Structure of histone-based chromatin in Archaea

Science 357, 609-612

DOI: 10.1126/science.aaj1849

Citation Report

#	Article	IF	CITATIONS
1	Evolution of epigenetic chromatin states. Current Opinion in Chemical Biology, 2017, 41, 36-42.	6.1	12
2	Structural Biology: Probing the Origins of Chromatin. Current Biology, 2017, 27, R1118-R1120.	3.9	1
3	Conservation Biology: A Walking Stick's Redux on Lord Howe Island. Current Biology, 2017, 27, R1120-R1122.	3.9	0
4	Structural insights into archaeal chromatin. Nature Reviews Microbiology, 2017, 15, 575-575.	28.6	O
5	Crystal Structure of Overlapping Dinucleosome, the New Basic Unit of Chromatin. Seibutsu Butsuri, 2017, 57, 309-311.	0.1	0
6	Phylogenetic analysis of the core histone doublet and DNA topo II genes of Marseilleviridae: evidence of proto-eukaryotic provenance. Epigenetics and Chromatin, 2017, 10, 55.	3.9	33
7	Symbiotic Origin of Eukaryotic Nucleus: From Cell Body to Neo-Energide. Plant Cell Monographs, 2018, , 39-66.	0.4	23
8	Concepts in Cell Biology - History and Evolution. Plant Cell Monographs, 2018, , .	0.4	O
9	The 4D Nucleome: Genome Compartmentalization in an Evolutionary Context. Biochemistry (Moscow), 2018, 83, 313-325.	1.5	31
10	Four domains: The fundamental unicell and Post-Darwinian Cognition-Based Evolution. Progress in Biophysics and Molecular Biology, 2018, 140, 49-73.	2.9	33
11	Structural diversity of the nucleosome. Journal of Biochemistry, 2018, 163, 85-95.	1.7	73
12	Evidence for the implication of the histone code in building the genome structure. BioSystems, 2018, 164, 49-59.	2.0	52
13	Crystallographic analysis of the overlapping dinucleosome as a novel chromatin unit. Biophysics and Physicobiology, 2018, 15, 251-254.	1.0	0
14	Molecular structure of promoter-bound yeast TFIID. Nature Communications, 2018, 9, 4666.	12.8	32
15	Population Epigenomics: Advancing Understanding of Phenotypic Plasticity, Acclimation, Adaptation and Diseases. Population Genomics, 2018, , 179-260.	0.5	18
16	Structure and function of archaeal histones. PLoS Genetics, 2018, 14, e1007582.	3.5	74
17	Snapshots of archaeal DNA replication and repair in living cells using super-resolution imaging. Nucleic Acids Research, 2018, 46, 10757-10770.	14.5	16
18	Coil conversion to βâ€strand induced by dimerization. Proteins: Structure, Function and Bioinformatics, 2018, 86, 1221-1230.	2.6	O

#	Article	IF	Citations
19	Modifying Chromatin by Histone Tail Clipping. Journal of Molecular Biology, 2018, 430, 3051-3067.	4.2	33
20	Archaeal <scp>DNA</scp> on the histone merryâ€goâ€round. FEBS Journal, 2018, 285, 3168-3174.	4.7	13
21	Direct Observation of H3–H4 Octasome by High‧peed AFM. Chemistry - A European Journal, 2018, 24, 15998-16002.	3.3	19
22	Transcription of Bacterial Chromatin. Journal of Molecular Biology, 2019, 431, 4040-4066.	4.2	51
23	Adenovirus Entry: From Infection to Immunity. Annual Review of Virology, 2019, 6, 177-197.	6.7	113
24	A Single-Molecule View of Archaeal Transcription. Journal of Molecular Biology, 2019, 431, 4116-4131.	4.2	13
25	Key Concepts and Challenges in Archaeal Transcription. Journal of Molecular Biology, 2019, 431, 4184-4201.	4.2	35
26	EvoChromo: towards a synthesis of chromatin biology and evolution. Development (Cambridge), 2019, 146, .	2.5	16
27	Contributions of single-cell genomics to our understanding of planktonic marine archaea. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190096.	4.0	9
28	TFS and Spt4/5 accelerate transcription through archaeal histoneâ€based chromatin. Molecular Microbiology, 2019, 111, 784-797.	2.5	24
29	Transcription initiation factor TBP: old friend new questions. Biochemical Society Transactions, 2019, 47, 411-423.	3.4	32
30	Polysialic Acid Modulates Only the Antimicrobial Properties of Distinct Histones. ACS Omega, 2019, 4, 1601-1610.	3.5	10
31	Mosaic origin of the eukaryotic kinetochore. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12873-12882.	7.1	76
32	The Role of Archaeal Chromatin in Transcription. Journal of Molecular Biology, 2019, 431, 4103-4115.	4.2	19
33	Archaeal Histone Contributions to the Origin of Eukaryotes. Trends in Microbiology, 2019, 27, 703-714.	7.7	38
34	Old cogs, new tricks: the evolution of gene expression in a chromatin context. Nature Reviews Genetics, 2019, 20, 283-297.	16.3	86
35	Biophysics of Chromatin Dynamics. Annual Review of Biophysics, 2019, 48, 321-345.	10.0	102
36	Chromatin research and biological engineering: an evolving relationship poised for new biomedical impacts. Current Opinion in Systems Biology, 2019, 14, 73-81.	2.6	3

