Raising the one-sun conversion efficiency of III–V/Si and 35.9% for three junctions

Nature Energy

2,

DOI: 10.1038/nenergy.2017.144

Citation Report

#	Article	IF	CITATIONS
1	The new paradigm of photovoltaics: From powering satellites to powering humanity. Comptes Rendus Physique, 2017, 18, 381-390.	0.3	19
2	Perovskite Photovoltaics: The Path to a Printable Terawatt-Scale Technology. ACS Energy Letters, 2017, 2, 2540-2544.	8.8	64
3	Low-Cost CdTe/Silicon Tandem Solar Cells. IEEE Journal of Photovoltaics, 2017, 7, 1767-1772.	1.5	26
4	Transparent Conductive Adhesives for Tandem Solar Cells Using Polymer–Particle Composites. ACS Applied Materials & Interfaces, 2018, 10, 8086-8091.	4.0	25
5	Utilizing hot electrons. Nature Energy, 2018, 3, 170-171.	19.8	40
6	Maximizing tandem solar cell power extraction using a three-terminal design. Sustainable Energy and Fuels, 2018, 2, 1141-1147.	2.5	67
7	A review of recent progress in heterogeneous silicon tandem solar cells. Journal Physics D: Applied Physics, 2018, 51, 133002.	1.3	103
8	Low-temperature processes for passivation and metallization of high-efficiency crystalline silicon solar cells. Solar Energy, 2018, 175, 54-59.	2.9	42
9	III-V/Si dual junction solar cell at scale: Manufacturing cost estimates for step-cell based technology. Journal of Renewable and Sustainable Energy, 2018, 10, .	0.8	18
10	Effect of Series Resistances on Conversion Efficiency of GaAs/Si Tandem Solar Cells With Areal Current-Matching Technique. IEEE Journal of Photovoltaics, 2018, 8, 654-660.	1.5	10
11	Water-Vapor-Mediated Close-Spaced Vapor Transport Growth of Epitaxial Gallium Indium Phosphide Films on Gallium Arsenide Substrates. ACS Applied Energy Materials, 2018, 1, 284-289.	2.5	2
12	Field Performance versus Standard Test Condition Efficiency of Tandem Solar Cells and the Singular Case of Perovskites/Silicon Devices. Journal of Physical Chemistry Letters, 2018, 9, 446-458.	2.1	69
13	Sb2S3 Solar Cells. Joule, 2018, 2, 857-878.	11.7	382
14	Ill–V-on-silicon solar cells reaching 33% photoconversion efficiency in two-terminal configuration. Nature Energy, 2018, 3, 326-333.	19.8	244
15	High growth rate hydride vapor phase epitaxy at low temperature through use of uncracked hydrides. Applied Physics Letters, 2018, 112, .	1.5	22
16	Solar cell efficiency tables (version 51). Progress in Photovoltaics: Research and Applications, 2018, 26, 3-12.	4.4	729
17	Silver bismuth iodides in various compositions as potential Pb-free light absorbers for hybrid solar cells. Sustainable Energy and Fuels, 2018, 2, 294-302.	2.5	81
18	Optimization of GaAs <inf>1-x</inf> P <inf>x</inf> /Si Tandem Dual-Junction Solar Cells. , 2018, , .		0

#	Article	IF	CITATIONS
19	Tunable Luminescent A-SiNxOy Films with High Internal Quantum Efficiency and Fast Radiative Recombination Rates. Materials, 2018, 11, 2494.	1.3	1
20	Silicon bottom subcell optimization for wafer-bonded III-V on Si multijunction solar cells. , 2018, , .		3
21	Standardization of the CPV and car-roof PV technology in 2018 $\hat{a} \in \mathbb{C}$ Where are we going to go?. AlP Conference Proceedings, 2018, , .	0.3	15
22	Investigation of Rear-Emitter GaAsP Top Cells for use in III-V/Si Tandem Photovoltaics. , 2018, , .		2
23	Ultra-Thin GaAs Double-Junction Solar Cell With Carbon-Doped Emitter. IEEE Journal of Photovoltaics, 2018, 8, 1627-1634.	1.5	2
24	Metalorganic vapor phase epitaxy of Ill–V-on-silicon: Experiment and theory. Progress in Crystal Growth and Characterization of Materials, 2018, 64, 103-132.	1.8	48
25	Challenges in the design of concentrator photovoltaic (CPV) modules to achieve highest efficiencies. Applied Physics Reviews, 2018, 5, .	5.5	75
27	A unified parameter set designed for typical 2D/3D simulations of homo-/hetero-/single-/multi-junction solar cells in various simulation programs. , 2018, , .		1
28	The amazing improvement of silicon heterojunction technology: ready for a true mass market launch. , 2018, , .		6
29	Numerical analysis of bifacial silicon-based tandem devices: Shifts in the optimum top-cell bandgap with varying albedo. , 2018, , .		2
30	HVPE-Grown GaAs//Si Tandem Device Performance. , 2018, , .		0
31	In situ recombination junction between p-Si and TiO ₂ enables high-efficiency monolithic perovskite/Si tandem cells. Science Advances, 2018, 4, eaau9711.	4.7	122
32	Operating principles of three-terminal solar cells. , 2018, , .		4
33	A Lattice-Matched GaNP/Si Three-Terminal Tandem Solar Cell. , 2018, , .		7
34	Solar cell designs by maximizing energy production based on machine learning clustering of spectral variations. Nature Communications, 2018, 9, 5126.	5.8	28
35	Evaluation of III-V/Si Multi-Junction Solar Cells Potential for Space. , 2018, , .		0
36	Nanoscale investigation of a radial p–n junction in self-catalyzed GaAs nanowires grown on Si (111). Nanoscale, 2018, 10, 20207-20217.	2.8	10
37	To Do List for Research and Development and International Standardization to Achieve the Goal of Running a Majority of Electric Vehicles on Solar Energy. Coatings, 2018, 8, 251.	1.2	65

#	Article	IF	CITATIONS
38	The Potential of Singlet Fission Photon Multipliers as an Alternative to Silicon-Based Tandem Solar Cells. ACS Energy Letters, 2018, 3, 2587-2592.	8.8	61
39	Improved efficiency of a four-junction solar cell under real sunlight. Japanese Journal of Applied Physics, 2018, 57, 08RD04.	0.8	3
40	Direct Growth of Ill–V/Silicon Triple-Junction Solar Cells With 19.7% Efficiency. IEEE Journal of Photovoltaics, 2018, 8, 1590-1595.	1.5	48
41	Tunable Bandgap GalnAsP Solar Cells With 18.7% Photoconversion Efficiency Synthesized by Low-Cost and High-Growth Rate Hydride Vapor Phase Epitaxy. IEEE Journal of Photovoltaics, 2018, 8, 1577-1583.	1.5	13
42	Reduction in connecting resistivity and optical reflection loss at intermediate layer for mechanically stacked multijunction solar cells. Japanese Journal of Applied Physics, 2018, 57, 102301.	0.8	0
43	Equivalent Performance in Three-Terminal and Four-Terminal Tandem Solar Cells. IEEE Journal of Photovoltaics, 2018, 8, 1584-1589.	1.5	31
44	Optimizing two and four-terminal CuGaSe2/CuInGaSe2 tandem solar cells for achieving high efficiencies. Optik, 2018, 175, 71-77.	1.4	9
45	Optical design of perovskite solar cells for applications in monolithic tandem configuration with CuInSe2 bottom cells. MRS Advances, 2018, 3, 3111-3119.	0.5	13
46	CdCl2 passivation of polycrystalline CdMgTe and CdZnTe absorbers for tandem photovoltaic cells. Journal of Applied Physics, 2018, 123, .	1.1	26
47	Interplay of Structural and Optoelectronic Properties in Formamidinium Mixed Tin–Lead Triiodide Perovskites. Advanced Functional Materials, 2018, 28, 1802803.	7.8	63
48	Techno-economic viability of silicon-based tandem photovoltaic modules in the United States. Nature Energy, 2018, 3, 747-753.	19.8	86
49	String-Level Modeling of Two, Three, and Four Terminal Si-Based Tandem Modules. IEEE Journal of Photovoltaics, 2018, 8, 1370-1375.	1.5	26
50	Energy band engineering of InGaN/GaN multi-quantum-well solar cells via AlGaN electron- and hole-blocking layers. Applied Physics Letters, 2018, 113, .	1.5	29
51	Perovskite/Perovskite/Silicon Monolithic Triple-Junction Solar Cells with a Fully Textured Design. ACS Energy Letters, 2018, 3, 2052-2058.	8.8	87
52	Energy Yield Analysis of Multiterminal Si-Based Tandem Solar Cells. IEEE Journal of Photovoltaics, 2018, 8, 1376-1383.	1.5	26
53	Thermoplasmonic and Photothermal Metamaterials for Solar Energy Applications. Advanced Optical Materials, 2018, 6, 1800317.	3.6	48
54	Yield analysis and comparison of GaInP/Si and GaInP/GaAs multi-terminal tandem solar cells. AIP Conference Proceedings, 2018, , .	0.3	2
55	Minimizing Current and Voltage Losses to Reach 25% Efficient Monolithic Two-Terminal Perovskite–Silicon Tandem Solar Cells. ACS Energy Letters, 2018, 3, 2173-2180.	8.8	194

