuroinflammation and neurodegeneration in Alzheimer's disease. Seminars in Immunology, 2022, 59, 101594.	2.7	58
992	Definition of a mouse microglial subset that regulates neuronal development and proinflammatory responses in the brain. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	24
993	LPS-induced lipid alterations in microglia revealed by MALDI mass spectrometry-based cell fingerprinting in neuroinflammation studies. Scientific Reports, 2022, 12, 2908.	1.6	9
994	TREM2 regulates purinergic receptor-mediated calcium signaling and motility in human iPSC-derived microglia. ELife, 2022, 11, .	2.8	31

#	Article	IF	CITATIONS
995	Brain cell type-specific cholesterol metabolism and implications for learning and memory. Trends in Neurosciences, 2022, 45, 401-414.	4.2	43
996	Neuronal–glial communication perturbations in murine SOD1C93A spinal cord. Communications Biology, 2022, 5, 177.	2.0	8
997	Stroke induces disease-specific myeloid cells in the brain parenchyma and pia. Nature Communications, 2022, 13, 945.	5.8	40
998	PLCG2 is associated with the inflammatory response and is induced by amyloid plaques in Alzheimer's disease. Genome Medicine, 2022, 14, 17.	3.6	34
999	Treatment of a genetic brain disease by CNS-wide microglia replacement. Science Translational Medicine, 2022, 14, eabl9945.	5.8	45
1000	Transcriptional response of murine microglia in Alzheimer's disease and inflammation. BMC Genomics, 2022, 23, 183.	1.2	11
1003	ENT-A010, a Novel Steroid Derivative, Displays Neuroprotective Functions and Modulates Microglial Responses. Biomolecules, 2022, 12, 424.	1.8	2
1004	Microglia: Key Players in Retinal Ageing and Neurodegeneration. Frontiers in Cellular Neuroscience, 2022, 16, 804782.	1.8	25
1006	The microbiota restrains neurodegenerative microglia in a model of amyotrophic lateral sclerosis. Microbiome, 2022, 10, 47.	4.9	17
1007	Microglial activation in Alzheimer's disease: The role of flavonoids and microRNAs. Journal of Leukocyte Biology, 2022, 112, 47-77.	1.5	7
1009	ApoE4 reduction: An emerging and promising therapeutic strategy for Alzheimer's disease. Neurobiology of Aging, 2022, 115, 20-28.	1.5	20
1010	Decoupling astrocytes in adult mice impairs synaptic plasticity and spatial learning. Cell Reports, 2022, 38, 110484.	2.9	43
1012	Microglia phenotypes are associated with subregional patterns of concomitant tau, amyloid-β and α-synuclein pathologies in the hippocampus of patients with Alzheimer's disease and dementia with Lewy bodies. Acta Neuropathologica Communications, 2022, 10, 36.	2.4	7
1013	Central nervous system immune interactome is a function of cancer lineage, tumor microenvironment, and STAT3 expression. JCI Insight, 2022, 7, .	2.3	7
1014	A Mutant Variant of E2F4 Triggers Multifactorial Therapeutic Effects in 5xFAD Mice. Molecular Neurobiology, 2022, 59, 3016-3039.	1.9	3
1015	Microglial VPS35 deficiency impairs AÎ ² phagocytosis and AÎ ² -induced disease-associated microglia, and enhances AÎ ² associated pathology. Journal of Neuroinflammation, 2022, 19, 61.	3.1	12
1016	Microglia in Alzheimer's Disease: a Key Player in the Transition Between Homeostasis and Pathogenesis. Neurotherapeutics, 2022, 19, 186-208.	2.1	19
1017	Contribution of "Genuine Microglia―to Alzheimer's Disease Pathology. Frontiers in Aging Neuroscience, 2022, 14, 815307.	1.7	0

#	Article	IF	CITATIONS
1018	Lipoproteins in the Central Nervous System: From Biology to Pathobiology. Annual Review of Biochemistry, 2022, 91, 731-759.	5.0	13
1019	ApoE Cascade Hypothesis in the pathogenesis of Alzheimer's disease and related dementias. Neuron, 2022, 110, 1304-1317.	3.8	120
1020	Microbiota inÂneuroinflammationÂandÂsynaptic dysfunction: a focus on Alzheimer's disease. Molecular Neurodegeneration, 2022, 17, 19.	4.4	89
1021	Exploring Sex-Related Differences in Microglia May Be a Game-Changer in Precision Medicine. Frontiers in Aging Neuroscience, 2022, 14, 868448.	1.7	47
1023	Dissection of artifactual and confounding glial signatures by single-cell sequencing of mouse and human brain. Nature Neuroscience, 2022, 25, 306-316.	7.1	166
1024	Inhibition of colony stimulating factor-1 receptor (CSF-1R) as a potential therapeutic strategy for neurodegenerative diseases: opportunities and challenges. Cellular and Molecular Life Sciences, 2022, 79, 219.	2.4	64
1025	Glycolytic metabolism supports microglia training during age-related neurodegeneration. Pharmacological Reports, 2022, 74, 818-831.	1.5	4
1026	Transcriptional landscape of human microglia implicates age, sex, and <i>APOE</i> â€related immunometabolic pathway perturbations. Aging Cell, 2022, 21, e13606.	3.0	23
1027	Decoding the temporal and regional specification of microglia in the developing human brain. Cell Stem Cell, 2022, 29, 620-634.e6.	5.2	27
1028	Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer's disease. Cell Metabolism, 2022, 34, 634-648.e6.	7.2	152
1029	The role of intracellular calciumâ€storeâ€mediated calcium signals in <i>in vivo</i> sensor and effector functions of microglia. Journal of Physiology, 2023, 601, 4203-4215.	1.3	8
1031	Exploring the potential role of rab5 protein in endo-lysosomal impairment in Alzheimer's disease. Biomedicine and Pharmacotherapy, 2022, 148, 112773.	2.5	6
1032	Versatile nanomaterials for Alzheimer's disease: Pathogenesis inspired disease-modifying therapy. Journal of Controlled Release, 2022, 345, 38-61.	4.8	11
1033	Co-expression patterns of microglia markers Iba1, TMEM119 and P2RY12 in Alzheimer's disease. Neurobiology of Disease, 2022, 167, 105684.	2.1	45
1034	Regulation of myelination by microglia. Science Advances, 2021, 7, eabk1131.	4.7	42
1036	TREM2-independent oligodendrocyte, astrocyte, and TÂcell responses to tau and amyloid pathology in mouse models of Alzheimer disease. Cell Reports, 2021, 37, 110158.	2.9	33
1037	Microglia Heterogeneity in Alzheimer's Disease: Insights From Single-Cell Technologies. Frontiers in Synaptic Neuroscience, 2021, 13, 773590.	1.3	16
1038	Characterization of the Leucocyte Immunoglobulin-like Receptor B4 (Lilrb4) Expression in Microglia. Biology, 2021, 10, 1300.	1.3	3

