A Redox Modulatory Mn₃O₄ N Provides Efficient Cytoprotection to Human Cells in a P

Angewandte Chemie - International Edition 56, 14267-14271 DOI: 10.1002/anie.201708573

Citation Report

#	Article	IF	CITATIONS
1	Manganeseâ€Based Nanozymes: Multienzyme Redox Activity and Effect on the Nitric Oxide Produced by Endothelial Nitric Oxide Synthase. Chemistry - A European Journal, 2018, 24, 8393-8403.	1.7	84
2	Bioinspired Design of Fe ³⁺ â€Doped Mesoporous Carbon Nanospheres for Enhanced Nanozyme Activity. Chemistry - A European Journal, 2018, 24, 7259-7263.	1.7	69
3	ROS scavenging Mn ₃ O ₄ nanozymes for <i>in vivo</i> anti-inflammation. Chemical Science, 2018, 9, 2927-2933.	3.7	447
4	Dendritic fibrous nano-silica supported gold nanoparticles as an artificial enzyme. Journal of Materials Chemistry B, 2018, 6, 1600-1604.	2.9	57
5	Nanoisozymes: Crystalâ€Facetâ€Dependent Enzymeâ€Mimetic Activity of V ₂ O ₅ Nanomaterials. Angewandte Chemie - International Edition, 2018, 57, 4510-4515.	7.2	181
6	Nanoisozymes: Crystalâ€Facetâ€Dependent Enzymeâ€Mimetic Activity of V ₂ O ₅ Nanomaterials. Angewandte Chemie, 2018, 130, 4600-4605.	1.6	65
7	Theranostical application of nanomedicine for treating central nervous system disorders. Science China Life Sciences, 2018, 61, 392-399.	2.3	19
8	Antioxidant activity of nanomaterials. Journal of Materials Chemistry B, 2018, 6, 2036-2051.	2.9	162
9	Porous Co ₃ O ₄ nanoplates with pH-switchable peroxidase- and catalase-like activity. Nanoscale, 2018, 10, 19140-19146.	2.8	81
10	Mn–Fe layered double hydroxide nanosheets: a new photothermal nanocarrier for O ₂ -evolving phototherapy. Chemical Communications, 2018, 54, 11729-11732.	2.2	45
11	Carbon Dot Nanozymes: How to Be Close to Natural Enzymes. Chemistry - A European Journal, 2019, 25, 954-960.	1.7	50
12	Mesoporous Encapsulated Chiral Nanogold for Use in Enantioselective Reactions. Angewandte Chemie - International Edition, 2018, 57, 16791-16795.	7.2	91
13	Mesoporous Encapsulated Chiral Nanogold for Use in Enantioselective Reactions. Angewandte Chemie, 2018, 130, 17033-17037.	1.6	14
14	Direct observation of selective autophagy induction in cells and tissues by self-assembled chiral nanodevice. Nature Communications, 2018, 9, 4494.	5.8	67
15	Nanozyme Sensor Arrays for Detecting Versatile Analytes from Small Molecules to Proteins and Cells. Analytical Chemistry, 2018, 90, 11696-11702.	3.2	150
16	Nanozyme: An emerging alternative to natural enzyme for biosensing and immunoassay. TrAC - Trends in Analytical Chemistry, 2018, 105, 218-224.	5.8	513
17	On the origin of the synergy between the Pt nanoparticles and MnO2 nanosheets in Wonton-like 3D nanozyme oxidase mimics. Biosensors and Bioelectronics, 2018, 121, 159-165.	5.3	90
18	Prussian blue with intrinsic heme-like structure as peroxidase mimic. Nano Research, 2018, 11, 4905-4913.	5.8	98

#	Article	IF	CITATIONS
19	Carbon-Shielded Three-Dimensional Co–Mn Nanowire Array Anchored on Ni Foam with Dual-Enzyme Mimic Performance for Selective Detection of Ascorbic Acid. ACS Sustainable Chemistry and Engineering, 2019, 7, 15471-15478.	3.2	19
20	Manganese Oxide Nanoclusters for Skin Photoprotection. ACS Applied Bio Materials, 2019, 2, 3974-3982.	2.3	7
21	Therapeutic effect of yttrium oxide nanoparticles for the treatment of fulminant hepatic failure. Nanomedicine, 2019, 14, 2519-2533.	1.7	18
22	Ru(III)-Based Metal–Organic Gels: Intrinsic Horseradish and NADH Peroxidase-Mimicking Nanozyme. ACS Applied Materials & Interfaces, 2019, 11, 29158-29166.	4.0	55
23	Unprecedented peroxidase-mimicking activity of single-atom nanozyme with atomically dispersed Fe–Nx moieties hosted by MOF derived porous carbon. Biosensors and Bioelectronics, 2019, 142, 111495.	5.3	186
24	A dopamine-induced Au hydrogel nanozyme for enhanced biomimetic catalysis. Chemical Communications, 2019, 55, 9865-9868.	2.2	85
25	Fe ₃ O ₄ Nanozymes with Aptamer-Tuned Catalysis for Selective Colorimetric Analysis of ATP in Blood. Analytical Chemistry, 2019, 91, 14737-14742.	3.2	105
26	Self-generating oxygen enhanced mitochondrion-targeted photodynamic therapy for tumor treatment with hypoxia scavenging. Theranostics, 2019, 9, 6809-6823.	4.6	70
27	Role of Nanomedicine in Redox Mediated Healing at Molecular Level. Biomolecular Concepts, 2019, 10, 160-174.	1.0	18
28	Nanozyme antioxidants as emerging alternatives for natural antioxidants: Achievements and challenges in perspective. Nano Today, 2019, 29, 100775.	6.2	56
29	Nanozyme-Based Bandage with Single-Atom Catalysis for Brain Trauma. ACS Nano, 2019, 13, 11552-11560.	7.3	193
30	Nucleobase-mediated synthesis of nitrogen-doped carbon nanozymes as efficient peroxidase mimics. Dalton Transactions, 2019, 48, 1993-1999.	1.6	44
31	A manganese oxide nanozyme prevents the oxidative damage of biomolecules without affecting the endogenous antioxidant system. Nanoscale, 2019, 11, 3855-3863.	2.8	100
32	A single-atom Fe–N ₄ catalytic site mimicking bifunctional antioxidative enzymes for oxidative stress cytoprotection. Chemical Communications, 2019, 55, 159-162.	2.2	209
33	Antioxidative nanomaterials and biomedical applications. Nano Today, 2019, 27, 146-177.	6.2	116
34	Mn ₃ O ₄ microspheres as an oxidase mimic for rapid detection of glutathione. RSC Advances, 2019, 9, 16509-16514.	1.7	39
35	Biomimetic design for enhancing the peroxidase mimicking activity of hemin. Nanoscale, 2019, 11, 12603-12609.	2.8	53
36	CeVO 4 Nanozymes Catalyze the Reduction of Dioxygen to Water without Releasing Partially Reduced Oxygen Species. Angewandte Chemie, 2019, 131, 7879-7883.	1.6	11

#	Article	IF	CITATIONS
37	Light-Responsive Metal–Organic Framework as an Oxidase Mimic for Cellular Glutathione Detection. Analytical Chemistry, 2019, 91, 8170-8175.	3.2	171
38	Lock and key-based nanozyme model to understand the substituent effect on the hydrolysis of organophosphate-based nerve agents by Zr-incorporated cerium oxide. Polyhedron, 2019, 172, 198-204.	1.0	8
39	Nanozyme-mediated catalytic nanotherapy for inflammatory bowel disease. Theranostics, 2019, 9, 2843-2855.	4.6	149
40	Constructing metal–organic framework nanodots as bio-inspired artificial superoxide dismutase for alleviating endotoxemia. Materials Horizons, 2019, 6, 1682-1687.	6.4	84
41	Bactericidal effects and accelerated wound healing using Tb4O7 nanoparticles with intrinsic oxidase-like activity. Journal of Nanobiotechnology, 2019, 17, 54.	4.2	33
42	A dual-aptamer-based biosensor for specific detection of breast cancer biomarker HER2 <i>via</i> flower-like nanozymes and DNA nanostructures. Journal of Materials Chemistry B, 2019, 7, 3661-3669.	2.9	72
43	Hollow Prussian Blue Nanozymes Drive Neuroprotection against Ischemic Stroke via Attenuating Oxidative Stress, Counteracting Inflammation, and Suppressing Cell Apoptosis. Nano Letters, 2019, 19, 2812-2823.	4.5	203
44	Catalytic Mechanisms of Nanozymes and Their Applications in Biomedicine. Bioconjugate Chemistry, 2019, 30, 1273-1296.	1.8	113
45	CeVO ₄ Nanozymes Catalyze the Reduction of Dioxygen to Water without Releasing Partially Reduced Oxygen Species. Angewandte Chemie - International Edition, 2019, 58, 7797-7801.	7.2	67
46	A series of MOF/Ce-based nanozymes with dual enzyme-like activity disrupting biofilms and hindering recolonization of bacteria. Biomaterials, 2019, 208, 21-31.	5.7	208
47	Nanozyme atalyzed Cascade Reactions for Mitochondriaâ€Mimicking Oxidative Phosphorylation. Angewandte Chemie - International Edition, 2019, 58, 5572-5576.	7.2	104
48	Nanozyme atalyzed Cascade Reactions for Mitochondriaâ€Mimicking Oxidative Phosphorylation. Angewandte Chemie, 2019, 131, 5628-5632.	1.6	12
49	Redox Trimetallic Nanozyme with Neutral Environment Preference for Brain Injury. ACS Nano, 2019, 13, 1870-1884.	7.3	90
50	Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications. Chemical Reviews, 2019, 119, 4357-4412.	23.0	1,955
51	Highly stable enzyme-mimicking nanocomposite of antioxidant activity. Journal of Colloid and Interface Science, 2019, 543, 174-182.	5.0	22
52	Nanomaterials-Based Next Generation Synthetic Enzymes. , 2019, , 37-58.		2
53	Fe–N/C single-atom catalysts exhibiting multienzyme activity and ROS scavenging ability in cells. Chemical Communications, 2019, 55, 14534-14537.	2.2	69
54	Progress and Trend on the Regulation Methods for Nanozyme Activity and Its Application. Catalysts, 2019, 9, 1057.	1.6	28