#	Article	IF	CITATIONS
56	Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nature Materials, 2018, 17, 820-826.	13.3	1,046
57	Solar cell efficiency tables (version 52). Progress in Photovoltaics: Research and Applications, 2018, 26, 427-436.	4.4	592
58	Spectral Splitting for Parallel Junction Solar Cells. , 2019, , .		0
59	Highly Efficient Semitransparent Perovskite Solar Cells for Four Terminal Perovskite-Silicon Tandems. ACS Applied Materials & Interfaces, 2019, 11, 34178-34187.	4.0	71
60	A Long Lifetime Aqueous Organic Solar Flow Battery. Advanced Energy Materials, 2019, 9, 1900918.	10.2	31
61	Effect of single-layer Ta2O5 and double-layer SiO2/Ta2O5 anti-reflective coatings on GaInP/GaAs/Ge triple-junction solar cell performance. Journal of Alloys and Compounds, 2019, 806, 439-450.	2.8	27
62	Potential Substitutes for Replacement of Lead in Perovskite Solar Cells: A Review. Global Challenges, 2019, 3, 1900050.	1.8	115
63	High performance III-V photoelectrodes for solar water splitting via synergistically tailored structure and stoichiometry. Nature Communications, 2019, 10, 3388.	5.8	42
64	Editors' Choice—Stability of Unstable Perovskites: Recent Strategies for Making Stable Perovskite Solar Cells. ECS Journal of Solid State Science and Technology, 2019, 8, Q111-Q117.	0.9	12
65	Solutionâ€Processedâ€ZnOâ€Mediated Semiconductor Bonding with High Mechanical Stability, Electrical Conductivity, Optical Transparency, and Roughness Tolerance. Advanced Materials Interfaces, 2019, 6, 1900921.	1.9	6
66	Direct Growth of a GaInP/GaAs/Si Tripleâ€Junction Solar Cell with 22.3% AM1.5g Efficiency. Solar Rrl, 2019, 3, 1900313.	3.1	59
67	Hydrogel-mediated semiconductor wafer bonding. Applied Physics Letters, 2019, 115, .	1.5	8
68	20%-efficient epitaxial GaAsP/Si tandem solar cells. Solar Energy Materials and Solar Cells, 2019, 202, 110144.	3.0	33
69	The Value of Efficiency in Photovoltaics. Joule, 2019, 3, 2732-2747.	11.7	49
70	Impact of Nonplanar Panels on Photovoltaic Power Generation in the Case of Vehicles. IEEE Journal of Photovoltaics, 2019, 9, 1721-1726.	1.5	24
71	Flexible GaAs solar cells on roll-to-roll processed epitaxial Ge films on metal foils: a route towards low-cost and high-performance III–V photovoltaics. Energy and Environmental Science, 2019, 12, 756-766.	15.6	35
72	Achieving a direct band gap and high power conversion efficiency in an Sbl ₃ /Bil ₃ type-II vdW heterostructure <i>via</i> interlayer compression and electric field application. Physical Chemistry Chemical Physics, 2019, 21, 2619-2627.	1.3	13
73	GaAs/silicon PVMirror tandem photovoltaic miniâ€module with 29.6% efficiency with respect to the outdoor global irradiance. Progress in Photovoltaics: Research and Applications, 2019, 27, 469-475.	4.4	9

#	Article	IF	CITATIONS
74	Perovskite—a Perfect Top Cell for Tandem Devices to Break the S–Q Limit. Advanced Science, 2019, 6, 1801704.	5.6	80
75	Rational design of nanowire solar cells: from single nanowire to nanowire arrays. Nanotechnology, 2019, 30, 194002.	1.3	29
76	Light Management: A Key Concept in High-Efficiency Perovskite/Silicon Tandem Photovoltaics. Journal of Physical Chemistry Letters, 2019, 10, 3159-3170.	2.1	81
77	Efficient Light Management in a Monolithic Tandem Perovskite/Silicon Solar Cell by Using a Hybrid Metasurface. Nanomaterials, 2019, 9, 791.	1.9	16
78	Solar cell efficiency tables (version 54). Progress in Photovoltaics: Research and Applications, 2019, 27, 565-575.	4.4	1,096
79	Characterization of ZnSiP ₂ Films Grown on Si Substrate by Liquid Phase Epitaxy: Morphology, Composition, and Interface Microstructure. Crystal Growth and Design, 2019, 19, 3681-3687.	1.4	4
81	Vanadium Oxide as Transparent Carrier-Selective Layer in Silicon Hybrid Solar Cells Promoting Photovoltaic Performances. ACS Applied Energy Materials, 2019, 2, 4873-4881.	2.5	40
82	Direct Semiconductor Wafer Bonding in Non-Cleanroom Environment: Understanding the Environmental Influences on Bonding. ACS Applied Electronic Materials, 2019, 1, 936-944.	2.0	6
83	Ohmic InP/Si direct-bonded heterointerfaces. Applied Physics Letters, 2019, 114, .	1.5	6
84	Energy optimization and investigation for Z-shaped sun-tracking morphing-wing solar-powered UAV. Aerospace Science and Technology, 2019, 91, 1-11.	2.5	38
85	Modeling of the tandem Ill–V dilute nitride bulk or quantum engineered/silicon solar cells. Semiconductor Science and Technology, 2019, 34, 055017.	1.0	1
86	ZnO1â^'xTex highly mismatched alloys beyond the dilute alloy limit: Synthesis and electronic band structure. Journal of Applied Physics, 2019, 125, 155702.	1.1	13
87	Technology and Market Perspective for Indoor Photovoltaic Cells. Joule, 2019, 3, 1415-1426.	11.7	316
88	Evidence and control of unintentional As-rich shells in GaAs _{1–<i>x</i>} P <i> _x </i> nanowires. Nanotechnology, 2019, 30, 294003.	1.3	4
89	Quantum-cutting Yb ³⁺ -doped perovskite nanocrystals for monolithic bilayer luminescent solar concentrators. Journal of Materials Chemistry A, 2019, 7, 9279-9288.	5.2	67
90	Toward Low-Cost 4-Terminal GaAs//Si Tandem Solar Cells. ACS Applied Energy Materials, 2019, 2, 2375-2380.	2.5	17
91	A Tandem Organic Solar Cell with PCE of 14.52% Employing Subcells with the Same Polymer Donor and Two Absorption Complementary Acceptors. Advanced Materials, 2019, 31, e1804723.	11.1	48
92	Printed assemblies of microscale tripleâ€junction inverted metamorphic GaInP/GaAs/InGaAs solar cells. Progress in Photovoltaics: Research and Applications, 2019, 27, 520-527.	4.4	8

