Drug delivery by supramolecular design

Chemical Society Reviews 46, 6600-6620 DOI: 10.1039/c7cs00391a

Citation Report

#	Article	IF	CITATIONS
1	Interactions of Native Cyclodextrins with Metal Ions and Inorganic Nanoparticles: Fertile Landscape for Chemistry and Materials Science. Chemical Reviews, 2017, 117, 13461-13501.	23.0	238
2	Supramolecular Chemistry Targeting Proteins. Journal of the American Chemical Society, 2017, 139, 13960-13968.	6.6	169
3	Xylylene Clips for the Topology-Guided Control of the Inclusion and Self-Assembling Properties of Cyclodextrins. Journal of Organic Chemistry, 2018, 83, 5588-5597.	1.7	9
4	OEGylated Cyclodextrins Responsive to Temperature, Redox, and Metal Ions. ACS Applied Materials & Interfaces, 2018, 10, 13258-13263.	4.0	16
5	Immunoengineering with Supramolecular Peptide Biomaterials. Journal of the Indian Institute of Science, 2018, 98, 69-79.	0.9	7
6	Artificial molecular and nanostructures for advanced nanomachinery. Chemical Communications, 2018, 54, 4075-4090.	2.2	18
7	Guest Back-Folding: A Molecular Design Strategy That Produces a Deep-Red Fluorescent Host/Guest Pair with Picomolar Affinity in Water. Journal of the American Chemical Society, 2018, 140, 3361-3370.	6.6	56
8	Delivery systems for agriculture: Fe-EDDHSA/CaCO3 hybrid crystals as adjuvants for prevention of iron chlorosis. Chemical Communications, 2018, 54, 1635-1638.	2.2	6
9	Supramolecular Chemotherapy: Carboxylated Pillar[6]arene for Decreasing Cytotoxicity of Oxaliplatin to Normal Cells and Improving Its Anticancer Bioactivity Against Colorectal Cancer. ACS Applied Materials & Interfaces, 2018, 10, 5365-5372.	4.0	78
10	The renaissance of nitric oxide: from improvement of stability to enhancement of endocytosis. Materials Chemistry Frontiers, 2018, 2, 830-834.	3.2	11
11	Structural and Mechanical Properties of Supramolecular Polyethylenes. Macromolecules, 2018, 51, 2630-2640.	2.2	28
12	Supramolecular glyco-poly-cyclodextrin functionalized thin-layer manganese dioxide for targeted stimulus-responsive bioimaging. Chemical Communications, 2018, 54, 4037-4040.	2.2	11
13	Injectable network biomaterials via molecular or colloidal self-assembly. Advanced Drug Delivery Reviews, 2018, 127, 185-207.	6.6	65
14	Secondary structures of synthetic polypeptide polymers. Polymer Chemistry, 2018, 9, 1517-1529.	1.9	155
15	Supramolecular delivery systems based on pillararenes. Chemical Communications, 2018, 54, 13626-13640.	2.2	148
16	Preliminary investigation of novel tetra-tailed macrocycle amphiphile based nano-vesicles for amphotericin B improved oral pharmacokinetics. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 1204-1214.	1.9	8
17	Dosimetric Chromogenic Probe for Selective Detection of Sulfide via Sol–Gel Methodology. ACS Omega, 2018, 3, 17319-17325.	1.6	9
18	Influence of intermolecular H-bonding on the acid-base interfacial properties of -COOH and ferrocene terminated SAM. Journal of Electroanalytical Chemistry, 2018, 829, 88-94.	1.9	2

	CITATION REPORT	tation Report	
Article	IF	CITATIONS	
Foe to Friend: Supramolecular Nanomedicines Consisting of Natural Polyphenols and Bortezomib. Nano Letters, 2018, 18, 7045-7051.	4.5	109	
Potent in vivo lung cancer Wnt signaling inhibition via cyclodextrin-LGK974 inclusion complexes. Journal of Controlled Release, 2018, 290, 75-87.	4.8	35	
Multifunctional Chitosan Inverse Opal Particles for Wound Healing. ACS Nano, 2018, 12, 10493-1	0500. 7.3	141	
Shape Memory Hydrogels Based on Noncovalent Interactions. , 2018, , .		1	
Design, synthesis, and applications of DNA–macrocyclic host conjugates. Chemical Communica 2018, 54, 11668-11680.	tions, 2.2	32	
Mutually Exclusive Cellular Uptake of Combinatorial Supramolecular Copolymers. Chemistry - A European Journal, 2018, 24, 16445-16451.	1.7	10	
"Clicked―Porphyrin ucurbituril Conjugate: A New Multifunctional Supramolecular Assemb on Triglycosylated Porphyrin and Monopropargyloxycucurbit[7]uril. Chemistry - A European Journa 2018, 24, 15550-15555.	ly Based 1, 1.7	22	
Enzyme/pH-sensitive dendritic polymer-DOX conjugate for cancer treatment. Science China Mater 2018, 61, 1462-1474.	ials, 3.5	28	
Supramolecularly Engineered Circular Bivalent Aptamer for Enhanced Functional Protein Delivery. Journal of the American Chemical Society, 2018, 140, 6780-6784.	6.6	91	
Novel bispillar[5]arene-based AlEgen and its' application in mercury(II) detection. Sensors and Actuators B: Chemical, 2018, 272, 139-145.	4.0	63	
TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages enhance cancer immunotherapy. Nature Biomedical Engineering, 2018, 2, 578-588.	. to 11.6	714	
Visible Light–Induced Supraâ€Amphiphilic Switch Leads to Transition from Supramolecular Nanc to Nanovesicle Activated by Pillar[5]areneâ€Based Host–Guest Interaction. Macromolecular Rap Communications, 2018, 39, e1800133.	osphere bid 2.0	11	
Solubilization of azo-dye-modiï¬ed isatin derivative by amphiphilic carboxyresorcinarenes: The effe of macrocycle structure on the supramolecular association. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 553, 368-377.	ct 2.3	14	
Molecular Dynamics Simulations of Supramolecular Anticancer Nanotubes. Journal of Chemical Information and Modeling, 2018, 58, 1164-1168.	2.5	8	
Diaminomalenonitrile-decorated cholesterol-based supramolecular gelator: aggregation, multiple analyte (hydrazine, Hg ²⁺ and Cu ²⁺) detection and dye adsorption. New Journal of Chemistry, 2018, 42, 13718-13725.	/ 1.4	25	

34	Nucleoside Analogue-Based Supramolecular Nanodrugs Driven by Molecular Recognition for Synergistic Cancer Therapy. Journal of the American Chemical Society, 2018, 140, 8797-8806.	6.6	95
35	Synthesis and characterization of carboxymethyl chitosan/Fe3O4 and MnFe2O4 nanocomposites hydrogels for loading and release of curcumin. Journal of Photochemistry and Photobiology B: Biology, 2018, 185, 206-214.	1.7	39
36	Sulfated β yclodextrin Templated Assembly and Disassembly of Acridine Orange: Unraveling Contrasting Binding Mechanisms and Light Off/On Switching. ChemistrySelect, 2018, 3, 8131-8143.	0.7	11

#

19

21

23

25

27

29

31

#	Article	IF	CITATIONS
37	Covalent Assembly of Amphiphilic Bolaâ€Amino Acids into Robust and Biodegradable Nanoparticles for In Vitro Photothermal Therapy. Chemistry - an Asian Journal, 2018, 13, 3526-3532.	1.7	20
38	Glycosidic Bond Expanded Cyclic Oligosaccharides: Synthesis and Host–Guest Binding Property of a Cyclic Pentasaccharide. ACS Omega, 2018, 3, 7466-7473.	1.6	5
39	Fluorinated Polymers as Smart Materials for Advanced Biomedical Applications. Polymers, 2018, 10, 161.	2.0	196
40	Stronger host–guest binding does not necessarily give brighter particles: a case study on polymeric AIEE-tunable and size-tunable supraspheres. Chemical Communications, 2018, 54, 9274-9277.	2.2	25
41	Environmentally Sustainable and Ecosafe Polysaccharide-Based Materials for Water Nano-Treatment: An Eco-Design Study. Materials, 2018, 11, 1228.	1.3	43
42	Supramolecular strategies for protein immobilization and modification. Current Opinion in Chemical Biology, 2018, 46, 91-98.	2.8	17
43	A review on core–shell structured unimolecular nanoparticles for biomedical applications. Advanced Drug Delivery Reviews, 2018, 130, 58-72.	6.6	63
44	Microstructural Distinction of Electrospun Nanofibrous Drug Delivery Systems Formulated with Different Excipients. Molecular Pharmaceutics, 2018, 15, 4214-4225.	2.3	24
46	Nitric oxide release from a cucurbituril encapsulated NO-donor. Organic and Biomolecular Chemistry, 2018, 16, 4272-4278.	1.5	4
47	Tri-pillar[5]arene-based multi-stimuli-responsive supramolecular polymers for fluorescence detection and separation of Hg ²⁺ . Polymer Chemistry, 2018, 9, 4625-4630.	1.9	56
48	Nanoconjugates of a calixresorcinarene derivative with methoxy poly(ethylene glycol) fragments for drug encapsulation. Beilstein Journal of Nanotechnology, 2018, 9, 2057-2070.	1.5	8
49	Controlled Release of RNAi Molecules by Tunable Supramolecular Hydrogel Carriers. Chemistry - an Asian Journal, 2018, 13, 3501-3508.	1.7	17
50	Selfâ€Assembly of Functional Discrete Threeâ€Dimensional Architectures in Water. Angewandte Chemie - International Edition, 2019, 58, 1280-1307.	7.2	48
51	Supraparticle Nanoassemblies with Enzymes. Chemistry of Materials, 2019, 31, 7493-7500.	3.2	24
52	Supramolecular caging for cytosolic delivery of anionic probes. Chemical Science, 2019, 10, 8930-8938.	3.7	21
53	Synthesis of Saponite Based Nanocomposites to Improve the Controlled Oral Drug Release of Model Drug Quinine Hydrochloride Dihydrate. Pharmaceuticals, 2019, 12, 105.	1.7	16
54	Application of Macrocycle-Based Supramolecular Assemblies Based on Aggregation-Induced Emission. , 2019, , 1-24.		0
55	Fluorescent Supramolecular Assembly with Coronene Centers for Controlled DNA Condensation and Drug Delivery. ACS Omega, 2019, 4, 11981-11987.	1.6	3