#	Article	IF	CITATIONS
55	Recent Advances in Nanozyme Research. Advanced Materials, 2019, 31, e1805368.	11.1	512
56	High-activity Fe3O4 nanozyme as signal amplifier: A simple, low-cost but efficient strategy for ultrasensitive photoelectrochemical immunoassay. Biosensors and Bioelectronics, 2019, 127, 64-71.	5.3	102
57	Chiral Molecule-mediated Porous Cu _{<i>x</i>} O Nanoparticle Clusters with Antioxidation Activity for Ameliorating Parkinson's Disease. Journal of the American Chemical Society, 2019, 141, 1091-1099.	6.6	264
58	Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chemical Society Reviews, 2019, 48, 1004-1076.	18.7	2,528
59	CuMnO2 nanoflakes as pH-switchable catalysts with multiple enzyme-like activities for cysteine detection. Sensors and Actuators B: Chemical, 2019, 279, 374-384.	4.0	65
60	Understanding the role of oxo and peroxido species in the glutathione peroxidase (GPx)-like activity of metal based nanozymes. Inorganica Chimica Acta, 2019, 484, 283-290.	1.2	12
61	When Nanozymes Meet Singleâ€Atom Catalysis. Angewandte Chemie - International Edition, 2020, 59, 2565-2576.	7.2	422
62	When Nanozymes Meet Singleâ€Atom Catalysis. Angewandte Chemie, 2020, 132, 2585-2596.	1.6	117
63	Copper Tannic Acid Coordination Nanosheet: A Potent Nanozyme for Scavenging ROS from Cigarette Smoke. Small, 2020, 16, e1902123.	5.2	136
64	Artificial nanozyme based on platinum nanoparticles anchored metal-organic frameworks with enhanced electrocatalytic activity for detection of telomeres activity. Biosensors and Bioelectronics, 2020, 149, 111838.	5.3	54
65	Inorganic nanoparticles with enzyme-mimetic activities for biomedical applications. Coordination Chemistry Reviews, 2020, 403, 213092.	9.5	110
66	Manganeseâ€Based Functional Nanoplatforms: Nanosynthetic Construction, Physiochemical Property, and Theranostic Applicability. Advanced Functional Materials, 2020, 30, 1907066.	7.8	95
67	Oligonucleotide-induced regulation of the oxidase-mimicking activity of octahedral Mn3O4 nanoparticles for colorimetric detection of heavy metals. Mikrochimica Acta, 2020, 187, 99.	2.5	33
68	Regulating the pro- and anti-oxidant capabilities of bimetallic nanozymes for the detection of Fe ²⁺ and protection of <i>Monascus</i> pigments. Nanoscale, 2020, 12, 3068-3075.	2.8	44
69	Nanozyme-based catalytic theranostics. RSC Advances, 2020, 10, 10-20.	1.7	107
70	Biodegradation-Mediated Enzymatic Activity-Tunable Molybdenum Oxide Nanourchins for Tumor-Specific Cascade Catalytic Therapy. Journal of the American Chemical Society, 2020, 142, 1636-1644.	6.6	197
71	Antioxidants and Nanotechnology: Promises and Limits of Potentially Disruptive Approaches in the Treatment of Central Nervous System Diseases. Advanced Healthcare Materials, 2020, 9, e1901589.	3.9	50
72	Pt nanoparticle-coupled WO2.72 nanoplates as multi-enzyme mimetics for colorimetric detection and radical elimination. Analytical and Bioanalytical Chemistry, 2020, 412, 521-530.	1.9	7

#	Article	IF	CITATIONS
73	Reactive Oxygen Species-Induced Aggregation of Nanozymes for Neuron Injury. ACS Applied Materials & Interfaces, 2020, 12, 209-216.	4.0	26
74	A chiral covalent organic framework (COF) nanozyme with ultrahigh enzymatic activity. Materials Horizons, 2020, 7, 3291-3297.	6.4	60
75	Polydopamine Nanoparticles as an Organic and Biodegradable Multitasking Tool for Neuroprotection and Remote Neuronal Stimulation. ACS Applied Materials & amp; Interfaces, 2020, 12, 35782-35798.	4.0	58
76	Mn ₃ O ₄ Nanozyme Coating Accelerates Nitrate Reduction and Decreases N ₂ O Emission during Photoelectrotrophic Denitrification by <i>Thiobacillus denitrificans</i> -CdS. Environmental Science & Technology, 2020, 54, 10820-10830.	4.6	43
77	Copper Pyrovanadate Nanoribbons as Efficient Multienzyme Mimicking Nanozyme for Biosensing Applications. ACS Applied Nano Materials, 2020, 3, 7917-7929.	2.4	43
78	A metal-free nanozyme-activated prodrug strategy for targeted tumor catalytic therapy. Nano Today, 2020, 35, 100935.	6.2	126
79	Heteroatom doped carbon dots with nanoenzyme like properties as theranostic platforms for free radical scavenging, imaging, and chemotherapy. Acta Biomaterialia, 2020, 114, 343-357.	4.1	52
80	Human serum albumin templated MnO ₂ nanosheets as an efficient biomimetic oxidase for biomolecule sensing. Journal of Materials Chemistry B, 2020, 8, 11090-11095.	2.9	27
81	BC@DNA-Mn ₃ (PO ₄) ₂ Nanozyme for Real-Time Detection of Superoxide from Living Cells. Analytical Chemistry, 2020, 92, 15927-15935.	3.2	18
82	Bioactive ROSâ€scavenging nanozymes for regenerative medicine: Reestablishing the antioxidant firewall. Nano Select, 2020, 1, 285-297.	1.9	25
83	Sustainable Nanosheet Antioxidants for Sepsis Therapy <i>via</i> Scavenging Intracellular Reactive Oxygen and Nitrogen Species. ACS Nano, 2020, 14, 10324-10336.	7.3	87
84	Urchin-like trimanganese tetraoxide particles with oxidase-like activity for glutathione detection. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 606, 125397.	2.3	13
85	The Role of Nanomaterials in Modulating the Structure and Function of Biomimetic Catalysts. Frontiers in Chemistry, 2020, 8, 764.	1.8	7
86	Metal–Organicâ€Frameworkâ€Engineered Enzymeâ€Mimetic Catalysts. Advanced Materials, 2020, 32, e20030	06 5 1.1	183
87	Engineering of chiral nanomaterials for biomimetic catalysis. Chemical Science, 2020, 11, 12937-12954.	3.7	45
88	Applications of nanomaterials for scavenging reactive oxygen species in the treatment of central nervous system diseases. Journal of Materials Chemistry B, 2020, 8, 8748-8767.	2.9	44
89	Density Functional Theory-Based Method to Predict the Activities of Nanomaterials as Peroxidase Mimics. ACS Catalysis, 2020, 10, 12657-12665.	5.5	92
90	Construction of a chiral artificial enzyme used for enantioselective catalysis in live cells. Chemical Science, 2020, 11, 11344-11350.	3.7	20