#	Article	IF	CITATIONS
93	Role of In in Hydrogenation of N-Related Complexes in GaInNAs. ACS Applied Electronic Materials, 2019, 1, 461-466.	2.0	4
94	Storage and transfer of optical excitation energy in GaInP epilayer: Photoluminescence signatures. Journal of Materials Science and Technology, 2019, 35, 1364-1367.	5.6	1
95	Nanoscale analysis of electrical junctions in InGaP nanowires grown by template-assisted selective epitaxy. Applied Physics Letters, 2019, 114, .	1.5	10
96	Characterization of dualâ€junction Illâ€V on Si tandem solar cells with 23.7% efficiency under low concentration. Progress in Photovoltaics: Research and Applications, 2019, 27, 652-661.	4.4	19
97	Shining Light on Sulfide Perovskites: LaYS ₃ Material Properties and Solar Cells. Chemistry of Materials, 2019, 31, 3359-3369.	3.2	32
98	Backâ€contacted bottom cells with three terminals: Maximizing power extraction from currentâ€mismatched tandem cells. Progress in Photovoltaics: Research and Applications, 2019, 27, 410-423.	4.4	31
99	Nanowires for High-Efficiency, Low-Cost Solar Photovoltaics. Crystals, 2019, 9, 87.	1.0	59
100	Elaboration of III-V top cell for tandem cell with Silicon. , 2019, , .		1
101	III-V on Si solar cells behavior at NIRT and LILT conditions for space applications. , 2019, , .		0
102	Performance and Economic Evaluation of Solar Rooftop Systems in Different Regions of Thailand. Sustainability, 2019, 11, 6647.	1.6	26
103	Dependence of Multijunction Optimal Gaps on Spectral Variability and Other Environmental and Device Parameters. , 2019, , .		0
104	Luminescent Solar Concentrator Tandem-on-Silicon with above 700mV Passivated Contact Silicon Bottom Cell. , 2019, , .		Ο
105	Design and Fabrication of AlGaAs-based 1.8eV Schottky Solar Cell. , 2019, , .		2
106	Small-area Passivated Contact monoPoly TM Silicon Solar Cells for Tandem Device Integration. , 2019, , .		2
107	AlGaAs/InGaP MBE-grown heterostructures for 1.73eV Solar Cells With 18.7% Efficiency. , 2019, , .		2
108	Toward >25% Efficient Monolithic Epitaxial GaAsP/Si Tandem Solar Cells. , 2019, , .		13
109	Demonstrating the GaInP/GaAs Three-Terminal Heterojunction Bipolar Transistor Solar Cell. , 2019, , .		7
110	Design of two and four-terminals InGaP/GaAs//Si tandem solar cells. , 2019, , .		0

#	Article	IF	CITATIONS
111	Enabling ultrathin III-V solar cells using dual photonic crystals. , 2019, , .		3
112	Effects of Amorphous Silicon Thickness Variation on Infrared-Tuned Silicon Heterojunction Bottom Cells. , 2019, , .		2
113	Structural and optical study of alternating layers of In and GaAs prepared by magnetron sputtering. Universitas Scientiarum, 2019, 24, 523-542.	0.2	1
114	Single junction photovoltaic cell and sub-modules in optimization of solar farms. Procedia Computer Science, 2019, 158, 466-473.	1.2	3
115	First space concentrator prototype using III-V/Si cells. , 2019, , .		0
116	2-D hollow core photonic crystal fiber-type absorption layer for enhancement of efficiency and broad response in multi-junction solar cell. AIP Conference Proceedings, 2019, , .	0.3	0
117	Passivating contacts for crystalline silicon solar cells. Nature Energy, 2019, 4, 914-928.	19.8	374
118	Investigation of Rear-Emitter GaAs _{0.75} P _{0.25} Top Cells for Application to Ill–V/Si Tandem Photovoltaics. IEEE Journal of Photovoltaics, 2019, 9, 1644-1651.	1.5	10
119	Solar cell efficiency tables (Version 53). Progress in Photovoltaics: Research and Applications, 2019, 27, 3-12.	4.4	655
120	Silicon solar cells: toward the efficiency limits. Advances in Physics: X, 2019, 4, 1548305.	1.5	188
121	Designing a hybrid thinâ€film/wafer silicon triple photovoltaic junction for solar water splitting. Progress in Photovoltaics: Research and Applications, 2019, 27, 245-254.	4.4	10
122	Bandgap engineered smart threeâ€ŧerminal solar cell: New perspectives towards very high efficiencies in the silicon world. Progress in Photovoltaics: Research and Applications, 2019, 27, 306-315.	4.4	21
123	Performance comparison of encapsulated PCM PV/T, microchannel heat pipe PV/T and conventional PV/T systems. Energy, 2019, 166, 1249-1266.	4.5	79
124	Growth optimization and characterization of regular arrays of GaAs/AlGaAs core/shell nanowires for tandem solar cells on silicon. Nanotechnology, 2019, 30, 084005.	1.3	16
125	Physics and design for 20% and 25% efficiency nanowire array solar cells. Nanotechnology, 2019, 30, 074002.	1.3	22
126	A new approach to the modeling and simulation of multi-junction solar cells. Optik, 2020, 200, 163452.	1.4	14
127	Strategies Toward Extending the Nearâ€Infrared Photovoltaic Response of Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900280.	3.1	13
128	Silicon solar cells: materials, technologies, architectures. , 2020, , 35-57.		8

#	Article	IF	CITATIONS
129	Hybrid III-V/SiGe solar cells grown on Si substrates through reverse graded buffers. Solar Energy Materials and Solar Cells, 2020, 205, 110246.	3.0	13
130	Three-terminal III–V/Si tandem solar cells enabled by a transparent conductive adhesive. Sustainable Energy and Fuels, 2020, 4, 549-558.	2.5	46
131	Solar cell efficiency tables (Version 55). Progress in Photovoltaics: Research and Applications, 2020, 28, 3-15.	4.4	694
132	Broadband antireflective coatings for high efficiency InGaP/GaAs/InGaAsP/InGaAs multi-junction solar cells. Solar Energy Materials and Solar Cells, 2020, 207, 110359.	3.0	24
133	Power Losses in the Front Transparent Conductive Oxide Layer of Silicon Heterojunction Solar Cells: Design Guide for Single-Junction and Four-Terminal Tandem Applications. IEEE Journal of Photovoltaics, 2020, 10, 326-334.	1.5	2
134	Polycrystalline CuGaSe2 thin film growth and photovoltaic devices fabricated on alkali-free and alkali-containing substrates. Journal of Crystal Growth, 2020, 532, 125407.	0.7	5
135	Wideâ€Bandgap Perovskite/Gallium Arsenide Tandem Solar Cells. Advanced Energy Materials, 2020, 10, 1903085.	10.2	49
136	Monolithic thin-film chalcogenide–silicon tandem solar cells enabled by a diffusion barrier. Solar Energy Materials and Solar Cells, 2020, 207, 110334.	3.0	34
137	Monolithic Perovskite/Si Tandem Solar Cells: Pathways to Over 30% Efficiency. Advanced Energy Materials, 2020, 10, 1902840.	10.2	87
138	Considerations for the Design of a Heterojunction Bipolar Transistor Solar Cell. IEEE Journal of Photovoltaics, 2020, 10, 2-7.	1.5	7
139	Three-Terminal Tandem Solar Cells With a Back-Contact-Type Bottom Cell Bonded Using Conductive Metal Nanoparticle Arrays. IEEE Journal of Photovoltaics, 2020, 10, 358-362.	1.5	10
140	Predicted Power Output of Silicon-Based Bifacial Tandem Photovoltaic Systems. Joule, 2020, 4, 580-596.	11.7	46
141	The Race for Lowest Costs of Electricity Production: Techno-Economic Analysis of Silicon, Perovskite and Tandem Solar Cells. IEEE Journal of Photovoltaics, 2020, 10, 1632-1641.	1.5	62
142	Tailored Nanostructures for Light Management in Silicon Heterojunction Solar Cells. Solar Rrl, 2020, 4, 2000484.	3.1	11
143	Interfacial States, Energetics, and Atmospheric Stability of Large-Grain Antifluorite Cs ₂ TiBr ₆ . Journal of Physical Chemistry C, 2020, 124, 24289-24297.	1.5	21
144	Dustâ€Sized Highâ€Powerâ€Density Photovoltaic Cells on Si and SOI Substrates for Waferâ€Levelâ€Packaged Small Edge Computers. Advanced Materials, 2020, 32, e2004573.	11.1	7
145	Recent Progress in Interconnection Layer for Hybrid Photovoltaic Tandems. Advanced Materials, 2020, 32, 2002196.	11.1	20
146	Graphene to Advanced MoS2: A Review of Structure, Synthesis, and Optoelectronic Device Application. Crystals, 2020, 10, 902.	1.0	38