#	Article	IF	CITATIONS
56	Inhibitory and Cooperative Effects Regulated by pH in Host–Guest Complexation between Cationic Pillar[5]arene and Reactive 2-Carboxyphthalanilic Acid. Journal of Organic Chemistry, 2019, 84, 9684-9692.	1.7	9
57	Biocompatible Fe ³⁺ and Ca ²⁺ Dual Cross-Linked G-Quadruplex Hydrogels as Effective Drug Delivery System for pH-Responsive Sustained Zero-Order Release of Doxorubicin. ACS Applied Bio Materials, 2019, 2, 3300-3311.	2.3	32
58	Facile Fluorescence Monitoring of Gut Microbial Metabolite Trimethylamine <i>N</i> -oxide via Molecular Recognition of Guanidinium-Modified Calixarene. Theranostics, 2019, 9, 4624-4632.	4.6	41
59	Chemical insights into bioinks for 3D printing. Chemical Society Reviews, 2019, 48, 4049-4086.	18.7	145
60	Vitamin B1 Sensor at Neutral pH and Improvement by Cucurbit[7]uril. Bulletin of the Chemical Society of Japan, 2019, 92, 1503-1508.	2.0	3
61	How Resonance Modulates Multiple Hydrogen Bonding in Self-Assembled Systems. Journal of Organic Chemistry, 2019, 84, 14805-14815.	1.7	10
62	Three-Component Sequential Reactions for Polymeric Nanoparticles with Tailorable Core and Surface Functionalities. CheM, 2019, 5, 3166-3183.	5.8	6
63	Supramolecular Fluorine Magnetic Resonance Spectroscopy Probe Polymer Based on Passerini Bifunctional Monomer. ACS Macro Letters, 2019, 8, 1479-1483.	2.3	13
64	In situ formed anti-inflammatory hydrogel loading plasmid DNA encoding VEGF for burn wound healing. Acta Biomaterialia, 2019, 100, 191-201.	4.1	142
65	Single-molecule level control of host-guest interactions in metallocycle-C60 complexes. Nature Communications, 2019, 10, 4599.	5.8	44
66	Single- and multi-component chiral supraparticles as modular enantioselective catalysts. Nature Communications, 2019, 10, 4826.	5.8	93
67	Remote Lightâ€Responsive Nanocarriers for Controlled Drug Delivery: Advances and Perspectives. Small, 2019, 15, e1903060.	5.2	183
68	Pyridyl Azoâ€Based Progelator in Selective Sensing of Hg ²⁺ and Ag ⁺ Ions <i>via</i> Sol to Gel Conversion. ChemistrySelect, 2019, 4, 11564-11571.	0.7	10
69	Towards mechanical robust yet self-healing polyurethane elastomers via combination of dynamic main chain and dangling quadruple hydrogen bonds. Polymer, 2019, 183, 121912.	1.8	86
70	Cucurbit[7]uril-Anchored Porphyrin-Based Multifunctional Molecular Platform for Photodynamic Antimicrobial and Cancer Therapy. ACS Applied Bio Materials, 2019, 2, 4693-4697.	2.3	24
71	Fluorescence enhancement of cationic styrylcoumarin-cucurbit[7]uril complexes: Enhanced stability and cellular membrane localization. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 384, 112062.	2.0	12
72	Study of the host–guest interaction between N,N′-bis[4-(dimethylaminophenyl)methyl]butane-1,4-diamine and the cucuribit[n]urils (n = 6, 7). New Journal of Chemistry, 2019, 43, 14938-14943.	1.4	2
73	Drug Delivery with Designed Peptide Assemblies. Trends in Pharmacological Sciences, 2019, 40, 747-762.	4.0	79

#	Article	IF	CITATIONS
74	Two Hg(II)-Based Macrocycles Offering Hydrogen Bonding Cavities: Influence of Cavity Structure on Heterogeneous Catalysis. Crystal Growth and Design, 2019, 19, 6039-6047.	1.4	14
75	Self-assembled micro-fibres by oxime connection of linear peptide amphiphiles. Organic and Biomolecular Chemistry, 2019, 17, 1984-1991.	1.5	11
76	Structure optimization of dendritic lipopeptide based gene vectors with the assistance from molecular dynamic simulation. Journal of Materials Chemistry B, 2019, 7, 915-926.	2.9	13
77	Red-light-responsive molecular encapsulation in water: an ideal combination of photochemistry and host–guest interaction. Organic Chemistry Frontiers, 2019, 6, 498-505.	2.3	14
78	Fast responsive photo-switchable dual-color fluorescent cyclodextrin nanogels for cancer cell imaging. Carbohydrate Polymers, 2019, 210, 379-388.	5.1	23
79	Growing Prospects of Dynamic Covalent Chemistry in Delivery Applications. Accounts of Chemical Research, 2019, 52, 510-519.	7.6	158
80	Supramolecular Emulsion Interfacial Polymerization. ACS Macro Letters, 2019, 8, 177-182.	2.3	34
81	Controlled Encapsulation and Release of an Organic Guest in the Cavity of α,α′,Î',δ′â€Tetramethylcucurbit[6]uril. European Journal of Organic Chemistry, 2019, 2019, 1503-1507.	1.2	10
82	Supramolecular nanoscale drug-delivery system with ordered structure. National Science Review, 2019, 6, 1128-1137.	4.6	52
83	Scientific Rationale for Designing Controlled Drug Delivery Systems. , 2019, , 1-28.		7
84	Contrasting interactions of DNA-intercalating dye acridine orange with hydroxypropyl derivatives of β-cyclodextrin and γ-cyclodextrin hosts. New Journal of Chemistry, 2019, 43, 724-736.	1.4	23
85	Triazole-amide isosteric pyridine-based supramolecular gelators in metal ion and biothiol sensing with excellent performance in adsorption of heavy metal ions and picric acid from water. New Journal of Chemistry, 2019, 43, 934-945.	1.4	26
86	Boronate-crosslinked polysaccharide conjugates for pH-responsive and targeted drug delivery. Chemical Communications, 2019, 55, 1164-1167.	2.2	22
87	AlE Supramolecular Assembly with FRET Effect for Visualizing Drug Delivery. ACS Applied Materials & Interfaces, 2019, 11, 23840-23847.	4.0	73
88	Host-Guest Chemistry in Supramolecular Theranostics. Theranostics, 2019, 9, 3041-3074.	4.6	140
89	Pillararene-Based Supramolecular Polymer. , 2019, , 1-42.		0
90	Integrating Stimuli-Responsive Properties in Host-Guest Supramolecular Drug Delivery Systems. Theranostics, 2019, 9, 3017-3040.	4.6	84
91	Boronic acids as building blocks for the construction of therapeutically useful bioconjugates. Chemical Society Reviews, 2019, 48, 3513-3536.	18.7	191

#	Article	IF	CITATIONS
92	Hierarchical Assembly toward Nanoparticles of a Chiral Palladium Supramolecular Complex Based on Bicyclo[3.3.1]nonane Framework. Organometallics, 2019, 38, 2647-2653.	1.1	4
93	Spatially Defined Drug Targeting by in Situ Host–Guest Chemistry in a Living Animal. ACS Central Science, 2019, 5, 1035-1043.	5.3	68
94	Supramolecular Polymer Hydrogels for Drug-Induced Tissue Regeneration. ACS Nano, 2019, 13, 5493-5501.	7.3	48
95	Catalytic antioxidants for therapeutic medicine. Journal of Materials Chemistry B, 2019, 7, 3165-3191.	2.9	11
96	Cocrystals and Salts of 3,5-Bis(pyridinylmethylene)piperidin-4-one with Aromatic Poly-Carboxylates and Resorcinols: Influence of Stacking Interactions on Solid-State Luminescence Properties. Australian Journal of Chemistry, 2019, 72, 742.	0.5	3
97	Shape modulation of squaramide-based supramolecular polymer nanoparticles. Polymer Chemistry, 2019, 10, 3146-3153.	1.9	24
98	Supramolecular chemistry assisted construction of ultra-stable solvent-resistant membranes for angstrom-sized molecular separation. Chemical Engineering Journal, 2019, 371, 535-543.	6.6	91
99	Cyclodextrin-functionalized asymmetric block copolymer films as high-capacity reservoir for drug delivery. Journal of Membrane Science, 2019, 584, 1-8.	4.1	12
100	Peptide Tectonics: Encoded Structural Complementarity Dictates Programmable Selfâ€Assembly. Advanced Science, 2019, 6, 1802043.	5.6	51
101	Carboxylated pillar[<i>n</i>]arene (<i>n</i> = 5–7) host molecules: high affinity and selective binding in water. Organic and Biomolecular Chemistry, 2019, 17, 5106-5111.	1.5	30
102	A sulfonyl hydrazone cholesterol conjugate: gelation, anion interaction and its application in dye adsorption. New Journal of Chemistry, 2019, 43, 10270-10277.	1.4	16
103	Stimuli-Responsive Self-Assembly Based on Macrocyclic Hosts and Biomedical Applications. , 2019, , 1-44.		0
104	Construction and Biomedical Applications of Macrocycle-Based Supramolecular Topological Polymers. , 2019, , 1-31.		0
105	Utility of Bis-4-pyridines as Supramolecular Linkers for 5-Sulfosalicylic Acid Centers: Structural and Optical Investigations. Crystal Growth and Design, 2019, 19, 2289-2297.	1.4	24
106	Supramolecular Chemistry and Self-Organization: A Veritable Playground for Catalysis. Catalysts, 2019, 9, 163.	1.6	22
107	Double-headed nanosystems for oral drug delivery. Chemical Communications, 2019, 55, 4761-4764.	2.2	9
108	Directed self-assembly of herbal small molecules into sustained release hydrogels for treating neural inflammation. Nature Communications, 2019, 10, 1604.	5.8	188
109	Supramolecular-based nanofibers. Materials Science and Engineering C, 2019, 101, 650-659.	3.8	24

#	Article	IF	CITATIONS
110	Catalase-Integrated Hyaluronic Acid as Nanocarriers for Enhanced Photodynamic Therapy in Solid Tumor. ACS Nano, 2019, 13, 4742-4751.	7.3	293
111	Catalytic applications of β-cyclodextrin/palladium nanoparticle thin film obtained from oil/water interface in the reduction of toxic nitrophenol compounds and the degradation of azo dyes. New Journal of Chemistry, 2019, 43, 6513-6522.	1.4	22
112	Selbstorganisation von funktionellen diskreten dreidimensionalen Architekturen in Wasser. Angewandte Chemie, 2019, 131, 1292-1320.	1.6	12
113	Selfâ€Assembly of Spherical Organic Molecules to Form Hollow Vesicular Structures in Water for Encapsulation of an Anticancer Drug and Its Release. Chemistry - an Asian Journal, 2019, 14, 1992-1999.	1.7	2
114	Functional Hydrogels for Next-Generation Batteries and Supercapacitors. Trends in Chemistry, 2019, 1, 335-348.	4.4	158
115	Coiled Coil Affinity-Based Systems for the Controlled Release of Biofunctionalized Gold Nanoparticles from Alginate Hydrogels. Biomacromolecules, 2019, 20, 1926-1936.	2.6	20
116	Dynamic Control of the Self-Assembling Properties of Cyclodextrins by the Interplay of Aromatic and Host-Guest Interactions. Frontiers in Chemistry, 2019, 7, 72.	1.8	12
117	4-Hydroxybenzaldehyde derived Schiff base gelators: case of the sustainability or rupturing of imine bonds towards the selective sensing of Ag ⁺ and Hg ²⁺ ions <i>via</i> sol–gel methodology. New Journal of Chemistry, 2019, 43, 5139-5149.	1.4	25
118	Development of Adamantane-Conjugated TLR7/8 Agonists for Supramolecular Delivery and Cancer Immunotherapy. Theranostics, 2019, 9, 8426-8436.	4.6	65
119	Rational Coarse-Grained Molecular Dynamics Simulations of Supramolecular Anticancer Nanotubes. Journal of Physical Chemistry B, 2019, 123, 10582-10593.	1.2	9
120	Synthesis of Calix-Salen Silver Corates for Evaluation of Their Antimicrobial and Anticancer Activities. ACS Omega, 2019, 4, 21346-21352.	1.6	7
121	Photo-controlled reversible secondary self-assembly of supramolecular nanosheets and their drug delivery behavior. Journal of Materials Chemistry B, 2019, 7, 7736-7743.	2.9	17
122	A Waterâ€6oluble Perylene Bisimide Cyclophane as a Molecular Probe for the Recognition of Aromatic Alkaloids. Angewandte Chemie - International Edition, 2019, 58, 3516-3520.	7.2	43
123	Terphen[<i>n</i>]arenes and Quaterphen[<i>n</i>]arenes (<i>n</i> =3–6): Oneâ€Pot Synthesis, Selfâ€Assembly into Supramolecular Gels, and Iodine Capture. Angewandte Chemie, 2019, 131, 3925-3929.	1.6	43
124	Terphen[<i>n</i>]arenes and Quaterphen[<i>n</i>]arenes (<i>n</i> =3–6): Oneâ€Pot Synthesis, Selfâ€Assembly into Supramolecular Gels, and Iodine Capture. Angewandte Chemie - International Edition, 2019, 58, 3885-3889.	7.2	156
125	Electrospun lipid-coated medicated nanocomposites for an improved drug sustained-release profile. Materials and Design, 2019, 162, 70-79.	3.3	91
126	Recent advances in nanoengineering cellulose for cargo delivery. Journal of Controlled Release, 2019, 294, 53-76.	4.8	87
127	Deciphering the nature of interactions in nandrolone/testosterone encapsulated cucurbituril complexes: a computational study. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2019, 93, 183-192	0.9	3