#	Article	IF	CITATIONS
91	Facile Preparation of Homogeneous Copper Nanoclusters Exhibiting Excellent Tetraenzyme Mimetic Activities for Colorimetric Glutathione Sensing and Fluorimetric Ascorbic Acid Sensing. ACS Applied Materials & Interfaces, 2020, 12, 42521-42530.	4.0	119
92	In vitro antioxidant activity of synthesized BSA conjugated manganese dioxide nanoparticles. SN Applied Sciences, 2020, 2, 1.	1.5	16
93	Redoxâ€Responsive Nanobiomaterialsâ€Based Therapeutics for Neurodegenerative Diseases. Small, 2020, 16, e1907308.	5.2	37
94	Polymer-Coated Cerium Oxide Nanoparticles as Oxidoreductase-like Catalysts. ACS Applied Materials & Interfaces, 2020, 12, 42056-42066.	4.0	83
95	Dual enzyme-like activities of transition metal-doped MnO2 nanocoatings and their dependence on the electronic band structure and ionic dissolution. Applied Surface Science, 2020, 534, 147649.	3.1	23
96	Targeting Microglia for Therapy of Parkinson's Disease by Using Biomimetic Ultrasmall Nanoparticles. Journal of the American Chemical Society, 2020, 142, 21730-21742.	6.6	97
97	A colorimetric sensing platform based on self-assembled 3D porous CeGONR nanozymes for label-free visual detection of organophosphate pesticides. Materials Advances, 2020, 1, 2789-2796.	2.6	11
98	Mn ₃ O ₄ nanozymes boost endogenous antioxidant metabolites in cucumber (<i>Cucumis sativus</i>) plant and enhance resistance to salinity stress. Environmental Science: Nano, 2020, 7, 1692-1703.	2.2	66
99	Mimic of the Cellular Antioxidant Defense System for a Sustainable Regeneration of Nicotinamide Adenine Dinucleotide (NAD). ACS Applied Materials & Interfaces, 2020, 12, 25625-25632.	4.0	21
100	ATP induced alteration in the peroxidase-like properties of hollow Prussian blue nanocubes: a platform for alkaline phosphatase detection. Analyst, The, 2020, 145, 5032-5040.	1.7	7
101	MOF-encapsulated nanozyme enhanced siRNA combo: Control neural stem cell differentiation and ameliorate cognitive impairments in Alzheimer's disease model. Biomaterials, 2020, 255, 120160.	5.7	118
102	Multifunctional STINGâ€Activating Mn ₃ O ₄ @Auâ€dsDNA/DOX Nanoparticle for Antitumor Immunotherapy. Advanced Healthcare Materials, 2020, 9, e2000064.	3.9	45
103	The Feâ€N Nanozyme with Both Accelerated and Inhibited Biocatalytic Activities Capable of Accessing Drug–Drug Interactions. Angewandte Chemie, 2020, 132, 14606-14611.	1.6	14
104	Metalâ€Nitrogenâ€Doped Carbon Materials as Highly Efficient Catalysts: Progress and Rational Design. Advanced Science, 2020, 7, 2001069.	5.6	228
105	The Feâ€N Nanozyme with Both Accelerated and Inhibited Biocatalytic Activities Capable of Accessing Drug–Drug Interactions. Angewandte Chemie - International Edition, 2020, 59, 14498-14503.	7.2	87
106	Epitaxially Strained CeO ₂ /Mn ₃ O ₄ Nanocrystals as an Enhanced Antioxidant for Radioprotection. Advanced Materials, 2020, 32, e2001566.	11.1	79
107	Understanding the Nano–Bio Interactions and the Corresponding Biological Responses. Frontiers in Chemistry, 2020, 8, 446.	1.8	38
108	Facile synthesis of magnetic hierarchical flower-like Co3O4 spheres: Mechanism, excellent tetra-enzyme mimics and their colorimetric biosensing applications. Biosensors and Bioelectronics, 2020, 165, 112342.	5.3	111

#	Article	IF	CITATIONS
109	Stereospecific interactions between chiral inorganic nanomaterials and biological systems. Chemical Society Reviews, 2020, 49, 2481-2503.	18.7	138
110	Applications of nanozymes in the environment. Environmental Science: Nano, 2020, 7, 1305-1318.	2.2	87
111	Doping Nitrogen into Q-Graphene by Plasma Treatment toward Peroxidase Mimics with Enhanced Catalysis. Analytical Chemistry, 2020, 92, 5152-5157.	3.2	37
112	Antioxidant Nanotherapies for the Treatment of Inflammatory Diseases. Frontiers in Bioengineering and Biotechnology, 2020, 8, 200.	2.0	59
113	Metal–Organic Framework Derived Nanozymes in Biomedicine. Accounts of Chemical Research, 2020, 53, 1389-1400.	7.6	308
114	Dual enzyme-like activity of iridium nanoparticles and their applications for the detection of glucose and glutathione. RSC Advances, 2020, 10, 25209-25213.	1.7	18
115	Using bimetallic Au@Pt nanozymes as a visual tag and as an enzyme mimic in enhanced sensitive lateral-flow immunoassays: Application for the detection of streptomycin. Analytica Chimica Acta, 2020, 1126, 106-113.	2.6	78
116	An Ultrasmall RuO ₂ Nanozyme Exhibiting Multienzyme-like Activity for the Prevention of Acute Kidney Injury. ACS Applied Materials & Interfaces, 2020, 12, 31205-31216.	4.0	70
117	<p>Nitroxide-Modified Protein-Incorporated Nanoflowers with Dual Enzyme-Like Activities</p> . International Journal of Nanomedicine, 2020, Volume 15, 263-273.	3.3	4
118	Nanozymes: A New Disease Imaging Strategy. Frontiers in Bioengineering and Biotechnology, 2020, 8, 15.	2.0	64
119	Gold nanoparticles doped metal-organic frameworks as near-infrared light-enhanced cascade nanozyme against hypoxic tumors. Nano Research, 2020, 13, 653-660.	5.8	59
120	Co ₂ V ₂ O ₇ Particles with Intrinsic Multienzyme Mimetic Activities as an Effective Bioplatform for Ultrasensitive Fluorometric and Colorimetric Biosensing. ACS Applied Bio Materials, 2020, 3, 1469-1480.	2.3	20
121	Crossover between anti- and pro-oxidant activities of different manganese oxide nanoparticles and their biological implications. Journal of Materials Chemistry B, 2020, 8, 1191-1201.	2.9	41
122	An Enzymeâ€Mimicking Singleâ€Atom Catalyst as an Efficient Multiple Reactive Oxygen and Nitrogen Species Scavenger for Sepsis Management. Angewandte Chemie - International Edition, 2020, 59, 5108-5115.	7.2	200
123	Electrochemical biomolecule detection based on the regeneration of high-efficiency cascade catalysis for bifunctional nanozymes. Chemical Communications, 2020, 56, 2276-2279.	2.2	14
124	An Enzymeâ€Mimicking Singleâ€Atom Catalyst as an Efficient Multiple Reactive Oxygen and Nitrogen Species Scavenger for Sepsis Management. Angewandte Chemie, 2020, 132, 5146-5153.	1.6	34
125	Nanozyme-Modified Metal–Organic Frameworks with Multienzymes Activity as Biomimetic Catalysts and Electrocatalytic Interfaces. ACS Applied Materials & Interfaces, 2020, 12, 17185-17192.	4.0	81
126	Effect of Mn3O4 Nanoparticles on Lipopolysaccharide-Induced Inflammatory Factors in the Human Tendon Cells and Its Mechanism. International Journal of Polymer Science, 2020, 2020, 1-8.	1.2	1

#	Article	IF	CITATIONS
127	Enzyme Mimic Nanomaterials and Their Biomedical Applications. ChemBioChem, 2020, 21, 2408-2418.	1.3	29
128	Chemoreactive nanomedicine. Journal of Materials Chemistry B, 2020, 8, 6753-6764.	2.9	18
129	<p>Cyclodextrin-Modified CeO₂ Nanoparticles as a Multifunctional Nanozyme for Combinational Therapy of Psoriasis</p> . International Journal of Nanomedicine, 2020, Volume 15, 2515-2527.	3.3	30
130	A colloid approach to decorate latex particles with Prussian blue nanozymes. Journal of Molecular Liquids, 2020, 309, 113066.	2.3	19
131	Near-Infrared Light Dual-Promoted Heterogeneous Copper Nanocatalyst for Highly Efficient Bioorthogonal Chemistry <i>in Vivo</i> . ACS Nano, 2020, 14, 4178-4187.	7.3	67
132	Current perspectives on the clinical implications of oxidative RNA damage in aging research: challenges and opportunities. GeroScience, 2021, 43, 487-505.	2.1	22
133	Synthesis and spectroscopic characterization of a zinc oxide-polyphenol nanohybrid from natural resources for enhanced antioxidant activity with less cytotoxicity. Materials Today: Proceedings, 2021, 43, 3481-3486.	0.9	4
134	A Cerium Vanadate Nanozyme with Specific Superoxide Dismutase Activity Regulates Mitochondrial Function and ATP Synthesis in Neuronal Cells. Angewandte Chemie, 2021, 133, 3158-3167.	1.6	58
135	Ligandâ€Dependent Activity Engineering of Glutathione Peroxidaseâ€Mimicking MILâ€47(V) Metal–Organic Framework Nanozyme for Therapy. Angewandte Chemie, 2021, 133, 1247-1254.	1.6	21
136	Ligandâ€Dependent Activity Engineering of Glutathione Peroxidaseâ€Mimicking MILâ€47(V) Metal–Organic Framework Nanozyme for Therapy. Angewandte Chemie - International Edition, 2021, 60, 1227-1234.	7.2	111
137	Label-free homogeneous electrochemical detection of MicroRNA based on target-induced anti-shielding against the catalytic activity of two-dimension nanozyme. Biosensors and Bioelectronics, 2021, 171, 112707.	5.3	128
138	Selfâ€Assembled Singleâ€5ite Nanozyme for Tumorâ€5pecific Amplified Cascade Enzymatic Therapy. Angewandte Chemie - International Edition, 2021, 60, 3001-3007.	7.2	156
139	A Cerium Vanadate Nanozyme with Specific Superoxide Dismutase Activity Regulates Mitochondrial Function and ATP Synthesis in Neuronal Cells. Angewandte Chemie - International Edition, 2021, 60, 3121-3130.	7.2	111
140	Coordination Number Regulation of Molybdenum Single-Atom Nanozyme Peroxidase-like Specificity. CheM, 2021, 7, 436-449.	5.8	216
141	In vivo guiding inorganic nanozymes for biosensing and therapeutic potential in cancer, inflammation and microbial infections. Talanta, 2021, 224, 121805.	2.9	27
142	Nanozyme scavenging ROS for prevention of pathologic α-synuclein transmission in Parkinson's disease. Nano Today, 2021, 36, 101027.	6.2	78
143	Adsorption enhanced the oxidase-mimicking catalytic activity of octahedral-shape Mn3O4 nanoparticles as a novel colorimetric chemosensor for ultrasensitive and selective detection of arsenic. Journal of Colloid and Interface Science, 2021, 584, 114-124.	5.0	33
144	Nanozyme's catching up: activity, specificity, reaction conditions and reaction types. Materials Horizons, 2021, 8, 336-350.	6.4	74