#	Article	IF	CITATIONS
37	A new type of DNA phosphorothioation-based antiviral system in archaea. Nature Communications, 2019, 10, 1688.	12.8	54
39	Functions of Archaeal Nucleoid Proteins: Archaeal Silencers are Still Missing. , 2019, , 29-45.		1
40	Nuclear and Extranuclear DNA in Insects. , 2019, , 73-102.		0
41	Epigenetics and the dynamics of chromatin during adenovirus infections. FEBS Letters, 2019, 593, 3551-3570.	2.8	25
42	The architects of bacterial DNA bridges: a structurally and functionally conserved family of proteins. Open Biology, 2019, 9, 190223.	3.6	44
43	Histones predate the split between bacteria and archaea. Bioinformatics, 2019, 35, 2349-2353.	4.1	17
44	Architectural roles of Cren7 in folding crenarchaeal chromatin filament. Molecular Microbiology, 2019, 111, 556-569.	2.5	11
45	The origin of chromosomal histones in a 30S ribosomal protein. Gene, 2020, 726, 144155.	2.2	1
46	Thermosensitive Nucleosome Editing Reveals the Role of DNA Sequence in Targeted Histone Variant Deposition. Cell Reports, 2020, 30, 257-268.e5.	6.4	16
47	Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes,) Tj ETQq1 1 0.7843	14 rgBT /0 2.1	Overlock 10
48	Programmable Assembly of DNA-protein Hybrid Structures. Chemical Research in Chinese Universities, 2020, 36, 211-218.	2.6	4
49	Chromosome organization in bacteria: mechanistic insights into genome structure and function. Nature Reviews Genetics, 2020, 21, 227-242.	16.3	144
50	Zinc as a plausible epigenetic modulator of glioblastoma multiforme. European Journal of Pharmacology, 2020, 887, 173549.	3.5	9
52	Histone variants in archaea and the evolution of combinatorial chromatin complexity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33384-33395.	7.1	34
53	Primary Role of the Nucleosome. Molecular Cell, 2020, 79, 371-375.	9.7	104
54	Archaeal transcription. Transcription, 2020, 11, 199-210.	3.1	12
55	Archaeal Chromatin Proteins Cren7 and Sul7d Compact DNA by Bending and Bridging. MBio, 2020, 11, .	4.1	11
56	Different Proteins Mediate Step-Wise Chromosome Architectures in Thermoplasma acidophilum and Pyrobaculum calidifontis. Frontiers in Microbiology, 2020, 11, 1247.	3.5	9