	C	ITATION REPORT	
#	Article	IF	CITATIONS
128	Nanocarriers and Their Loading Strategies. Advanced Healthcare Materials, 2019, 8, e1801002.	3.9	124
129	Supramolecular Hydrogels for Biomedical Applications. Macromolecular Bioscience, 2019, 19, e1800452.	2.1	16
130	A Supramolecular Nanocarrier for Delivery of Amiodarone Anti-Arrhythmic Therapy to the Heart. Bioconjugate Chemistry, 2019, 30, 733-740.	1.8	24
131	A Waterâ€Soluble Perylene Bisimide Cyclophane as a Molecular Probe for the Recognition of Aromat Alkaloids. Angewandte Chemie, 2019, 131, 3554-3558.	ic 1.6	11
132	Synthesis of calix[6]arene and transduction of its furfural derivative as sensor for Hg(II) ions. Inorganica Chimica Acta, 2019, 486, 63-68.	1,2	12
133	Supramolecular Photothermal Nanomaterials as an Emerging Paradigm toward Precision Cancer Therapy. Advanced Functional Materials, 2019, 29, 1806877.	7.8	186
134	Dynamic Hydrogels from Host–Guest Supramolecular Interactions. Macromolecular Bioscience, 20 19, e1800281.)19, 2.1	110
135	Single-molecule nanoscale drug carriers with quantitative supramolecular loading. Molecular Systems Design and Engineering, 2020, 5, 197-204.	1.7	8
136	pH-responsive nanomicelles of poly(ethylene glycol)-poly(ε-caprolactone)-poly(L-histidine) for target drug delivery. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 277-292.	.ed 1.9	14
137	Supramolecular self-assembly of oleylamide into organogels and hydrogels: a simple approach in phase selective gelation of oil spills. Soft Materials, 2020, 18, 55-66.	0.8	6
138	Introducing Seven Transition Metal Ions into Terpyridine-Based Supramolecules: Self-Assembly and Dynamic Ligand Exchange Study. Journal of the American Chemical Society, 2020, 142, 1811-1821.	6.6	53
139	Structural considerations for physical hydrogels based on polymer–nanoparticle interactions. Molecular Systems Design and Engineering, 2020, 5, 401-407.	1.7	22
140	Enzyme-responsive fluorescent camptothecin prodrug/polysaccharide supramolecular assembly for targeted cellular imaging and <i>in situ</i> controlled drug release. Chemical Communications, 2020 56, 1042-1045.), 2.2	25
141	Kinetic Evolution in Metalâ€Dependent Selfâ€Assembly of Peptide–Terpyridine Conjugates. Macromolecular Rapid Communications, 2020, 41, 1900565.	2.0	1
142	Intercalating pyrene with polypeptide as a novel self-assembly nano-carrier for colon cancer suppression in vitro and in vivo. Materials Science and Engineering C, 2020, 109, 110593.	3.8	15
143	Nanoscale metal–organic frameworks as key players in the context of drug delivery: evolution toward theranostic platforms. Analytical and Bioanalytical Chemistry, 2020, 412, 37-54.	1.9	35
144	Supramolecular Metallacycles and Their Binding of Fullerenes. Chemistry - A European Journal, 2020, 26, 3609-3613.	1.7	6
145	Supramolecular nanomaterials based on hollow mesoporous drug carriers and macrocycle-capped CuS nanogates for synergistic chemo-photothermal therapy. Theranostics, 2020, 10, 615-629.	4.6	97

#	Article	IF	CITATIONS
146	Towards the Application of Supramolecular Self-Associating Amphiphiles as Next-Generation Delivery Vehicles. Molecules, 2020, 25, 4126.	1.7	12
147	Recent development of amorphous metal coordination polymers for cancer therapy. Acta Biomaterialia, 2020, 116, 16-31.	4.1	30
148	Alternating Magnetic Field Controlled Targeted Drug Delivery Based on Graphene Oxideâ€Grafted Nanosupramolecules. Chemistry - A European Journal, 2020, 26, 13698-13703.	1.7	16
149	Control Over Diffusion of Ionic Ferrocene Species in Aqueous Solution Using Surfactant Based Organized Media. Journal of the Electrochemical Society, 2020, 167, 116512.	1.3	0
150	Pillar[5]arene-based supramolecular AIE hydrogel with white light emission for ultrasensitive detection and effective separation of multianalytes. Polymer Chemistry, 2020, 11, 5455-5462.	1.9	16
151	Bumpy Roads Lead to Beautiful Places: The Twists and Turns in Developing a New Class of PN-Heterocycles. Synlett, 2020, 31, 1862-1877.	1.0	5
152	β-Cyclodextrin modified Pt(II) metallacycle-based supramolecular hyperbranched polymer assemblies for DOX delivery to liver cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30942-30948.	3.3	32
153	Recent trends of biocompatible triboelectric nanogenerators toward selfâ€powered eâ€skin. EcoMat, 2020, 2, e12065.	6.8	49
154	Carborane Guests for Cucurbit[7]uril Facilitate Strong Binding and On-Demand Removal. Journal of the American Chemical Society, 2020, 142, 20513-20518.	6.6	28
155	Functionalization of Polyethyleneimine with Hollow Cyclotriveratrylene and Its Subsequent Supramolecular Interaction with Doxorubicin. Molecules, 2020, 25, 5455.	1.7	6
156	pH-Sensitive Biomaterials for Drug Delivery. Molecules, 2020, 25, 5649.	1.7	104
157	Brachiation of a polymer chain in the presence of a dynamic network. Physical Review E, 2020, 102, 020501.	0.8	6
158	Facile Engineering of Antiâ€Inflammatory Nanotherapies by Hostâ€Guest Selfâ€Assembly. ChemistrySelect, 2020, 5, 8707-8716.	0.7	2
159	Self-assembly of trigonal building blocks into nanostructures: molecular design and biomedical applications. Journal of Materials Chemistry B, 2020, 8, 6739-6752.	2.9	21
160	Supramolecular Tubustecan Hydrogel as Chemotherapeutic Carrier to Improve Tumor Penetration and Local Treatment Efficacy. ACS Nano, 2020, 14, 10083-10094.	7.3	55
161	Tumor microenvironment responsive supramolecular glyco-nanovesicles based on diselenium-bridged pillar[5]arene dimer for targeted chemotherapy. Chemical Communications, 2020, 56, 10642-10645.	2.2	26
162	Cholesterol oupled Diazineâ€Phenol Gelator: Cyanide Sensing, Phase‣elective Gelation in Oil Spill Recovery and Dye Adsorption. ChemistrySelect, 2020, 5, 11874-11881.	0.7	8
163	The Future Application of Organ-on-a-Chip Technologies as Proving Grounds for MicroBioRobots. Micromachines, 2020, 11, 947.	1.4	9

#	Article	IF	CITATIONS
164	Recent advances and challenges in materials for 3D bioprinting. Progress in Natural Science: Materials International, 2020, 30, 618-634.	1.8	77
165	PLA Stereocomplexed Microspheres Modified with Methyl-β-Cyclodextrin as an Atropine Delivery System. Synthesis and Characterization. Materials Today Communications, 2020, 25, 101605.	0.9	9
166	Selective Capture and Recovery of Monoclonal Antibodies by Self-Assembling Supramolecular Polymers of High Affinity for Protein Binding. Nano Letters, 2020, 20, 6957-6965.	4.5	16
167	Temperature-responsive supramolecular hydrogels. Journal of Materials Chemistry B, 2020, 8, 9197-9211.	2.9	75
168	Automated high-content imaging for cellular uptake, from the Schmuck cation to the latest cyclic oligochalcogenides. Beilstein Journal of Organic Chemistry, 2020, 16, 2007-2016.	1.3	7
169	Pillar[5]arene-Based Switched Supramolecular Photosensitizer for Self-Amplified and pH-Activated Photodynamic Therapy. ACS Applied Materials & Interfaces, 2020, 12, 41038-41046.	4.0	35
170	Tunable thermoresponsive β yclodextrinâ€based star polymers. Journal of Polymer Science, 2020, 58, 3402-3410.	2.0	6
171	Design, synthesis and applications of responsive macrocycles. Communications Chemistry, 2020, 3, .	2.0	45
172	Cucurbituril-Oriented Nanoplatforms in Biomedical Applications. ACS Applied Bio Materials, 2020, 3, 8211-8240.	2.3	11
173	Impact of amino acids on the aqueous self-assembly of benzenetrispeptides into supramolecular polymer bottlebrushes. Polymer Chemistry, 2020, 11, 6763-6771.	1.9	9
174	Host–guest interaction based supramolecular photodynamic therapy systems: a promising candidate in the battle against cancer. Chemical Communications, 2020, 56, 5865-5876.	2.2	36
175	Functional Supramolecular Polymeric Networks: The Marriage of Covalent Polymers and Macrocycle-Based Host–Guest Interactions. Chemical Reviews, 2020, 120, 6070-6123.	23.0	466
176	Selective Dosimetric Sensing of Hg 2+ Ions by Designâ€Based Small Molecular Gelator. ChemistrySelect, 2020, 5, 5099-5108.	0.7	5
177	A host-guest drug delivery nanosystem for supramolecular chemotherapy. Journal of Controlled Release, 2020, 324, 124-133.	4.8	39
178	Coaxial mussel-inspired biofibers: making of a robust and efficacious depot for cancer drug delivery. Journal of Materials Chemistry B, 2020, 8, 5064-5079.	2.9	17
179	Synthesis and Characterization of Carboxymethyl Chitosan–Methyl Cellulose Containing Drug Loaded Ag2O–Fe3O4 Nanocomposites as a Drug Delivery System. Journal of Inorganic and Organometallic Polymers and Materials, 0, , 1.	1.9	2
180	In Situ Formation of Polymeric Nanoassemblies Using an Efficient Reversible Click Reaction. Angewandte Chemie - International Edition, 2020, 59, 15135-15140.	7.2	13
181	A General Hypoxiaâ€Responsive Molecular Container for Tumorâ€Targeted Therapy. Advanced Materials, 2020, 32, e1908435.	11.1	81