#	Article	IF	CITATIONS
145	Selfâ€Assembled Single‣ite Nanozyme for Tumor‣pecific Amplified Cascade Enzymatic Therapy. Angewandte Chemie, 2021, 133, 3038-3044.	1.6	30
146	Catalytic antioxidant nanocomposites based on sequential adsorption of redox active metal complexes and polyelectrolytes on nanoclay particles. Dalton Transactions, 2021, 50, 2426-2435.	1.6	7
147	Preparation of laccase mimicking nanozymes and their catalytic oxidation of phenolic pollutants. Catalysis Science and Technology, 2021, 11, 3402-3410.	2.1	54
148	Synergistic Treatment of Obesity via Locally Promoting Beige Adipogenesis and Antioxidative Defense in Adipose Tissues. ACS Biomaterials Science and Engineering, 2021, 7, 727-738.	2.6	6
149	Biomimetic Design of Mitochondriaâ€Targeted Hybrid Nanozymes as Superoxide Scavengers. Advanced Materials, 2021, 33, e2006570.	11.1	115
150	Ultrasmall copper nanoclusters with multi-enzyme activities. RSC Advances, 2021, 11, 14517-14526.	1.7	11
151	Recent progress in the design of analytical methods based on nanozymes. Journal of Materials Chemistry B, 2021, 9, 8174-8184.	2.9	27
152	<i>In vitro</i> measurement of superoxide dismutase-like nanozyme activity: a comparative study. Analyst, The, 2021, 146, 1872-1879.	1.7	37
153	Bound oxygen-atom transfer endows peroxidase-mimic M–N–C with high substrate selectivity. Chemical Science, 2021, 12, 8865-8871.	3.7	39
154	Multienzymes activity of metals and metal oxide nanomaterials: applications from biotechnology to medicine and environmental engineering. Journal of Nanobiotechnology, 2021, 19, 26.	4.2	62
155	Catalytic patch with redox Cr/CeO ₂ nanozyme of noninvasive intervention for brain trauma. Theranostics, 2021, 11, 2806-2821.	4.6	60
156	Facile one-pot synthesis of Mn ₃ O ₄ nanorods and their analytical application. New Journal of Chemistry, 2021, 45, 17576-17583.	1.4	2
157	Catalytically potent and selective clusterzymes for modulation of neuroinflammation through single-atom substitutions. Nature Communications, 2021, 12, 114.	5.8	123
158	Catalytic Nanozyme for Radiation Protection. Bioconjugate Chemistry, 2021, 32, 411-429.	1.8	23
159	Rational Design and Biological Application of Antioxidant Nanozymes. Frontiers in Chemistry, 2020, 8, 831.	1.8	31
160	Atomic Engineering of Clusterzyme for Relieving Acute Neuroinflammation through Lattice Expansion. Nano Letters, 2021, 21, 2562-2571.	4.5	48
161	Stimuliâ€Responsive Manganese Singleâ€Atom Nanozyme for Tumor Therapy via Integrated Cascade Reactions. Angewandte Chemie - International Edition, 2021, 60, 9480-9488.	7.2	271
162	Stimuliâ€Responsive Manganese Singleâ€Atom Nanozyme for Tumor Therapy via Integrated Cascade Reactions. Angewandte Chemie, 2021, 133, 9566-9574.	1.6	50

#	Article	IF	CITATIONS
163	Nanozyme-based medicine for enzymatic therapy: progress and challenges. Biomedical Materials (Bristol), 2021, 16, 042002.	1.7	40
164	Nanozymes for regulation of reactive oxygen species and disease therapy. Chinese Chemical Letters, 2021, 32, 2715-2728.	4.8	70
165	Microâ€Bioâ€Chemoâ€Mechanicalâ€Systems: Micromotors, Microfluidics, and Nanozymes for Biomedical Applications. Advanced Materials, 2021, 33, e2007465.	11.1	60
166	Catalytic nanozymes for central nervous system disease. Coordination Chemistry Reviews, 2021, 432, 213751.	9.5	42
167	2D vanadium carbide MXenzyme to alleviate ROS-mediated inflammatory and neurodegenerative diseases. Nature Communications, 2021, 12, 2203.	5.8	222
168	A colorimetric sensor for acid phosphatase activity detection based on acridone derivative as visible-light-stimulated oxidase mimic. Analytica Chimica Acta, 2021, 1155, 338357.	2.6	18
169	Bioinspired Phosphatase-like Mimic Built from the Self-Assembly of De Novo Designed Helical Short Peptides. ACS Catalysis, 2021, 11, 5839-5849.	5.5	32
170	Chemical design of nanozymes for biomedical applications. Acta Biomaterialia, 2021, 126, 15-30.	4.1	80
171	Multifaceted Therapy of Nanocatalysts in Neurological Diseases. Journal of Biomedical Nanotechnology, 2021, 17, 711-743.	0.5	4
172	Catalyticâ€Enhanced Lactoferrinâ€Functionalized Auâ€Bi ₂ Se ₃ Nanodots for Parkinson's Disease Therapy via Reactive Oxygen Attenuation and Mitochondrial Protection. Advanced Healthcare Materials, 2021, 10, e2100316.	3.9	21
173	Regulating the enzymatic activities of metal-ATP nanoparticles by metal doping and their application for H2O2 detection. Sensors and Actuators B: Chemical, 2021, 335, 129671.	4.0	19
174	Nanozymes: A Promising Horizon for Medical and Environmental Applications. Journal of Cluster Science, 2022, 33, 1275-1297.	1.7	12
175	The Most Active Oxidaseâ€Mimicking Mn ₂ O ₃ Nanozyme for Biosensor Signal Generation. Chemistry - A European Journal, 2021, 27, 9597-9604.	1.7	44
176	Emerging Nanotechnology for Treatment of Alzheimer's and Parkinson's Disease. Frontiers in Bioengineering and Biotechnology, 2021, 9, 672594.	2.0	18
177	Control of Stepwise Hg ²⁺ Reduction on Gold to Selectively Tune its Peroxidase and Catalase‣ike Activities and the Mechanism. Advanced Materials Interfaces, 2021, 8, 2100086.	1.9	13
178	Nitrogen and boron co-doped graphene nanoribbons as peroxidase-mimicking nanozymes for enhanced biosensing. Chinese Chemical Letters, 2022, 33, 344-348.	4.8	14
179	Preclinical studies conducted on nanozyme antioxidants: shortcomings and challenges based on USÂFDA regulations. Nanomedicine, 2021, 16, 1133-1151.	1.7	11
180	Biomedical applications of metal oxide nanoparticles in aging and age-associated diseases. 3 Biotech, 2021, 11, 338.	1.1	8