#	Article	IF	CITATIONS
147	Current-Matched III–V/Si Epitaxial Tandem Solar Cells with 25.0% Efficiency. Cell Reports Physical Science, 2020, 1, 100208.	2.8	36
148	Environmental impacts of III–V/silicon photovoltaics: life cycle assessment and guidance for sustainable manufacturing. Energy and Environmental Science, 2020, 13, 4280-4290.	15.6	18
149	Possible top cells for next-generation Si-based tandem solar cells. Frontiers of Optoelectronics, 2020, 13, 246-255.	1.9	29
150	Bridging for Carriers by Embedding Metal Oxide Nanoparticles in the Photoactive Layer to Enhance Performance of Polymer Solar Cells. IEEE Journal of Photovoltaics, 2020, 10, 1353-1358.	1.5	16
151	Optical optimization of double-side-textured monolithic perovskite–silicon tandem solar cells for improved light management. RSC Advances, 2020, 10, 26631-26638.	1.7	20
152	IPVF's PV technology vision for 2030. Progress in Photovoltaics: Research and Applications, 2020, 28, 1207-1214.	4.4	20
153	Location-Specific Spectral and Thermal Effects in Tracking and Fixed Tilt Photovoltaic Systems. IScience, 2020, 23, 101634.	1.9	7
154	Microscopic approach to reciprocity and photon recycling in ultrathin solar cells. , 2020, , .		1
155	Perovskite Tandem Solar Cells: From Fundamentals to Commercial Deployment. Chemical Reviews, 2020, 120, 9835-9950.	23.0	248
156	Solution-Processed Monolithic All-Perovskite Triple-Junction Solar Cells with Efficiency Exceeding 20%. ACS Energy Letters, 2020, 5, 2819-2826.	8.8	69
157	Dual-Junction GaAs Photovoltaics for Low Irradiance Wireless Power Transfer in Submillimeter-Scale Sensor Nodes. IEEE Journal of Photovoltaics, 2020, 10, 1721-1726.	1.5	6
158	Development of highâ€efficiency and lowâ€cost solar cells for PVâ€powered vehicles application. Progress in Photovoltaics: Research and Applications, 2021, 29, 684-693.	4.4	48
159	High-Efficiency Silicon Heterojunction Solar Cells: Materials, Devices and Applications. Materials Science and Engineering Reports, 2020, 142, 100579.	14.8	139
160	Amorphous/Crystalline Silicon Interface Stability: Correlation between Infrared Spectroscopy and Electronic Passivation Properties. Advanced Materials Interfaces, 2020, 7, 2000957.	1.9	7
161	Quantification of Surface Reactivity and Step-Selective Etching Chemistry on Single-Crystal BiOI(001). Langmuir, 2020, 36, 9343-9355.	1.6	3
162	Design and Simulation of a‧i:H/PbS Colloidal Quantum Dots Monolithic Tandem Solar Cell for 12% Efficiency. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000252.	0.8	29
163	Flexible and stretchable inorganic solar cells: Progress, challenges, and opportunities. MRS Energy & Sustainability, 2020, 7, 1.	1.3	16
164	Projected Performance of InGaAs/GaAs Quantum Dot Solar Cells: Effects of Cap and Passivation Layers. IEEE Access, 2020, 8, 212339-212350.	2.6	4

#	Article	IF	CITATIONS
165	Reduction in GaAs interfacial defects via structural phase variation of hydrogenated silicon films. Infrared Physics and Technology, 2020, 111, 103534.	1.3	3
166	Effect of sintering germanium epilayers on dislocation dynamics: From theory to experimental observation. Acta Materialia, 2020, 200, 608-618.	3.8	2
167	Monolithic Perovskite Tandem Solar Cells: A Review of the Present Status and Advanced Characterization Methods Toward 30% Efficiency. Advanced Energy Materials, 2020, 10, 1904102.	10.2	321
168	Study of pit formation in MBE grown GaP on misoriented Si. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2020, 38, 032201.	0.6	1
169	A review of photovoltaic performance of organic/inorganic solar cells for future renewable and sustainable energy technologies. Superlattices and Microstructures, 2020, 143, 106549.	1.4	90
170	Nearly 30%-efficient low-concentration static photovoltaic modules with IMM triple-junction solar cells. Applied Physics Express, 2020, 13, 077001.	1.1	2
171	The Outdoor Field Test and Energy Yield Model of the Four-Terminal on Si Tandem PV Module. Applied Sciences (Switzerland), 2020, 10, 2529.	1.3	5
172	Effects of growth interruption on InGaP fabricated via hydride vapor phase epitaxy. Journal of Crystal Growth, 2020, 544, 125712.	0.7	2
173	The 2020 photovoltaic technologies roadmap. Journal Physics D: Applied Physics, 2020, 53, 493001.	1.3	274
174	Twoâ€Terminal Direct Waferâ€Bonded GaInP/AlGaAs//Si Tripleâ€Junction Solar Cell with AM1.5g Efficiency of 34.1%. Solar Rrl, 2020, 4, 2000210.	3.1	45

