Recent advances in understanding of the mechanism ar Li₂O₂formation in aprotic Liâ

Chemical Society Reviews 46, 6046-6072 DOI: 10.1039/c7cs00255f

Citation Report

#	Article	IF	CITATIONS
1	Direct Determination of Electronâ€Transfer Properties of Dicopperâ€Bound Reduced Dioxygen Species by a Cryo‧pectroelectrochemical Approach Chemistry - A European Journal, 2017, 23, 18314-18319.	1.7	12
2	A review of transition metal chalcogenide/graphene nanocomposites for energy storage and conversion. Chinese Chemical Letters, 2017, 28, 2180-2194.	4.8	176
3	Co ₃ O ₄ functionalized porous carbon nanotube oxygen-cathodes to promote Li ₂ O ₂ surface growth for improved cycling stability of Li–O ₂ batteries. Journal of Materials Chemistry A, 2017, 5, 25501-25508.	5.2	31
4	O–O bond cleavage <i>via</i> electrochemical reduction of a side-on peroxo dicopper model of hemocyanin. Chemical Communications, 2018, 54, 4931-4934.	2.2	4
5	Strongly Coupled Carbon Nanosheets/Molybdenum Carbide Nanocluster Hollow Nanospheres for Highâ€Performance Aprotic Li–O ₂ Battery. Small, 2018, 14, e1704366.	5.2	39
6	Critically Examining the Role of Nanocatalysts in Li–O ₂ Batteries: Viability toward Suppression of Recharge Overpotential, Rechargeability, and Cyclability. ACS Energy Letters, 2018, 3, 592-597.	8.8	82
7	A combined approach for high-performance Li–O2 batteries: A binder-free carbon electrode and atomic layer deposition of RuO2 as an inhibitor–promoter. APL Materials, 2018, 6, .	2.2	12
8	A Highly Active Oxygen Evolution Catalyst for Lithium-Oxygen Batteries Enabled by High-Surface-Energy Facets. Joule, 2018, 2, 1511-1521.	11.7	59
9	A single ion conducting separator and dual mediator-based electrolyte for high-performance lithium–oxygen batteries with non-carbon cathodes. Journal of Materials Chemistry A, 2018, 6, 9816-9822.	5.2	37
10	3D hierarchical Co/CoO/C nanocomposites with mesoporous microsheets grown on nickel foam as cathodes for Li-O2 batteries. Journal of Alloys and Compounds, 2018, 749, 378-384.	2.8	18
11	Facile fabrication of two-dimensional reduced graphene oxide/CoAl-layered double hydroxides nanocomposites for lithium-oxygen battery with improved electrochemical performance. Journal of Alloys and Compounds, 2018, 744, 196-203.	2.8	21
12	Functional and stability orientation synthesis of materials and structures in aprotic Li–O ₂ batteries. Chemical Society Reviews, 2018, 47, 2921-3004.	18.7	282
13	Towards Synergistic Electrode–Electrolyte Design Principles for Nonaqueous Li–O\$\$_2\$\$ batteries. Topics in Current Chemistry, 2018, 376, 11.	3.0	5
14	MnCo ₂ O ₄ /MoO ₂ Nanosheets Grown on Ni foam as Carbon―and Binderâ€Free Cathode for Lithium–Oxygen Batteries. ChemSusChem, 2018, 11, 574-579.	3.6	32
15	Ionic liquid/ether-plasticized quasi-solid-state electrolytes for long-life lithium–oxygen cells. New Journal of Chemistry, 2018, 42, 19521-19527.	1.4	4
16	Reduced Co ₃ O ₄ nanowires with abundant oxygen vacancies as an efficient free-standing cathode for Li–O ₂ batteries. Catalysis Science and Technology, 2018, 8, 6478-6485.	2.1	18
17	Atomic-Thick TiO ₂ (B) Nanosheets Decorated with Ultrafine Co ₃ O ₄ Nanocrystals As a Highly Efficient Catalyst for Lithium–Oxygen Battery. ACS Applied Materials & Interfaces, 2018, 10, 41398-41406.	4.0	37
20	Controlling Reversible Expansion of Li2O2 Formation and Decomposition by Modifying Electrolyte in Li-O2 Batteries. CheM, 2018, 4, 2685-2698.	5.8	49

	CHAHON R	LPORT	
#	Article	IF	CITATIONS
21	Stretchable Electrode Breakthrough: Archimedean Spiral Coil Lithium Anode. Joule, 2018, 2, 1654-1656.	11.7	7
22	Hollow Ni–CoSe ₂ Embedded in Nitrogen-Doped Carbon Nanocomposites Derived from Metal–Organic Frameworks for High-Rate Anodes. ACS Applied Materials & Interfaces, 2018, 10, 38845-38852.	4.0	51
23	Hierarchical porous Nickel Cobaltate Nanotube as Electrocatalyst for Lithium-Oxygen Batteries. International Journal of Electrochemical Science, 2018, , 3309-3316.	0.5	4
24	Fundamental Understanding and Material Challenges in Rechargeable Nonaqueous Li–O ₂ Batteries: Recent Progress and Perspective. Advanced Energy Materials, 2018, 8, 1800348.	10.2	137
25	PdNi alloy decorated 3D hierarchicallyÂN, S co-doped macro–mesoporous carbon composites as efficient free-standing and binder-free catalysts for Li–O ₂ batteries. Journal of Materials Chemistry A, 2018, 6, 10856-10867.	5.2	47
26	Two-dimensional β-cobalt hydroxide phase transition exfoliated to atom layers as efficient catalyst for lithium-oxygen batteries. Electrochimica Acta, 2018, 281, 420-428.	2.6	14
27	Polyoxometalate as a Nature-Inspired Bifunctional Catalyst for Lithium–Oxygen Batteries. ACS Catalysis, 2018, 8, 7213-7221.	5.5	35
28	Formation of Nanosized Defective Lithium Peroxides through Si-Coated Carbon Nanotube Cathodes for High Energy Efficiency Li–O ₂ Batteries. ACS Applied Materials & Interfaces, 2018, 10, 18754-18760.	4.0	27
29	Transition metal oxide-based oxygen reduction reaction electrocatalysts for energy conversion systems with aqueous electrolytes. Journal of Materials Chemistry A, 2018, 6, 10595-10626.	5.2	162
30	C _x N _y particles@N-doped porous graphene: a novel cathode catalyst with a remarkable cyclability for Li–O ₂ batteries. Nanoscale, 2018, 10, 12763-12770.	2.8	17
31	High-Surface-Area and Porous Co ₂ P Nanosheets as Cost-Effective Cathode Catalysts for Li–O ₂ Batteries. ACS Applied Materials & Interfaces, 2018, 10, 21281-21290.	4.0	52
32	Improved structural design of single- and double-wall MnCo2O4 nanotube cathodes for long-life Li–O2 batteries. Nanoscale, 2018, 10, 13149-13158.	2.8	26
33	Li+-clipping for edge S-vacancy MoS2 quantum dots as an efficient bifunctional electrocatalyst enabling discharge growth of amorphous Li2O2 film. Nano Energy, 2019, 65, 103996.	8.2	56
34	Structural and electronic properties of small lithium peroxide clusters in view of the charge process in Li–O ₂ batteries. Physical Chemistry Chemical Physics, 2019, 21, 19935-19943.	1.3	5
35	Vanadium(III) Acetylacetonate as an Efficient Soluble Catalyst for Lithium–Oxygen Batteries. Angewandte Chemie, 2019, 131, 12683-12687.	1.6	22
36	Vanadium(III) Acetylacetonate as an Efficient Soluble Catalyst for Lithium–Oxygen Batteries. Angewandte Chemie - International Edition, 2019, 58, 12553-12557.	7.2	53
37	Ligand Identity-Induced Generation of Enhanced Oxidative Hydrogen Atom Transfer Reactivity for a Cull2(O2•–) Complex Driven by Formation of a Cull2(â^'0OH) Compound with a Strong O–H Bond. Journal of the American Chemical Society, 2019, 141, 12682-12696.	6.6	28
38	Computational study on catalytic performance of BC3 and NC3 nanosheets as cathode electrocatalysts for nonaqueous Li–O2 batteries. Journal of Power Sources, 2019, 436, 226845.	4.0	24