#	Article	IF	CITATIONS
1039	TREM2 interacts with TDP-43 and mediates microglial neuroprotection against TDP-43-related neurodegeneration. Nature Neuroscience, 2022, 25, 26-38.	7.1	52
1040	Microglia and astrocyte involvement in neurodegeneration and brain cancer. Journal of Neuroinflammation, 2021, 18, 298.	3.1	32
1042	Microglial TREM2 in amyotrophic lateral sclerosis. Developmental Neurobiology, 2022, 82, 125-137.	1.5	16
1043	The origin and repopulation of microglia. Developmental Neurobiology, 2022, 82, 112-124.	1.5	16
1044	Microglia and monocytes in inflammatory CNS disease: integrating phenotype and function. Acta Neuropathologica, 2022, 143, 179-224.	3.9	82
1046	The Dual Nature of Microglia in Alzheimer's Disease: A Microglia-Neuron Crosstalk Perspective. Neuroscientist, 2023, 29, 616-638.	2.6	4
1047	The niacin receptor HCAR2 modulates microglial response and limits disease progression in a mouse model of Alzheimer's disease. Science Translational Medicine, 2022, 14, eabl7634.	5.8	35
1049	Peripheral Pathways to Neurovascular Unit Dysfunction, Cognitive Impairment, and Alzheimer's Disease. Frontiers in Aging Neuroscience, 2022, 14, 858429.	1.7	9
1050	The cytokines interleukin-6 and interferon-α induce distinct microglia phenotypes. Journal of Neuroinflammation, 2022, 19, 96.	3.1	23
1051	Soluble TREM2 is associated with death and cardiovascular events after acute ischemic stroke: an observational study from CATIS. Journal of Neuroinflammation, 2022, 19, 88.	3.1	7
1052	Concerted type I interferon signaling in microglia and neural cells promotes memory impairment associated with amyloid \hat{I}^2 plaques. Immunity, 2022, 55, 879-894.e6.	6.6	64
1053	Life and death of microglia: Mechanisms governing microglial states and fates. Immunology Letters, 2022, 245, 51-60.	1.1	14
1125	Osteopontin/secreted phosphoproteinâ€1 harnesses glialâ€; immuneâ€; and neuronal cell ligandâ€receptor interactions to sense and regulate acute and chronic neuroinflammation. Immunological Reviews, 2022, 311, 224-233.	2.8	40
1126	Molecular recognition of the interaction between ApoE and the TREM2 protein. Translational Neuroscience, 2022, 13, 93-103.	0.7	5
1127	Histamine and Microglia. Current Topics in Behavioral Neurosciences, 2022, , 241-259.	0.8	3
1128	Amyloidâ€Î² activates NLRP3 inflammasomes by affecting microglial immunometabolism through the Sykâ€AMPK pathway. Aging Cell, 2022, 21, e13623.	3.0	25
1129	Single-cell and spatial RNA sequencing identify perturbators of microglial functions with aging. Nature Aging, 2022, 2, 508-525.	5.3	11
1130	Loss of microglial EED impairs synapse density, learning, and memory. Molecular Psychiatry, 2022, 27, 2999-3009.	4.1	16

#	Article	IF	CITATIONS
1131	Neuronal apoptosis drives remodeling states of microglia and shifts in survival pathway dependence. ELife, 2022, 11, .	2.8	22
1132	Microglia-derived TNF-α inhibiting GABAergic neurons in the anterior lateral bed nucleus of the stria terminalis precipitates visceral hypersensitivity induced by colorectal distension in rats. Neurobiology of Stress, 2022, 18, 100449.	1.9	3
1133	BIN1 is a key regulator of proinflammatory and neurodegeneration-related activation in microglia. Molecular Neurodegeneration, 2022, 17, 33.	4.4	26
1134	miR-150-5p and let-7b-5p in Blood Myeloid Extracellular Vesicles Track Cognitive Symptoms in Patients with Multiple Sclerosis. Cells, 2022, 11, 1551.	1.8	8
1135	Transgenic Mouse Models of Alzheimer's Disease: An Integrative Analysis. International Journal of Molecular Sciences, 2022, 23, 5404.	1.8	36
1137	A multiâ€hit hypothesis for an <i>APOE4</i> â€dependent pathophysiological state. European Journal of Neuroscience, 2022, 56, 5476-5515.	1.2	8
1138	Iron accumulation induces oxidative stress, while depressing inflammatory polarization in human iPSC-derived microglia. Stem Cell Reports, 2022, 17, 1351-1365.	2.3	25
1139	Peripheral monocyte–derived cells counter amyloid plaque pathogenesis in a mouse model of Alzheimer's disease. Journal of Clinical Investigation, 2022, 132, .	3.9	25
1140	cGAS and DDX41-STING mediated intrinsic immunity spreads intercellularly to promote neuroinflammation in SOD1 ALS model. IScience, 2022, 25, 104404.	1.9	9
1141	URMCâ€099 prophylaxis prevents hippocampal vascular vulnerability and synaptic damage in an orthopedic model of delirium superimposed on dementia. FASEB Journal, 2022, 36, e22343.	0.2	5
1142	Neuroimmune Crosstalk Between the Peripheral and the Central Immune System in Amyotrophic Lateral Sclerosis. Frontiers in Aging Neuroscience, 2022, 14, 890958.	1.7	10
1143	The aging immune system in Alzheimer's and Parkinson's diseases. Seminars in Immunopathology, 2022, 44, 649-657.	2.8	13
1144	Microglial phagocytosis and regulatory mechanisms after stroke. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 1579-1596.	2.4	19
1146	Epigenetic regulation of innate immune memory in microglia. Journal of Neuroinflammation, 2022, 19, 111.	3.1	30
1147	Molecular Insights into Cell Type-specific Roles in Alzheimer's Disease: Human Induced Pluripotent Stem Cell-based Disease Modelling. Neuroscience, 2023, 518, 10-26.	1.1	5
1148	Microglia in the Neuroinflammatory Pathogenesis of Alzheimer's Disease and Related Therapeutic Targets. Frontiers in Immunology, 2022, 13, 856376.	2.2	38
1149	Microglia as a Hub for Suicide Neuropathology: Future Investigation and Prevention Targets. Frontiers in Cellular Neuroscience, 2022, 16, .	1.8	10
1152	The Specific Mechanism of TREM2 Regulation of Synaptic Clearance in Alzheimer's Disease. Frontiers in Immunology, 2022, 13, .	2.2	8

#	Article	IF	CITATIONS
1154	Nt5e deficiency does not affect post-stroke inflammation and lesion size in a murine ischemia/reperfusion stroke model. IScience, 2022, 25, 104470.	1.9	3
1155	The Role of Human Herpesvirus 6 Infection in Alzheimer's Disease Pathogenicity—A Theoretical Mosaic. Journal of Clinical Medicine, 2022, 11, 3061.	1.0	10
1156	Neuroinflammation: A Possible Link Between Chronic Vascular Disorders and Neurodegenerative Diseases. Frontiers in Aging Neuroscience, 0, 14, .	1.7	21
1157	Inflammatory Animal Models of Parkinson's Disease. Journal of Parkinson's Disease, 2022, 12, S165-S182.	1.5	9
1158	Functional and Phenotypic Diversity of Microglia: Implication for Microglia-Based Therapies for Alzheimer's Disease. Frontiers in Aging Neuroscience, 0, 14, .	1.7	15
1159	Advancing basic and translational research to deepen understanding of the molecular immune-mediated mechanisms regulating long-term persistence of HIV-1 in microglia in the adult human brain. Journal of Leukocyte Biology, 2022, 112, 1223-1231.	1.5	3
1161	Sustained Trem2 stabilization accelerates microglia heterogeneity and Aβ pathology in a mouse model of Alzheimer's disease. Cell Reports, 2022, 39, 110883.	2.9	20
1163	TREM2 in the pathogenesis of AD: a lipid metabolism regulator and potential metabolic therapeutic target. Molecular Neurodegeneration, 2022, 17, .	4.4	36
1164	Microglia in Alzheimer's Disease: A Favorable Cellular Target to Ameliorate Alzheimer's Pathogenesis. Mediators of Inflammation, 2022, 2022, 1-17.	1.4	3
1165	Neuroinflammation and galectins: a key relationship in neurodegenerative diseases. Glycoconjugate Journal, 2022, 39, 685-699.	1.4	7
1166	Methamphetamine-mediated dissemination of β-amyloid: Disturbances in endocytosis, transport and clearance of β-amyloid in microglial BV2 cells. Toxicology and Applied Pharmacology, 2022, 447, 116090.	1.3	2
1167	Primary Microglia Dysfunction or Microgliopathy: A Cause of Dementias and Other Neurological or Psychiatric Disorders. Neuroscience, 2022, 497, 324-339.	1.1	4
1168	Cholesterol and matrisome pathways dysregulated in astrocytes and microglia. Cell, 2022, 185, 2213-2233.e25.	13.5	123
1169	A New Understanding of TMEM119 as a Marker of Microglia. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	24
1170	Molecular Subgroups of Intrahepatic Cholangiocarcinoma Discovered by Single-Cell RNA Sequencing–Assisted Multiomics Analysis. Cancer Immunology Research, 2022, 10, 811-828.	1.6	21
1171	Region-Specific Characteristics of Astrocytes and Microglia: A Possible Involvement in Aging and Diseases. Cells, 2022, 11, 1902.	1.8	10
1172	Extracellular Hsp90α stimulates a unique innate gene profile in microglial cells with simultaneous activation of Nrf2 and protection from oxidative stress. Cell Stress and Chaperones, 2022, 27, 461-478.	1.2	4
1173	LILRB2-mediated TREM2 signaling inhibition suppresses microglia functions. Molecular Neurodegeneration, 2022, 17, .	4.4	12