		CITATION RE	PORT	
#	Article		IF	CITATIONS
181	Chemodynamic nanomaterials for cancer theranostics. Journal of Nanobiotechnology,	2021, 19, 192.	4.2	51
182	Catalase-like quantum dots of I-lysine polymerization as free radical scavengers for hyp injury. Materials Today Communications, 2021, 27, 102286.	oxic brain	0.9	4
183	Mn ₃ O ₄ Nanozyme for Inflammatory Bowel Disease Therapy. Therapeutics, 2021, 4, 2100081.	. Advanced	1.6	31
184	Nanozymes as efficient tools for catalytic therapeutics. View, 2022, 3, 20200147.		2.7	23
185	A Review on Metal- and Metal Oxide-Based Nanozymes: Properties, Mechanisms, and A Nano-Micro Letters, 2021, 13, 154.	pplications.	14.4	221
186	Fe-MOGs-based enzyme mimetic and its mediated electrochemiluminescence for in site H2O2 released from Hela cells. Biosensors and Bioelectronics, 2021, 184, 113216.	u detection of	5.3	30
187	Defect-rich and ultrathin nitrogen-doped carbon nanosheets with enhanced peroxidase for the detection of urease activity and fluoride ion. Chinese Chemical Letters, 2022, 3	2-like activity 3, 1317-1320.	4.8	16
188	Natural Nanominerals Show Enzyme-Like Activities. Journal of Nanomaterials, 2021, 20	21, 1-12.	1.5	2
189	Visibleâ€Lightâ€Driven Photocatalysisâ€Enhanced Nanozyme of TiO ₂ Nanotubes@MoS ₂ Nanoflowers for Efficient Wound Healing Infected wit Multidrugâ€Resistant Bacteria. Small, 2021, 17, e2103348.	h	5.2	58
190	Research advances of biomaterials-based microenvironment-regulation therapies for re regeneration of spinal cord injury. Biomedical Materials (Bristol), 2021, 16, 052002.	pair and	1.7	15
191	Polyoxometalate Nanostructures Decorated with CuO Nanoparticles for Sensing Ascor Fe ²⁺ Ions. ACS Applied Nano Materials, 2021, 4, 8302-8313.	bic Acid and	2.4	51
192	Metallic oxide nanomaterials act as antioxidant nanozymes in higher plants: Trends, mo prospect. Science of the Total Environment, 2021, 780, 146578.	eta-analysis, and	3.9	38
193	Therapeutic Applications of Nanozymes in Chronic Inflammatory Diseases. BioMed Res International, 2021, 2021, 1-9.	earch	0.9	7
194	Metal Nanozymes: New Horizons in Cellular Homeostasis Regulation. Applied Sciences 2021, 11, 9019.	(Switzerland),	1.3	11
195	Single-atom engineering of metal-organic frameworks toward healthcare. CheM, 2021,	, 7, 2635-2671.	5.8	55
196	A Glucoseâ€Powered Activatable Nanozyme Breaking pH and H ₂ O _{2 for Treating Diabetic Infections. Angewandte Chemie - International Edition, 2021, 60,}	2 Limitations 23534-23539.	7.2	96
197	Prussian Blue Nanozymes Prevent Anthracycline-Induced Liver Injury by Attenuating O and Regulating Inflammation. ACS Applied Materials & amp; Interfaces, 2021, 13, 4238	kidative Stress 2-42395.	4.0	41
198	Antioxidative Composites Based on Multienzyme Systems Encapsulated in Metal–On ACS Applied Materials & Interfaces, 2021, 13, 46431-46439.	rganic Frameworks.	4.0	31

#	Article	IF	CITATIONS
199	Preparation of Flower-like NiMnO ₃ as Oxidase Mimetics for Colorimetric Detection of Hydroquinone. ACS Sustainable Chemistry and Engineering, 2021, 9, 12766-12778.	3.2	38
200	Self-Assembled Fabrication of Water-Soluble Porphyrin Mediated Supramolecule-Gold Nanoparticle Networks and Their Application in Selective Sensing. Bulletin of the Chemical Society of Japan, 2021, 94, 2662-2669.	2.0	4
201	A Glucoseâ€₽owered Activatable Nanozyme Breaking pH and H ₂ O ₂ Limitations for Treating Diabetic Infections. Angewandte Chemie, 2021, 133, 23726-23731.	1.6	4
202	Target-induced synergetic modulation of electrochemical tag concentration and electrode surface passivation for one-step sampling filtration-free detection of acid phosphatase activity. Talanta, 2021, 233, 122500.	2.9	5
203	A critical comparison of natural enzymes and nanozymes in biosensing and bioassays. Biosensors and Bioelectronics, 2021, 192, 113494.	5.3	60
204	A dual-targeted multifunctional nanoformulation for potential prevention and therapy of Alzheimer's disease. Innovation(China), 2021, 2, 100160.	5.2	10
205	Nanozymes: Activity origin, catalytic mechanism, and biological application. Coordination Chemistry Reviews, 2021, 448, 214170.	9.5	136
206	Mn3O4–Au nanozymes as peroxidase mimic and the surface-enhanced Raman scattering nanosensor for the detection of hydrogen peroxide. Materials Today Chemistry, 2021, 22, 100560.	1.7	15
207	Ultrasmall Prussian blue nanoparticles attenuate UVA-induced cellular senescence in human dermal fibroblasts <i>via</i> inhibiting the ERK/AP-1 pathway. Nanoscale, 2021, 13, 16104-16112.	2.8	8
208	Therapeutic applications of nanozymes and their role in cardiovascular disease. International Journal of Nanomaterials Nanotechnology and Nanomedicine, 2021, , 009-018.	0.2	1
209	Inorganic nanomaterials with rapid clearance for biomedical applications. Chemical Society Reviews, 2021, 50, 8669-8742.	18.7	259
210	Design of hybrid biocatalysts by controlled heteroaggregation of manganese oxide and sulfate latex particles to combat reactive oxygen species. Journal of Materials Chemistry B, 2021, 9, 4929-4940.	2.9	8
211	Superoxide dismutase nanozymes: an emerging star for anti-oxidation. Journal of Materials Chemistry B, 2021, 9, 6939-6957.	2.9	175
212	Reactive Oxygen Speciesâ€Regulating Strategies Based on Nanomaterials for Disease Treatment. Advanced Science, 2021, 8, 2002797.	5.6	149
213	The Role of Diverse Nanoparticles in Oxidative Stress: In Vitro and In Vivo Studies. , 2020, , 27-48.		1
214	Enhanced Multiple Enzymelike Activity of PtPdCu Trimetallic Nanostructures for Detection of Fe ²⁺ and Evaluation of Antioxidant Capability. ACS Sustainable Chemistry and Engineering, 2021, 9, 569-579.	3.2	37
215	Antioxidant metal oxide nanozymes: role in cellular redox homeostasis and therapeutics. Pure and Applied Chemistry, 2021, 93, 187-205.	0.9	10
216	Structural and Functional Tailoring of Melanin-Like Polydopamine Radical Scavengers. CCS Chemistry, 2020, 2, 128-138.	4.6	99

#	Article	IF	CITATIONS
217	Biomedical applications of metal–organic framework (MOF)-based nano-enzymes. New Journal of Chemistry, 2021, 45, 20987-21000.	1.4	59
218	Quantitative evaluation of O ₂ activation half-reaction for Fe–N–C in oxidase-like activity enhancement. Catalysis Science and Technology, 2021, 11, 7255-7259.	2.1	9
219	Facetâ€Dependent Biodegradable Mn ₃ O ₄ Nanoparticles for Ameliorating Parkinson's Disease. Advanced Healthcare Materials, 2021, 10, e2101316.	3.9	23
220	Recent antioxidative nanomaterials toward wound dressing and disease treatment via ROS scavenging. Materials Today Nano, 2022, 17, 100149.	2.3	21
221	Therapeutic Nanoparticles from Grape Seed for Modulating Oxidative Stress. Small, 2021, 17, e2102485.	5.2	57
222	Nanozymes Regulate Redox Homeostasis in ROS-Related Inflammation. Frontiers in Chemistry, 2021, 9, 740607.	1.8	24
223	Thiolated Ligand-Functionalized MoS ₂ Nanosheets for Peroxidase-like Activities. ACS Applied Nano Materials, 2021, 4, 12682-12689.	2.4	19
224	The Advances of Nanozyme in Brain Disease. , 2019, , 139-179.		2
225	Nanomaterials and Reactive Oxygen Species (ROS). , 2020, , 361-387.		2
226	Recent advances on endogenous/exogenous stimuli-triggered nanoplatforms for enhanced chemodynamic therapy. Coordination Chemistry Reviews, 2022, 451, 214267.	9.5	89
227	Nanozymes in Tumor Theranostics. Frontiers in Oncology, 2021, 11, 666017.	1.3	20
228	Cascaded Nanozyme System with High Reaction Selectivity by Substrate Screening and Channeling in a Microfluidic Device**. Angewandte Chemie - International Edition, 2022, 61, e202112453.	7.2	35
229	Cascaded Nanozyme System with High Reaction Selectivity by Substrate Screening and Channeling in a Microfluidic Device**. Angewandte Chemie, 2022, 134, .	1.6	5
230	Nanomaterials as novel agents for amelioration of Parkinson's disease. Nano Today, 2021, 41, 101328.	6.2	18
231	A peroxidase-like activity-based colorimetric sensor array of noble metal nanozymes to discriminate heavy metal ions. Analyst, The, 2021, 147, 101-108.	1.7	22
232	Immunotherapy for Tumor Metastasis by Artificial Antigen-Presenting Cells via Targeted Microenvironment Regulation and T-Cell Activation. ACS Applied Materials & Interfaces, 2021, 13, 55890-55901.	4.0	16
233	Accelerated discovery of superoxide-dismutase nanozymes via high-throughput computational screening. Nature Communications, 2021, 12, 6866.	5.8	62
234	An oligomeric semiconducting nanozyme with ultrafast electron transfers alleviates acute brain injury. Science Advances, 2021, 7, eabk1210.	4.7	46