#	Article	IF	CITATIONS
182	Supramolecular Drug–Drug Complex Vesicles Enable Sequential Drug Release for Enhanced Combination Therapy. ACS Applied Materials & Interfaces, 2020, 12, 27940-27950.	4.0	21
183	Ultrashort Peptide Self-Assembly: Front-Runners to Transport Drug and Gene Cargos. Frontiers in Bioengineering and Biotechnology, 2020, 8, 504.	2.0	50
184	Bisphosphonate-based nanocomposite hydrogels for biomedical applications. Bioactive Materials, 2020, 5, 819-831.	8.6	55
185	The intrinsic microstructure of supramolecular hydrogels derived from α-cyclodextrin and pluronic F127: nanosheet building blocks and hierarchically self-assembled structures. Soft Matter, 2020, 16, 5906-5909.	1.2	10
186	NIR-responsive reversible phase transition of supramolecular hydrogels for tumor treatment. Journal of Materials Chemistry B, 2020, 8, 6429-6437.	2.9	12
187	Engineering the drug carrier biointerface to overcome biological barriers to drug delivery. Advanced Drug Delivery Reviews, 2020, 167, 89-108.	6.6	91
188	Supramolecular prodrugs based on host–guest interactions. Chemical Society Reviews, 2020, 49, 2303-2315.	18.7	133
189	Supramolecular adsorption of cyclodextrin/polyvinyl alcohol film for purification of organic wastewater. Journal of Polymer Engineering, 2020, 40, 158-172.	0.6	8
190	AT-CuAAC Synthesis of Mechanically Interlocked Oligonucleotides. Journal of the American Chemical Society, 2020, 142, 5985-5990.	6.6	31
191	A Versatile Approach to Dynamic Amide Bond Formation with Imine Nucleophiles. Chemistry - A European Journal, 2020, 26, 5709-5716.	1.7	4
192	Stimuli-Responsive Supramolecular Coaggregation and Disaggregation of Host–Guest Conjugates Having a Disulfide Linkage. Journal of Organic Chemistry, 2020, 85, 5493-5502.	1.7	7
193	Spatially Controlled Supramolecular Polymerization of Peptide Nanotubes by Microfluidics. Angewandte Chemie, 2020, 132, 6969-6975.	1.6	11
194	A supramolecular assembly mediated by host–guest interactions for improved chemo–photodynamic combination therapy. Chemical Communications, 2020, 56, 4192-4195.	2.2	16
195	Molecular simulation studies on the design of energetic ammonium dinitramide co-crystals for tuning hygroscopicity. CrystEngComm, 2020, 22, 5237-5244.	1.3	16
196	In Situ Formation of Polymeric Nanoassemblies Using an Efficient Reversible Click Reaction. Angewandte Chemie, 2020, 132, 15247-15252.	1.6	4
197	Supramolecular Prodrug Nanovectors for Active Tumor Targeting and Combination Immunotherapy of Colorectal Cancer. Advanced Science, 2020, 7, 1903332.	5.6	66
198	Synthesis and Binding Affinity of Hydrophobic Tail Containing Naphthalene Derivatives with Different Type of Organized Media. ChemistrySelect, 2020, 5, 2135-2141.	0.7	1
199	The role of critical micellization concentration in efficacy and toxicity of supramolecular polymers. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4518-4526.	3.3	58

#	Article	IF	CITATIONS
200	XCage: A Tricyclic Octacationic Receptor for Perylene Diimide with Picomolar Affinity in Water. Journal of the American Chemical Society, 2020, 142, 3165-3173.	6.6	54
201	Supramolecular materials based on AIE luminogens (AIEgens): construction and applications. Chemical Society Reviews, 2020, 49, 1144-1172.	18.7	498
202	Synthesis and Supramolecular Functional Assemblies of Ratiometric pH Probes. Chemistry - A European Journal, 2020, 26, 7516-7536.	1.7	31
203	Cross-Linked Pillar[6]arene Nanosponges Fabricated by the Use of a Supra-Amphiphilic Template: Cargo Encapsulation and Overcoming Multidrug Resistance. ACS Applied Materials & Interfaces, 2020, 12, 7974-7983.	4.0	31
204	Supramolecular Protein Assembly Retains Its Structural Integrity at Liquid–Liquid Interface. Advanced Materials Interfaces, 2020, 7, 1901674.	1.9	4
205	Spatially Controlled Supramolecular Polymerization of Peptide Nanotubes by Microfluidics. Angewandte Chemie - International Edition, 2020, 59, 6902-6908.	7.2	32
206	pH-Induced Transition Between Single-Chain Macrocyclic Amphiphile and [c2]Daisy Chain-Based Bola-Type Amphiphile and the Related Self-Assembly Behavior in Water. Frontiers in Chemistry, 2020, 7, 894.	1.8	4
207	Self-assembled nucleo-tripeptide hydrogels provide local and sustained doxorubicin release. Biomaterials Science, 2020, 8, 3130-3137.	2.6	19
208	A nonconventional host–guest cubic assembly based on γ-cyclodextrin and a Keggin-type polyoxometalate. Nanoscale, 2020, 12, 10166-10171.	2.8	24
209	Temperatureâ€Dependent and pHâ€Responsive Pillar[5]areneâ€Based Complexes and Hydrogenâ€Bondâ€Based Supramolecular Pentagonal Boxes in Water. Chemistry - A European Journal, 2020, 26, 11250-11255.	1.7	7
210	Cu(II)â€Metallacryptands Selfâ€Assembled to Vesicular Aggregates Capable of Encapsulating and Transporting an Anticancer Drug Inside Cancer Cells. Macromolecular Bioscience, 2020, 20, e2000044.	2.1	2
211	Multi-spectroscopic investigation on the inclusion complexation of α-cyclodextrin with long chain ionic liquid. Carbohydrate Research, 2020, 491, 107982.	1.1	1
212	Controlled release of the guest molecule <i>via</i> borate formation of a fluorinated boronic ester cage. Chemical Communications, 2020, 56, 5613-5616.	2.2	13
213	A host–guest ATP responsive strategy for intracellular delivery of phosphopeptides. Chemical Communications, 2020, 56, 5512-5515.	2.2	13
214	Self-Assembled Nucleotide/Saccharide-Tethering Polycation-Based Nanoparticle for Targeted Tumor Therapy. , 2020, 2, 550-556.		7
215	Soft–Hard Composites for Bioelectric Interfaces. Trends in Chemistry, 2020, 2, 519-534.	4.4	21
216	Supramolecular polymer bottlebrushes. Chemical Communications, 2020, 56, 5079-5110.	2.2	36
217	Supramolecular nano drug delivery systems mediated via host-guest chemistry of cucurbit[n]uril (n = 6) ⁻	Tj_ETQq1	1 0,784314

#	Article	IF	CITATIONS
218	Photoresponsive molecular tweezer: Control-release of anions and fluorescence switch. Dyes and Pigments, 2021, 184, 108838.	2.0	9
219	Cucurbiturilsâ€Mediated Noble Metal Nanoparticles for Applications in Sensing, SERS, Theranostics, and Catalysis. Advanced Functional Materials, 2021, 31, .	7.8	79
220	Mimicking Biological Recognition: Lessons in Binding Hydrophilic Guests in Water. Chemistry - A European Journal, 2021, 27, 6620-6644.	1.7	18
221	Heavyâ€Atomâ€Modulated Supramolecular Assembly Increases Antitumor Potency against Malignant Breast Tumors via Tunable Cooperativity. Advanced Materials, 2021, 33, e2004225.	11.1	36
223	Supramolecular design based activatable magnetic resonance imaging. View, 2021, 2, 20200059.	2.7	25
224	Glucose Binding Drives Reconfiguration of a Dynamic Library of Urea ontaining Metal–Organic Assemblies. Angewandte Chemie - International Edition, 2021, 60, 4485-4490.	7.2	38
225	Drug‣ponge Lipid Nanocarrier for in Situ Cargo Loading and Release Using Dynamic Covalent Chemistry. Angewandte Chemie, 2021, 133, 6647-6654.	1.6	2
226	Drugâ€Sponge Lipid Nanocarrier for in Situ Cargo Loading and Release Using Dynamic Covalent Chemistry. Angewandte Chemie - International Edition, 2021, 60, 6573-6580.	7.2	11
227	Supramolecular engineering of polymeric nanodrugs for antitumor chemotherapy. Chemical Engineering Journal, 2021, 416, 127968.	6.6	8
228	Supramolecular nanoparticles constructed from pillar[5]arene-based host–guest complexation with enhanced aggregation-induced emission for imaging-guided drug delivery. Materials Chemistry Frontiers, 2021, 5, 1418-1427.	3.2	12
229	Boronic acid based dynamic click chemistry: recent advances and emergent applications. Chemical Science, 2021, 12, 1585-1599.	3.7	50
230	Glucose Binding Drives Reconfiguration of a Dynamic Library of Ureaâ€Containing Metal–Organic Assemblies. Angewandte Chemie, 2021, 133, 4535-4540.	1.6	14
231	Molecular-scale drug delivery systems loaded with oxaliplatin for supramolecular chemotherapy. Chinese Chemical Letters, 2021, 32, 729-734.	4.8	32
232	Supramolecular Hydrogels via Light-Responsive Homoternary Cross-Links. Biomacromolecules, 2021, 22, 171-182.	2.6	22
233	Sequence-selective recognition of cationic amphipathic tripeptides with similar structures in aqueous solutions by cucurbit[7]uril. Physical Chemistry Chemical Physics, 2021, 23, 13724-13733.	1.3	4
234	Polymeric materials for immune engineering: Molecular interaction to biomaterial design. Acta Biomaterialia, 2021, 133, 139-152.	4.1	30
235	Recent advances in organophosphorus–chalcogen and organophosphorus–pincer based macrocyclic compounds and their metal complexes. Dalton Transactions, 2021, 50, 6382-6409.	1.6	11
236	Supramolecular gel formation regulated by water content in organic solvents: self-assembly mechanism and biomedical applications. RSC Advances, 2021, 11, 11519-11528.	1.7	6