		_		
CITAT	ION .	Dr		DT
CITAT	IUN	IX F.	РО	K I

#	Article	IF	CITATIONS
1174	The role of triggering receptor expressed on myeloid cells 2 in Parkinson's disease and other neurodegenerative disorders. Behavioural Brain Research, 2022, 433, 113977.	1.2	4
1175	Metabolic-scale gene activation screens identify SLCO2B1 as a heme transporter that enhances cellular iron availability. Molecular Cell, 2022, 82, 2832-2843.e7.	4.5	13
1176	Host immune responses in the central nervous system during fungal infections. Immunological Reviews, 2022, 311, 50-74.	2.8	3
1177	Mouse Models of Alzheimer's Disease. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	50
1178	Immune response after central nervous system injury. Seminars in Immunology, 2022, 59, 101629.	2.7	19
1179	Exploring the Impact of TREM2 in Tumor-Associated Macrophages. Vaccines, 2022, 10, 943.	2.1	16
1180	BACE-1 inhibition facilitates the transition from homeostatic microglia to DAM-1. Science Advances, 2022, 8, .	4.7	27
1181	Signatures of glial activity can be detected in the CSF proteome. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	12
1182	Cyanidin-3-O-Glucoside Regulates the M1/M2 Polarization of Microglia via PPARγ and Aβ42 Phagocytosis Through TREM2 in an Alzheimer's Disease Model. Molecular Neurobiology, 2022, 59, 5135-5148.	1.9	19
1184	How neurons die in Alzheimer's disease: Implications for neuroinflammation. Current Opinion in Neurobiology, 2022, 75, 102575.	2.0	57
1185	Microglia: Friend and foe in tauopathy. Progress in Neurobiology, 2022, 216, 102306.	2.8	13
1186	Macrophage differentiation. , 2022, , 19-48.		0
1187	Microglia and border-associated macrophages in the central nervous system. , 2022, , 181-212.		1
1188	CX3CR1 deficiency aggravates amyloid driven neuronal pathology and cognitive decline in Alzheimer's disease. Molecular Neurodegeneration, 2022, 17, .	4.4	37
1189	Pathophysiology of neurodegenerative diseases: An interplay among axonal transport failure, oxidative stress, and inflammation?. Seminars in Immunology, 2022, 59, 101628.	2.7	13
1190	The Role of Microglia in Alzheimer's Disease From the Perspective of Immune Inflammation and Iron Metabolism. Frontiers in Aging Neuroscience, 0, 14, .	1.7	24
1191	Roles of Fatty Acids in Microglial Polarization: Evidence from In Vitro and In Vivo Studies on Neurodegenerative Diseases. International Journal of Molecular Sciences, 2022, 23, 7300.	1.8	10
1192	Microglia Phenotypes in Aging and Neurodegenerative Diseases. Cells, 2022, 11, 2091.	1.8	76

#	Article	IF	CITATIONS
1193	Vascular Dysfunction Is Central to Alzheimer's Disease Pathogenesis in APOE e4 Carriers. International Journal of Molecular Sciences, 2022, 23, 7106.	1.8	5
1194	The Shape of μ—How Morphological Analyses Shape the Study of Microglia. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	3
1195	Novel App knock-in mouse model shows key features of amyloid pathology and reveals profound metabolic dysregulation of microglia. Molecular Neurodegeneration, 2022, 17, .	4.4	26
1197	Immunosenescence: A Critical Factor Associated With Organ Injury After Sepsis. Frontiers in Immunology, 0, 13, .	2.2	13
1199	LncRNA, an Emerging Approach for Neurological Diseases Treatment by Regulating Microglia Polarization. Frontiers in Neuroscience, 0, 16, .	1.4	5
1200	Deconstructing cold-induced brown adipocyte neogenesis in mice. ELife, 0, 11, .	2.8	20
1201	RNASE6 is a novel modifier of APOE-Î μ 4 effects on cognition. Neurobiology of Aging, 2022, 118, 66-76.	1.5	5
1203	Sex-Related Microglial Perturbation Is Related to Mitochondrial Changes in a Model of Alzheimer's Disease. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	7
1204	Repopulated microglia induce expression of Cxcl13 with differential changes in Tau phosphorylation but do not impact amyloid pathology. Journal of Neuroinflammation, 2022, 19, .	3.1	7
1206	Type-I-interferon signaling drives microglial dysfunction and senescence in human iPSC models of Down syndrome and Alzheimer's disease. Cell Stem Cell, 2022, 29, 1135-1153.e8.	5.2	45
1207	Distinct tau neuropathology and cellular profiles of an APOE3 Christchurch homozygote protected against autosomal dominant Alzheimer's dementia. Acta Neuropathologica, 2022, 144, 589-601.	3.9	32
1210	Crossing borders in Alzheimer's disease: A T cell's perspective. Advanced Drug Delivery Reviews, 2022, 188, 114398.	6.6	13
1211	The role of microglia immunometabolism in neurodegeneration: Focus on molecular determinants and metabolic intermediates of metabolic reprogramming. Biomedicine and Pharmacotherapy, 2022, 153, 113412.	2.5	12
1212	Microglia-derived PDGFB promotes neuronal potassium currents to suppress basal sympathetic tonicity and limit hypertension. Immunity, 2022, 55, 1466-1482.e9.	6.6	20
1213	Cellular and Molecular Mechanism of Pulmonary Fibrosis Post-COVID-19: Focus on Galectin-1, -3, -8, -9. International Journal of Molecular Sciences, 2022, 23, 8210.	1.8	13
1214	Role of Microglia in Herpesvirus-Related Neuroinflammation and Neurodegeneration. Pathogens, 2022, 11, 809.	1.2	12
1215	<scp>Brain–immune</scp> interaction mechanisms: Implications for cognitive dysfunction in psychiatric disorders. Cell Proliferation, 2022, 55, .	2.4	14
1216	Humulus japonicus attenuates LPS-and scopolamine-induced cognitive impairment in mice. Laboratory Animal Research, 2022, 38, .	1.1	1