#	Article	IF	CITATIONS
235	Nanotechnology-Based Drug Delivery Strategies to Repair the Mitochondrial Function in Neuroinflammatory and Neurodegenerative Diseases. Pharmaceutics, 2021, 13, 2055.	2.0	12
236	Peroxide activation by selenium-doped graphite. Catalysis Science and Technology, 2022, 12, 1296-1312.	2.1	4
237	Co, N-doped carbon dot nanozymes with acid pH-independence and substrate selectivity for biosensing and bioimaging. Sensors and Actuators B: Chemical, 2022, 353, 131150.	4.0	29
238	Exploration of nanozymes in viral diagnosis and therapy. Exploration, 2022, 2, .	5.4	63
239	Perspective for Single Atom Nanozymes Based Sensors: Advanced Materials, Sensing Mechanism, Selectivity Regulation, and Applications. Analytical Chemistry, 2022, 94, 1499-1509.	3.2	37
240	Macrophage-Mimic Hollow Mesoporous Fe-Based Nanocatalysts for Self-Amplified Chemodynamic Therapy and Metastasis Inhibition <i>via</i> Tumor Microenvironment Remodeling. ACS Applied Materials & Interfaces, 2022, 14, 5053-5065.	4.0	24
241	Magnetic Nanostructures: Rational Design and Fabrication Strategies toward Diverse Applications. Chemical Reviews, 2022, 122, 5411-5475.	23.0	49
242	Multienzymatic Antioxidant Activity of Manganese-Based Nanoparticles for Protection against Oxidative Cell Damage. ACS Biomaterials Science and Engineering, 2022, 8, 638-648.	2.6	27
243	Metal/Metalloid-Based Nanomaterials for Plant Abiotic Stress Tolerance: An Overview of the Mechanisms. Plants, 2022, 11, 316.	1.6	85
244	Hemoglobin–Laccase Modifications of Ligninsulfonate: A Promising Synergistic Stratagem for Lignin Biodegradation. Advanced Sustainable Systems, 0, , 2100324.	2.7	1
245	Singleâ€Atom Nanozymes for Biomedical Applications: Recent Advances and Challenges. Chemistry - an Asian Journal, 2022, 17, .	1.7	19
246	Prussian Blue Nanoparticles Stabilize SOD1 from Ubiquitinationâ€Proteasome Degradation to Rescue Intervertebral Disc Degeneration. Advanced Science, 2022, 9, e2105466.	5.6	34
247	Piezoelectric enhanced peroxidase-like activity of metal-free sulfur doped graphdiyne nanosheets for efficient water pollutant degradation and bacterial disinfection. Nano Today, 2022, 43, 101429.	6.2	53
248	Recent advances in the applications of nanozymes for the efficient detection/removal of organic pollutants: a review. Environmental Science: Nano, 2022, 9, 1212-1235.	2.2	13
249	Ti ₃ C ₂ nanosheets with broad-spectrum antioxidant activity for cytoprotection against oxidative stress. RSC Advances, 2022, 12, 11128-11138.	1.7	12
250	CoO Nanozymes with Multiple Catalytic Activities Regulate Atopic Dermatitis. Nanomaterials, 2022, 12, 638.	1.9	8
251	In vivo study of dose-dependent antioxidant efficacy of functionalized core–shell yttrium oxide nanoparticles. Naunyn-Schmiedeberg's Archives of Pharmacology, 2022, 395, 593-606.	1.4	5
252	Nanozymes-recent development and biomedical applications. Journal of Nanobiotechnology, 2022, 20, 92.	4.2	133

#	Article	IF	CITATIONS
253	Designing CoS _{1.035} Nanoparticles Anchored on N-Doped Carbon Dodecahedron as Dual-Enzyme Mimics for the Colorimetric Detection of H ₂ O ₂ and Glutathione. ACS Omega, 2022, 7, 11135-11147.	1.6	6
254	Emerging nanozymes for potentiating radiotherapy and radiation protection. Chinese Chemical Letters, 2022, 33, 3315-3324.	4.8	10
255	Nanozymes: Versatile Platforms for Cancer Diagnosis and Therapy. Nano-Micro Letters, 2022, 14, 95.	14.4	82
256	Plasmonic Nanomaterials for Colorimetric Biosensing: A Review. Chemosensors, 2022, 10, 136.	1.8	10
257	Highly effective rheumatoid arthritis therapy by peptide-promoted nanomodification of mesenchymal stem cells. Biomaterials, 2022, 283, 121474.	5.7	9
258	Self-assembled artificial enzyme from hybridized porous organic cages and iron oxide nanocrystals. Journal of Colloid and Interface Science, 2022, 621, 331-340.	5.0	7
259	Engineering vanadium carbide MXene as multienzyme mimetics for efficient in vivo ischemic stroke treatment. Chemical Engineering Journal, 2022, 440, 135810.	6.6	21
260	Recent Advances in Nanozymes: From Matters to Bioapplications. Advanced Functional Materials, 2022, 32, .	7.8	143
261	Bioactive Nanoenzyme Reverses Oxidative Damage and Endoplasmic Reticulum Stress in Neurons under Ischemic Stroke. ACS Nano, 2022, 16, 431-452.	7.3	81
262	Engineering single-atom catalysts toward biomedical applications. Chemical Society Reviews, 2022, 51, 3688-3734.	18.7	43
263	The protective effect of biomineralized BSA-Mn ₃ O ₄ nanoparticles on HUVECs investigated by atomic force microscopy. Analyst, The, 2022, 147, 2097-2105.	1.7	2
264	Nanozymes with Multiple Activities: Prospects in Analytical Sensing. Biosensors, 2022, 12, 251.	2.3	23
265	Anti-Parkinsonian Therapy: Strategies for Crossing the Blood–Brain Barrier and Nano-Biological Effects of Nanomaterials. Nano-Micro Letters, 2022, 14, 105.	14.4	18
267	A Valenceâ€Engineered Selfâ€Cascading Antioxidant Nanozyme for the Therapy of Inflammatory Bowel Disease. Angewandte Chemie - International Edition, 2022, 61, .	7.2	63
268	Recent development in antibacterial activity and application of nanozymes in food preservation. Critical Reviews in Food Science and Nutrition, 2023, 63, 9330-9348.	5.4	7
269	Palladium nanoparticles decorated Chitosan-Pectin modified Kaolin: It's catalytic activity for Suzuki-Miyaura coupling reaction, reduction of the 4-nitrophenol, and treatment of lung cancer. Inorganic Chemistry Communication, 2022, 141, 109523.	1.8	28
270	Inflammation-sensing catalase-mimicking nanozymes alleviate acute kidney injury via reversing local oxidative stress. Journal of Nanobiotechnology, 2022, 20, 205.	4.2	21
271	A Valenceâ€Engineered Selfâ€Cascading Antioxidant Nanozyme for the Therapy of Inflammatory Bowel Disease. Angewandte Chemie, 2022, 134, .	1.6	7