175

#	Article	IF	CITATIONS
183	Photoelectrochemical solar fuels from carbon dioxide, water and sunlight. Catalysis Science and Technology, 2020, 10, 1967-1974.	2.1	28
184	Calculating the Energy Yield of Si-Based Solar Cells for Belgium and Vietnam Regions at Arbitrary Tilt and Orientation under Actual Weather Conditions. Energies, 2020, 13, 3180.	1.6	8
185	Solar cell efficiency tables (version 56). Progress in Photovoltaics: Research and Applications, 2020, 28, 629-638.	4.4	461
186	Overview of Si Tandem Solar Cells and Approaches to PV-Powered Vehicle Applications. MRS Advances, 2020, 5, 441-450.	0.5	11
187	Real-Space Mapping of Surface-Oxygen Defect States in Photovoltaic Materials Using Low-Voltage Scanning Ultrafast Electron Microscopy. ACS Applied Materials & Interfaces, 2020, 12, 7760-7767.	4.0	12
188	Hybrid nanostructures for solar-energy-conversion applications. Nanomaterials and Energy, 2020, 9, 39-46.	0.1	12
189	26.7% Efficient 4-Terminal Perovskite–Silicon Tandem Solar Cell Composed of a High-Performance Semitransparent Perovskite Cell and a Doped Poly-Si/SiOx Passivating Contact Silicon Cell. IEEE Journal of Photovoltaics, 2020, 10, 417-422.	1.5	40
190	Passivating silicon-based hybrid solar cells through tuning PbI2 content of perovskite coatings. Applied Surface Science, 2020, 511, 145541.	3.1	10
191	1.73 eV AlCaAs/InCaP heterojunction solar cell grown by MBE with 18.7% efficiency. Progress in Photovoltaics: Research and Applications, 2020, 28, 393-402.	4.4	6
192	Monocrystalline silicon-based tandem configuration for solar-to-hydrogen conversion. Inorganic Chemistry Communication, 2020, 116, 107926.	1.8	4
193	A Worldwide Theoretical Comparison of Outdoor Potential for Various Silicon-Based Tandem Module Architecture. Cell Reports Physical Science, 2020, 1, 100037.	2.8	22
194	Passivating contacts and tandem concepts: Approaches for the highest silicon-based solar cell efficiencies. Applied Physics Reviews, 2020, 7, .	5.5	150
195	Efficient Interconnection in Perovskite Tandem Solar Cells. Small Methods, 2020, 4, 2000093.	4.6	43
196	Self-catalyzed GaAs(P) nanowires and their application for solar cells. Journal Physics D: Applied Physics, 2020, 53, 233001.	1.3	6
197	Photovoltatronics: intelligent PV-based devices for energy and information applications. Energy and Environmental Science, 2021, 14, 106-126.	15.6	33
198	Wide-gap ZnO layer as electron-selective front contact for single-junction GaAs solar cells. Materials Science in Semiconductor Processing, 2021, 121, 105344.	1.9	8
199	Raw material needs for the large-scale deployment of photovoltaics – Effects of innovation-driven roadmaps on material constraints until 2050. Renewable and Sustainable Energy Reviews, 2021, 137, 110589.	8.2	40
200	Solar cell efficiency tables (version 57). Progress in Photovoltaics: Research and Applications, 2021, 29, 3-15.	4.4	787

#	Article	IF	CITATIONS
201	Impact of loading topology and current mismatch on current–voltage curves of three-terminal tandem solar cells with interdigitated back contacts. Solar Energy Materials and Solar Cells, 2021, 221, 110901.	3.0	10
202	Direct Heteroepitaxy and Selective Area Growth of GaP and GaAs on Si by Hydride Vapor Phase Epitaxy. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000447.	0.8	2
203	Improved design of InGaP/GaAs//Si tandem solar cells. EPJ Photovoltaics, 2021, 12, 1.	0.8	3
204	Covalent Organic Frameworks for Energy Conversions: Current Status, Challenges, and Perspectives. CCS Chemistry, 2021, 3, 2003-2024.	4.6	65
205	Developing Trends in Power and Networking Technologies for Intelligent Cities. Advances in Civil and Industrial Engineering Book Series, 2021, , 61-85.	0.2	0
206	Optoelectronic devices based on the integration of halide perovskites with silicon-based materials. Journal of Materials Chemistry A, 2021, 9, 20919-20940.	5.2	19
207	Technological learning for resource efficient terawatt scale photovoltaics. Energy and Environmental Science, 2021, 14, 5147-5160.	15.6	41
208	Challenges for the future of tandem photovoltaics on the path to terawatt levels: a technology review. Energy and Environmental Science, 2021, 14, 3840-3871.	15.6	32
209	Importance of Developing Photovoltaics-Powered Vehicles. Energy and Power Engineering, 2021, 13, 147-162.	0.5	16
210	Identification of embedded nanotwins at c-Si/a-Si:H interface limiting the performance of high-efficiency silicon heterojunction solar cells. Nature Energy, 2021, 6, 194-202.	19.8	52
211	Low-temperature direct growth for low dislocation density in III-V on Si towards high-efficiency III-V/Si tandem solar cells. Japanese Journal of Applied Physics, 2021, 60, SBBF14.	0.8	3
213	Epitaxial GaInP/GaAs/Si Tripleâ€Junction Solar Cell with 25.9% AM1.5g Efficiency Enabled by Transparent Metamorphic Al _{<i>x</i>} Ga _{1â^'<i>x</i>} As _{<i>y</i>} P _{1â^'<i>y</i>} Stepâ€Graded Buffer Structures, Solar Rrl, 2021, 5, 2000763.	3.1	39
214	III-V-on-Si Tandem Solar Cells. Joule, 2021, 5, 514-518.	11.7	15
215	Designing an Epitaxially-Integrated DBR for Dislocation Mitigation in Monolithic GaAsP/Si Tandem Solar Cells. IEEE Journal of Photovoltaics, 2021, 11, 400-407.	1.5	4
216	Minimizing Openâ€Circuit Voltage Loss in Perovskite/Si Tandem Solar Cells via Exploring the Synergic Effect of Cations and Anions. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100119.	1.2	7
217	Optical actuation of a micromechanical photodiode via the photovoltaic-piezoelectric effect. Microsystems and Nanoengineering, 2021, 7, 29.	3.4	4
218	IIIâ€V//Cu _{<i>x</i>} In _{1â^'<i>y</i>} Ga _{<i>y</i>} Se ₂ multijunction solar cells with 27.2% efficiency fabricated using modified smart stack technology with Pd nanoparticle array and adhesive material. Progress in Photovoltaics: Research and Applications, 2021, 29, 887-898.	4.4	21
219	Optimization of four terminal rear heterojunction GaAs on Si interdigitated back contact tandem solar cells. Applied Physics Letters, 2021, 118, .	1.5	13

#	Article	IF	CITATIONS
220	Outdoor performance of a tandem InGaP/Si photovoltaic luminescent solar concentrator. Solar Energy Materials and Solar Cells, 2021, 223, 110945.	3.0	13
221	Merging Biology and Photovoltaics: How Nature Helps Sun atching. Advanced Energy Materials, 2021, 11, 2100520.	10.2	15
222	Comparison of 1.9 eV InGaP front- and rear-junction solar cells grown on Si. , 2021, , .		0
223	Multi-junction solar cells paving the way for super high-efficiency. Journal of Applied Physics, 2021, 129, .	1.1	89
224	Reducing the dependence of threading dislocation density on doping for GaAsP/GaP on Si. , 2021, , .		0
225	GaInP/GaAs/poly-Si Multi-Junction Solar Cells by in Metal Balls Bonding. Crystals, 2021, 11, 726.	1.0	2
226	Solar cell efficiency tables (Version 58). Progress in Photovoltaics: Research and Applications, 2021, 29, 657-667.	4.4	363
227	Potential high efficiency of GaAs solar cell with heterojunction carrier selective contact layers. Physica B: Condensed Matter, 2021, 611, 412856.	1.3	10
228	Worldwide theoretical comparison of outdoor potential for various silicon-based tandem module architectures. , 2021, , .		2
229	Current Matching in Bifacial GaAs/Si Tandem Cells. , 2021, , .		0
230	Photovoltaic Partner Selection for High-Efficiency Photovoltaic-Electrolytic Water Splitting Systems: Brief Review and Perspective. Silicon, 2022, 14, 753-760.	1.8	0
231	Light absorption enhancement and radiation hardening for triple junction solar cell through bioinspired nanostructures. Bioinspiration and Biomimetics, 2021, 16, 056010.	1.5	2
232	Hotspots, frontiers, and emerging trends of tandem solar cell research: A comprehensive review. International Journal of Energy Research, 2022, 46, 104-123.	2.2	12
233	Perovskite/silicon tandem photovoltaics: Technological disruption without business disruption. Applied Physics Letters, 2021, 119, .	1.5	22
234	Middle Cell Development for Wafer-Bonded III-V//Si Tandem Solar Cells. IEEE Journal of Photovoltaics, 2021, 11, 1264-1270.	1.5	4
235	23.4% monolithic epitaxial GaAsP/Si tandem solar cells and quantification of losses from threading dislocations. Solar Energy Materials and Solar Cells, 2021, 230, 111299.	3.0	14
236	Improving Performance of Bifacialâ€Grid III–V Solar Cells Bonded on Glass by Selective Contact Annealing. Solar Rrl, 2021, 5, 2100438.	3.1	2
237	Bidirectional photocurrent in p–n heterojunction nanowires. Nature Electronics, 2021, 4, 645-652.	13.1	129