# 1217	ARTICLE Microglia in multiple sclerosis: Protectors turn destroyers. Neuron, 2022, 110, 3534-3548.	IF 3.8	CITATIONS 37
1218	Role of Dectin-1 in peripheral nerve injury. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	1
1219	Deletion of Abi3/Gngt2 influences age-progressive amyloid Î ² and tau pathologies in distinctive ways. Alzheimer's Research and Therapy, 2022, 14, .	3.0	6
1220	Galectin-3 is elevated in CSF and is associated with Aβ deposits and tau aggregates in brain tissue in Alzheimer's disease. Acta Neuropathologica, 2022, 144, 843-859.	3.9	17
1221	Galectin-3, a rising star in modulating microglia activation under conditions of neurodegeneration. Cell Death and Disease, 2022, 13, .	2.7	21
1222	The past, present, and future of research on neuroinflammation-induced mild cognitive impairment: A bibliometric analysis. Frontiers in Aging Neuroscience, 0, 14, .	1.7	3
1223	Neuronal ApoE Regulates the Cell-to-Cell Transmission of α-Synuclein. International Journal of Molecular Sciences, 2022, 23, 8311.	1.8	3
1224	MhcII Regulates Transmission of α-Synuclein-Seeded Pathology in Mice. International Journal of Molecular Sciences, 2022, 23, 8175.	1.8	4
1225	CD33 isoforms in microglia and Alzheimer's disease: Friend and foe. Molecular Aspects of Medicine, 2023, 90, 101111.	2.7	18
1226	Novel potent liposome agonists of triggering receptor expressed on myeloid cells 2 phenocopy antibody treatment in cells. Glia, 2022, 70, 2290-2308.	2.5	6
1227	Phosphatidylserine, inflammation, and central nervous system diseases. Frontiers in Aging Neuroscience, 0, 14, .	1.7	15
1228	Plasma apolipoprotein E levels in longitudinally followed patients with mild cognitive impairment and Alzheimer's disease. Alzheimer's Research and Therapy, 2022, 14, .	3.0	15
1230	Bioinformatics analysis identified apolipoprotein E as a hub gene regulating neuroinflammation in macrophages and microglia following spinal cord injury. Frontiers in Immunology, 0, 13, .	2.2	7
1231	Associations Between Sub-Threshold Amyloid-Î ² Deposition, Cortical Volume, and Cognitive Function Modulated by APOE É>4 Carrier Status in Cognitively Normal Older Adults. Journal of Alzheimer's Disease, 2022, , 1-14.	1.2	0
1232	Discovery and engineering of an anti-TREM2 antibody to promote amyloid plaque clearance by microglia in 5XFAD mice. MAbs, 2022, 14, .	2.6	5
1233	Biological determinants of bloodâ€based cytokines in the Alzheimer's disease clinical continuum. Journal of Neurochemistry, 0, , .	2.1	2
1234	Effects of DDT on Amyloid Precursor Protein Levels and Amyloid Beta Pathology: Mechanistic Links to Alzheimer's Disease Risk. Environmental Health Perspectives, 2022, 130, .	2.8	6
1235	Apolipoprotein E4 impairs the response of neurodegenerative retinal microglia and prevents neuronal loss in glaucoma. Immunity, 2022, 55, 1627-1644.e7.	6.6	33

#	Article	IF	CITATIONS
1236	Microglial TYROBP/DAP12 in Alzheimer's disease: Transduction of physiological and pathological signals across TREM2. Molecular Neurodegeneration, 2022, 17, .	4.4	36
1238	All roads lead to heterogeneity: The complex involvement of astrocytes and microglia in the pathogenesis of Alzheimer's disease. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	10
1239	Lipid accumulation induced by APOE4 impairs microglial surveillance of neuronal-network activity. Cell Stem Cell, 2022, 29, 1197-1212.e8.	5.2	64
1240	Pathogenesis, therapeutic strategies and biomarker development based on "omics―analysis related to microglia in Alzheimer's disease. Journal of Neuroinflammation, 2022, 19, .	3.1	12
1241	Regulating microglial miR-155 transcriptional phenotype alleviates Alzheimer's-induced retinal vasculopathy by limiting Clec7a/Galectin-3+ neurodegenerative microglia. Acta Neuropathologica Communications, 2022, 10, .	2.4	12
1242	The heterogeneity of microglial activation and its epigenetic and non-coding RNA regulations in the immunopathogenesis of neurodegenerative diseases. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	12
1243	How the immune system shapes neurodegenerative diseases. Trends in Neurosciences, 2022, 45, 733-748.	4.2	17
1244	Targeting neuroinflammation in Alzheimer's disease: from mechanisms to clinical applications. Neural Regeneration Research, 2023, 18, 708.	1.6	41
1245	Emerging Roles of TREM2 in Neurodegenerative Diseases. , 2022, , 169-195.		0
1246	Redefining microglia states: Lessons and limits of human and mouse models to study microglia states in neurodegenerative diseases. Seminars in Immunology, 2022, 60, 101651.	2.7	7
1247	Apolipoprotein E in Cardiometabolic and Neurological Health and Diseases. International Journal of Molecular Sciences, 2022, 23, 9892.	1.8	16
1248	Sex and APOE Genotype Alter the Basal and Induced Inflammatory States of Primary Microglia from APOE Targeted Replacement Mice. International Journal of Molecular Sciences, 2022, 23, 9829.	1.8	6
1250	A "multi-omics―analysis of blood–brain barrier and synaptic dysfunction in <i>APOE4</i> mice. Journal of Experimental Medicine, 2022, 219, .	4.2	21
1251	Microglia subtypes show substrate- and time-dependent phagocytosis preferences and phenotype plasticity. Frontiers in Immunology, 0, 13, .	2.2	4
1252	Intrathecal Injection of the Secretome from ALS Motor Neurons Regulated for miR-124 Expression Prevents Disease Outcomes in SOD1-G93A Mice. Biomedicines, 2022, 10, 2120.	1.4	3
1253	Mechanistic Role of Jak3 in Obesity-Associated Cognitive Impairments. Nutrients, 2022, 14, 3715.	1.7	2
1254	Elevating microglia TREM2 reduces amyloid seeding and suppresses disease-associated microglia. Journal of Experimental Medicine, 2022, 219, .	4.2	20
1255	Loss of Homeostatic Microglia Signature in Prion Diseases. Cells, 2022, 11, 2948.	1.8	3

#	Article	IF	CITATIONS
1256	Comparative analysis of transcriptome remodeling in plaque-associated and plaque-distant microglia during amyloid-β pathology progression in mice. Journal of Neuroinflammation, 2022, 19, .	3.1	7
1257	Trem2 deletion enhances tau dispersion and pathology through microglia exosomes. Molecular Neurodegeneration, 2022, 17, .	4.4	35
1258	Microglial STAT1-sufficiency is required for resistance to toxoplasmic encephalitis. PLoS Pathogens, 2022, 18, e1010637.	2.1	6
1259	Single cell and spatial transcriptomic analyses reveal microglia-plasma cell crosstalk in the brain during Trypanosoma brucei infection. Nature Communications, 2022, 13, .	5.8	21
1260	A multifaceted evaluation of microgliosis and differential cellular dysregulation of mammalian target of rapamycin signaling in neuronopathic Gaucher disease. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	4
1262	Single cell RNA sequencing confirms retinal microglia activation associated with early onset retinal degeneration. Scientific Reports, 2022, 12, .	1.6	6
1263	PLCγ2 impacts microglia-related effectors revealing variants and pathways important in Alzheimer's disease. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	2
1264	Single-cell RNA transcriptome analysis of CNS immune cells reveals CXCL16/CXCR6 as maintenance factors for tissue-resident T cells that drive synapse elimination. Genome Medicine, 2022, 14, .	3.6	17
1265	Innate immune activation: Parallels in alcohol use disorder and Alzheimer's disease. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	8
1266	Ketogenic Diet Alleviates Hippocampal Neurodegeneration Possibly via ASIC1a and the Mitochondria-Mediated Apoptotic Pathway in a Rat Model of Temporal Lobe Epilepsy. Neuropsychiatric Disease and Treatment, 0, Volume 18, 2181-2198.	1.0	8
1267	A tetravalent TREM2 agonistic antibody reduced amyloid pathology in a mouse model of Alzheimer's disease. Science Translational Medicine, 2022, 14, .	5.8	33
1268	Rejuvenation of the aged brain immune cell landscape in mice through p16-positive senescent cell clearance. Nature Communications, 2022, 13, .	5.8	34
1269	Advanced therapeutic strategies targeting microglia: beyond neuroinflammation. Archives of Pharmacal Research, 2022, 45, 618-630.	2.7	6
1270	Building in vitro models of the brain to understand the role of <i>APOE</i> in Alzheimer's disease. Life Science Alliance, 2022, 5, e202201542.	1.3	2
1271	Mendelian Randomization Study Using Dopaminergic Neuron‣pecific <scp>eQTL</scp> Nominates Potential Causal Genes for Parkinson's Disease. Movement Disorders, 2022, 37, 2451-2456.	2.2	10
1273	The multiple faces of extracellular vesicles released by microglia: Where are we 10 years after?. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	13
1274	Age-dependent microglial disease phenotype results in functional decline in gut macrophages. , 2022, , .		0
1275	CSF1R-Mediated Myeloid Cell Depletion Prolongs Lifespan But Aggravates Distinct Motor Symptoms in a Model of Multiple System Atrophy. Journal of Neuroscience, 2022, 42, 7673-7688.	1.7	2