	CITATION	N REPORT	
#	Article	IF	CITATIONS
237	Supramolecular cancer nanotheranostics. Chemical Society Reviews, 2021, 50, 2839-2891.	18.7	257
238	Recent progress and future challenges in the supramolecular polymerization of metal-containing monomers. Chemical Science, 2021, 12, 12248-12265.	3.7	29
239	Facile construction of noncovalent graft copolymers with triple stimuli-responsiveness for triggered drug delivery. Polymer Chemistry, 2021, 12, 2152-2164.	1.9	17
240	Tumor microenvironment-activatable boolean logic supramolecular nanotheranostics based on a pillar[6]arene for tumor hypoxia imaging and multimodal synergistic therapy. Materials Chemistry Frontiers, 2021, 5, 5846-5856.	3.2	6
241	Hybrid gels <i>via</i> bulk interfacial complexation of supramolecular polymers and polyelectrolytes. Soft Matter, 2021, 17, 4949-4956.	1.2	8
242	Water compatible supramolecular polymers: recent progress. Chemical Society Reviews, 2021, 50, 10025-10043.	18.7	38
243	Host-guest molecular encapsulation of cucurbit[7]uril with dillapiole congeners using docking simulation and density functional theory approaches. Structural Chemistry, 2021, 32, 1151-1161.	1.0	4
244	Short oligoalanine helical peptides for supramolecular nanopore assembly and protein cytosolic delivery. RSC Chemical Biology, 2021, 2, 503-512.	2.0	4
245	Construction of a hydroxide responsive <i>C</i> ₃ -symmetric supramolecular gel for controlled release of small molecules. Soft Matter, 2021, 17, 7227-7235.	1.2	2
246	Water Solubilization and Thermal Stimuli-Triggered Release of Porphyrin Derivatives Using Thermoresponsive Polysaccharide Hydroxypropyl Cellulose for Mitochondria-Targeted Photodynamic Therapy. ACS Omega, 2021, 6, 3209-3217.	1.6	15
247	Macrocyclicâ€Amphiphileâ€Based Selfâ€Assembled Nanoparticles for Ratiometric Delivery of Therapeutic Combinations to Tumors. Advanced Materials, 2021, 33, e2007719.	11.1	61
248	Peptide–Protein Interactions: From Drug Design to Supramolecular Biomaterials. Molecules, 2021, 26, 1219.	1.7	11
249	Calixareneâ€Embedded Nanoparticles for Interferenceâ€Free Gene–Drug Combination Cancer Therapy. Small, 2021, 17, e2006223.	5.2	24
250	Assembly of Dynamic Supramolecular Polymers on a DNA Origami Platform. Angewandte Chemie, 2021, 133, 7690-7694.	1.6	0
251	Assembly of Dynamic Supramolecular Polymers on a DNA Origami Platform. Angewandte Chemie - International Edition, 2021, 60, 7612-7616.	7.2	7
252	A comprehensive review on fundamental properties and applications of poly(vinylidene fluoride) (PVDF). Advanced Composites and Hybrid Materials, 2021, 4, 8-26.	9.9	200
253	Pillararene-based supramolecular systems for theranostics and bioapplications. Science China Chemistry, 2021, 64, 688-700.	4.2	50
254	Macrocycles in Bioinspired Catalysis: From Molecules to Materials. Frontiers in Chemistry, 2021, 9, 635315.	1.8	8

	CHATION R	LPORT	
#	Article	IF	CITATIONS
255	Realizing tissue integration with supramolecular hydrogels. Acta Biomaterialia, 2021, 124, 1-14.	4.1	29
256	Clycomacromolecules: Addressing challenges in drug delivery and therapeutic development. Advanced Drug Delivery Reviews, 2021, 171, 77-93.	6.6	6
257	"Texas-Sized―Molecular Boxes: From Chemistry to Applications. Molecules, 2021, 26, 2426.	1.7	14
258	Sequence-dependent nanomolar binding of tripeptides containing N-terminal phenylalanine by Cucurbit[7]uril: A theoretical study. Journal of Molecular Liquids, 2021, 328, 115479.	2.3	12
259	Applications of Macrocyclic Host Molecules in Immune Modulation and Therapeutic Delivery. Frontiers in Chemistry, 2021, 9, 658548.	1.8	12
260	Platinum-Containing Supramolecular Drug Self-Delivery Nanomicelles for Efficient Synergistic Combination Chemotherapy. Biomacromolecules, 2021, 22, 2382-2392.	2.6	13
261	Engineering bioinks for 3D bioprinting. Biofabrication, 2021, 13, 032001.	3.7	115
262	Supramolecular Assemblies for Photodynamic Therapy. Current Organic Chemistry, 2021, 25, 963-993.	0.9	1
263	Cargo Encapsulation in Uniform, Length-Tunable Aqueous Nanofibers with a Coaxial Crystalline and Amorphous Core. Macromolecules, 2021, 54, 5784-5796.	2.2	22
264	Preparation, physicochemical characterization and in vitro release behavior of resveratrol-loaded oxidized gellan gum/resistant starch hydrogel beads. Carbohydrate Polymers, 2021, 260, 117794.	5.1	49
265	(Macro)molecular self-assembly for hydrogel drug delivery. Advanced Drug Delivery Reviews, 2021, 172, 275-295.	6.6	92
266	A comparative analysis of the basic properties and applications of poly (vinylidene fluoride) (PVDF) and poly (methyl methacrylate) (PMMA). Polymer Bulletin, 2022, 79, 5635-5665.	1.7	24
267	Combating antibiotic resistance: current strategies for the discovery of novel antibacterial materials based on macrocycle supramolecular chemistry. Giant, 2021, , 100066.	2.5	58
268	Synthesis and characterization of chemically fueled supramolecular materials driven by carbodiimide-based fuels. Nature Protocols, 2021, 16, 3901-3932.	5.5	21
269	Subâ€50 nm Supramolecular Nanohybrids with Active Targeting Corona for Imageâ€Guided Solid Tumor Treatment and Metastasis Inhibition. Advanced Functional Materials, 2021, 31, 2103272.	7.8	7
270	Polymer Micelles Composed of Molecularâ€Bottlebrushâ€Based Surfactants: Precisely Controlling Aggregation Number Corresponding to Polyhedral Structures. Macromolecular Rapid Communications, 2021, 42, 2100285.	2.0	0
271	Glucose-Fueled Peptide Assembly: Glucagon Delivery via Enzymatic Actuation. Journal of the American Chemical Society, 2021, 143, 12578-12589.	6.6	36
272	Biomimetic Glucose Triggerâ€Insulin Release System Based on Hydrogel Loading Bidentate βâ€Cyclodextrin. Advanced Functional Materials, 2021, 31, 2104488.	7.8	15

#	Article	IF	CITATIONS
273	From Supramolecular Hydrogels to Multifunctional Carriers for Biologically Active Substances. International Journal of Molecular Sciences, 2021, 22, 7402.	1.8	30
274	Comparative host–guest complex formation of the Alzheimer's drug memantine with para-sulfonatocalix[n]arenes (n = 4 or 8). Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2021, 101, 131-137.	0.9	1
275	Multifunctional double network hydrogel film for skin wound healing. Materials Express, 2021, 11, 1084-1091.	0.2	7
276	Mechanically Interlocked Molecules for Biomedical Applications. European Journal of Organic Chemistry, 2021, 2021, 5106-5116.	1.2	23
277	Ruthenium (II)â€Coordinated Supramolecular Metallodrug Complex Realizing Oxygen Selfâ€Supply In Situ for Overcoming Hypoxic Tumors. Advanced Functional Materials, 2021, 31, 2105837.	7.8	16
278	Supramolecular "Click Chemistry―for Targeting in the Body. Bioconjugate Chemistry, 2021, 32, 1935-1946.	1.8	20
279	Polyethylenimine–Bisphosphonate–Cyclodextrin Ternary Conjugates: Supramolecular Systems for the Delivery of Antineoplastic Drugs. Journal of Medicinal Chemistry, 2021, 64, 12245-12260.	2.9	9
280	Butyrylcholinesterase responsive supramolecular prodrug with targeted nearâ€infrared cellular imaging property. Asian Journal of Organic Chemistry, 0, , .	1.3	4
281	Self-assembly of bis-[1]rotaxanes based on diverse thiourea-bridged mono-functionalized dipillar[5]arenes. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 0, , 1.	0.9	3
282	Recent progress and strategies for precise framework structure-enabled drug delivery systems. Materials Today Sustainability, 2021, 13, 100065.	1.9	5
283	GSH/ROS Dual-Responsive Supramolecular Nanoparticles Based on Pillar[6]arene and Betulinic Acid Prodrug for Chemo–Chemodynamic Combination Therapy. Molecules, 2021, 26, 5900.	1.7	7
284	Ti3C2Tx-AgNPs@beta-cyclodextrin SERS substrate for rapid and selective determination of erythrosin B in dyed food. Sensors and Actuators B: Chemical, 2021, 346, 130595.	4.0	20
285	Recent advances in supramolecular activatable phthalocyanine-based photosensitizers for anti-cancer therapy. Coordination Chemistry Reviews, 2021, 447, 214155.	9.5	56
286	A study on how to control the supramolecular amphiphilic assembly of anionic bola surfactant with calixpyridinium. Journal of Molecular Liquids, 2021, 343, 117654.	2.3	5
287	Cyclodextrins: promising scaffolds for MRI contrast agents. RSC Advances, 2021, 11, 29762-29785.	1.7	7
288	Testing automatic methods to predict free binding energy of host–guest complexes in SAMPL7 challenge. Journal of Computer-Aided Molecular Design, 2021, 35, 209-222.	1.3	7
289	Sulfoxide hemithioindigo tweezers – visible light addressable capture and release. Chemical Science, 2021, 12, 3651-3659.	3.7	14
290	Construction of a pH-sensitive self-assembly in aqueous solutions based on a dansyl-modified β-cyclodextrin. Soft Matter, 2021, 17, 7516-7523.	1.2	11

ARTICLE IF CITATIONS # Anion Directed Selective Synthesis of Supramolecular Metallocycles and Related Coordination 291 1.0 2 Dimers. European Journal of Inorganic Chemistry, 2021, 2021, 1050-1056. Organic supramolecular aggregates based on waterâ€soluble cyclodextrins and calixarenes. Aggregate, 5.2 2020, 1, 31-44. Cyclodextrin-based delivery systems for in vivo-tested anticancer therapies. Drug Delivery and 293 3.0 46 Translational Research, 2021, 11, 49-71. Stimuli-responsive Material Inspired Drug Delivery Systems and Devices. Biomaterials Science Series, 294 0.1 2018, , 317-334. Diaminomaleonitrile-functionalized gelators in F^{â[^]}/CN^{â[^]} sensing, 295 phase-selective gelation, oil spill recovery and dye removal from water. New Journal of Chemistry, 1.4 17 2020, 44, 10275-10285. Co-delivery Systems of Multiple Drugs Using Nanotechnology for Future Cancer Therapy. Chemical and Pharmaceutical Bulletin, 2020, 68, 603-612. 296 Clinical potential in modern medicine of fibrin glues as drug delivery system. Open Journal of 297 0.1 2 Biological Sciences, 2020, 5, 004-005. Rim-differentiated Co-pillar[4+1]arenes. Chemical Communications, 2021, 57, 11193-11196. 298 An application of $\langle i \rangle p \langle i \rangle$ -sulfonatocalix[6]arenes to attenuate cardiotoxicity of mitoxantrone $\langle i \rangle$ in 299 vitro</i>: preparation, characterization and evaluation. Journal of Pharmacy and Pharmacology, 2022, 1.2 2 74, 41-56. Dual Stimuli-Responsive Dynamic Covalent Peptide Tags: Toward Sequence-Controlled Release in 6.6 Tumor-like Microenvironments. Journal of the American Chemical Society, 2021, 143, 17047-17058. Recent Applications of Pillar[<i>n</i>]arene-Based Hostâ€"Guest Recognition in Chemosensing and 301 4.023 Imaging. ACS Sensors, 2021, 6, 3882-3897. Evaluation of the stability of cucurbit[8]uril-based ternary hosta[^]guest complexation in physiological environment and the fabrication of a supramolecular theranostic nanomedicine. Journal of 4.2 Nanobiotechnology, 2021, 19, 330. Computational Insights into the Aggregation Pathway of Self-Assembled Nanotubules. Journal of 303 1.2 0 Physical Chemistry B, 2021, 125, 12082-12094. Convenient construction of unique bis-[1]rotaxanes based on azobenzene-bridged dipillar[5]arenes. 304 Journal of Inclusion Phenomena and Macrocyclic Chemistry, 0, , 1. 305 Spectroscopy Studies of Macrocyclic Supramolecular Assembly., 2019, , 1-34. 0 Preparation of Biosensor Based on Supermolecular Recognization., 2019, , 1-21. 307 Polyrotaxane Actuators., 2019, , 81-147. 4 Propagation-Instigated Self-Limiting Polymerization of Multiarmed Amphiphiles into Finite 6.6 Supramolecular Polymers. Journal of the American Chemical Society, 2021, 143, 18446-18453.