#	Article	IF	CITATIONS
39	Realizing Interfacial Electronic Interaction within ZnS Quantum Dots/Nâ€rGO Heterostructures for Efficient Li–CO ₂ Batteries. Advanced Energy Materials, 2019, 9, 1901806.	10.2	101
40	Recent advances in confining metal-based nanoparticles into carbon nanotubes for electrochemical energy conversion and storage devices. Energy and Environmental Science, 2019, 12, 2924-2956.	15.6	176
41	Advanced Hybrid Electrolyte Li-O2 Battery Realized by Dual Superlyophobic Membrane. Joule, 2019, 3, 2986-3001.	11.7	56
42	Morphology regulation of Li2O2 by flower-like ZnCo2S4 enabling high performance Li-O2 battery. Journal of Power Sources, 2019, 441, 227168.	4.0	49
43	Inverting the Triiodide Formation Reaction by the Synergy between Strong Electrolyte Solvation and Cathode Adsorption for Lithium–Oxygen Batteries. Angewandte Chemie, 2019, 131, 18565-18569.	1.6	2
44	Inverting the Triiodide Formation Reaction by the Synergy between Strong Electrolyte Solvation and Cathode Adsorption for Lithium–Oxygen Batteries. Angewandte Chemie - International Edition, 2019, 58, 18394-18398.	7.2	25
45	Materials Design for Rechargeable Metal-Air Batteries. Matter, 2019, 1, 565-595.	5.0	383
46	In Situ Coupling of Colloidal Silica and Li Salt Anion toward Stable Li Anode for Long-Cycle-Life Li-O2 Batteries. Matter, 2019, 1, 881-892.	5.0	33
47	Design strategies toward catalytic materials and cathode structures for emerging Li–CO ₂ batteries. Journal of Materials Chemistry A, 2019, 7, 21605-21633.	5.2	75
48	Oxygen reduction/evolution reactions engineering for lithium-oxygen battery scaling-up. Chemical Engineering Science, 2019, 209, 115164.	1.9	4
49	Recent advances in nanostructured electrode-electrolyte design for safe and next-generation electrochemical energy storage. Materials Today Nano, 2019, 8, 100057.	2.3	31
50	Recent advances in understanding Li–CO ₂ electrochemistry. Energy and Environmental Science, 2019, 12, 887-922.	15.6	215
51	Insights into Structural Evolution of Lithium Peroxides with Reduced Charge Overpotential in Liâ ^{°°} O ₂ System. Advanced Energy Materials, 2019, 9, 1900662.	10.2	38
52	Lithium–oxygen batteries with triplex Li ⁺ -selective solid membranes. Chemical Communications, 2019, 55, 7643-7646.	2.2	7
53	Safe Lithiumâ€Metal Anodes for Liâ^'O ₂ Batteries: From Fundamental Chemistry to Advanced Characterization and Effective Protection. Batteries and Supercaps, 2019, 2, 638-658.	2.4	67
54	Ultrathin Porous NiCo ₂ O ₄ Nanosheets for Lithium–Oxygen Batteries: An Excellent Performance Deriving from an Enhanced Solution Mechanism. ACS Applied Energy Materials, 2019, 2, 4215-4223.	2.5	18
55	Recent Progress on Catalysts for the Positive Electrode of Aprotic Lithium-Oxygen Batteries â€. Inorganics, 2019, 7, 69.	1.2	8
56	Nitrogen and iodine dual-doped 3D porous graphene as a bi-functional cathode catalyst for Li-O2 batteries. Electrochimica Acta, 2019, 318, 354-361.	2.6	20

#	Article	IF	CITATIONS
57	Direct Observation of Redox Mediator-Assisted Solution-Phase Discharging of Li–O ₂ Battery by Liquid-Phase Transmission Electron Microscopy. Journal of the American Chemical Society, 2019, 141, 8047-8052.	6.6	54
58	Lithium-air batteries: Challenges coexist with opportunities. APL Materials, 2019, 7, .	2.2	47
59	A functionalized membrane for lithium–oxygen batteries to suppress the shuttle effect of redox mediators. Journal of Materials Chemistry A, 2019, 7, 14260-14270.	5.2	40
60	Interlayers for lithium-based batteries. Energy Storage Materials, 2019, 23, 112-136.	9.5	37
61	Controlling Fluorideâ€Forming Reactions for Improved Rate Capability in Lithiumâ€Perfluorinated Gas Conversion Batteries. Advanced Energy Materials, 2019, 9, 1900393.	10.2	17
62	Improved Cyclability of Lithium–Oxygen Batteries by Synergistic Catalytic Effects of Two-Dimensional MoS ₂ Nanosheets Anchored on Hollow Carbon Spheres. ACS Sustainable Chemistry and Engineering, 2019, 7, 6929-6938.	3.2	31
63	Materials for advanced Li-O2 batteries: Explorations, challenges and prospects. Materials Today, 2019, 26, 87-99.	8.3	120
64	Polysulfide-driven low charge overpotential for aprotic lithium–oxygen batteries. Journal of Materials Chemistry A, 2019, 7, 8777-8784.	5.2	3
66	Carboxymethyl Cellulose Binder Greatly Stabilizes Porous Hollow Carbon Submicrospheres in Capacitive K-Ion Storage. ACS Applied Materials & Interfaces, 2019, 11, 15581-15590.	4.0	58
67	Metal–organic framework derived Co–N-reduced graphene oxide as electrode materials for rechargeable Li–O2 batteries. New Journal of Chemistry, 2019, 43, 7574-7581.	1.4	5
68	Promoting defective-Li ₂ O ₂ formation <i>via</i> Na doping for Li–O ₂ batteries with low charge overpotentials. Journal of Materials Chemistry A, 2019, 7, 10389-10396.	5.2	17
69	Co3O4 nanocage derived from metal-organic frameworks: An excellent cathode catalyst for rechargeable Li-O2 battery. Nano Research, 2019, 12, 1555-1562.	5.8	38
70	Understanding the Reaction Chemistry during Charging in Aprotic Lithium–Oxygen Batteries: Existing Problems and Solutions. Advanced Materials, 2019, 31, e1804587.	11.1	254
71	Visualizing the Oxidation Mechanism and Morphological Evolution of the Cubicâ€Shaped Superoxide Discharge Product in Na–Air Batteries. Advanced Functional Materials, 2019, 29, 1808332.	7.8	30
72	Defect chemistry in 2D materials for electrocatalysis. Materials Today Energy, 2019, 12, 215-238.	2.5	110
73	Multistaged discharge constructing heterostructure with enhanced solid-solution behavior for long-life lithium-oxygen batteries. Nature Communications, 2019, 10, 5810.	5.8	80
74	Formation of toroidal Li ₂ O ₂ in non-aqueous Li–O ₂ batteries with Mo ₂ CT _x MXene/CNT composite. RSC Advances, 2019, 9, 41120-41125.	1.7	16
75	A Stable Lithium–Oxygen Battery Electrolyte Based on Fully Methylated Cyclic Ether. Angewandte Chemie - International Edition, 2019, 58, 2345-2349.	7.2	42