			2
#	ARTICLE A SCAPS simulation investigation of non-toxic MAGel3-on-Si tandem solar device utilizing	IF	CITATIONS
238	monolithically integrated (2-T) and mechanically stacked (4-T) configurations. Solar Energy, 2021, 225, 471-485.	2.9	33
239	A study on the influence of the albedo spectrum on the bifacial GaAs/c-Si heterojunction tandem solar cell using computer modelling. Solar Energy, 2021, 227, 490-496.	2.9	3
240	Optical Properties of Solar Absorber Materials and Structures. Topics in Applied Physics, 2021, , 1-165.	0.4	2
241	Simulation of Optimized High-Current Tandem Solar-Cells With Efficiency Beyond 41%. IEEE Access, 2021, 9, 49724-49737.	2.6	28
242	Recent Advances in Solar Cells. , 2020, , 79-122.		7
243	HfX ₂ (X = Cl, Br, I) Monolayer and Type II Heterostructures with Promising Photovoltaic Characteristics*. Chinese Physics Letters, 2020, 37, 127101.	1.3	8
244	Blue-green emission from epitaxial yet cation-disordered <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>ZnGeN</mml:mi><m mathvariant="normal">O<mml:mi>x</mml:mi></m </mml:msub></mml:mrow>. Physical Review Materials, 2019, 3, .</mml:math 	ml:mrow>	× <mml:mn>2</mml:mn>
245	Epitaxial GaAsP/Si Solar Cells with High Quantum Efficiency. , 2020, , .		2
246	Analysis of luminescence coupling effect in three-terminal tandem solar cells. Journal of Photonics for Energy, 2018, 8, 1.	0.8	2
247	Experimental demonstration of voltage-matched two-terminal tandem minimodules. Journal of Photonics for Energy, 2019, 8, 1.	0.8	3
248	Ill–V Light-Emitting Diodes on Silicon by Hydrogel-Mediated Wafer Bonding. ECS Journal of Solid State Science and Technology, 2020, 9, 086002.	0.9	5
249	Spectral splitting for an InGaP/GaAs parallel junction solar cell. Applied Optics, 2019, 58, 4265.	0.9	5
250	Laser tuned large position-dependent tunneling detection dominated by interface states in silicon based oxide-semiconductor structure. Optics Express, 2019, 27, 743.	1.7	5
251	Higher efficiency tandem solar cells through composite-cell current matching. Optics Express, 2019, 27, A543.	1.7	8
252	Nanostructured front electrodes for perovskite/c-Si tandem photovoltaics. Optics Express, 2020, 28, 8878.	1.7	8
253	Predicted annual energy yield of III-V/c-Si tandem solar cells: modelling the effect of changing spectrum on current-matching. Optics Express, 2020, 28, 7829.	1.7	7
254	Tailored disorder: a self-organized photonic contact for light trapping in silicon-based tandem solar cells. Optics Express, 2020, 28, 10909.	1.7	11
256	The Path to Perovskite on Silicon PV. , 2018, 1, 1-8.		16

<

#	Article	IF	CITATIONS
257	Role of PV-Powered Vehicles in Low-Carbon Society and Some Approaches of High-Efficiency Solar Cell Modules for Cars. Energy and Power Engineering, 2020, 12, 375-395.	0.5	28
258	A Corner-Cube-Cell Solar Array for Improved Capture of Optical Power and Increased Generation of Electrical Power. IEEE Journal of Photovoltaics, 2022, 12, 344-352.	1.5	1
259	Designs from single junctions, heterojunctions to multijunctions for high-performance perovskite solar cells. Chemical Society Reviews, 2021, 50, 13090-13128.	18.7	91
260	Optimization of Tunnelâ€Junction for Perovskite/Tunnel Oxide Passivated Contact (TOPCon) Tandem Solar Cells. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100562.	0.8	6
261	Layered Dion–Jacobson-Type Chalcogenide Perovskite CsLaM ₂ X ₇ (M = Ta/Nb; X) Tj ACS Applied Materials & Interfaces, 2021, 13, 48971-48980.	ETQq0 0 0 4.0) rgBT /Overlc 3
262	Photonic structures for III-V//Si multijunction solar cells with efficiency >33%. , 2018, , .		4
263	Semiconductor photovoltaics: Ñurrent state and actual directions of research. Optoèlektronika I Poluprovodnikovaâ Tehnika, 2018, 53, 13-37.	0.3	1
264	Luminescent coupling effect in wafer-bonded III-V on silicon multijunction solar cells. Journal of Photonics for Energy, 2019, 9, 1.	0.8	1
265	Temperature dependence of wafer-bonded III-V on silicon multijunction solar cells with luminescent coupling effect. Journal of Photonics for Energy, 2019, 9, 1.	0.8	1
266	III–V Solar Cells and Concentrator Arrays. Springer Series in Optical Sciences, 2020, , 133-174.	0.5	5
267	Quantum Dot-Based Thin-Film III–V Solar Cells. Lecture Notes in Nanoscale Science and Technology, 2020, , 1-48.	0.4	2
268	Subcell Development for Wafer-Bonded III-V//Si Tandem Solar Cells. , 2020, , .		4
269	CuGaSe ₂ / c-Si tandem solar cell exceeding 1.1 Volt Voc with ITO or tunnel junction at the interface. , 2020, , .		1
270	Fundamentals of three-terminal tandem solar cells: a comprehensive taxonomy. , 2020, , .		0
271	Silicon heterojunction-based tandem solar cells: past, status, and future prospects. Nanophotonics, 2021, 10, 2001-2022.	2.9	21
272	Stringing monolithic three terminal III-V tandems. , 2020, , .		0
273	Design of nanostructured intermediate layer for tandem solar cells. , 2020, , .		0
274	III-V-on-silicon triple-junction based on the heterojunction bipolar transistor solar cell concept. , 2020, , .		4

#	ARTICLE	IF	CITATIONS
275	Advances in Epitaxial GaInP/GaAs/Si Triple Junction Solar Cells. , 2020, , .		3
276	Theoretical study on potential performance of lattice-matched monolithic GaNP/GaNAsP/Si triple-junction solar cell. Journal Physics D: Applied Physics, 2020, 53, 445106.	1.3	2
279	Design principles of tandem cascade photoelectrochemical devices. Sustainable Energy and Fuels, 2021, 5, 6361-6371.	2.5	6
281	Wide Bandgap Interface Layer Induced Stabilized Perovskite/Silicon Tandem Solar Cells with Stability over Ten Thousand Hours. Advanced Energy Materials, 2021, 11, 2102046.	10.2	57
282	Twoâ€ŧerminal III–V//Si tripleâ€junction solar cell with power conversion efficiency of 35.9Â% at AM1.5g. Progress in Photovoltaics: Research and Applications, 2022, 30, 869-879.	4.4	53
283	Nanowires/Graphene Nanocomposites for Photovoltaic Applications. Materials Horizons, 2021, , 131-142.	0.3	2
284	Passivating contacts for high-efficiency silicon-based solar cells: From single-junction to tandem architecture. Nano Energy, 2022, 92, 106712.	8.2	30
285	Probing the displacement damage mechanism in Si, Ge, GaAs by defects evolution analysis. Computational Materials Science, 2022, 203, 111084.	1.4	4
286	Optimisation of four-terminal GaAs//Si tandem solar cells using numerical simulation. Materials Science in Semiconductor Processing, 2022, 139, 106365.	1.9	2
287	Topical review: pathways toward cost-effective single-junction III–V solar cells. Journal Physics D: Applied Physics, 2022, 55, 143002.	1.3	17
288	Solar cell efficiency tables (version 59). Progress in Photovoltaics: Research and Applications, 2022, 30, 3-12.	4.4	253
289	Opportunities in electrically tunable 2D materials beyond graphene: Recent progress and future outlook. Applied Physics Reviews, 2021, 8, .	5.5	26
290	GaAsP/SiGe tandem solar cells on porous Si substrates. Solar Energy, 2021, 230, 925-934.	2.9	8
291	GaAs//CuIn _{1â^'y} Ga _y Se ₂ Three-Junction Solar Cells With 28.06% Efficiency Fabricated Using a Bonding Technique Involving Pd Nanoparticles and an Adhesive. IEEE Journal of Photovoltaics, 2022, 12, 639-645.	1.5	5
292	Approaches for High-Efficiency III-V/Si Tandem Solar Cells. Energy and Power Engineering, 2021, 13, 413-427.	0.5	7
294	Optimization of a Pb-free all-perovskite tandem solar cell with 30.85% efficiency. Optical Materials, 2022, 123, 111891.	1.7	18
295	High-efficiency modified tandem solar cell: Simulation of two-absorbers bottom subcell. Optik, 2022, 251, 168458.	1.4	3
296	In-Situ Measurement of the Effect of 1-MeV Electrons Irradiation on III-V//Si at LILT Conditions. , 2020, , .		Ο