ARTICLE IF CITATIONS Insight into Molecular Interactions of Two Methyl Benzoate Derivatives with Bovine Serum Albumin. 309 1.8 6 International Journal of Molecular Sciences, 2021, 22, 11705. Preparation of Biosensor Based on Supermolecular Recognization., 2020, , 231-251. 311 Pillararene-Based Supramolecular Polymer., 2020, , 341-381. 0 Nitrogen rich triaminoguanidine-pyrrole conjugate as supramolecular synthon for the construction of charge-assisted hydrogen bonded network with various carboxylic acids. Journal of Solid State Chemistry, 2022, 305, 122637. 1.4 A real-time and in-situ monitoring of the molecular interactions between drug carrier polymers and a 313 2.5 2 phospholipid membrane. Colloids and Surfaces B: Biointerfaces, 2022, 209, 112161. A facile cucurbit[8]uril-based porous assembly: utilization in the adsorption of drugs and their controlled release. New Journal of Chemistry, 2021, 45, 22133-22140. 1.4 Stimuli-Responsive Self-Assembly Based on Macrocyclic Hosts and Biomedical Applications. , 2020, , 315 1 603-646. Construction and Biomedical Applications of Macrocycle-Based Supramolecular Topological Polymers., 2020,, 1555-1585. 317 Spectroscopy Studies of Macrocyclic Supramolecular Assembly., 2020, , 1161-1193. 0 Suger-coated pillararenes for drug delivery applications. E3S Web of Conferences, 2020, 185, 03048. 0.2 Application of Macrocycle-Based Supramolecular Assemblies Based on Aggregation-Induced Emission. , 319 0 2020, , 1345-1368. Increasing membrane permeability of carboxylic acid-containing drugs using synthetic transmembrane 2.2 anion transporters. Chemical Communications, 2021, 57, 13122-13125. A unique amphiphilic triblock copolymer, nontoxic to human blood and potential supramolecular 321 1.6 2 drug delivery system for dexamethasone. Scientific Reports, 2021, 11, 21507. Supramolecular Coronation of Platinum(II) Complexes by Macrocycles: Structure, Relativistic DFT 1.9 Calculations, and Biological Effects. Inorganic Chemistry, 2021, 60, 17911-17925. 2D NMR: A Valuable Tool to Confirm the in Drug Systems. Methods in Molecular Biology, 2021, 2207, 323 0.4 2 235-246. Building a quadruple stimuli-responsive supramolecular gel based on a supra-amphiphilic 1.4 metallogelator. New Journal of Chemistry, 2021, 45, 22902-22907. A hypoxia-responsive supramolecular formulation for imaging-guided photothermal therapy. 326 4.6 36 Theranostics, 2022, 12, 396-409. Synthesis and Coordination Properties of a Water-Soluble Material by Cross-Linking Low Molecular Weight Polyethyleneimine with Armed Cyclotriveratrilene. Polymers, 2021, 13, 4133.

#	Article	IF	CITATIONS
328	Precise control over supramolecular nanostructures <i>via</i> manipulation of H-bonding in ï€-amphiphiles. Nanoscale, 2021, 13, 20111-20118.	2.8	7
329	An overview from simple host–guest systems to progressively complex supramolecular assemblies. Physical Chemistry Chemical Physics, 2021, 23, 26085-26107.	1.3	22
330	Benzimidazole–Piperazine–Coumarin/Cucurbit[7]uril Supramolecular Photoinduced Electron Transfer Fluorochromes for Detection of Carnosol by Stimuli-Responsive Dye Displacement and p <i>K</i> _a Tuning. ACS Omega, 2022, 7, 2356-2363.	1.6	2
331	Supramolecular Radiosensitizer Based on Hypoxiaâ€Responsive Macrocycle. Advanced Science, 2022, 9, e2104349.	5.6	27
332	Dynamic ring-opening polymerization, D-ROP: Applications in coordination polymers. Coordination Chemistry Reviews, 2022, 454, 214342.	9.5	4
333	Liquid crystal behavior, photoluminescence and gas sensing: A new series of ionic liquid crystal imidazole and benzoimidazole bearing chalcone groups, synthesis and characterization. RSC Advances, 2021, 11, 38444-38456.	1.7	6
334	Hierarchy of Complex Glycomacromolecules: From Controlled Topologies to Biomedical Applications. Biomacromolecules, 2022, 23, 543-575.	2.6	12
335	Enhanced antibacterial function of a supramolecular artificial receptor-modified macrophage (SAR-Macrophage). Materials Horizons, 2022, 9, 934-941.	6.4	19
336	Supramolecular co-encapsulation of a photosensitizer and chemotherapeutic drug in cucurbit[8]uril for potential chemophototherapy. Photochemical and Photobiological Sciences, 2022, 21, 349-359.	1.6	7
337	Self-Bonded Hydrogel Inverse Opal Particles as Sprayed Flexible Patch for Wound Healing. ACS Nano, 2022, 16, 2640-2650.	7.3	47
338	Tailoring a Nearâ€Infrared Macrocyclization Scaffold Allows the Control of In Situ Selfâ€Assembly for Photoacoustic/PET Bimodal Imaging. Angewandte Chemie - International Edition, 2022, 61, .	7.2	17
339	Tailoring a Nearâ€Infrared Macrocyclization Scaffold Allows the Control of In Situ Selfâ€assembly for Photoacoustic/PET Bimodal Imaging. Angewandte Chemie, 0, , .	1.6	2
340	Fabrication of programmed photosensitizer-conjugated nanoassemblies by dual supramolecular self-assembly for photodynamic therapy of orthotopic hepatoma. Chemical Engineering Journal, 2022, 435, 134930.	6.6	8
341	Dynamic Nanosurface Reconfiguration by Host-Guest Supramolecular Interactions. Nanoscale, 2022, , .	2.8	2
342	Dynamic covalent chemistry in live cells for organelle targeting and enhanced photodynamic action. Chemical Science, 2022, 13, 3652-3660.	3.7	10
343	Hydrogen-bonded supramolecular polymer micelles with pH/photothermal-responsive carmofur release and combined chemo-photothermal therapy. Polymer Chemistry, 2022, 13, 1010-1014.	1.9	10
344	Frustrated behavior of Lewis/BrÃ,nsted pairs inside molecular cages. Organic Chemistry Frontiers, 2022, 9, 1826-1836.	2.3	5
345	Theoretical investigation of the complexation, structural, and electronic properties of complexes between oseltamivir drug and cucurbit[n = 6–9]urils. Structural Chemistry, 2022, 33, 757-768.	1.0	0

#	Article	IF	CITATIONS
346	Surface Self-Assembly Construction of Therapeutic Contact Lens with Bacterial "Kill-Releasing―and Drug-Reloading Capabilities for Efficient Bacterial Keratitis Treatment. ACS Biomaterials Science and Engineering, 2022, , .	2.6	4
347	Surface Functionalization of Rod-Shaped Viral Particles for Biomedical Applications. ACS Applied Bio Materials, 2022, 5, 1980-1989.	2.3	8
348	Adaptive Recombinant Nanoworms from Genetically Encodable Star Amphiphiles. Biomacromolecules, 2022, 23, 863-876.	2.6	4
349	Dynamic protein and polypeptide hydrogels based on Schiff base co-assembly for biomedicine. Journal of Materials Chemistry B, 2022, 10, 3173-3198.	2.9	27
350	C ₆₀ -β-cyclodextrin conjugates for enhanced nucleus delivery of doxorubicin. Nanoscale, 2022, 14, 4456-4462.	2.8	10
351	Stimuli-responsive cyclodextrin-based supramolecular assemblies as drug carriers. Journal of Materials Chemistry B, 2022, 10, 2077-2096.	2.9	33
352	Supramolecular biomaterials for enhanced cancer immunotherapy. Journal of Materials Chemistry B, 2022, 10, 7183-7193.	2.9	9
353	Structural properties of [Cu(<scp>ii</scp>) ₃ L ₆] cages: bridged polyatomic anion effects on unprecedented efficiency of heterogeneous catechol oxidation. Dalton Transactions, 2022, 51, 5810-5817.	1.6	5
354	A novel AIE-active imidazolium macrocyclic ratiometric fluorescence sensor for pyrophosphate anion. RSC Advances, 2022, 12, 6876-6880.	1.7	10
355	Supramolecular complexation with kinetic stabilization: cucurbit[6]uril encapsulated doxorubicin-based prodrugs for pH-responsive controlled release. New Journal of Chemistry, 2022, 46, 5355-5360.	1.4	11
356	A new cucurbit[10]uril-based AIE fluorescent supramolecular polymer for cellular imaging. Materials Chemistry Frontiers, 2022, 6, 1021-1025.	3.2	21
357	Lanthanide-Organic Pincer Hosts with Allosteric-Controlled Metal Ion Binding Specificity. Chemical Communications, 2022, , .	2.2	1
358	A New Approach to Supramolecular Structure Determination in Pharmaceutical Preparation of Self-Assembling Peptides: A Case Study of Lanreotide Autogel. Pharmaceutics, 2022, 14, 681.	2.0	4
359	The Construction of Cucurbit[7]uril-Based Supramolecular Nanomedicine for Glioma Therapy. Frontiers in Chemistry, 2022, 10, 867815.	1.8	3
360	Supramolecular Biomaterials in the Netherlands. Tissue Engineering - Part A, 2022, , .	1.6	3
361	Polymeric Organo-Hydrogels: Novel Biomaterials for Medical, Pharmaceutical, and Drug Delivery Platforms. Frontiers in Materials, 2022, 9, .	1.2	9
362	A Hybrid Supramolecular Polymeric Nanomedicine for Cascadeâ€Amplified Synergetic Cancer Therapy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	42
363	Applications of Synthetic Receptors in Bioanalysis and Drug Transport. Bioconjugate Chemistry, 2022, 33, 2245-2253.	1.8	3