#	Article	IF	CITATIONS
76	A Stable Lithium–Oxygen Battery Electrolyte Based on Fully Methylated Cyclic Ether. Angewandte Chemie, 2019, 131, 2367-2371.	1.6	29
77	Synthesis of Ag/Co@CoO NPs anchored within N-doped hierarchical porous hollow carbon nanofibers as a superior free-standing cathode for Li O2 batteries. Carbon, 2019, 144, 280-288.	5.4	34
78	Fundamental Understanding of Waterâ€Induced Mechanisms in Li–O ₂ Batteries: Recent Developments and Perspectives. Advanced Materials, 2019, 31, e1805602.	11.1	52
79	Promoting Li–O ₂ Batteries With Redox Mediators. ChemSusChem, 2019, 12, 104-114.	3.6	47
80	Defect Chemistry in Discharge Products of Li–O ₂ Batteries. Small Methods, 2019, 3, 1800358.	4.6	34
81	3Dâ€Printed MOFâ€Derived Hierarchically Porous Frameworks for Practical Highâ€Energy Density Li–O ₂ Batteries. Advanced Functional Materials, 2019, 29, 1806658.	7.8	197
82	Enhanced cycling performance of rechargeable Li–O2 batteries via LiOH formation and decomposition using high-performance MOF-74@CNTs hybrid catalysts. Energy Storage Materials, 2019, 17, 167-177.	9.5	52
83	Novel and highly efficient cathodes for Li-O2 batteries: 3D self-standing NiFe@NC-functionalized N-doped carbon nanonet derived from Prussian blue analogues/biomass composites. Applied Catalysis B: Environmental, 2019, 245, 721-732.	10.8	45
84	NiCo ₂ S ₄ Nanorod Arrays Supported on Carbon Textile as a Freeâ€Standing Electrode for Stable and Longâ€Life Lithiumâ€Oxygen Batteries. ChemElectroChem, 2019, 6, 349-358.	1.7	15
85	Phosphorene as a Catalyst for Highly Efficient Nonaqueous Li–Air Batteries. ACS Applied Materials & Interfaces, 2019, 11, 499-510.	4.0	27
86	Biomass-derived 3D hierarchical N-doped porous carbon anchoring cobalt-iron phosphide nanodots as bifunctional electrocatalysts for Li O2 batteries. Journal of Power Sources, 2019, 412, 433-441.	4.0	23
87	Atomic Modulation and Structure Design of Carbons for Bifunctional Electrocatalysis in Metal–Air Batteries. Advanced Materials, 2019, 31, e1803800.	11.1	208
88	Interface-engineered metallic 1T-MoS2 nanosheet array induced via palladium doping enabling catalysis enhancement for lithium–oxygen battery. Chemical Engineering Journal, 2020, 382, 122854.	6.6	52
89	The synergistic effect of nickel cobalt sulfide nanoflakes and sulfur-doped porous carboneous nanostructure as bifunctional electrocatalyst for enhanced rechargeable Li-O2 batteries. Applied Catalysis B: Environmental, 2020, 263, 118283.	10.8	52
90	3D-printed electrodes for lithium metal batteries with high areal capacity and high-rate capability. Energy Storage Materials, 2020, 24, 336-342.	9.5	105
91	Surface engineering donor and acceptor sites with enhanced charge transport for low-overpotential lithium–oxygen batteries. Energy Storage Materials, 2020, 25, 52-61.	9.5	28
92	Electrochemical Oxidation of Li ₂ O ₂ Surface-Doped with Li ₂ CO ₃ . ACS Applied Materials & Interfaces, 2020, 12, 6627-6632.	4.0	11
93	Configuration of gradient-porous ultrathin FeCo ₂ S ₄ nanosheets vertically aligned on Ni foam as a noncarbonaceous freestanding oxygen electrode for lithium–oxygen batteries. Nanoscale, 2020, 12, 1864-1874.	2.8	22