щ.		15	CITATIONS
#	Article	IF	CITATIONS
298	Simulation of High-Efficiency Perovskite-Based Tandem Solar Cells. , 2021, , .		1
299	Multijunction Solar Cells using Bonding Technology with Pd Nanoparticle Array and Adhesive Material. , 2021, , .		0
300	Quantifying Efficiency Limitations in Allâ€Inorganic Halide Perovskite Solar Cells. Advanced Materials, 2022, 34, e2108132.	11.1	44
301	Analysis for efficiency potential of II–VI compound, chalcopyrite, and kesterite-based tandem solar cells. Journal of Materials Research, 2022, 37, 445-456.	1.2	9
302	Multijunction solar cells based on III–V and II–VI semiconductors. , 2022, , 307-328.		0
303	Design and performance analysis of off-grid hybrid renewable energy systems. , 2022, , 35-68.		0
304	Monocrystalline 1.7-eV MgCdTe solar cells. Journal of Applied Physics, 2022, 131, 023107.	1.1	0
305	Numerical investigation of graphene and <scp> 2Dâ€MoS ₂ </scp> facilitated perovskite/silicon "pâ€iâ€n―structure for solar cell application. International Journal of Energy Research, 2022, 46, 7399-7410.	2.2	2
306	Monolithic Perovskite‧ilicon Tandem Solar Cells: From the Lab to Fab?. Advanced Materials, 2022, 34, e2106540.	11.1	92
307	Integration of Si Heterojunction Solar Cells with III–∨ Solar Cells by the Pd Nanoparticle Array-Mediated "Smart Stack―Approach. ACS Applied Materials & Interfaces, 2022, 14, 11322-11329.	4.0	9
308	Impact and recent approaches of high-efficiency solar cell modules for PV-powered vehicles. Japanese Journal of Applied Physics, 2022, 61, SC0802.	0.8	7
309	Status and perspectives of crystalline silicon photovoltaics in research and industry. Nature Reviews Materials, 2022, 7, 597-616.	23.3	139
310	Black Silver: Three-Dimensional Ag Hybrid Plasmonic Nanostructures with Strong Photon Coupling for Scalable Photothermoelectric Power Generation. ACS Applied Materials & Interfaces, 2022, 14, 16894-16900.	4.0	12
311	Thermal Management of Photovoltaics Using Porous Nanochannels. Energy & Fuels, 2022, 36, 4549-4556.	2.5	1
312	Non-intrusive movable energy harvesting devices: Materials, designs, and their prospective uses on transportation infrastructures. Renewable and Sustainable Energy Reviews, 2022, 160, 112340.	8.2	8
313	Characterization of multiterminal tandem photovoltaic devices and their subcell coupling. Cell Reports Physical Science, 2021, 2, 100677.	2.8	8
314	Ultrathin wide band gap kesterites. Faraday Discussions, 0, 239, 38-50.	1.6	4
315	Loss Analysis of High-Efficiency Perovskite/Si Tandem Solar Cells for Large Market Applications. Energy and Power Engineering, 2022, 14, 167-180.	0.5	1

#	Article	IF	CITATIONS
316	GaAs to Si Direct Wafer Bonding at T â‰ ≇ €‰220°C in Ambient Air Via Nano-Bondingâ"¢ and Surface Er Engineering (SEE). Silicon, 2022, 14, 11903-11926.	nergy 1.8	2
317	Thin film absorber selection to pair with silicon for 1-Sun tandem photovoltaics. Solar Energy, 2022, 238, 178-188.	2.9	1
318	Review on two-terminal and four-terminal crystalline-silicon/perovskite tandem solar cells; progress, challenges, and future perspectives. Energy Reports, 2022, 8, 5820-5851.	2.5	24
319	Challenges of Scalable Development for Perovskite/Silicon Tandem Solar Cells. ACS Applied Energy Materials, 2022, 5, 6499-6515.	2.5	10
320	Empowering Photovoltaics with Smart Light Management Technologies. , 2022, , 1165-1248.		1
321	Tailoring Luminescent Solar Concentrators for High-Performance Flexible Double-Junction III-V Photovoltaics. SSRN Electronic Journal, 0, , .	0.4	0
322	Fabrication and Optimization of CdSe Solar Cells for Possible Top Cell of Siliconâ€Based Tandem Devices. Advanced Energy Materials, 2022, 12, .	10.2	12
323	Vapor Transport Deposition of Sb ₂ (S,Se) ₃ Solar Cells with Continuously Tunable Band Gaps. ACS Applied Energy Materials, 2022, 5, 7240-7248.	2.5	13
324	Perovskite-based tandem solar cells: Device architecture, stability, and economic perspectives. Renewable and Sustainable Energy Reviews, 2022, 165, 112553.	8.2	16
325	Defectâ€induced current coupling in multiâ€junction solar cells revealed by absolute electroluminescence imaging. Progress in Photovoltaics: Research and Applications, 0, , .	4.4	1
326	Advanced supercritical fluid technique to reduce amorphous silicon defects in heterojunction solar cells. Semiconductor Science and Technology, 2022, 37, 085011.	1.0	2
327	High-Efficiency Electron Transport Layer-Free Perovskite/GeTe Tandem Solar Cell: Numerical Simulation. Crystals, 2022, 12, 878.	1.0	8
328	Solar cell efficiency tables (Version 60). Progress in Photovoltaics: Research and Applications, 2022, 30, 687-701.	4.4	406
329	A simulation based incremental study of stable perovskite-on-perovskite tandem solar device utilizing non-toxic tin and germanium perovskite. Materials Today Communications, 2022, 32, 103881.	0.9	3
330	Numerical Simulation and Design Optimization of Highly Efficient Lead-free Perovskite/c-Si Tandem Solar Cell. , 2022, , .		0
331	Spectral Splitting Solar Cells Constructed with InGaP/GaAs Two-Junction Subcells and Infrared PbS Quantum Dot/ZnO Nanowire Subcells. ACS Energy Letters, 2022, 7, 2477-2485.	8.8	7
332	The recent progress and state-of-art designs of Multi-junction Solar Cells. , 0, 5, 102-107.		0
333	Mechanical stacked GaAs//CuIn _{1â^'<i>y</i>} Ga _{<i>y</i>} Se ₂ threeâ€junction solar cells with 30% efficiency via an improved bonding interface and area currentâ€matching technique. Progress in Photovoltaics: Research and Applications, 2023, 31, 71-84.	4.4	10