#	Article	IF	CITATIONS
364	A Hybrid Supramolecular Polymeric Nanomedicine for Cascadeâ€Amplified Synergetic Cancer Therapy. Angewandte Chemie, 2022, 134, .	1.6	6
365	Latest development and versatile applications of highly integrating drug delivery patch. European Polymer Journal, 2022, 170, 111164.	2.6	5
366	Embracing simplicity in biomaterials design. Biomaterials and Biosystems, 2022, 6, 100043.	1.0	4
367	Structural Rationale towards Designing Coordination Polymer Based Metallogels Displaying Antiâ€Cancer and Antiâ€Bacterial Properties. ChemistrySelect, 2021, 6, 13992-14004.	0.7	4
368	Metalâ€Ligand Interactions and Oligo(<i>p</i> â€phenylene vinylene) Derivatives Based Supramolecular Polymer Possessing Variable Fluorescence Colors. Macromolecular Rapid Communications, 2022, , 2200242.	2.0	3
369	Supramolecular nanomedicines through rational design of self-assembling prodrugs. Trends in Pharmacological Sciences, 2022, 43, 510-521.	4.0	16
370	Stepwise pesudopolyrotaxane nanostructure formation from supramolecular self-assembly by inclusion complexation of fast violet B with α- and β-cyclodextrins. Journal of Molecular Structure, 2022, 1262, 133080.	1.8	2
373	A fluorescent, chirality-responsive, and water-soluble cage as a multifunctional molecular container for drug delivery. Organic and Biomolecular Chemistry, 2022, 20, 3998-4005.	1.5	5
374	Nanomaterials-based photosensitizers and delivery systems for photodynamic cancer therapy. , 2022, 135, 212725.		36
375	Cyclodextrin-Activated Porphyrin Photosensitization for Boosting Self-Cleavable Drug Release. Journal of Medicinal Chemistry, 2022, 65, 6764-6774.	2.9	12
376	Synthesis of a new water-soluble hexacarboxylated tribenzotriquinacene derivative and its competitive host–guest interaction for drug delivery. Beilstein Journal of Organic Chemistry, 0, 18, 539-548.	1.3	3
377	Modeling Polyzwitterion-Based Drug Delivery Platforms: A Perspective of the Current State-of-the-Art and Beyond. ACS Engineering Au, 2022, 2, 274-294.	2.3	12
378	Supramolecular Rotaxaneâ€Based Multiâ€Modal Probes for Cancer Biomarker Imaging**. Angewandte Chemie, 2022, 134, .	1.6	1
379	Supramolecular Rotaxaneâ€Based Multiâ€Modal Probes for Cancer Biomarker Imaging**. Angewandte Chemie - International Edition, 2022, 61, e202204072.	7.2	14
380	Collagen-Binding Peptide-Enabled Supramolecular Hydrogel Design for Improved Organ Adhesion and Sprayable Therapeutic Delivery. Nano Letters, 2022, 22, 4182-4191.	4.5	16
381	Cancer cell uptake and distribution of oxanorbornane-based synthetic lipids and their prospects as novel drug delivery systems. Journal of Drug Delivery Science and Technology, 2022, 73, 103439.	1.4	1
382	Hydrogenâ€Bondsâ€Mediated Nanomedicine: Design, Synthesis, and Applications. Macromolecular Rapid Communications, 2022, 43, .	2.0	6
383	Fluorescein-Based Type I Supramolecular Photosensitizer via Induction of Charge Separation by Self-Assembly. Jacs Au, 2022, 2, 1472-1478.	3.6	23

#	Article	IF	CITATIONS
384	Generation of Selfâ€Assembled Structures Composed of Amphipathic, Charged Tripeptides for Intracellular Delivery of Proâ€Apoptotic Chemotherapeutics. Israel Journal of Chemistry, 2022, 62, .	1.0	3
385	Aqueous compatibility of 15 pharmaceutical antimicrobial preservatives with the macrocycles cucurbit[7]uril and para-sulfonatocalix[4]arene. Supramolecular Chemistry, 0, , 1-9.	1.5	1
386	Macromolecular Solute Transport in Supramolecular Hydrogels Spanning Dynamic to Quasi-Static States. ACS Applied Bio Materials, 2022, 5, 4589-4598.	2.3	8
387	Energy Landscapes of Supramolecular Peptide–Drug Conjugates Directed by Linker Selection and Drug Topology. ACS Nano, 2022, 16, 9546-9558.	7.3	9
388	Cyclodextrin-Based Aerogels: A Review of Nanomaterials Systems and Applications. ACS Applied Nano Materials, 2022, 5, 13921-13939.	2.4	4
389	Calixarene-integrated nano-drug delivery system for tumor-targeted delivery and tracking of anti-cancer drugs in vivo. Nano Research, 2022, 15, 7295-7303.	5.8	12
390	Porphyrin-Based Multicomponent Metallacage: Host–Guest Complexation toward Photooxidation-Triggered Reversible Encapsulation and Release. Jacs Au, 2022, 2, 1479-1487.	3.6	34
391	Poly(β-cyclodextrin)/platinum prodrug supramolecular nano system for enhanced cancer therapy: Synthesis and in vivo study. Carbohydrate Polymers, 2022, 292, 119695.	5.1	12
392	Intermolecular interactions in the solid-state structures of isoflavones: the relationship between supramolecular structure, torsion angle, and macroscopic properties. CrystEngComm, 2022, 24, 4731-4739.	1.3	4
393	Host-guest interaction aided Zinc carry and delivery by ESIPT active 2-(2′-hydroxyphenyl)benzoxazole. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 281, 121474.	2.0	0
394	Herbâ€Functionalized Chronic Wound Dressings for Enhancing Biological Functions: Multiple Flavonoids Coordination Driven Strategy. Advanced Functional Materials, 2022, 32, .	7.8	7
395	Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2021. Chinese Chemical Letters, 2023, 34, 107592.	4.8	35
396	Nitrile-Containing Terpyridyl Zn(II)-Coordination Polymer-Based Metallogelators Displaying Helical Structures: Synthesis, Structures, and "Druglike―Action against B16-F10 Melanoma Cells. ACS Applied Materials & Interfaces, 2023, 15, 25098-25109.	4.0	11
397	Drug in Drug: A Host–Guest Formulation of Azocalixarene with Hydroxychloroquine for Synergistic Antiâ€Inflammation. Advanced Materials, 2022, 34, .	11.1	22
398	Drug delivery systems based on renewable polymers: A conceptual short review. Polymers From Renewable Resources, 2022, 13, 44-54.	0.8	5
399	Cucurbit[7]uril-Mediated Supramolecular Bactericidal Nanoparticles: Their Assembly Process, Controlled Release, and Safe Treatment of Intractable Plant Bacterial Diseases. Nano Letters, 2022, 22, 4839-4847.	4.5	6
400	Water-soluble fluorescent supramolecular polymer network with sustainable "Fluorescence on― based on AlEgen-containing host-guest interactions. Giant, 2022, 11, 100112.	2.5	2
401	Promoting Tumor Accumulation of Anticancer Drugs by Hierarchical Carrying of Exogenous and Endogenous Vehicles. Small Structures, 2022, 3, .	6.9	24

#	Article	IF	CITATIONS
402	Recent developments in CO2 capture/storage/utilization with aromatic macrocycles. Carbon Capture Science & Technology, 2022, 4, 100058.	4.9	5
403	Substituent-Controlled Structural, Supramolecular, and Cytotoxic Properties of a Series of 2-Styryl-8-nitro and 2-Styryl-8-hydroxy Quinolines. ACS Omega, 2022, 7, 24838-24850.	1.6	3
404	Multivalent Cucurbituril Dendrons for Cell Membrane Engineering with Supramolecular Receptors. Bioconjugate Chemistry, 2022, 33, 2262-2268.	1.8	1
405	Leveraging the therapeutic, biological, and self-assembling potential of peptides for the treatment of viral infections. Journal of Controlled Release, 2022, 348, 1028-1049.	4.8	12
406	Emulsion interfacial polymerization of anticancer peptides: fabricating polypeptide nanospheres with high drug-loading efficiency and enhanced anticancer activity. Science China Chemistry, 2022, 65, 2252-2259.	4.2	5
407	Supramolecular Adhesive Materials with Antimicrobial Activity for Emerging Biomedical Applications. Pharmaceutics, 2022, 14, 1616.	2.0	3
408	Determination of antihypertensive drugs irbesartan and doxazosin mesylate in healthcare products and urine samples using surface-enhanced Raman scattering. Analytical and Bioanalytical Chemistry, 0, , .	1.9	0
409	Self-assembly hydrogels of therapeutic agents for local drug delivery. Journal of Controlled Release, 2022, 350, 898-921.	4.8	20
410	Water-soluble inclusion complexes for a novel anti-viral agent with low toxicity; Oseltamivir with the β-cyclodextrins. Journal of Molecular Liquids, 2022, 366, 120297.	2.3	6
411	Theoretical insight and molecular recognition of oxatub[4]arene-based organic macrocycle as a supramolecular host for antipsychotic drug risperidone. Journal of Molecular Liquids, 2022, 366, 120195.	2.3	2
412	A novel and water-soluble material for coronavirus inactivation from oseltamivir in the cavity of methyl and sulfated-Î2-cyclodextrins through inclusion complexation. Journal of Pharmaceutical and Biomedical Analysis, 2022, 221, 115057.	1.4	10
413	Fungicide itself as a trigger to facilely construct Hymexazol-Encapsulated polysaccharide supramolecular hydrogels with controllable rheological properties and reduced environmental risks. Chemical Engineering Journal, 2023, 452, 139195.	6.6	16
414	Recent progress on the construction of supramolecular organic frameworks based on macrocyclic hosts. Molecular Systems Design and Engineering, 2022, 7, 1570-1587.	1.7	8
415	Highly efficient discrimination of cancer cells based on <i>in situ</i> activated phosphorescence energy transfer for targeted cell imaging. Journal of Materials Chemistry B, 2022, 10, 8058-8063.	2.9	5
416	Hydrogen-bonded aromatic amide macrocycles: synthesis, properties and functions. Organic and Biomolecular Chemistry, 2022, 20, 9023-9051.	1.5	9
417	A Novel and Water-Soluble Material for Coronavirus Inactivation from Oseltamivir in the Cavity of Methyl and Sulfated-β-Cyclodextrins Through Inclusion Complexation. SSRN Electronic Journal, 0, , .	0.4	0
418	Construction of unique pseudo[1]rotaxanes and [1]rotaxanes based on mono-functionalized pillar[5]arene Schiff bases. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 0, , .	0.9	1
419	Nanocarriers for intracellular co-delivery of proteins and small-molecule drugs for cancer therapy. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	9