#	Article	IF	CITATIONS
57	The histone H3-H4 tetramer is a copper reductase enzyme. Science, 2020, 369, 59-64.	12.6	60
58	The secret life of histones. Science, 2020, 369, 33-33.	12.6	4
59	FttA is a CPSF73 homologue that terminates transcription in Archaea. Nature Microbiology, 2020, 5, 545-553.	13.3	23
60	Lysine-specific acetylated proteome from the archaeon Thermococcus gammatolerans reveals the presence of acetylated histones. Journal of Proteomics, 2021, 232, 104044.	2.4	12
61	Mechanical and structural properties of archaeal hypernucleosomes. Nucleic Acids Research, 2021, 49, 4338-4349.	14.5	16
62	Architecture of the multiâ€functional SAGA complex and the molecular mechanism of holding TBP. FEBS Journal, 2021, 288, 3135-3147.	4.7	9
63	Chiral Systems Made from DNA. Advanced Science, 2021, 8, 2003113.	11.2	42
64	Did Cyclic Metaphosphates Have a Role in the Origin of Life?. Origins of Life and Evolution of Biospheres, 2021, 51, 1-60.	1.9	12
65	Histone variants at a glance. Journal of Cell Science, 2021, 134, .	2.0	101
66	Archaeal chromatin â€̃slinkies' are inherently dynamic complexes with deflected DNA wrapping pathways. ELife, 2021, 10, .	6.0	36
67	Archaea: The Final Frontier of Chromatin. Journal of Molecular Biology, 2021, 433, 166791.	4.2	26
68	Serial Endosymbiosis Theory: From biology to astronomy and back to the origin of life. BioSystems, 2021, 202, 104353.	2.0	4
69	The structure of a virus-encoded nucleosome. Nature Structural and Molecular Biology, 2021, 28, 413-417.	8.2	40
73	Extended Archaeal Histone-Based Chromatin Structure Regulates Global Gene Expression in Thermococcus kodakarensis. Frontiers in Microbiology, 2021, 12, 681150.	3.5	13
74	Crystal and solution structures reveal oligomerization of individual capsid homology domains of Drosophila Arc. PLoS ONE, 2021, 16, e0251459.	2.5	7
75	Soft-matter properties of multilayer chromosomes. Physical Biology, 2021, 18, 053001.	1.8	5
76	Virus-encoded histone doublets are essential and form nucleosome-like structures. Cell, 2021, 184, 4237-4250.e19.	28.9	47
77	Small Proteins in Archaea, a Mainly Unexplored World. Journal of Bacteriology, 2022, 204, JB0031321.	2.2	14

#	Article	IF	CITATIONS
81	Unraveling DNA Organization with Single-Molecule Force Spectroscopy Using Magnetic Tweezers. Methods in Molecular Biology, 2018, 1837, 317-349.	0.9	10
82	Genome-in-a-Box: Building a Chromosome from the Bottom Up. ACS Nano, 2021, 15, 111-124.	14.6	16
87	VivosX, a disulfide crosslinking method to capture site-specific, protein-protein interactions in yeast and human cells. ELife, $2018, 7, .$	6.0	11
88	Chromatinization of Escherichia coli with archaeal histones. ELife, 2019, 8, .	6.0	23
89	The DNA-binding protein HTa from Thermoplasma acidophilum is an archaeal histone analog. ELife, 2019, 8, .	6.0	18
98	3 tera-basepairs as a fundamental limit for robust DNA replication. Physical Biology, 2020, 17, 046002.	1.8	1
100	An archaeal histone-like protein regulates gene expression in response to salt stress. Nucleic Acids Research, 2021, 49, 12732-12743.	14.5	22
101	The hyperthermophilic archaeon Thermococcus kodakarensis is resistant to pervasive negative supercoiling activity of DNA gyrase. Nucleic Acids Research, 2021, 49, 12332-12347.	14.5	3
103	Novel Classes and Evolutionary Turnover of Histone H2B Variants in the Mammalian Germline. Molecular Biology and Evolution, 2022, 39, .	8.9	18
105	Multiple roles of Pol epsilon in eukaryotic chromosome replication. Biochemical Society Transactions, 2022, , .	3.4	1
106	Histone variants in archaea – An undiscovered country. Seminars in Cell and Developmental Biology, 2023, 135, 50-58.	5.0	10
108	DNA-Binding Properties of a Novel Crenarchaeal Chromatin-Organizing Protein in Sulfolobus acidocaldarius. Biomolecules, 2022, 12, 524.	4.0	1
109	Deep Conservation of Histone Variants in Thermococcales Archaea. Genome Biology and Evolution, 2022, 14, .	2.5	6
110	Protein embeddings and deep learning predict binding residues for various ligand classes. Scientific Reports, 2021, 11, 23916.	3.3	63
111	Single-Molecule/Cell Analyses Reveal Principles of Genome-Folding Mechanisms in the Three Domains of Life. International Journal of Molecular Sciences, 2021, 22, 13432.	4.1	0
112	A phylogenetic and proteomic reconstruction of eukaryotic chromatin evolution. Nature Ecology and Evolution, 2022, 6, 1007-1023.	7.8	26
113	The pleiotropic roles of SPT5 in transcription. Transcription, 2022, 13, 53-69.	3.1	15
115	Nucleosome Structures Built from Highly Divergent Histones: Parasites and Giant DNA Viruses. Epigenomes, 2022, 6, 22.	1.8	3