#	Article	IF	CITATIONS
334	Thickness Effect on the Solid-State Reaction of a Ni/GaAs System. Nanomaterials, 2022, 12, 2633.	1.9	2
335	A performance comparison between GaInP-on-Si and GaAs-on-Si 3-terminal tandem solar cells. IScience, 2022, 25, 104950.	1.9	4
336	New metric for carrier selective contacts for silicon heterojunction solar cells. Solar Energy, 2022, 244, 168-174.	2.9	1
337	Solar Cell Technologies: An Overview. Engergy Systems in Electrical Engineering, 2022, , 1-59.	0.5	0
338	Investigation of Electron Transport Material-Free Perovskite/CIGS Tandem Solar Cell. Energies, 2022, 15, 6326.	1.6	11
339	Epitaxial growth of SiGe films by annealing Al–Ge alloyed pastes on Si substrate. Scientific Reports, 2022, 12, .	1.6	2
340	Status and challenges of multi-junction solar cell technology. Frontiers in Energy Research, 0, 10, .	1.2	10
341	Theoretical investigation of lattice-matched III-N-V/Si double-junction solar cells. Journal Physics D: Applied Physics, 2022, 55, 475104.	1.3	0
342	Overview and loss analysis of III–V single-junction and multi-junction solar cells. EPJ Photovoltaics, 2022, 13, 22.	0.8	7
343	Bandgap engineering of indium gallium nitride layers grown by plasma-enhanced chemical vapor deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, 063102.	0.9	0
344	GaAs//Si Multijunction Solar Cells Fabricated via Mechanical Stack Technology Using Pd Nanoparticles and Metal-Assisted Chemical Etching. IEEE Journal of Photovoltaics, 2023, 13, 105-112.	1.5	1
345	Advanced transmission electron microscopy investigation of defect formation in movpe-growth of gap on silicon using arsenic initial coverage. Applied Surface Science, 2023, 610, 155578.	3.1	3
346	Simulation of High open-circuit voltage Perovskite/CIGS-GeTe tandem cell. , 2022, , .		3
347	Optimal interconnection of threeâ€ŧerminal tandem solar cells. Progress in Photovoltaics: Research and Applications, 2023, 31, 1350-1359.	4.4	4
348	Monolithic Perovskite–Perovskite–Organic Triple-Junction Solar Cells with a Voltage Output Exceeding 3 V. ACS Energy Letters, 2022, 7, 4469-4471.	8.8	4
349	Solar Cells. Springer Handbooks, 2023, , 699-745.	0.3	0
350	A framework for comparing the energy production of photovoltaic modules using 2-, 3-, and 4-terminal tandem cells. Sustainable Energy and Fuels, 2023, 7, 461-470.	2.5	5
351	Toward efficient hybrid solar cells comprising quantum dots and organic materials: progress, strategies, and perspectives. Journal of Materials Chemistry A, 2023, 11, 1013-1038.	5.2	8

#	Article	IF	CITATIONS
352	On current technology for light absorber materials used in highly efficient industrial solar cells. Renewable and Sustainable Energy Reviews, 2023, 173, 113027.	8.2	9
353	Tailoring Luminescent Solar Concentrators for Highâ€Performance Flexible Doubleâ€Junction IIIâ€V Photovoltaics. Advanced Functional Materials, 2023, 33, .	7.8	4
354	Solar cell efficiency tables (Version 61). Progress in Photovoltaics: Research and Applications, 2023, 31, 3-16.	4.4	246
355	Semi-monolithic Integration of All-Chalcopyrite Multijunction Solar Conversion Devices via Thin-Film Bonding and Exfoliation. ACS Applied Materials & amp; Interfaces, 2022, 14, 54607-54615.	4.0	1
356	Analytical Model of InP QWs for Efficiency Improvement in GaInP/Si Dual Junction Solar Cell. Physica Status Solidi (A) Applications and Materials Science, 2023, 220, .	0.8	7
357	Impact of Operating Temperature and Solar Concentration on the Conversion Efficiency of InGaP/InGaAs/Ge Hybrid Triple-Junction Solar Cell. Brazilian Journal of Physics, 2023, 53, .	0.7	0
358	TOPcon route with quantum wells in GaInP/Si dual junction cell for efficiency enhancement. Solar Energy, 2023, 250, 409-417.	2.9	11
359	Epitaxy and characterization of InP/InGaAs tandem solar cells grown by MOVPE on InP and Si substrates. EPJ Photovoltaics, 2023, 14, 1.	0.8	1
360	Recent Advances of Graphene in Solar Cell Applications. , 2023, , 101-115.		0
361	GaAs/Si Tandem Solar Cells with an Optically Transparent InAlAs/GaAs Strained Layer Superlattices Dislocation Filter Layer. Energies, 2023, 16, 1158.	1.6	3
362	Smart nanomaterials and three-dimensional printing for flexible solar cell applications. , 2023, , 389-411.		1
363	Wafer-scale integration of GaAs/AlGaAs core–shell nanowires on silicon by the single process of self-catalyzed molecular beam epitaxy. Nanoscale Advances, 2023, 5, 1651-1663.	2.2	2
364	Lattice matched III–V materials on Si via Si1â^'Ge buffer layer. , 2023, , 85-102.		0
365	Spectrum conversion by luminescent glass for improving efficiency of solar cells. Journal of Non-Crystalline Solids, 2023, 606, 122217.	1.5	1
366	Brief Outlook on Top Cell Absorber of Siliconâ€Based Tandem Solar Cells. Solar Rrl, 2023, 7, .	3.1	2
367	Design and optimization of four-terminal mechanically stacked and optically coupled silicon/perovskite tandem solar cells with over 28% efficiency. Heliyon, 2023, 9, e13477.	1.4	6
368	Epitaxial Lateral Overgrowth of GaAsP for IIIâ€V/Siâ€Based Photovoltaics. Physica Status Solidi (A) Applications and Materials Science, 2023, 220, .	0.8	0
369	Overview of High-efficiency Multi-junction Solar Cells and Discussion about Roles of Surface, Interface and Defects. Vacuum and Surface Science, 2023, 66, 97-102.	0.0	Ο

#	Article	IF	CITATIONS
370	Direct wafer-bonded two terminal GaAsP/Si dual junction solar cell with 19.80% efficiency. , 2022, , .		0
371	Ultra-High-Speed Growth of GaAs Solar Cells by Triple-Chamber Hydride Vapor Phase Epitaxy. Crystals, 2023, 13, 370.	1.0	5
372	Highly Efficient Bifacial Silicon/Silicon Tandem Solar Cells. IEEE Access, 2023, 11, 21326-21331.	2.6	2
373	Integration of Subcells in III-V//Si Tandem Solar Cells. Transactions on Electrical and Electronic Materials, 2023, 24, 132-139.	1.0	1
374	Translation of outdoor tandem PV module l–V measurements to a STC power rating. Progress in Photovoltaics: Research and Applications, 2023, 31, 862-869.	4.4	1
375	PEDOT:PSS-mediated semiconductor wafer bonding for built-in middle subcells in multijunction solar cells. Applied Physics Express, 2023, 16, 036502.	1.1	3
376	Nature of contaminants introduced in silicon wafers during molecular beam epitaxy chamber annealing. AIP Advances, 2023, 13, 035325.	0.6	1
377	Cost benefits of Si1â^'xGex for III-V growth. , 2023, , 149-180.		0
378	High efficiency perovskite/heterojunction crystalline silicon tandem solar cells: towards industrial-sized cell and module. Japanese Journal of Applied Physics, 2023, 62, SK1021.	0.8	5
379	Characterization of various tandem solar cells: Protocols, issues, and precautions. Exploration, 2023, 3, .	5.4	3
391	A Comprehensive Review of Tandem Solar Cells Integrated on Silicon Substrate: III/V vs Perovskite. Silicon, 2023, 15, 6329-6347.	1.8	5
392	Towards 3-terminal perovskite/silicon tandem solar cells: Influence of silicon bottom cell on tandem cell fabrication. AlP Conference Proceedings, 2023, , .	0.3	0