ARTICLE IF CITATIONS # Superior efficient rechargeable lithiumâ€"air batteries using a bifunctional biological enzyme catalyst. 15.6 13 94 Energy and Environmental Science, 2020, 13, 144-151. Mechanistic evaluation of Li2O2 adsorption on carbon nanotube electrodes: A theoretical study. 3.1 9 Applied Surface Science, 2020, 506, 145050. Structural and Electronic Properties of Small Stoichiometric (Li2O2)n Clusters and Relevance to 96 1.7 1 Li–O2 Batteries. Journal of Cluster Science, 2020, 31, 643-649. Novel and highly efficient catalyst for Li–O2 battery: Porous LaCo0.6Ni0.4O3 nanofibers decorated with ultrafine Co3O4 nanoparticles. Electrochimica Ácta, 2020, 363, 137235. Electrospun carbon fibers as air cathodes for aprotic Li–O2 battery: Towards cathode design for 98 7 2.6 enhanced capacity. Electrochimica Acta, 2020, 354, 136643. Recent advances in nanostructured transition metal phosphides: synthesis and energy-related applications. Energy and Environmental Science, 2020, 13, 4564-4582. 15.6 268 Anionic vacancy-dependent activity of the CoSe₂with a tunable interfacial electronic 100 structure on the N-doped carbon cloth for advanced Li–O₂batteries. Journal of Materials 5.2 31 Chemistry A, 2020, 8, 16636-16648. NiFeRu Layered Double Hydroxide and Its Derivatives Supported on Graphite Foam as Binder-Free 1.2 Cathode for Nonaqueous Li-O2 Batteries. Frontiers in Energy Research, 2020, 8, . Free-Standing Carbon Nanofibers Protected by a Thin Metallic Iridium Layer for Extended Life-Cycle 102 4.0 16 Li–Oxygen Batteries. ACS Applied Materials & amp; Interfaces, 2020, 12, 55756-55765. Organogermanium Nanowire Cathodes for Efficient Lithium–Oxygen Batteries. ACS Nano, 2020, 14, 7.3 15894-15903. Recent advances and future perspectives of two-dimensional materials for rechargeable Li-O2 104 9.5 34 batteries. Energy Storage Materials, 2020, 31, 470-491. Structural Design of Oxygen Reduction Redox Mediators (ORRMs) Based on Anthraquinone (AQ) for 5.5 the Li–O₂ Battery. ACS Catalysis, 2020, 10, 9790-9803. Porous Materials Applied in Nonaqueous Li–O₂ Batteries: Status and Perspectives. 106 11.1 115 Advanced Materials, 2020, 32, e2002559. Highly Reversible O₂ Conversions by Coupling LiO₂ Intermediate through a 10.2 Dualấ€Site Catalyst in Liâ€O₂ Battéries. Advanced Energy Materials, 2020, 10, 2001592. Electrocatalyst design for aprotic Li–CO₂ batteries. Energy and Environmental Science, 108 15.6 65 2020, 13, 4717-4737. Enhancing the Bifunctional Catalytic Performance of Porous La0.9Mn0.6Ni0.4O3â^{~1} Nanofibers for 109 Li–O2 Batteries through Exsolution of Ni Nanoparticles. ACS Applied Energy Materials, 2020, 3, 10015-10022. Challenges and Strategy on Parasitic Reaction for Highâ€Performance Nonaqueous Lithium–Oxygen 110 10.2 62 Batteries. Advanced Energy Materials, 2020, 10, 2001789. Kinetically Stable Oxide Overlayers on Mo₃P Nanoparticles Enabling Lithium–Air Batteries 11.1 with Low Overpotentials and Long Cycle Life. Advanced Materials, 2020, 32, e2004028.

#	Article	IF	Citations
112	Unconventional stable stoichiometry of vanadium peroxide. Physical Chemistry Chemical Physics, 2020, 22, 11460-11466.	1.3	4
113	Ni3Se2/NiSe2 heterostructure nanoforests as an efficient bifunctional electrocatalyst for high-capacity and long-life Li–O2 batteries. Journal of Power Sources, 2020, 468, 228308.	4.0	38
114	The Stabilization Effect of CO ₂ in Lithium–Oxygen/CO ₂ Batteries. Angewandte Chemie - International Edition, 2020, 59, 16661-16667.	7.2	71
115	Dissociation of (Li2O2)0,+ on graphene and boron-doped graphene: insights from first-principles calculations. Physical Chemistry Chemical Physics, 2020, 22, 14216-14224.	1.3	11
116	The Stabilization Effect of CO 2 in Lithium–Oxygen/CO 2 Batteries. Angewandte Chemie, 2020, 132, 16804.	1.6	6
117	Atomically dispersed materials for rechargeable batteries. Nano Energy, 2020, 76, 105085.	8.2	18
118	Nonaqueous Lithium–Oxygen batteries: Reaction mechanism and critical open questions. Energy Storage Materials, 2020, 28, 235-246.	9.5	103
119	Twoâ€Dimensional Transition Metal Chalcogenides for Alkali Metal Ions Storage. ChemSusChem, 2020, 13, 1114-1154.	3.6	69
120	Three-Dimensional Carbon-Supported MoS2 With Sulfur Defects as Oxygen Electrodes for Li-O2 Batteries. Frontiers in Energy Research, 2020, 8, .	1.2	9
121	Recent progresses, challenges and perspectives on rechargeable Liâ€O ₂ batteries. Nano Select, 2020, 1, 79-93.	1.9	9
122	A Safe Organic Oxygen Battery Built with Liâ€Based Liquid Anode and MOFs Separator. Advanced Energy Materials, 2020, 10, 1903953.	10.2	33
123	Metal–organic framework-derived MnO/CoMn2O4@N–C nanorods with nanoparticle interstitial decoration in core@shell structure as improved bifunctional electrocatalytic cathodes for Li–O2 batteries. Electrochimica Acta, 2020, 338, 135809.	2.6	29
124	Heterostructured NiS ₂ /ZnIn ₂ S ₄ Realizing Toroid-like Li ₂ O ₂ Deposition in Lithium–Oxygen Batteries with Low-Donor-Number Solvents. ACS Nano, 2020, 14, 3490-3499.	7.3	113
125	A 3D free-standing Co doped Ni ₂ P nanowire oxygen electrode for stable and long-life lithium–oxygen batteries. Nanoscale, 2020, 12, 6785-6794.	2.8	30
126	Synergetic Effect of Liquid and Solid Catalysts on the Energy Efficiency of Li–O ₂ Batteries: Cell Performances and Operando STEM Observations. Nano Letters, 2020, 20, 2183-2190.	4.5	11
127	Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chemical Society Reviews, 2020, 49, 1569-1614.	18.7	1,326
128	Potassium Doping Facilitated Formation of Tunable Superoxides in Li ₂ O ₂ for Improved Electrochemical Kinetics. ACS Applied Materials & Interfaces, 2020, 12, 4558-4564.	4.0	8
129	Progress and Perspective of Ceramic/Polymer Composite Solid Electrolytes for Lithium Batteries. Advanced Science, 2020, 7, 1903088.	5.6	403