#	Article	IF	CITATIONS
420	Covalent Organic Frameworks (COFs): A Necessary Choice For Drug Delivery. ChemistrySelect, 2022, 7,	0.7	7
421	Recent advancements on hyperthermia driven controlled drug delivery from nanotherapeutics. Recent Advances in Drug Delivery and Formulation, 2022, 16, .	0.3	3
422	Tuning the Kinetic Trapping in Chemically Fueled Selfâ€Assembly**. ChemSystemsChem, 2023, 5, .	1.1	7
423	Sustained release of drug-loaded nanoparticles from injectable hydrogels enables long-term control of macrophage phenotype. Biomaterials Science, 2022, 10, 6951-6967.	2.6	13
424	Effect of surfactant micellization on the oxidation of mercaptobenzothiazole by bioinorganic molybdenum complex. Results in Chemistry, 2022, 4, 100616.	0.9	1
425	Acidic Shift of Optimum pH of Bovine Serum Amine Oxidase upon Immobilization onto Nanostructured Ferric Tannates. International Journal of Molecular Sciences, 2022, 23, 12172.	1.8	4
426	Selective Metalâ€ion Complexation of a Biomimetic Calix[6]arene Funnel Cavity Functionalized with Phenol or Quinone. Chemistry - A European Journal, 2023, 29, .	1.7	3
427	Production of supramolecular aggregates by microfluidic platforms. , 2023, , 169-187.		0
428	An Antitumor Dualâ€Responsive Hostâ€Guest Supramolecular Polymer Based on Hypoxiaâ€Cleavable Azocalix[4]arene. Angewandte Chemie, 2023, 135, .	1.6	2
429	An Antitumor Dualâ€Responsive Hostâ€Guest Supramolecular Polymer Based on Hypoxiaâ€Cleavable Azocalix[4]arene. Angewandte Chemie - International Edition, 2023, 62, .	7.2	20
430	AIEgen-Enabled Multicolor Visualization for the Formation of Supramolecular Polymer Networks. Molecules, 2022, 27, 7881.	1.7	3
431	Antiviral supramolecular polymeric hydrogels by self-assembly of tenofovir-bearing peptide amphiphiles. Biomaterials Science, 2023, 11, 489-498.	2.6	8
432	Supramolecular catalytic nanomedicines based on coordination self-assembly of amino acids for cascade-activated and -amplified synergetic cancer therapy. Journal of Materials Chemistry B, 2022, 10, 9838-9847.	2.9	4
433	Development of potent tripodal G-quadruplex DNA binders and their efficient delivery to cancer cells by aptamer functionalised liposomes. Organic and Biomolecular Chemistry, 0, , .	1.5	1
434	Elastin-like polypeptide-based micelles as a promising platform in nanomedicine. Journal of Controlled Release, 2023, 353, 713-726.	4.8	10
435	Supramolecular chemistry of anionic boron clusters and its applications in biology. Coordination Chemistry Reviews, 2023, 477, 214940.	9.5	16
436	Supramolecular polymers: Recent advances based on the types of underlying interactions. Progress in Polymer Science, 2023, 137, 101635.	11.8	31
437	Pillar[6]MaxQ: A potent supramolecular host for inÂvivo sequestration of methamphetamine and fentanyl. CheM, 2023, 9, 881-900.	5.8	11

#	Article	IF	CITATIONS
438	Controlled drug delivery mediated by cyclodextrin-based supramolecular self-assembled carriers: From design to clinical performances. Carbohydrate Polymer Technologies and Applications, 2023, 5, 100266.	1.6	8
439	Tunable Construction of Sandwich-Type Double-[1 + 1] and Half-Folded [2 + 2] Schiff-Base Complexes Controlled by the Combination of Primary and Secondary Template Effects. Inorganic Chemistry, 2022, 61, 20994-21003.	1.9	0
440	Supramolecules in Pharmaceutical Science: A Brief Overview. , 2022, , 1-15.		0
441	Tumor polyamines as guest cues attract host-functionalized liposomes for targeting and hunting via a bio-orthogonal supramolecular strategy. Theranostics, 2023, 13, 611-620.	4.6	3
442	Supramolecule-Driven Host–Guest Co-Crystallization of Cyclic Polyphenols with Anti-Fibrotic Pharmaceutical Drug. Crystal Growth and Design, 2023, 23, 1378-1388.	1.4	5
443	Two-Dimensional Peptide Assembly <i>via</i> Arene–Perfluoroarene Interactions for Proliferation and Differentiation of Myoblasts. Journal of the American Chemical Society, 2023, 145, 1793-1802.	6.6	5
444	Highâ€pressureâ€induced multiple phase transitions of parabanic acid. Journal of Raman Spectroscopy, 2023, 54, 404-413.	1.2	2
445	Control of the stepwise self-assembly process of a pH-responsive amphiphilic 4-aminoquinoline-tetraphenylethene conjugate. Nanoscale, 2023, 15, 3177-3187.	2.8	2
446	Triple targeting host–guest drug delivery system based on lactose-modified azocalix[4]arene for tumor ablation. Materials Horizons, 2023, 10, 1689-1696.	6.4	8
447	Fluorophore-based host–guest assembly complexes for imaging and therapy. Chemical Communications, 2023, 59, 3024-3039.	2.2	5
448	A simple method for fabricating drugs containing a <i>cis-o</i> -diol structure into guanosine-based supramolecular hydrogels for drug delivery. Biomaterials Science, 2023, 11, 3092-3103.	2.6	2
449	Hydrogels for additive manufacturing in scaffolding applications: A review. , 2023, , 103-129.		0
450	Design of Calixareneâ€Based ICD Inducer for Efficient Cancer Immunotherapy. Advanced Functional Materials, 2023, 33, .	7.8	18
451	Supramolecular coassembly: monomer pair design, morphology regulation and functional application. Chemical Communications, 2023, 59, 5514-5530.	2.2	3
452	Recent advances in the modulation of amyloid protein aggregation using the supramolecular host-guest approaches. Biophysical Chemistry, 2023, 297, 107022.	1.5	2
453	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"> <mml:mrow><mml:msub><mml:mi mathvariant="normal">H<mml:mn>2</mml:mn></mml:mi </mml:msub><mml:mi mathvariant="normal">P<mml:msubsup><mml:mi mathvariant="normal">O<mml:mrow><mml:mn>4</mml:mn></mml:mrow><mml:mo>-</mml:mo><!--</td--><td>2.0 mml:msub</td><td>1 sup></td></mml:mi </mml:msubsup></mml:mi </mml:mrow>	2.0 mml:msub	1 sup>
454	and vitamin C (Vc) sensor, Journal of Photochemistry and Photobiology A: Chemistry, 2023, 441, 114745. Oral formulation of Wnt inhibitor complex reduces inflammation and fibrosis in intraperitoneal implants in vivo. Drug Delivery and Translational Research, 2023, 13, 1420-1435.	3.0	1
455	Rosmarinic Acid rosslinked Supramolecular Nanoassembly with Selfâ€Regulated Photodynamic and Antiâ€Metastasis Properties for Synergistic Photoimmunotherapy. Small, 2023, 19, .	5.2	8

_			_		
C	TAT	101	1 D	ED/	DT
C.I.	IAL	ION		F P(лкт

#	Article	IF	CITATIONS
456	Enhanced Bacterialâ€Infected Wound Healing by Nitric Oxideâ€Releasing Topological Supramolecular Nanocarriers with Selfâ€Optimized Cooperative Multiâ€Point Anchoring. Advanced Science, 2023, 10, .	5.6	8
457	Antibacterial potentials of pillar[5]arene, pillar[4]arene[1]quinone derivative and their isatin inclusion complexes. Supramolecular Chemistry, 2021, 33, 701-708.	1.5	3
458	Design and Characterization of Smart Supramolecular Nanomaterials and their Biohybrids. , 2023, , 1-15.		0
459	Editorial: Supramolecular cancer therapeutic biomaterials. Frontiers in Chemistry, 0, 11, .	1.8	0
460	Polytonic Drug Release via Multiâ€Hierarchical Microstructures Enabled by Nanoâ€Metamaterials. Advanced Healthcare Materials, 2023, 12, .	3.9	5
461	Supramolecular photosensitizers using extended macrocyclic hosts for photodynamic therapy with distinct cellular delivery. Chemical Science, 2023, 14, 3523-3530.	3.7	9
462	Coordination-Driven Tetragonal Prismatic Cage and the Investigation on Host–Guest Complexation. Inorganic Chemistry, 2023, 62, 4393-4398.	1.9	0
463	Cyclodextrin-Based Polymeric Drug Delivery Systems for Cancer Therapy. Polymers, 2023, 15, 1400.	2.0	5
464	Construction and Hierarchical Self-Assembly of Multifunctional Coordination Cages with Triangular Metal–Metal-Bonded Units. Journal of the American Chemical Society, 2023, 145, 7446-7453.	6.6	17
465	A supramolecular near-infrared nanophotosensitizer from host-guest complex of lactose-capped pillar[5]arene with aza-BODIPY derivative for tumor eradication. Organic Chemistry Frontiers, 2023, 10, 1927-1935.	2.3	7
466	Stimuli-Responsive Designer Supramolecular Polymer Gel. Chemistry, 2023, 5, 691-702.	0.9	2
467	Sponge-like macroporous cyclodextrin-based cryogels for controlled drug delivery. Materials Chemistry Frontiers, 2023, 7, 2693-2705.	3.2	6
468	A general supramolecular adjuvant for pesticides based on <scp>host–guest</scp> recognition. Pest Management Science, 2023, 79, 3133-3140.	1.7	1
469	Nanotechnology-enabled gene delivery for cancer and other genetic diseases. Expert Opinion on Drug Delivery, 2023, 20, 523-540.	2.4	2
472	Review on Isatin- A Remarkable Scaffold for Designing Potential Therapeutic Complexes and Its Macrocyclic Complexes with Transition Metals. Journal of Inorganic and Organometallic Polymers and Materials, 2023, 33, 1782-1801.	1.9	1
477	Supramolecular assemblies from antimony(V) complexes for the treatment of leishmaniasis. Biophysical Reviews, 2023, 15, 751-765.	1.5	2
484	Bisphosphonate-based nanocomposite hydrogels for biomedical applications. , 2023, , 541-557.		0
485	Photothermal Nanomaterials: A Powerful Light-to-Heat Converter. Chemical Reviews, 2023, 123, 6891-6952.	23.0	137

#	Article	IF	CITATIONS
486	Synthesis, structure, and application of boron-containing macrocycles. Journal of Materials Chemistry C, 2023, 11, 7144-7158.	2.7	3
490	Carbohydrate–macrocycle conjugates for biomedical applications. Materials Chemistry Frontiers, 2023, 7, 5263-5287.	3.2	3
491	Conformational Restriction-Induced Dual Visible Light-Switched Diarylethene Fluorochrome by Composite Films. , 2023, 5, 2299-2307.		1
505	Applications of supramolecular assemblies in drug delivery and photodynamic therapy. RSC Medicinal Chemistry, 2023, 14, 2438-2458.	1.7	1
519	A supramolecular assembly-based strategy towards the generation and amplification of photon up-conversion and circularly polarized luminescence. Nanoscale, 2023, 15, 18999-19015.	2.8	0
525	Overcoming barriers with non-covalent interactions: supramolecular recognition of adamantyl cucurbit[<i>n</i>]uril assemblies for medical applications. RSC Medicinal Chemistry, 2024, 15, 433-471.	1.7	0
533	A review on recent advances of iron-based macrocyclic complexes as prominent candidate for several potential applications. Journal of the Iranian Chemical Society, 2024, 21, 305-326.	1.2	0