#	Article	IF	CITATIONS
1276	Ultrastructural characterization of dark microglia during aging in a mouse model of Alzheimer's disease pathology and in human post-mortem brain samples. Journal of Neuroinflammation, 2022, 19, .	3.1	18
1277	Astrocytes regulate neuronal network activity by mediating synapse remodeling. Neuroscience Research, 2023, 187, 3-13.	1.0	3
1278	APOE in the bullseye of neurodegenerative diseases: impact of the APOE genotype in Alzheimer's disease pathology and brain diseases. Molecular Neurodegeneration, 2022, 17, .	4.4	62
1279	Astroglial and microglial pathology in Down syndrome: Focus on Alzheimer's disease. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	4
1280	Daphne genkwa flower extract promotes the neuroprotective effects of microglia. Phytomedicine, 2023, 108, 154486.	2.3	6
1281	Microglial autophagy in cerebrovascular diseases. Frontiers in Aging Neuroscience, 0, 14, .	1.7	1
1282	Uncovering mechanisms of brain inflammation in Alzheimer's disease with <i>APOE4</i> : Application of single cellâ€type lipidomics. Annals of the New York Academy of Sciences, 2022, 1518, 84-105.	1.8	3
1283	Integrated single-cell analysis-based classification of vascular mononuclear phagocytes in mouse and human atherosclerosis. Cardiovascular Research, 2023, 119, 1676-1689.	1.8	31
1284	Remyelinating strategies: What can be learned from normal brain development. Current Opinion in Pharmacology, 2022, 67, 102290.	1.7	0
1285	Apolipoprotein E loss of function: Influence on murine brain markers of physiology and pathology. Aging Brain, 2022, 2, 100055.	0.7	1
1286	The Alzheimer's Cell Atlas (TACA): A singleâ€cell molecular map for translational therapeutics accelerator in Alzheimer's disease. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2022, 8, .	1.8	8
1287	The Yin/Yang Balance of Communication between Sensory Neurons and Macrophages in Traumatic Peripheral Neuropathic Pain. International Journal of Molecular Sciences, 2022, 23, 12389.	1.8	6
1288	Vascular and Nonvascular Mechanisms of Cognitive Impairment and Dementia. Clinics in Geriatric Medicine, 2023, 39, 109-122.	1.0	8
1289	CD8+ T cells induce interferon-responsive oligodendrocytes and microglia in white matter aging. Nature Neuroscience, 2022, 25, 1446-1457.	7.1	56
1290	Microglia have limited influence on early prion pathogenesis, clearance, or replication. PLoS ONE, 2022, 17, e0276850.	1.1	2
1291	Targeting tumor-associated macrophages for the immunotherapy of glioblastoma: Navigating the clinical and translational landscape. Frontiers in Immunology, 0, 13, .	2.2	5
1293	Chronic TREM2 activation exacerbates AÎ ² -associated tau seeding and spreading. Journal of Experimental Medicine, 2023, 220, .	4.2	43
1294	Microglia are SYK of Al 2 and cell debris. Cell, 2022, 185, 4043-4045.	13.5	2

#	Article	IF	CITATIONS
1295	Microglia shield the murine brain from damage mediated by the cytokines IL-6 and IFN-α. Frontiers in Immunology, 0, 13, .	2.2	5
1297	SYK coordinates neuroprotective microglial responses in neurodegenerative disease. Cell, 2022, 185, 4135-4152.e22.	13.5	79
1298	Microglia in motor neuron disease: Signaling evidence from last 10 years. Developmental Neurobiology, 2022, 82, 625-638.	1.5	9
1299	Different phenotypes of microglia in animal models of Alzheimer disease. Immunity and Ageing, 2022, 19,	1.8	11
1300	TREM2 drives microglia response to amyloid-β via SYK-dependent and -independent pathways. Cell, 2022, 185, 4153-4169.e19.	13.5	92
1301	Gossypetin ameliorates 5xFAD spatial learning and memory through enhanced phagocytosis against Aβ. Alzheimer's Research and Therapy, 2022, 14, .	3.0	3
1302	Treatment with an antigen-specific dual microparticle system reverses advanced multiple sclerosis in mice. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	5
1303	The industrial genomic revolution: A new era in neuroimmunology. Neuron, 2022, 110, 3429-3443.	3.8	2
1304	Neurodegeneration Markers Galectin-3 and Apolipoprotein E Are Elevated in the Aqueous Humor of Eyes With Glaucoma. Translational Vision Science and Technology, 2022, 11, 1.	1.1	2
1305	The CNS mononuclear phagocyte system in health and disease. Neuron, 2022, 110, 3497-3512.	3.8	16
1306	Microglia states and nomenclature: A field at its crossroads. Neuron, 2022, 110, 3458-3483.	3.8	459
1307	Microglial efferocytosis: Diving into the Alzheimer's disease gene pool. Neuron, 2022, 110, 3513-3533.	3.8	33
1309	Immunosenescence and Aging: Neuroinflammation Is a Prominent Feature of Alzheimer's Disease and Is a Likely Contributor to Neurodegenerative Disease Pathogenesis. Journal of Personalized Medicine, 2022, 12, 1817.	1.1	7
1310	CNS remyelination and inflammation: From basic mechanisms to therapeutic opportunities. Neuron, 2022, 110, 3549-3565.	3.8	31
1312	Microglia contribute to the autonomic function and participate in neurogenic hypertension: non-immune function of central immune cells. Scientia Sinica Vitae, 2022, 52, 1773-1784.	0.1	1
1313	Microglia dynamics in aging-related neurobehavioral and neuroinflammatory diseases. Journal of Neuroinflammation, 2022, 19, .	3.1	22
1314	Microglia and astrocyte activation is regionâ€dependent in the αâ€synuclein mouse model of Parkinson's disease. Glia, 2023, 71, 571-587.	2.5	14
1315	Emerging roles of innate and adaptive immunity in Alzheimer's disease. Immunity, 2022, 55, 2236-2254.	6.6	49