#	Article	IF	CITATIONS
130	Computational Insights into Li _{<i>x</i>} O _{<i>y</i>} Formation, Nucleation, and Adsorption on Carbon Nanotube Electrodes in Nonaqueous Li–O ₂ Batteries. Journal of Physical Chemistry Letters, 2020, 11, 2195-2202.	2.1	8
131	A Liquid/Liquid Electrolyte Interface that Inhibits Corrosion and Dendrite Growth of Lithium in Lithiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2020, 59, 6397-6405.	7.2	50
132	A Liquid/Liquid Electrolyte Interface that Inhibits Corrosion and Dendrite Growth of Lithium in Lithiumâ€Metal Batteries. Angewandte Chemie, 2020, 132, 6459-6467.	1.6	14
133	In-situ grown vanadium nitride coated with thin layer of nitrogen-doped carbon as a highly durable binder-free cathode for Li–O2 batteries. Journal of Power Sources, 2020, 460, 228109.	4.0	6
134	A robust cathode of RuO2 nH2O clusters anchored on the carbon nanofibers for ultralong-life lithium-oxygen batteries. Journal of Power Sources, 2020, 463, 228161.	4.0	9
135	3D-printed functional electrodes towards Zn-Air batteries. Materials Today Energy, 2020, 16, 100407.	2.5	39
136	LiOH Formation from Lithium Peroxide Clusters and the Role of Iodide Additive. Journal of Physical Chemistry C, 2020, 124, 10280-10287.	1.5	4
137	Confining Li2O2 in tortuous pores of mesoporous cathodes to facilitate low charge overpotentials for Li-O2 batteries. Journal of Energy Chemistry, 2021, 55, 55-61.	7.1	16
138	In-situ deposition of Pd/Pd4S heterostructure on hollow carbon spheres as efficient electrocatalysts for rechargeable Li-O2 batteries. Chinese Chemical Letters, 2021, 32, 2086-2090.	4.8	23
139	Perforated two-dimensional nanoarchitectures for next-generation batteries: Recent advances and extensible perspectives. Progress in Materials Science, 2021, 116, 100716.	16.0	30
140	Modulating electronic structure of honeycomb-like Ni2P/Ni12P5 heterostructure with phosphorus vacancies for highly efficient lithium-oxygen batteries. Chemical Engineering Journal, 2021, 413, 127404.	6.6	39
141	1,2-dimethyl-3-propylimidazolium iodide as a multiple-functional redox mediator for Li-O2 batteries: In situ generation of a "self-defensed―SEI layer on Li anode. Chemical Engineering Journal, 2021, 408, 127335.	6.6	12
142	Implanting cation vacancies in Ni-Fe LDHs for efficient oxygen evolution reactions of lithium-oxygen batteries. Applied Catalysis B: Environmental, 2021, 285, 119792.	10.8	56
143	FeSe hollow spheroids as electrocatalysts for high-rate Li–O2 battery cathodes. Journal of Alloys and Compounds, 2021, 856, 158269.	2.8	10
144	Tuning the structure and morphology of Li2O2 by controlling the crystallinity of catalysts for Li-O2 batteries. Chemical Engineering Journal, 2021, 409, 128145.	6.6	45
145	Architecture Transformations of Ultrahigh Areal Capacity Air Cathodes for Lithiumâ€Oxygen Batteries. Batteries and Supercaps, 2021, 4, 120-130.	2.4	5
146	Perfluorinated organics regulating Li ₂ O ₂ formation and improving stability for Li–oxygen batteries. Chemical Communications, 2021, 57, 3030-3033.	2.2	6
147	Application of functionalized graphene in Li–O ₂ batteries. Nanotechnology, 2021, 32, 132003.	1.3	18

#	Article	IF	CITATIONS
148	Application of In Situ Raman and Fourier Transform Infrared Spectroelectrochemical Methods on the Electrodeâ€Electrolyte Interface for Lithiumâ~'Oxygen Batteries. Batteries and Supercaps, 2021, 4, 850-859.	2.4	12
149	Hierarchical Porous Carbon Nanotube Spheres for High-performance K-O2 Batteries. Chemical Research in Chinese Universities, 2021, 37, 254-258.	1.3	2
150	High-value utilization of kitchen waste derived hydrochar in energy storage regulated by circulating process water. Energy Conversion and Management, 2021, 229, 113737.	4.4	11
151	Interrogating Lithium–Oxygen Battery Reactions and Chemistry with Isotope-Labeling Techniques: A Mini Review. Energy & Fuels, 2021, 35, 4743-4750.	2.5	13
152	Strategies with Functional Materials in Tackling Instability Challenges of Non-aqueous Lithium-Oxygen Batteries. Chemical Research in Chinese Universities, 2021, 37, 232-245.	1.3	7
153	Seed Layer Formation on Carbon Electrodes to Control Li ₂ O ₂ Discharge Products for Practical Li–O ₂ Batteries with High Energy Density and Reversibility. ACS Applied Materials & Interfaces, 2021, 13, 13200-13211.	4.0	13
154	Unraveling the Control Mechanism of Carbon Nanotubes on the Oxygen Reduction Reaction and Product Growth Behavior in Lithium–Air Batteries. ACS Applied Energy Materials, 2021, 4, 2148-2157.	2.5	6
155	Applications of MoS ₂ in Li–O ₂ Batteries: Development and Challenges. Energy & Fuels, 2021, 35, 5613-5626.	2.5	20
156	Bifunctional 1-Boc-3-Iodoazetidine Enhancing Lithium Anode Stability and Rechargeability of Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2021, 13, 16437-16444.	4.0	7
157	<i>Operando</i> Synchrotron XRD of Bromide Mediated Li–O ₂ Battery. ACS Applied Materials & Interfaces, 2021, 13, 13123-13131.	4.0	14
158	Polyelemental Nanoparticles as Catalysts for a Li–O ₂ Battery. ACS Nano, 2021, 15, 4235-4244.	7.3	38
159	Synthesis and electrochemical performance of lithium silicide based alloy anodes for Li–ion oxygen batteries. International Journal of Hydrogen Energy, 2021, 46, 10624-10631.	3.8	8
160	The Electrolysis of Antiâ€Perovskite Li ₂ OHCl for Prelithiation of Highâ€Energyâ€Density Batteries. Angewandte Chemie, 2021, 133, 13123-13130.	1.6	4
161	The Electrolysis of Antiâ€Perovskite Li ₂ OHCl for Prelithiation of Highâ€Energyâ€Density Batteries. Angewandte Chemie - International Edition, 2021, 60, 13013-13020.	7.2	25
162	Revealing the Local Cathodic Interfacial Chemism Inconsistency in a Practical Large-Sized Li–O2 Model Battery with High Energy Density to Underpin Its Key Cyclic Constraints. ACS Applied Materials & Interfaces, 2021, 13, 23853-23865.	4.0	3
163	Understanding the Effect of Solid Electrocatalysts on Achieving Highly Energyâ€Efficient Lithium–Oxygen Batteries. Advanced Energy and Sustainability Research, 2021, 2, 2100045.	2.8	2
164	Effect of Heat-Treatment Temperature of Carbon Gels on Cathode Performance of Lithium-Air Batteries. Journal of Chemical Engineering of Japan, 2021, 54, 213-218.	0.3	3
165	Unraveling the lithiophilic nature of heteroatom-doped carbons for efficient oxygen reduction in Li–O2 batteries. Carbon, 2021, 178, 436-442.	5.4	14

