Activation of Î³2-AMPK Suppresses Ribosome Biogenes Ischemia/Reperfusion Injury

Circulation Research 121, 1182-1191

DOI: 10.1161/circresaha.117.311159

Citation Report

#	Article	IF	Citations
1	AMP-Activated Protein Kinase Î ³ 2 to the Rescue in Ischemic Heart. Circulation Research, 2017, 121, 1113-1115.	4.5	1
2	The increase in fiber size in male rat gastrocnemius after chronic central leptin infusion is related to activation of insulin signaling. Molecular and Cellular Endocrinology, 2018, 470, 48-59.	3.2	8
3	Ginsenoside Rg1 Prevents Doxorubicin-Induced Cardiotoxicity through the Inhibition of Autophagy and Endoplasmic Reticulum Stress in Mice. International Journal of Molecular Sciences, 2018, 19, 3658.	4.1	87
4	Salvinorin A moderates postischemic brain injury by preserving endothelial mitochondrial function via AMPK/Mfn2 activation. Experimental Neurology, 2019, 322, 113045.	4.1	27
5	Ribosome biogenesis in skeletal muscle: coordination of transcription and translation. Journal of Applied Physiology, 2019, 127, 591-598.	2.5	39
6	AMP-activated protein kinase: the current landscape for drug development. Nature Reviews Drug Discovery, 2019, 18, 527-551.	46.4	425
7	Identification of Candidate Genes and Pathways in Dexmedetomidine-Induced Cardioprotection in the Rat Heart by Bioinformatics Analysis. International Journal of Molecular Sciences, 2019, 20, 1614.	4.1	14
8	Hierarchical activation of compartmentalized pools of AMPK depends on severity of nutrient or energy stress. Cell Research, 2019, 29, 460-473.	12.0	101
9	SERP1 prevents hypoxia-reoxygenation-induced H9c2 apoptosis through activating JAK2/STAT3 pathway-dependent attenuation of endoplasmic reticulum stress. Biochemical and Biophysical Research Communications, 2019, 508, 256-262.	2.1	12
10	High CO ₂ Downregulates Skeletal Muscle Protein Anabolism via AMP-activated Protein Kinase α2–mediated Depressed Ribosomal Biogenesis. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 74-86.	2.9	27
11	AMP-activated protein kinase: An attractive therapeutic target for ischemia-reperfusion injury. European Journal of Pharmacology, 2020, 888, 173484.	3.5	33
12	Insight into AMPK regulation mechanism in vivo and in vitro: Responses to low temperatures in the olive flounder Paralichthys olivaceus. Journal of Thermal Biology, 2020, 91, 102640.	2.5	12
13	Hypercapnia-Driven Skeletal Muscle Dysfunction in an Animal Model of Pulmonary Emphysema Suggests a Complex Phenotype. Frontiers in Physiology, 2020, 11, 600290.	2.8	9
14	lncRNA Oip5â€as1 attenuates myocardial ischaemia/reperfusion injury by sponging miRâ€29a to activate the SIRT1/AMPK/PGC1α pathway. Cell Proliferation, 2020, 53, e12818.	5.3	69
15	Mechanisms dissection of the combination GRS derived from ShengMai preparations for the treatment of myocardial ischemia/reperfusion injury. Journal of Ethnopharmacology, 2021, 264, 113381.	4.1	10
16	Circular RNA ITCH mediates H 2 O 2 â€induced myocardial cell apoptosis by targeting miRâ€17â€5p via wnt/βâ€catenin signalling pathway. International Journal of Experimental Pathology, 2021, 102, 22-31.	1.3	11
17	Post-Translational Modifications of the Energy Guardian AMP-Activated Protein Kinase. International Journal of Molecular Sciences, 2021, 22, 1229.	4.1	18
18	Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases. Nature Reviews Cardiology, 2021, 18, 499-521.	13.7	283