#	Article	IF	CITATIONS
1318	ApoE in Alzheimer's disease: pathophysiology and therapeutic strategies. Molecular Neurodegeneration, 2022, 17, .	4.4	97
1319	TREM2-independent microgliosis promotes tau-mediated neurodegeneration in the presence of ApoE4. Neuron, 2023, 111, 202-219.e7.	3.8	29
1320	Characterizing microglial gene expression in a model of secondary progressive multiple sclerosis. Glia, 0, , .	2.5	4
1321	The X factor in neurodegeneration. Journal of Experimental Medicine, 2022, 219, .	4.2	10
1322	Systemic innate myeloid responses to acute ischaemic and haemorrhagic stroke. Seminars in Immunopathology, 2023, 45, 281-294.	2.8	5
1325	Neuronal nuclear calcium signaling suppression of microglial reactivity is mediated by osteoprotegerin after traumatic brain injury. Journal of Neuroinflammation, 2022, 19, .	3.1	3
1326	Anti-inflammatory effects of 9-cis-retinoic acid on β-amyloid treated human microglial cells. European Journal of Inflammation, 2022, 20, 1721727X2211436.	0.2	2
1327	Current mouse models of Alzheimer's disease for investigating therapeutic agents. , 2023, , 31-41.		0
1328	Neuroimmune mechanisms underlying Alzheimer's disease: Insights into central and peripheral immune cell crosstalk. Ageing Research Reviews, 2023, 84, 101831.	5.0	3
1329	Triggering Receptor Expressed on Myeloid Cell-2 Protects PC12 Cells Injury by Inhibiting BV2 Microglial Activation. Neurology India, 2022, 70, 2378.	0.2	2
1330	Microglial heterogeneity in amyotrophic lateral sclerosis. Journal of Neuropathology and Experimental Neurology, 2023, 82, 140-149.	0.9	6
1331	The Key Drivers of Brain Injury by Systemic Inflammatory Responses after Sepsis: Microglia and Neuroinflammation. Molecular Neurobiology, 2023, 60, 1369-1390.	1.9	15
1332	Unveiling sex-based differences in Parkinson's disease: a comprehensive meta-analysis of transcriptomic studies. Biology of Sex Differences, 2022, 13, .	1.8	20
1334	Opposing effects of apoE2 and apoE4 on microglial activation and lipid metabolism in response to demyelination. Molecular Neurodegeneration, 2022, 17, .	4.4	14
1335	Cell type-specific changes identified by single-cell transcriptomics in Alzheimer's disease. Genome Medicine, 2022, 14, .	3.6	14
1336	Microglia and metastases to the central nervous system: victim, ravager, or something else?. Journal of Experimental and Clinical Cancer Research, 2022, 41, .	3.5	11
1337	Microglial <i>INPP5D</i> limits plaque formation and glial reactivity in the PSAPP mouse model of Alzheimer's disease. Alzheimer's and Dementia, 2023, 19, 2239-2252.	0.4	25
1338	TDP-43 condensates and lipid droplets regulate the reactivity of microglia and regeneration after traumatic brain injury. Nature Neuroscience, 2022, 25, 1608-1625.	7.1	11

#	Article	IF	CITATIONS
1339	The effects of microglia on tauopathy progression can be quantified using Nexopathy in silico (Nexis) models. Scientific Reports, 2022, 12, .	1.6	5
1340	<scp>APOE2</scp> Exacerbates <scp>TDP</scp> â€43 Related Toxicity in the Absence of Alzheimer Pathology. Annals of Neurology, 2023, 93, 830-843.	2.8	0
1342	Causal inference in medical records and complementary systems pharmacology for metformin drug repurposing towards dementia. Nature Communications, 2022, 13, .	5.8	21
1343	Synaptic degeneration in Alzheimer disease. Nature Reviews Neurology, 2023, 19, 19-38.	4.9	84
1344	Osteopontin (OPN)/SPP1: from its biochemistry to biological functions in the innate immune system and the central nervous system (CNS). International Immunology, 2023, 35, 171-180.	1.8	13
1345	Microglial Pten safeguards postnatal integrity of the cortex and sociability. Frontiers in Immunology, 0, 13, .	2.2	1
1346	TREM2 activation alleviates neural damage via Akt/CREB/BDNF signalling after traumatic brain injury in mice. Journal of Neuroinflammation, 2022, 19, .	3.1	29
1347	Metabolic Reprogramming of Microglia in Sepsis-Associated Encephalopathy: Insights from Neuroinflammation. Current Neuropharmacology, 2023, 21, 1992-2005.	1.4	1
1348	Neuronal vulnerability to brain aging and neurodegeneration in cognitively impaired marmoset monkeys (Callithrix jacchus). Neurobiology of Aging, 2023, 123, 49-62.	1.5	6
1349	Integrating transcriptomic datasets across neurological disease identifies unique myeloid subpopulations driving diseaseâ€specific signatures. Glia, 2023, 71, 904-925.	2.5	6
1350	Single-cell microglial transcriptomics during demyelination defines a microglial state required for lytic carcass clearance. Molecular Neurodegeneration, 2022, 17, .	4.4	8
1351	APOE alleles are associated with sex-specific structural differences in brain regions affected in Alzheimer's disease and related dementia. PLoS Biology, 2022, 20, e3001863.	2.6	1
1352	Amyloid-beta and tau pathologies act synergistically to induce novel disease stage-specific microglia subtypes. Molecular Neurodegeneration, 2022, 17, .	4.4	16
1353	Brain borders at the central stage of neuroimmunology. Nature, 2022, 612, 417-429.	13.7	53
1354	Zika virus infection of mature neurons from immunocompetent mice generates a disease-associated microglia and a tauopathy-like phenotype in link with a delayed interferon beta response. Journal of Neuroinflammation, 2022, 19, .	3.1	4
1355	TREM2 dependent and independent functions of microglia in Alzheimer's disease. Molecular Neurodegeneration, 2022, 17, .	4.4	25
1356	Microglial Activation and Priming in Alzheimer's Disease: State of the Art and Future Perspectives. International Journal of Molecular Sciences, 2023, 24, 884.	1.8	12
1357	High Content Imaging and Quantification of Microglia Phagocytosis <i>In Vitro</i> . Current Protocols, 2023, 3, .	1.3	1