#	Article	IF	CITATIONS
166	Product formation during discharge: a combined modelling and experimental study for Li–O\$\$_2\$\$ cathodes in LiTFSI/DMSO and LiTFSI/TEGDME electrolytes. Journal of Applied Electrochemistry, 2021, 51, 1437-1447.	1.5	5
167	Chimerism of Carbon by Ruthenium Induces Gradient Catalysis. Advanced Functional Materials, 2021, 31, 2104011.	7.8	10
168	Double-layer honeycomb AlP as a promising catalyst for Li-O2 and Na-O2 batteries. Applied Surface Science, 2021, 550, 149392.	3.1	8
169	First-principle calculations study of pristine, S-, O-, and P-doped g-C3N4 as ORR catalysts for Li-O2 batteries. Chemical Physics Letters, 2021, 775, 138614.	1.2	13
170	Clear Representation of Surface Pathway Reactions at Ag Nanowire Cathodes in All-Solid Li–O ₂ Batteries. ACS Applied Materials & Interfaces, 2021, 13, 39157-39164.	4.0	17
171	Oxygen electrochemistry in Liâ€O ₂ batteries probed by in situ surfaceâ€enhanced Raman spectroscopy. SusMat, 2021, 1, 345-358.	7.8	31
172	MIL-53 Metal–Organic Framework as a Flexible Cathode for Lithium-Oxygen Batteries. Materials, 2021, 14, 4618.	1.3	3
173	Recent Advances in Interface Engineering and Architecture Design of Air-Stable and Water-Resistant Lithium Metal Anodes. Energy & Fuels, 2021, 35, 12902-12920.	2.5	17
174	Strategies to suppress the shuttle effect of redox mediators in lithium-oxygen batteries. Journal of Energy Chemistry, 2021, 60, 135-149.	7.1	12
175	Cationâ€Exchangeâ€Induced Metal and Alloy Dualâ€Exsolution in Perovskite Ferrite Oxides Boosting the Performance of Liâ€O ₂ Battery. Angewandte Chemie - International Edition, 2021, 60, 23380-23387.	7.2	47
176	A novel Pt/MoS2/CNT composite catalyst for the positive electrode of a Li-O2 battery. Journal of Electroanalytical Chemistry, 2021, 897, 115554.	1.9	6
177	Understanding Lithium-Mediated Oxygen Reactions at the Au DMSO interface: Are We There?. Journal of Physical Chemistry C, 2021, 125, 20762-20771.	1.5	7
178	Cationâ€Exchangeâ€Induced Metal and Alloy Dualâ€Exsolution in Perovskite Ferrite Oxides Boosting the Performance of Liâ€O ₂ Battery. Angewandte Chemie, 2021, 133, 23568-23575.	1.6	11
179	Advanced Electron Energy Loss Spectroscopy for Battery Studies. Advanced Functional Materials, 2022, 32, 2107190.	7.8	26
180	Effect of Nitrogen Dopant Forms of Biochar Cathode on the Discharge Mechanism of Li-O ₂ Battery. Journal of the Electrochemical Society, 2021, 168, 090517.	1.3	2
181	Prevention of side reactions with a unique carbon-free catalyst biosynthesized by a virus template for non-aqueous and quasi-solid-state Li–O2 batteries. Journal of Power Sources, 2021, 509, 230374.	4.0	11
182	Effect of TiC surface oxide overlayer on the control of Li O behavior in lithium-oxygen batteries: Implications for cathode catalyst design. Applied Surface Science, 2021, 567, 150785.	3.1	1
183	Irreplaceable carbon boosts Li-O2 batteries: From mechanism research to practical application. Nano Energy, 2021, 89, 106464.	8.2	47

#	Article	IF	CITATIONS
184	Adjusting the d-band center of metallic sites in NiFe-based Bimetal-organic frameworks via tensile strain to achieve High-performance oxygen electrode catalysts for Lithium-oxygen batteries. Journal of Colloid and Interface Science, 2022, 607, 1215-1225.	5.0	20
185	Tetramethylpyrazine: an electrolyte additive for high capacity and energy efficiency lithium–oxygen batteries. RSC Advances, 2021, 11, 24320-24325.	1.7	1
186	Single-atom catalysts for high-energy rechargeable batteries. Chemical Science, 2021, 12, 7656-7676.	3.7	47
187	A review of rechargeable aprotic lithium–oxygen batteries based on theoretical and computational investigations. Journal of Materials Chemistry A, 2021, 9, 8160-8194.	5.2	34
188	Greatly promoted oxygen reduction reaction activity of solid catalysts by regulating the stability of superoxide in metal-O2 batteries. Science China Materials, 2021, 64, 870-879.	3.5	12
189	Realizing the growth of nano-network Li2O2 film on defect-rich holey Co9S8 nanosheets for Li-O2 battery. Chemical Engineering Journal, 2020, 396, 125228.	6.6	20
190	Enhanced Cycling Performance of Li–O ₂ Battery by Highly Concentration Electrolyte of LiFSA/Methyl Pivalate. Journal of the Electrochemical Society, 2020, 167, 110547.	1.3	1
191	α-MnO ₂ /MWCNTs as an electrocatalyst for rechargeable relatively closed system Li–O ₂ batteries. Chemical Communications, 2021, 57, 11823-11826.	2.2	4
192	Defective/Doped Grapheneâ€Based Materials as Cathodes for Metal–Air Batteries. Energy and Environmental Materials, 2022, 5, 1103-1116.	7.3	16
193	Understanding the Catalytic Activity of the Preferred Nitrogen Configuration on the Carbon Nanotube Surface and Its Implications for Li–O ₂ Batteries. Journal of Physical Chemistry C, 2021, 125, 22570-22580.	1.5	5
194	Mechanistic Study of the Li–Air Battery with a Co3O4 Cathode and Dimethyl Sulfoxide Electrolyte. Journal of Physical Chemistry C, 2021, 125, 21873-21881.	1.5	9
195	Controlling to Expand Reversibly Li2O2-formation/decomposition by Modifying Electrolyte in Lithium-oxygen Batteries. SSRN Electronic Journal, 0, , .	0.4	0
196	Nature-inspired Three-dimensional Au/Spinach as a Binder-free and Self-standing Cathode for High-performance Li-O2 Batteries. Chemical Research in Chinese Universities, 2022, 38, 200-208.	1.3	7
197	Induced construction of large-area amorphous Li2O2 film via elemental co-doping and spatial confinement to achieve high-performance Li-O2 batteries. Energy Storage Materials, 2022, 44, 285-295.	9.5	31
198	Recent progress in quantum dots based nanocomposite electrodes for rechargeable monovalent metal-ion and lithium metal batteries. Journal of Materials Chemistry A, 2022, 10, 508-553.	5.2	12
199	What have we learned by multiscale models on improving the cathode storage capacity of Li-air batteries? Recent advances and remaining challenges. Renewable and Sustainable Energy Reviews, 2022, 154, 111849.	8.2	10
200	In Situ Stress Measurements on Thin Film Au Positive Electrode during the First Discharge of Li-O ₂ Batteries. Journal of the Electrochemical Society, 2021, 168, 110551.	1.3	4
201	Flower-like three-dimensional bifunctional cathode catalyst for high-performance Li–O2 batteries: ZIF-67@3D-N/rGO. Ceramics International, 2022, 48, 5601-5608.	2.3	5