#	Article	IF	CITATIONS
272	Synthesis and characterization of novel blue-emitting nicotinamide-gold nanoclusters with "chain-breaker―antioxidant property. Journal of Molecular Liquids, 2022, 359, 119372.	2.3	5
273	Fe N C single atom nanozymes with dual enzyme-mimicking activities for colorimetric detection of hydrogen peroxide and glutathione. Journal of Materiomics, 2022, 8, 1251-1259.	2.8	8
274	An engineered, self-propelled nanozyme as reactive oxygen species scavenger. Chemical Engineering Journal, 2022, 446, 136794.	6.6	10
275	2D MoSe2@PVP nanosheets with multi-enzyme activity alleviate the acute pancreatitis via scavenging the reactive oxygen and nitrogen species. Chemical Engineering Journal, 2022, 446, 136792.	6.6	7
276	Establishing bilateral modulation of radiation induced redox damage via biocatalytic single atom engineering at Au clusters. Chemical Engineering Journal, 2022, 445, 136793.	6.6	9
277	Superoxide dismutase@zeolite Imidazolate Framework-8 Attenuates Noise-Induced Hearing Loss in Rats. Frontiers in Pharmacology, 2022, 13, .	1.6	2
278	Proteinâ€Mimicking Nanoparticles in Biosystems. Advanced Materials, 2022, 34, e2201562.	11.1	17
279	纳米é¶ï¼šæ−°ä,€ä»£ä≌å·¥é¶. Scientia Sinica Chimica, 2022, , .	0.2	4
280	Charge-Switchable Cu _{<i>x</i>} O Nanozyme with Peroxidase and Near-Infrared Light Enhanced Photothermal Activity for Wound Antibacterial Application. ACS Applied Materials & Interfaces, 2022, 14, 25042-25049.	4.0	23
281	Manganese dioxide nanosheet-containing reactors as antioxidant support for neuroblastoma cells. Journal of Materials Chemistry B, 2022, 10, 4672-4683.	2.9	6
282	Nanomaterials alleviating redox stress in neurological diseases: mechanisms and applications. Journal of Nanobiotechnology, 2022, 20, .	4.2	22
283	Ultrasmall Ruthenium Nanoparticles with Boosted Antioxidant Activity Upregulate Regulatory T Cells for Highly Efficient Liver Injury Therapy. Small, 2022, 18, .	5.2	22
284	Application of Metal-Based Nanozymes in Inflammatory Disease: A Review. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	10
285	Synthesis of Gold-Platinum Core-Shell Nanoparticles Assembled on a Silica Template and Their Peroxidase Nanozyme Properties. International Journal of Molecular Sciences, 2022, 23, 6424.	1.8	7
286	In situ-transition nanozyme triggered by tumor microenvironment boosts synergistic cancer radio-/chemotherapy through disrupting redox homeostasis. Biomaterials, 2022, 287, 121620.	5.7	32
287	Tungsten disulfide nanoflowers with multi-nanoenzyme activities for the treatment of acute liver injury. Journal of Colloid and Interface Science, 2022, 625, 544-554.	5.0	5
288	A Dopamine-Enabled Universal Assay for Catalase and Catalase-Like Nanozymes. Analytical Chemistry, 2022, 94, 10636-10642.	3.2	21
289	Harnessing immune response using reactive oxygen Species-Generating/Eliminating inorganic biomaterials for disease treatment. Advanced Drug Delivery Reviews, 2022, 188, 114456.	6.6	19

#	Article	IF	CITATIONS
290	Immobilization of Superoxide Dismutase in Mesoporous Silica and its Applications in Strengthening the Lifespan and Healthspan of Caenorhabditis elegans. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	1
291	Nanostructures with at least one dimension in ultra-small size for the treatment of acute kidney injury. Giant, 2022, 11, 100111.	2.5	2
292	Construction of core-in-shell Au@N-HCNs nanozymes for tumor therapy. Colloids and Surfaces B: Biointerfaces, 2022, 217, 112671.	2.5	10
293	Ternary CTAB@Co3O4@GO nanocomposite as a promising superoxide dismutase mimic. Bulletin of Materials Science, 2022, 45, .	0.8	0
294	Nanozymeâ€Based Artificial Organelles: An Emerging Direction for Artificial Organelles. Small, 2022, 18,	5.2	25
295	What are inorganic nanozymes? Artificial or inorganic enzymes. New Journal of Chemistry, 2022, 46, 15273-15291.	1.4	4
296	Single-Atom Nanozymes: Fabrication, Characterization, Surface Modification and Applications of ROS Scavenging and Antibacterial. Molecules, 2022, 27, 5426.	1.7	15
297	Chiral Nanozymes for Enantioselective Biological Catalysis. Angewandte Chemie, 0, , .	1.6	1
298	Chiral Nanozymes for Enantioselective Biological Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	27
299	Microwave-mediated synthesis of tetragonal Mn3O4 nanostructure for supercapacitor application. Environmental Science and Pollution Research, 2023, 30, 71464-71471.	2.7	3
300	Catalase‣ike Nanozymes: Classification, Catalytic Mechanisms, and Their Applications. Small, 2022, 18, .	5.2	89
301	Oxidase mimicking of CuMnO2 nanoflowers and the application in colorimetric detection of ascorbic acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 652, 129887.	2.3	9
302	"Three-in-one―nanocomposites as multifunctional nanozymes for ultrasensitive ratiometric fluorescence detection of alkaline phosphatase. Journal of Materials Chemistry B, 2022, 10, 6328-6337.	2.9	5
303	Introductory Chapter: Incredible Spicy Iron Oxide Nanoparticles. , 0, , .		1
304	Preparation, chemical characterization and determination of the antioxidant, cytotoxicity and therapeutic effects of gold nanoparticles green-synthesized by Calendula officinalis flower extract in diabetes-induced cardiac dysfunction in rat. Inorganic Chemistry Communication, 2022, 144, 109931.	1.8	2
305	Multi-enzyme activity nanozymes for biosensing and disease treatment. Coordination Chemistry Reviews, 2022, 473, 214784.	9.5	44
306	Manganese oxide nano-platforms in cancer therapy: Recent advances on the development of synergistic strategies targeting the tumor microenvironment. Applied Materials Today, 2022, 29, 101628.	2.3	14
307	High-Efficient Electrochemical Biomimetic Enzyme Cascade Amplification Combined with Target-Induced 3D DNA Walker for Sensitive Detection of Thrombin. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
308	Manganeseâ€Based Nanozymes: Preparation, Catalytic Mechanisms, and Biomedical Applications. Advanced Healthcare Materials, 2022, 11, .	3.9	22
309	Bifunctional Magnetic Fe ₃ O ₄ @Cu ₂ O@TiO ₂ Nanosphere-Mediated Dual-Mode Assay of PTP1B Activity Based on Photocurrent Polarity Switching and Nanozyme-Engineered Biocatalytic Precipitation Strategies. Analytical Chemistry, 2022, 94, 13342-13349.	3.2	14
310	Catalaseâ€Mimetic Artificial Biocatalysts with Ru Catalytic Centers for ROS Elimination and Stemâ€Cell Protection. Advanced Materials, 2022, 34, .	11.1	31
311	Electromagnetic field-enhanced chiral dimanganese trioxide nanoparticles mitigate Parkinson's disease. Science China Chemistry, 2022, 65, 1911-1920.	4.2	8
312	Nanozymes for Regenerative Medicine. Small Methods, 2022, 6, .	4.6	37
313	Cu nanoclusters decorated Ti3C2 nanosheets composite with tetraenzyme mimic activities and the application for smartphone-assisted detection of hypoxanthine. Analytica Chimica Acta, 2022, 1232, 340494.	2.6	4
314	Nanozymeâ€Enabled Treatment of Cardio―and Cerebrovascular Diseases. Small, 2023, 19, .	5.2	28
315	Co anchored on porphyrinic triazine-based frameworks with excellent biocompatibility for conversion of CO2 in H2-mediated microbial electrosynthesis. Frontiers of Chemical Science and Engineering, 2022, 16, 1761-1771.	2.3	3
316	Structure design mechanisms and inflammatory disease applications of nanozymes. Nanoscale, 2022, 15, 14-40.	2.8	9
317	Medical Nanozymes for Therapeutics. Micro/Nano Technologies, 2022, , 1-46.	0.1	0
318	Exploring the Antibacterial and Biosensing Applications of Peroxidase-Mimetic Ni0.1Cu0.9S Nanoflower. Biosensors, 2022, 12, 874.	2.3	4
319	Nanozymes-Enhanced Cell Therapy. ACS Symposium Series, 0, , 189-209.	0.5	0
320	One-Pot Synthesis of MnOx-SiO2 Porous Composites as Nanozymes with ROS-Scavenging Properties. Nanomaterials, 2022, 12, 3503.	1.9	1
321	Nanomedicine in the Face of Parkinson's Disease: From Drug Delivery Systems to Nanozymes. Cells, 2022, 11, 3445.	1.8	7
322	Nanozymes in the Treatment of Diseases Caused by Excessive Reactive Oxygen Specie. Journal of Inflammation Research, 0, Volume 15, 6307-6328.	1.6	8
323	Reactive Oxygen Species- and Cell-Free DNA-Scavenging Mn ₃ O ₄ Nanozymes for Acute Kidney Injury Therapy. ACS Applied Materials & Interfaces, 2022, 14, 50649-50663.	4.0	20
324	Engineering Antioxidative Cascade Metal-Phenolic Nanozymes for Alleviating Oxidative Stress during Extracorporeal Blood Purification. ACS Nano, 2022, 16, 18329-18343.	7.3	25
325	Nanocatalysis meets microfluidics: A powerful platform for sensitive bioanalysis. TrAC - Trends in Analytical Chemistry, 2023, 158, 116887.	5.8	10