#	Article	IF	CITATIONS
1358	CSF1R inhibitors induce a sex-specific resilient microglial phenotype and functional rescue in a tauopathy mouse model. Nature Communications, 2023, 14, .	5.8	10
1359	Transcriptional and epigenetic regulation of microglia in maintenance of brain homeostasis and neurodegeneration. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	4
1360	Knowledge domains and emerging trends of microglia research from 2002 to 2021: A bibliometric analysis and visualization study. Frontiers in Aging Neuroscience, 0, 14, .	1.7	2
1361	Comparing <scp>RNA</scp> â€sequencing datasets from astrocytes, oligodendrocytes, and microglia in multiple sclerosis identifies novel dysregulated genes relevant to inflammation and myelination. WIREs Mechanisms of Disease, 2023, 15, .	1.5	3
1362	Insights into Alzheimer's disease from single-cell genomic approaches. Nature Neuroscience, 2023, 26, 181-195.	7.1	39
1363	<scp>sTREM2</scp> is associated with amyloidâ€related pâ€tau increases and glucose hypermetabolism in Alzheimer's disease. EMBO Molecular Medicine, 2023, 15, .	3.3	13
1364	LilrB3 is a putative cell surface receptor of APOE4. Cell Research, 2023, 33, 116-130.	5.7	10
1365	Novel Microglia-based Therapeutic Approaches to Neurodegenerative Disorders. Neuroscience Bulletin, 2023, 39, 491-502.	1.5	11
1366	Microglial autophagy in Alzheimer's disease and Parkinson's disease. Frontiers in Aging Neuroscience, 0, 14, .	1.7	6
1367	ApoE4 makes microglia trem2bling. Neuron, 2023, 111, 142-144.	3.8	2
1367 1368	ApoE4 makes microglia trem2bling. Neuron, 2023, 111, 142-144. Comprehensive expression analysis with cell-type-specific transcriptome in ALS-linked mutant SOD1 mice: Revisiting the active role of glial cells in disease. Frontiers in Cellular Neuroscience, 0, 16, .	3.8 1.8	2
	Comprehensive expression analysis with cell-type-specific transcriptome in ALS-linked mutant SOD1		
1368	Comprehensive expression analysis with cell-type-specific transcriptome in ALS-linked mutant SOD1 mice: Revisiting the active role of glial cells in disease. Frontiers in Cellular Neuroscience, 0, 16, . TREM2 signalling as a multifaceted player in brain homoeostasis and a potential target for Alzheimer's	1.8	2
1368 1369	Comprehensive expression analysis with cell-type-specific transcriptome in ALS-linked mutant SOD1 mice: Revisiting the active role of glial cells in disease. Frontiers in Cellular Neuroscience, 0, 16, . TREM2 signalling as a multifaceted player in brain homoeostasis and a potential target for Alzheimer's disease treatment. European Journal of Neuroscience, 2023, 57, 718-733. Beneficial Effect of ACI-24 Vaccination on AÎ ² Plaque Pathology and Microglial Phenotypes in an	1.8 1.2	2 5
1368 1369 1370	Comprehensive expression analysis with cell-type-specific transcriptome in ALS-linked mutant SOD1 mice: Revisiting the active role of glial cells in disease. Frontiers in Cellular Neuroscience, 0, 16, . TREM2 signalling as a multifaceted player in brain homoeostasis and a potential target for Alzheimer's disease treatment. European Journal of Neuroscience, 2023, 57, 718-733. Beneficial Effect of ACI-24 Vaccination on AÎ ² Plaque Pathology and Microglial Phenotypes in an Amyloidosis Mouse Model. Cells, 2023, 12, 79.	1.8 1.2 1.8	2 5 2
1368 1369 1370 1371	Comprehensive expression analysis with cell-type-specific transcriptome in ALS-linked mutant SOD1 mice: Revisiting the active role of glial cells in disease. Frontiers in Cellular Neuroscience, 0, 16, . TREM2 signalling as a multifaceted player in brain homoeostasis and a potential target for Alzheimer's disease treatment. European Journal of Neuroscience, 2023, 57, 718-733. Beneficial Effect of ACI-24 Vaccination on AÎ ² Plaque Pathology and Microglial Phenotypes in an Amyloidosis Mouse Model. Cells, 2023, 12, 79. Early microglial response, myelin deterioration and lethality in mice deficient for very long chain ceramide synthesis in oligodendrocytes. Glia, 2023, 71, 1120-1141. Emerging Roles of Extracellular Vesicles in Alzheimer's Disease: Focus on Synaptic Dysfunction and	1.8 1.2 1.8 2.5	2 5 2 3
1368 1369 1370 1371 1372	Comprehensive expression analysis with cell-type-specific transcriptome in ALS-linked mutant SOD1 mice: Revisiting the active role of glial cells in disease. Frontiers in Cellular Neuroscience, 0, 16, . TREM2 signalling as a multifaceted player in brain homoeostasis and a potential target for Alzheimer's disease treatment. European Journal of Neuroscience, 2023, 57, 718-733. Beneficial Effect of ACI-24 Vaccination on AÎ ² Plaque Pathology and Microglial Phenotypes in an Amyloidosis Mouse Model. Cells, 2023, 12, 79. Early microglial response, myelin deterioration and lethality in mice deficient for very long chain ceramide synthesis in oligodendrocytes. Clia, 2023, 71, 1120-1141. Emerging Roles of Extracellular Vesicles in Alzheimer's Disease: Focus on Synaptic Dysfunction and Vesicle–Neuron Interaction. Cells, 2023, 12, 63.	1.8 1.2 1.8 2.5 1.8	2 5 2 3 6

#	Article	IF	Citations
1378	The role of ApoE-mediated microglial lipid metabolism in brain aging and disease. Immunometabolism, 2023, 5, e00018.	0.7	2
1379	Sex-specific microglia state in the Neuroligin-4 knock-out mouse model of autism spectrum disorder. Brain, Behavior, and Immunity, 2023, 111, 61-75.	2.0	9
1380	Profiling TREM2 expression in amyotrophic lateral sclerosis. Brain, Behavior, and Immunity, 2023, 109, 117-126.	2.0	6
1381	Plasma microglial-derived extracellular vesicles are increased in frail patients with Mild Cognitive Impairment and exert a neurotoxic effect. GeroScience, 2023, 45, 1557-1571.	2.1	8
1383	The biology of TREM receptors. Nature Reviews Immunology, 2023, 23, 580-594.	10.6	45
1385	Human striatal glia differentially contribute to AD- and PD-specific neurodegeneration. Nature Aging, 2023, 3, 346-365.	5.3	8
1386	Neurodegeneration cell per cell. Neuron, 2023, 111, 767-786.	3.8	8
1387	Acute Stress, Induced by IFNγ  + Aβ, and Chronic Stress, Induced by Age, Affect Microglia in a Sex-Speci Manner. Molecular Neurobiology, 0, , .	fic 1.9	0
1389	A Cre-deleter specific for embryo-derived brain macrophages reveals distinct features of microglia and border macrophages. Immunity, 2023, 56, 1027-1045.e8.	6.6	17
1390	Chromosomal and gonadal factors regulate microglial sex effects in the aging brain. Brain Research Bulletin, 2023, 195, 157-171.	1.4	4
1392	Cholesterol metabolism: Towards a therapeutic approach for multiple sclerosis. Neurochemistry International, 2023, 164, 105501.	1.9	1
1393	Negative regulation of TREM2-mediated C9orf72 poly-GA clearance by the NLRP3 inflammasome. Cell Reports, 2023, 42, 112133.	2.9	7
1394	Hallmarks of neurodegenerative diseases. Cell, 2023, 186, 693-714.	13.5	222
1395	Temporal single-cell atlas of non-neuronal retinal cells reveals dynamic, coordinated multicellular responses to central nervous system injury. Nature Immunology, 2023, 24, 700-713.	7.0	13
1396	Roles of Microglia in AD Pathology. Current Alzheimer Research, 2023, 19, 854-869.	0.7	2
1397	The effects of microglia-associated neuroinflammation on Alzheimer's disease. Frontiers in Immunology, 0, 14, .	2.2	20
1398	Lymphocyte deficiency alters the transcriptomes of oligodendrocytes, but not astrocytes or microglia. PLoS ONE, 2023, 18, e0279736.	1.1	0
1399	Regulation of astrocyte lipid metabolism and ApoEÂsecretion by the microglial oxysterol, 25-hydroxycholesterol. Journal of Lipid Research, 2023, 64, 100350.	2.0	9