#	Article	IF	CITATIONS
202	Li ₂ O ₂ Formation Electrochemistry and Its Influence on Oxygen Reduction/Evolution Reaction Kinetics in Aprotic Li–O ₂ Batteries. Small Methods, 2022, 6, e2101280.	4.6	39
203	Single-atom catalysts for next-generation rechargeable batteries and fuel cells. Energy Storage Materials, 2022, 45, 301-322.	9.5	67
204	True Reaction Sites on Discharge in Li–O ₂ Batteries. Journal of the American Chemical Society, 2022, 144, 807-815.	6.6	43
205	Tailoring lithium-peroxide reaction kinetics with CuN2C2 single-atom moieties for lithium-oxygen batteries. Nano Energy, 2022, 93, 106810.	8.2	12
206	Redox Mediator with the Function of Intramolecularly Disproportionating Superoxide Intermediate Enabled Highâ€Performance Li–O ₂ Batteries. Advanced Energy Materials, 2022, 12, .	10.2	16
207	RuFe Alloy Nanoparticle-Supported Mesoporous Carbon: Efficient Bifunctional Catalyst for Li-O ₂ and Zn–Air Batteries. ACS Catalysis, 2022, 12, 1718-1731.	5.5	33
208	Revealing the Intrinsic Atomic Structure and Chemistry of Amorphous LiO ₂ -Containing Products in Li–O ₂ Batteries Using Cryogenic Electron Microscopy. Journal of the American Chemical Society, 2022, 144, 2129-2136.	6.6	28
209	Ammonium Ionic Liquid-Functionalized Phenothiazine as a New Redox Mediator for High Chemical Stability on the Anode Surface in Lithium–Air Batteries. ACS Applied Materials & Interfaces, 2022, 14, 4220-4229.	4.0	4
210	Recent progress of carbon-based electrocatalytic materials in Lithium-based batteries. Sustainable Materials and Technologies, 2022, 32, e00384.	1.7	0
211	Recent advances in heterostructured cathodic electrocatalysts for non-aqueous Li–O ₂ batteries. Chemical Science, 2022, 13, 2841-2856.	3.7	20
212	Designing porous and stable Au-coated Ni nanosheets on Ni foam for quasi-symmetrical polymer Li–air batteries. Materials Chemistry Frontiers, 2022, 6, 352-359.	3.2	1
213	Beyond Li-Ion Batteries: Future of Sustainable Large Scale Energy Storage System. , 2022, , .		0
214	Interfacial Electron Redistribution of Hydrangeaâ€like NiO@Ni ₂ P Heterogeneous Microspheres with Dualâ€Phase Synergy for Highâ€Performance Lithium–Oxygen Battery. Small, 2022, 18, e2106707.	5.2	27
215	Heterogeneous Bimetallic Organic Coordination Polymer-Derived Co/Fe@NC Bifunctional Catalysts for Rechargeable Li–O ₂ Batteries. ACS Applied Materials & Interfaces, 2022, 14, 5459-5467.	4.0	19
216	Mildly Oxidized MXene (Ti ₃ C ₂ , Nb ₂ C, and V ₂ C) Electrocatalyst via a Generic Strategy Enables Longevous Li–O ₂ Battery under a High Rate. ACS Nano, 2021, 15, 19640-19650.	7.3	42
217	Mof-Derived Cose@Porous Carbon Polyhedra/Cnts as a Bifunctional Catalyst to Enhance the Performance of Li-O2 Batteries. SSRN Electronic Journal, 0, , .	0.4	0
219	Co/Znâ€based bimetallic <scp>MOF</scp> â€derived hierarchical porous Co/C composite as cathode material for highâ€performance lithiumâ€air batteries. International Journal of Energy Research, 2022, 46, 9900-9910.	2.2	12
220	Heteroatom Doping-Induced Defected Co ₃ O ₄ Electrode for High-Performance Lithium Oxygen Battery. ACS Applied Energy Materials, 2022, 5, 3359-3368.	2.5	9

#	Article	IF	CITATIONS
221	Carbon-free high-performance cathode for solid-state Li-O ₂ battery. Science Advances, 2022, 8, eabm8584.	4.7	15
222	Fundamental Understanding and Construction of Solidâ€State Liâ^'Air Batteries. Small Science, 2022, 2, .	5.8	17
223	Recent advances in charge mechanism of noble metal-based cathodes for Li-O2 batteries. Chinese Chemical Letters, 2023, 34, 107413.	4.8	9
224	Evolution of Discharge Products on Carbon Nanotube Cathodes in Li–O ₂ Batteries Unraveled by Molecular Dynamics and Density Functional Theory. ACS Catalysis, 2022, 12, 5048-5059.	5.5	13
225	Oxygen activation on Ba-containing perovskite materials. Science Advances, 2022, 8, eabn4072.	4.7	29
227	Composite NiCo ₂ O ₄ @CeO ₂ Microsphere as Cathode Catalyst for Highâ€Performance Lithium–Oxygen Battery. Advanced Science, 2022, 9, e2200523.	5.6	26
228	Water in Aprotic Li-O ₂ Batteries: A Critical Review. ACS Applied Energy Materials, 2022, 5, 9228-9240.	2.5	9
229	Strategies of promotion solution growth mechanism in Aprotic Li-O2 batteries. , 2022, , .		0
230	Modeling of a non-aqueous Li-O2 battery incorporating synergistic reaction mechanisms, microstructure, and species transport in the porous electrode. Electrochimica Acta, 2022, 421, 140510.	2.6	4
231	Highly efficient two-dimensional Ag2Te cathode catalyst featuring a layer structure derived catalytic anisotropy in lithium-oxygen batteries. Energy Storage Materials, 2022, 50, 96-104.	9.5	27
232	Modeling the multi-step discharge and charge reaction mechanisms of non-aqueous Li-O2 batteries. Applied Energy, 2022, 317, 119189.	5.1	5
233	Ru clusters anchored on Magnéli phase Ti4O7 nanofibers enables flexible and highly efficient Li–O2 batteries. Energy Storage Materials, 2022, 50, 355-364.	9.5	28
234	Hydrophobic Ruo2/Graphene/N-Doped Porous Carbon Hybrid Catalyst for Li-Air Batteries Operating in Ambient Air. SSRN Electronic Journal, 0, , .	0.4	0
235	Recent Advancements in Chalcogenides for Electrochemical Energy Storage Applications. Energies, 2022, 15, 4052.	1.6	9
236	Crystal Phase Conversion on Cobalt Oxide: Stable Adsorption toward LiO ₂ for Film‣ike Discharge Products Generation in Liâ€O ₂ Battery. Small, 2022, 18, .	5.2	14
237	Electron-redistributed Ni–Co oxide nanoarrays as an ORR/OER bifunctional catalyst for low overpotential and long lifespan Li–O ₂ batteries. Journal of Materials Chemistry A, 2022, 10, 14613-14621.	5.2	12
238	Direct Observation of Solvent Donor Number Effect on Lithium–Oxygen Battery Capacity via a Nanoarray Cathode Model. Journal of Physical Chemistry C, 0, , .	1.5	1
239	Tailoring the adsorption behavior of superoxide intermediates on nickel carbide enables high-rate Li–O2 batteries. EScience, 2022, 2, 389-398.	25.0	37