CITATION REPORT

#	Article	IF	CITATIONS
19	Role of SIRT1/AMPK signaling in the proliferation, migration and invasion of renal cell carcinoma cells. Oncology Reports, 2021, 45, .	2.6	8
21	Phosphoproteomic identification of ULK substrates reveals VPS15â€dependent ULK/VPS34 interplay in the regulation of autophagy. EMBO Journal, 2021, 40, e105985.	7.8	35
22	Contribution of Energy Dysfunction to Impaired Protein Translation in Neurodegenerative Diseases. Frontiers in Cellular Neuroscience, 2021, 15, 668500.	3.7	7
24	LATS2 Deletion Attenuates Myocardial Ischemia-Reperfusion Injury by Promoting Mitochondrial Biogenesis. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-11.	4.0	11
25	Pharmacological inhibition of arachidonate 12-lipoxygenase ameliorates myocardial ischemia-reperfusion injury in multiple species. Cell Metabolism, 2021, 33, 2059-2075.e10.	16.2	35
26	AMPK mediates regulation of glomerular volume and podocyte survival. JCI Insight, 2021, 6, .	5.0	16
27	Skeletal Muscle Ribosome and Mitochondrial Biogenesis in Response to Different Exercise Training Modalities. Frontiers in Physiology, 2021, 12, 725866.	2.8	23
28	Regulation of blood-brain barrier permeability by Salvinorin A via alleviating endoplasmic reticulum stress in brain endothelial cell after ischemia stroke. Neurochemistry International, 2021, 149, 105093.	3.8	10
29	Resveratrol protects against myocardial ischemia-reperfusion injury via attenuating ferroptosis. Gene, 2022, 808, 145968.	2.2	88
32	Genetic Impairment of Succinate Metabolism Disrupts Bioenergetic Sensing in Adrenal Neuroendocrine Cancer. SSRN Electronic Journal, 0, , .	0.4	0
33	XMU-MP-1 protects heart from ischemia/reperfusion injury in mice through modulating Mst1/AMPK pathway. European Journal of Pharmacology, 2022, 919, 174801.	3.5	10
34	Targeting AMPK signaling in ischemic/reperfusion injury: From molecular mechanism to pharmacological interventions. Cellular Signalling, 2022, 94, 110323.	3.6	15
35	Acetyl-CoA production by specific metabolites promotes cardiac repair after myocardial infarction via histone acetylation. ELife, 2021, 10, .	6.0	21
36	Controversial molecular functions of <scp>CBS</scp> versus <scp>non BS</scp> domain variants of <i>PRKAG2</i> in arrhythmia and cardiomyopathy: A case report and literature review. Molecular Genetics & Genomic Medicine, 2022, , e1962.	1.2	1
37	Genetic impairment of succinate metabolism disrupts bioenergetic sensing in adrenal neuroendocrine cancer. Cell Reports, 2022, 40, 111218.	6.4	8
38	Revealment study on the regulation of lipid metabolism by Lingguizhugan Decoction in heart failure treatment based on integrated lipidomics and proteomics. Biomedicine and Pharmacotherapy, 2023, 158, 114066.	5.6	2
39	Potential Mechanisms Between HF and COPD: New Insights From Bioinformatics. Current Problems in Cardiology, 2023, 48, 101539.	2.4	2
40	Metformin preconditioning protects against myocardial stunning and preserves protein translation in a mouse model of cardiac arrest. , 2023, 4, 100034.		3

CITATION REPORT

#	Article	IF	CITATIONS
41	Characterizing Adrenergic Regulation of Glucose Transporter 4-Mediated Glucose Uptake and Metabolism in the Heart. JACC Basic To Translational Science, 2023, , .	4.1	2
43	Protection of melatonin treatment and combination with traditional antibiotics against septic myocardial injury. Cellular and Molecular Biology Letters, 2023, 28, .	7.0	6
44	Blocking RIPK2 Function Alleviates Myocardial Ischemia/Reperfusion Injury by Regulating the AKT and NF-κB Pathways. Immunological Investigations, 2023, 52, 529-545.	2.0	0
45	Effects of resveratrol on tolerance to ischemia/reperfusion injury in aged male mice: Role of autophagy and apoptosis. Food Science and Nutrition, 2023, 11, 5938-5947.	3.4	1
46	Glycolysis maintains AMPK activation in sorafenib-induced Warburg effect. Molecular Metabolism, 2023, 77, 101796.	6.5	0
47	Refeeding-associated AMPKγ1 complex activity is a hallmark of health and longevity. Nature Aging, 2023, 3, 1544-1560.	11.6	1
48	Molecular mechanisms underlying sarcopenia in heart failure. , 0, 4, .		0
49	New Perspectives on the Role and Therapeutic Potential of Melatonin in Cardiovascular Diseases. American Journal of Cardiovascular Drugs, 2024, 24, 171-195.	2.2	0