		CITATION REPORT		
#	Article		IF	CITATIONS
326	Air‧table Radical Organic Cages as Cascade Nanozymes for Enhanced Catalysis. Small	, 2023, 19, .	5.2	5
327	Tumor Microenvironment-Activable Manganese-Boosted Catalytic Immunotherapy Comb Checkpoint Blockade. ACS Nano, 2022, 16, 20400-20418.	vined with PD-1	7.3	27
328	<i>e</i> _g Occupancy as a Predictive Descriptor for Spinel Oxide Nanozyme 2022, 22, 10003-10009.	s. Nano Letters,	4.5	9
330	Biomimetic Prussian blue nanozymes with enhanced bone marrow-targeting for treatmer radiation-induced hematopoietic injury. Biomaterials, 2023, 293, 121980.	nt of	5.7	6
331	Redox Modulatory Cu(II)â€Baicalein Microflowers Prepared in One Step Effectively Prom Angiogenesis in Diabetic Mice. Advanced Healthcare Materials, 2023, 12, .	ote Therapeutic	3.9	4
332	Iridium Tungstate Nanozyme-Mediated Hypoxic Regulation and Anti-inflammation for Du Guided Photothermal Therapy of Metastatic Breast Tumors. ACS Applied Materials & 2022, 14, 56471-56482.	plex Imaging ; Interfaces,	4.0	11
333	Metalâ€Based Nanozymes with Multienzymeâ€Like Activities as Therapeutic Candidates Mechanisms, and Optimization Strategy. Small, 2023, 19, .	: Applications,	5.2	18
334	Specific Nanodrug for Diabetic Chronic Wounds Based on Antioxidase-Mimicking MOF-8 Journal of the American Chemical Society, 2022, 144, 23438-23447.	18 Nanozymes.	6.6	67
335	Biological Applications of Nanozymes. Environmental Chemistry for A Sustainable World 187-212.	, 2023, ,	0.3	0
336	Biosystemâ€Inspired Engineering of Nanozymes for Biomedical Applications. Advanced № 36, .	Naterials, 2024,	11.1	56
337	Medical Nanozymes for Therapeutics. Micro/Nano Technologies, 2023, , 285-329.		0.1	0
338	COF-based artificial probiotic for modulation of gut microbiota and immune microenviro inflammatory bowel disease. Chemical Science, 2023, 14, 1598-1605.	nment in	3.7	3
339	Nanoparticle Based Cardiac Specific Drug Delivery. Biology, 2023, 12, 82.		1.3	4
340	Chiral Se@CeO ₂ superparticles for ameliorating Parkinson's disease. Nanos 4367-4377.	cale, 2023, 15,	2.8	4
341	The Dual Role of Oxidative-Stress-Induced Autophagy in Cellular Senescence: Compreher Therapeutic Approaches. Antioxidants, 2023, 12, 169.	nsion and	2.2	9
342	Deciphering the catalytic mechanism of superoxide dismutase activity of carbon dot nan Communications, 2023, 14, .	ozyme. Nature	5.8	116
343	Near-infrared-IIb emitting single-atom catalyst for imaging-guided therapy of blood-brain breakdown after traumatic brain injury. Nature Communications, 2023, 14, .	barrier	5.8	19
344	Activity Regulating Strategies of Nanozymes for Biomedical Applications. Small, 2023, 19	θ,.	5.2	24

#	Article	IF	CITATIONS
345	Reaction Mechanisms and Kinetics of Nanozymes: Insights from Theory and Computation. Advanced Materials, 2024, 36, .	11.1	28
346	Insight into nanozymes for their environmental applications as antimicrobial and antifouling agents: Progress, challenges and prospects. Nano Today, 2023, 48, 101755.	6.2	23
347	2D-CuPd nanozyme overcome tamoxifen resistance in breast cancer by regulating the PI3K/AKT/mTOR pathway. Biomaterials, 2023, 294, 121986.	5.7	10
348	Advances in antioxidative nanozymes for treating ischemic stroke. Engineered Regeneration, 2023, 4, 95-102.	3.0	2
349	Smartphone-Based Pressure Signal Readout Device Combined with Bidirectional Immunochromatographic Test Strip for Dual-Analyte Detection. Analytical Chemistry, 0, , .	3.2	4
350	Glutathione peroxidase-like nanozymes: mechanism, classification, and bioapplication. Biomaterials Science, 2023, 11, 2292-2316.	2.6	10
351	Antioxidaseâ€Like Nanobiocatalysts with Ultrafast and Reversible Redoxâ€Centers to Secure Stem Cells and Periodontal Tissues. Advanced Functional Materials, 2023, 33, .	7.8	9
352	Red Emissive Carbon Dot Superoxide Dismutase Nanozyme for Bioimaging and Ameliorating Acute Lung Injury. Advanced Functional Materials, 2023, 33, .	7.8	49
353	Integrated cascade catalysis of microalgal bioenzyme and inorganic nanozyme for anti-inflammation therapy. Nanoscale Horizons, 2023, 8, 489-498.	4.1	2
354	Modern Advancements, Patents and Applications of Futuristic Nanozymes: A Comprehensive Review. Nanoscience and Nanotechnology - Asia, 2023, 13, .	0.3	1
355	Recent progress on nanozymes in electrochemical sensing. Journal of Electroanalytical Chemistry, 2023, 936, 117391.	1.9	3
356	Targeting ROS-induced osteoblast senescence and RANKL production by Prussian blue nanozyme based gene editing platform to reverse osteoporosis. Nano Today, 2023, 50, 101839.	6.2	5
357	Assemble multi-enzyme mimic tandem Mn3O4@ g-C3N4 for augment ROS elimination and label free detection. Chemical Engineering Journal, 2023, 463, 142355.	6.6	7
358	Modulation of the biocatalytic activity and selectivity of CeO ₂ nanozymes <i>via</i> atomic doping engineering. Nanoscale, 2023, 15, 4408-4419.	2.8	9
359	Advances in Nanozymes as a Paradigm for Viral Diagnostics and Therapy. Pharmacological Reviews, 2023, 75, 739-757.	7.1	3
360	Nanotherapeutic and Stem Cell Therapeutic Strategies in Neurodegenerative Diseases: A Promising Therapeutic Approach. International Journal of Nanomedicine, 0, Volume 18, 611-626.	3.3	10
361	Mn ₃ O ₄ Nanoshell Coated Metal–Organic Frameworks with Microenvironmentâ€Driven O ₂ Production and GSH Exhaustion Ability for Enhanced Chemodynamic and Photodynamic Cancer Therapies. Advanced Healthcare Materials, 2023, 12, .	3.9	9
362	Electron transfer-based antioxidant nanozymes: Emerging therapeutics for inflammatory diseases. Journal of Controlled Release, 2023, 355, 273-291.	4.8	5

		CITATION REPORT	
#	Article	IF	Citations
363	Emerging antibacterial nanozymes for wound healing. , 2023, 2, .		14
364	An Electrochemical Nanosensor for Monitoring the Dynamics of Intracellular H ₂ O ₂ Upon NADH Treatment. Angewandte Chemie, 2023, 135, .	1.6	0
365	An Electrochemical Nanosensor for Monitoring the Dynamics of Intracellular H ₂ O ₂ Upon NADH Treatment. Angewandte Chemie - International Edition, 2023, 62, .	7.2	3
366	Cell Membraneâ€Coated AuNPs as a New Biomimetic Platform for ROS Scavenger Provides Cytoprotection from Apoptosis Induced by Oxidative Stress. Particle and Particle Systems Characterization, 2023, 40, .	1.2	2
367	Multienzyme‣ike Nanozymes: Regulation, Rational Design, and Application. Advanced Materials, 2024, 36, .	11.1	43
368	Novel Colorimetric Aptasensor for the Detection of Golgi Protein 73 by Exploiting the Peroxidase-Like Activity of the H-rGO-Mn ₃ O ₄ Nanozyme. Journal of Biomedical Nanotechnology, 2022, 18, 2484-2497.	0.5	0
369	Chiral Magnetic Oxide Nanomaterials: Magnetism Meets Chirality. Advanced Optical Materials, 2023, 11,	3.6	4
370	Antioxidant and Prooxidant Nanozymes: From Cellular Redox Regulation to Nextâ€Generation Therapeutics. Angewandte Chemie - International Edition, 2023, 62, .	7.2	16
371	Antioxidant and Prooxidant Nanozymes: From Cellular Redox Regulation to Nextâ€Generation Therapeutics. Angewandte Chemie, 2023, 135, .	1.6	4
372	The rational design of nanozymes for imaging-monitored cancer therapy. Journal of Materials Chemistry B, 2023, 11, 5933-5952.	2.9	3
401	Nanozymes for Antioxidant Therapy. , 2023, , 111-164.		0
409	Introduction of Nanozymes. , 2023, , 1-13.		0
427	Nerve Regeneration. , 2023, , 535-577.		0
431	Oxidase-like manganese oxide nanoparticles: a mechanism of organic acids/aldehydes as electron acceptors and potential application in cancer therapy. Nanoscale, 2024, 16, 2860-2867.	2.8	0
438	Nanozyme-Engineered Hydrogels for Anti-Inflammation and Skin Regeneration. Nano-Micro Letters, 2024, 16, .	14.4	1
442	Emerging Nanotechnology for the Treatment and Diagnosis of Parkinson's Disease (PD) and Alzheimer's Disease (AD). Pancreatic Islet Biology, 2024, , 139-174.	0.1	0
444	Exploring the potential of nanozyme-assisted abiotic stress resilience in crop plants as an emerging technique for sustainable agriculture. , 2024, , 203-214.		0