#	Article	IF	Citations
116	Profile of Karolin Luger. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	7.1	0
117	How to Shut Down Transcription in Archaea during Virus Infection. Microorganisms, 2022, 10, 1824.	3.6	1
118	Micrococcal Nuclease Digestion Assays for the Analysis of Chromosome Structure in Archaea. Methods in Molecular Biology, 2022, , 29-38.	0.9	0
119	Columnar structure of human telomeric chromatin. Nature, 2022, 609, 1048-1055.	27.8	27
121	Cryo–electron microscopy structure of the H3-H4 octasome: A nucleosome-like particle without histones H2A and H2B. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	4
122	A giant virus genome is densely packaged by stable nucleosomes within virions. Molecular Cell, 2022, ,	9.7	7
123	A new chromatin flavor to cap chromosomes: Where structure, function, and evolution meet. Molecular Cell, 2022, 82, 4199-4201.	9.7	1
124	Nucleosomes and their complexes in the cryoEM era: Trends and limitations. Frontiers in Molecular Biosciences, 0, 9, .	3.5	2
125	Faithful to the Marseille tradition: Unique and intriguingâ€"that's how Marseillevirus packs its DNA. Molecular Cell, 2022, 82, 4401-4402.	9.7	0
127	Role of the histone tails in histone octamer transfer. Nucleic Acids Research, 0, , .	14.5	4
128	The Hypersaline Archaeal Histones HpyA and HstA Are DNA Binding Proteins That Defy Categorization According to Commonly Used Functional Criteria. MBio, 2023, 14, .	4.1	2
131	Systematic comparison of unilamellar vesicles reveals that archaeal core lipid membranes are more permeable than bacterial membranes. PLoS Biology, 2023, 21, e3002048.	5.6	6
132	Specific DNA binding of archaeal histones HMfA and HMfB. Frontiers in Microbiology, 0, 14, .	3.5	4
134	Protein–DNA Interactions. , 2022, , 522-571.		0
136	Histone divergence in trypanosomes results in unique alterations to nucleosome structure. Nucleic Acids Research, 2023, 51, 7882-7899.	14.5	3
137	Histones direct site-specific CRISPR spacer acquisition in model archaeon. Nature Microbiology, 2023, 8, 1682-1694.	13.3	0
138	DNA-bridging by an archaeal histone variant via a unique tetramerisation interface. Communications Biology, 2023, 6, .	4.4	3
139	Probing archaeal cell biology: exploring the use of dyes in the imaging of Sulfolobus cells. Frontiers in Microbiology, 0, 14 , .	3.5	0

#	Article	IF	CITATIONS
140	Histones with an unconventional DNA-binding mode in vitro are major chromatin constituents in the bacterium Bdellovibrio bacteriovorus. Nature Microbiology, 2023, 8, 2006-2019.	13.3	6
143	Domain Archaea: Structural and Phylogenetic Relationss With Domain Eukarya. , 2024, , 828-838.		0
144	The chromatin landscape of the euryarchaeon Haloferax volcanii. Genome Biology, 2023, 24, .	8.8	0
146	On the origin of the nucleus: a hypothesis. Microbiology and Molecular Biology Reviews, 0, , .	6.6	O
147	The role of cryptic ancestral symmetry in histone folding mechanisms across Eukarya and Archaea. PLoS Computational Biology, 2024, 20, e1011721.	3.2	0
148	Nucleosomes at the Dawn of Eukaryotes. Genome Biology and Evolution, 2024, 16, .	2.5	0
149	Archaeal histone-based chromatin structures regulate transcription elongation rates. Communications Biology, 2024, 7, .	4.4	0