#	Article	IF	CITATIONS
240	Interfacial Polymerization-Modified Polyetherimide (PEI) Separator for Li–O ₂ Battery with Boosted Performance. ACS Applied Polymer Materials, 2022, 4, 5781-5788.	2.0	1
241	Conformal Lithium Peroxide Growth Kinetically Driven by MoS ₂ /MoN Heterostructures Towards Highâ€Performance Liâ^'O ₂ Batteries. Batteries and Supercaps, 2022, 5, .	2.4	4
242	Critical Factors Affecting the Catalytic Activity of Redox Mediators on Li–O ₂ Battery Discharge. Journal of Physical Chemistry Letters, 2022, 13, 7081-7086.	2.1	20
243	Hydrophobic RuO2/Graphene/N-doped porous carbon hybrid catalyst for Li-air batteries operating in ambient air. Electrochimica Acta, 2022, 428, 140894.	2.6	2
244	In-Situ Spectroelectrochemistry in Li-O2 Batteries. , 2022, , .		0
245	<i>In situ</i> imaging of lithium superoxide dynamics in an all-solid-state Li–O ₂ nanobattery. Journal of Materials Chemistry A, 2022, 10, 20294-20301.	5.2	2
246	Chemistry of Li-air batteries. , 2022, , .		0
248	Interfacial Electron Redistribution on Latticeâ€Matching NiS ₂ /NiSe ₂ Homologous Heterocages with Dualâ€Phase Synergy to Tune the Formation Routes of Li ₂ O ₂ . Advanced Energy Materials, 2022, 12, .	10.2	26
249	A solid-state lithium-oxygen battery operating at ambient temperature and full charge-discharge. Journal of Energy Storage, 2022, 56, 105790.	3.9	3
250	Electronic structure modulation of Ru/W20O58 catalyst via interfacial Ru–O–W bridging bond for high-performance Li–O2 batteries. Applied Surface Science, 2023, 609, 155453.	3.1	9
251	TM-N4C (TMÂ=ÂCo, Pd, Pt and Ru) as OER electrocatalysts in lithium-oxygen batteries: First-principles study. Applied Surface Science, 2023, 609, 155331.	3.1	4
252	Modulating surface cation vacancies of nickel-cobalt oxides as efficient catalysts for lithium-oxygen batteries. Journal of Materials Science and Technology, 2023, 139, 147-155.	5.6	12
253	<i>In situ</i> visualization of synergistic effects between electrolyte additives and catalytic electrodes in Li–O ₂ batteries. Chemical Communications, 2022, 58, 13381-13384.	2.2	3
254	Facet-controlled bifunctional WO ₃ photocathodes for high-performance photo-assisted Li–O ₂ batteries. Energy and Environmental Science, 2023, 16, 523-534.	15.6	15
255	Modeling the influence of water on the performance of non-aqueous Li-O2 batteries. Applied Energy, 2023, 330, 120356.	5.1	2
256	Blooming growth of durable carbon nanotubes bundles from graphite interlayer seeds for free-standing lithium-oxygen battery electrodes. Sustainable Materials and Technologies, 2023, 35, e00531.	1.7	3
257	Uncovering the Electrolyte-Dependent Transport Mechanism of LiO ₂ in Lithium-Oxygen Batteries. Journal of the American Chemical Society, 2022, 144, 22150-22158.	6.6	8
258	RuO ₂ -Incorporated Co ₃ O ₄ Nanoneedles Grown on Carbon Cloth as Binder-Free Integrated Cathodes for Tuning Favorable Li ₂ O ₂ Formation. ACS Applied Materials & Interfaces, 2023, 15, 1401-1409.	4.0	4

#	Article	IF	CITATIONS
259	Metal-air batteries: progress and perspective. Science Bulletin, 2022, 67, 2449-2486.	4.3	61
260	Spin-State Regulation of Nickel Cobalt Spinel toward Enhancing the Electron Transfer Process of Oxygen Redox Reactions in Lithium–Oxygen Batteries. Energy & Fuels, 2023, 37, 735-745.	2.5	3
261	Atomic Ruthenium-Riveted Metal–Organic Framework with Tunable d-Band Modulates Oxygen Redox for Lithium–Oxygen Batteries. Journal of the American Chemical Society, 2022, 144, 23239-23246.	6.6	39
262	Reversible Discharge Products in Li–Air Batteries. Advanced Materials, 2023, 35, .	11.1	9
263	New Conceptual Catalyst on Spatial Highâ€Entropy Alloy Heterostructures for Highâ€Performance Liâ€O ₂ Batteries. Small, 2023, 19, .	5.2	15
264	An atomic/molecular-level strategy for the design of a preferred nitrogen-doped carbon nanotube cathode for Li-O2 batteries. Applied Surface Science, 2023, 615, 156367.	3.1	2
265	Surface bonding of MN4 macrocyclic metal complexes with pyridine-functionalized multi-walled carbon nanotubes for non-aqueous Li-O2 batteries. Journal of Colloid and Interface Science, 2023, 635, 242-253.	5.0	5
266	Single-Atomic Zn/Co-N _{<i>x</i>} Sites Boost Solid-Soluble Synergistic Catalysis for Lithium-Oxygen Batteries. ACS Applied Materials & Interfaces, 2023, 15, 1432-1441.	4.0	2
267	Unlock Restricted Capacity via OCe Hybridization for LiOxygen Batteries. Advanced Materials, 2023, 35, .	11.1	11
268	Engineering the Electronic Interaction between Atomically Dispersed Fe and RuO ₂ Attaining High Catalytic Activity and Durability Catalyst for Liâ€O ₂ Battery. Advanced Science, 2023, 10, .	5.6	20
269	Facet-engineered photoelectrochemical nanocatalysts toward fast kinetic lithiumâ \in "air batteries. , 0, , .		0
270	Effect of LiBOB content on electrochemical performance of Li–O2 batteries. Journal of Power Sources, 2023, 567, 232973.	4.0	4
271	Fundamentals, recent developments and prospects of lithium and non-lithium electrochemical rechargeable battery systems. Journal of Energy Chemistry, 2023, 81, 221-259.	7.1	27
272	Semiconductor process fabrication of multiscale porous carbon thin films for energy storage devices. Energy Storage Materials, 2023, 57, 308-315.	9.5	4
273	The free-standing N-CoO matrix towards optimizing dual-electrodes for high-performance Li-O2 batteries. Chemical Engineering Journal, 2023, 461, 142004.	6.6	2
274	Lithium Nitrate/Amide-Based Localized High Concentration Electrolyte for Rechargeable Lithium–Oxygen Batteries under High Current Density and High Areal Capacity Conditions. ACS Applied Energy Materials, 2023, 6, 3357-3365.	2.5	1
275	The Double-Edged Effect of Water on Li-O ₂ Aprotic Batteries. Journal of the Electrochemical Society, 2023, 170, 040522.	1.3	3
276	Recent advances in cathode catalyst architecture for lithium–oxygen batteries. EScience, 2023, 3, 100123.	25.0	8

#	Article	IF	CITATIONS
277	Recent advances in the application of scanning probe microscopy in interfacial electroanalytical chemistry. Journal of Electroanalytical Chemistry, 2023, 938, 117443.	1.9	2
278	Addressing Transport Issues in Non-Aqueous Li–air Batteries to Achieving High Electrochemical Performance. Electrochemical Energy Reviews, 2023, 6, .	13.1	6
301	Protecting Li-metal in O2 atmosphere by sacrificial polymer additive for Li-O2 Battery. Nanoscale, 0, , .	2.8	0
304	C60 as a metal-free catalyst for lithium-oxygen batteries. Nano Research, 2024, 17, 3982-3987.	5.8	0