#	Article	IF	CITATIONS
1400	Cerebellar Transcriptomic Analysis in a Chronic plus Binge Mouse Model of Alcohol Use Disorder Demonstrates Ethanol-Induced Neuroinflammation and Altered Glial Gene Expression. Cells, 2023, 12, 745.	1.8	4
1401	The Pathological Activation of Microglia Is Modulated by Sexually Dimorphic Pathways. International Journal of Molecular Sciences, 2023, 24, 4739.	1.8	2
1402	Apolipoprotein E mimetic peptide COG1410 alleviates blood‑brain barrier injury in a rat model of ischemic stroke. Molecular Medicine Reports, 2023, 27, .	1.1	2
1403	APOE modulates microglial immunometabolism in response to age, amyloid pathology, and inflammatory challenge. Cell Reports, 2023, 42, 112196.	2.9	26
1404	Microglia as a cellular target of diclofenac therapy in Alzheimer's disease. Therapeutic Advances in Neurological Disorders, 2023, 16, 175628642311566.	1.5	3
1405	APOE4 is a Risk Factor and Potential Therapeutic Target for Alzheimer's Disease. CNS and Neurological Disorders - Drug Targets, 2024, 23, 342-352.	0.8	6
1406	Cerebrospinal Fluid sTREM-2, GFAP, and β-S100 in Symptomatic Sporadic Alzheimer's Disease: Microglial, Astrocytic, and APOE Contributions Along the Alzheimer's Disease Continuum. Journal of Alzheimer's Disease, 2023, 92, 1385-1397.	1.2	3
1407	Microglia-mediated T cell infiltration drives neurodegeneration in tauopathy. Nature, 2023, 615, 668-677.	13.7	129
1408	Regulatory T cells decrease C3-positive reactive astrocytes in Alzheimer-like pathology. Journal of Neuroinflammation, 2023, 20, .	3.1	3
1409	Inflammasome activation under high cholesterol load triggers a protective microglial phenotype while promoting neuronal pyroptosis. Translational Neurodegeneration, 2023, 12, .	3.6	5
1412	INPP5D modulates TREM2 loss-of-function phenotypes in a β-amyloidosis mouse model. IScience, 2023, 26, 106375.	1.9	9
1413	Astrocytes display ultrastructural alterations and heterogeneity in the hippocampus of aged APP-PS1 mice and human post-mortem brain samples. Journal of Neuroinflammation, 2023, 20, .	3.1	6
1414	Microglial <scp>cGAS</scp> drives neuroinflammation in the <scp>MPTP</scp> mouse models of Parkinson's disease. CNS Neuroscience and Therapeutics, 2023, 29, 2018-2035.	1.9	5
1415	Tissue-specific macrophages: how they develop and choreograph tissue biology. Nature Reviews Immunology, 2023, 23, 563-579.	10.6	65
1416	Ethanol-induced cerebellar transcriptomic changes in a postnatal model of fetal alcohol spectrum disorders: Focus on disease onset. Frontiers in Neuroscience, 0, 17, .	1.4	3
1419	The Implications of Microglial Regulation in Neuroplasticity-Dependent Stroke Recovery. Biomolecules, 2023, 13, 571.	1.8	3
1420	Molecular and metabolic heterogeneity of astrocytes and microglia. Cell Metabolism, 2023, 35, 555-570.	7.2	16
1421	Complement activation and increased anaphylatoxin receptor expression are associated with cortical grey matter lesions and the compartmentalised inflammatory response of multiple sclerosis. Frontiers in Cellular Neuroscience, 0, 17, .	1.8	3

#	Article	IF	CITATIONS
1423	Androgens show sex-dependent differences in myelination in immune and non-immune murine models of CNS demyelination. Nature Communications, 2023, 14, .	5.8	6
1424	Multifaceted microglia during brain development: Models and tools. Frontiers in Neuroscience, 0, 17, .	1.4	3
1426	Astrocytic APOE4 removal confers cerebrovascular protection despite increased cerebral amyloid angiopathy. Molecular Neurodegeneration, 2023, 18, .	4.4	7
1427	Allogenic microglia replacement: A novel therapeutic strategy for neurological disorders. Fundamental Research, 2023, , .	1.6	3
1428	TREM2 deficiency in microglia accelerates photoreceptor cell death and immune cell infiltration following retinal detachment. Cell Death and Disease, 2023, 14, .	2.7	2
1429	Multiple sclerosis: Neuroimmune crosstalk and therapeutic targeting. Cell, 2023, 186, 1309-1327.	13.5	40
1430	APOE ε4 gene dose effect on imaging and blood biomarkers of neuroinflammation and beta-amyloid in cognitively unimpaired elderly. Alzheimer's Research and Therapy, 2023, 15, .	3.0	5
1432	<i>APOE</i> ε4 associates with microglial activation independently of Aβ plaques and tau tangles. Science Advances, 2023, 9, .	4.7	20
1434	LRP1 in vascular mural cells modulates cerebrovascular integrity and function in the presence of APOE4. JCI Insight, 2023, 8, .	2.3	3
1435	Biomaterials-based anti-inflammatory treatment strategies for Alzheimer's disease. Neural Regeneration Research, 2024, 19, 100-115.	1.6	4
1436	Gene-agnostic approaches to treating inherited retinal degenerations. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	3
1437	Recent Development in the Understanding of Molecular and Cellular Mechanisms Underlying the Etiopathogenesis of Alzheimer's Disease. International Journal of Molecular Sciences, 2023, 24, 7258.	1.8	7
1438	Peroxisomal defects in microglial cells induce a disease-associated microglial signature. Frontiers in Molecular Neuroscience, 0, 16, .	1.4	4
1439	Interaction between KLOTHO-VS Heterozygosity and APOE ε4 Allele Predicts Rate of Cognitive Decline in Late-Onset Alzheimer's Disease. Genes, 2023, 14, 917.	1.0	1
1440	Translatome analysis reveals microglia and astrocytes to be distinct regulators of inflammation in the hyperacute and acute phases after stroke. Glia, 2023, 71, 1960-1984.	2.5	8
1441	CSDMD in peripheral myeloid cells regulates microglial immune training and neuroinflammation in Parkinson's disease. Acta Pharmaceutica Sinica B, 2023, 13, 2663-2679.	5.7	2
1442	Deletion of PTEN in microglia ameliorates chronic neuroinflammation following repetitive mTBI. Molecular and Cellular Neurosciences, 2023, 125, 103855.	1.0	2
1443	Single-nucleus RNA-sequencing of autosomal dominant Alzheimer disease and risk variant carriers. Nature Communications, 2023, 14, .	5.8	17

	CITA	TION REPORT	
#	Article	IF	CITATIONS
1444	The Functions and Phenotypes of Microglia in Alzheimer's Disease. Cells, 2023, 12, 1207.	1.8	4
1445	Cortical glia in SOD1(G93A) mice are subtly affected by ALS-like pathology. Scientific Reports, 2023, 13,	. 1.6	1
1446	Aging microglia. Cellular and Molecular Life Sciences, 2023, 80, .	2.4	13
1447	Cntnap4 partial deficiency exacerbates α-synuclein pathology through astrocyte–microglia C3-C3aR pathway. Cell Death and Disease, 2023, 14, .	2.7	4
1457	Principles of gliopathology. , 2023, , 473-532.		0
1466	Roles of ApoE4 on the Pathogenesis in Alzheimer's Disease and the Potential Therapeutic Approache Cellular and Molecular Neurobiology, 2023, 43, 3115-3136.	2S. 1.7	7
1469	Optimizing the role of immunotherapy for the treatment of glioblastoma. , 2023, , 553-591.		1
1473	Roles and regulation of microglia activity in multiple sclerosis: insights from animal models. Nature Reviews Neuroscience, 2023, 24, 397-415.	4.9	10
1487	Linking copper and neurotoxic activities to the CNS. , 2023, , 209-225.		0
1522	Brain macrophage development, diversity and dysregulation in health and disease. , 2023, 20, 1277-128	9.	10
1532	Role of neuroinflammation in neurodegeneration development. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	62
1546	Pathological Roles of INPP5D in Alzheimer's Disease. Advances in Experimental Medicine and Biology 2023, , 289-301.	^{/,} 0.8	0
1562	Microglial contribution to the pathology of neurodevelopmental disorders in humans. Acta Neuropathologica, 2023, 146, 663-683.	3.9	5
1612	APOE set the microglia free. Nature Immunology, 2023, 24, 1790-1791.	7.0	1
1673	Cell type-specific roles of APOE4 in Alzheimer disease. Nature Reviews Neuroscience, 2024, 25, 91-110.	4.9	3
1682	Alzheimer's disease risk reduction in clinical practice: a priority in the emerging field of preventive neurology. , 2024, 2, 25-40.		0
1705	Copper Metabolism and Cuproptosis: Molecular Mechanisms and Therapeutic Perspectives in Neurodegenerative Diseases. Current Medical Science, 2024, 44, 28-50.	0.7	3