A review of nanocarbons in energy electrocatalysis: Mu highly active sites

Journal of Energy Chemistry 26, 1077-1093 DOI: 10.1016/j.jechem.2017.08.008

Citation Report

#	Article	IF	CITATIONS
1	A review of transition metal chalcogenide/graphene nanocomposites for energy storage and conversion. Chinese Chemical Letters, 2017, 28, 2180-2194.	9.0	176
3	SAPO-34 templated growth of hierarchical porous graphene cages as electrocatalysts for both oxygen reduction and evolution. New Carbon Materials, 2017, 32, 509-516.	6.1	11
4	Stable N-doped & FeNi-decorated graphene non-precious electrocatalyst for Oxygen Reduction Reaction in Acid Medium. Scientific Reports, 2018, 8, 3757.	3.3	19
5	Freestanding Nonâ€Precious Metal Electrocatalysts for Oxygen Evolution and Reduction Reactions. ChemElectroChem, 2018, 5, 1786-1804.	3.4	32
6	Vertically Aligned Oxygenated-CoS ₂ –MoS ₂ Heteronanosheet Architecture from Polyoxometalate for Efficient and Stable Overall Water Splitting. ACS Catalysis, 2018, 8, 4612-4621.	11.2	290
7	Boosting ORR Catalytic Activity by Integrating Pyridineâ€N Dopants, a High Degree of Graphitization, and Hierarchical Pores into a MOFâ€Derived Nâ€Doped Carbon in a Tandem Synthesis. Chemistry - an Asian Journal, 2018, 13, 1318-1326.	3.3	24
8	Efficient Co–N/PC@CNT bifunctional electrocatalytic materials for oxygen reduction and oxygen evolution reactions based on metal–organic frameworks. Nanoscale, 2018, 10, 9077-9086.	5.6	109
9	Metal organic frameworks as catalysts for oxygen reduction. Current Opinion in Electrochemistry, 2018, 9, 179-188.	4.8	40
10	Metal-organic frameworks for highly efficient oxygen electrocatalysis. Chinese Journal of Catalysis, 2018, 39, 207-227.	14.0	36
11	Coral-like Co3O4 Decorated N-doped Carbon Particles as active Materials for Oxygen Reduction Reaction and Supercapacitor. Scientific Reports, 2018, 8, 1802.	3.3	41
12	A review of anion-regulated multi-anion transition metal compounds for oxygen evolution electrocatalysis. Inorganic Chemistry Frontiers, 2018, 5, 521-534.	6.0	123
13	Multiscale Principles To Boost Reactivity in Gas-Involving Energy Electrocatalysis. Accounts of Chemical Research, 2018, 51, 881-889.	15.6	437
14	A Tunable Molten-Salt Route for Scalable Synthesis of Ultrathin Amorphous Carbon Nanosheets as High-Performance Anode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 5577-5585.	8.0	84
15	Anionâ€Regulated Hydroxysulfide Monoliths as OER/ORR/HER Electrocatalysts and their Applications in Selfâ€Powered Electrochemical Water Splitting. Small Methods, 2018, 2, 1800055.	8.6	91
16	CoCr 7 C 3 -like nanorods embedded on carbon nanofibers as effective electrocatalyst for methanol electro-oxidation. International Journal of Hydrogen Energy, 2018, 43, 9943-9953.	7.1	18
17	Facile synthesis of nanometer-sized NiFe layered double hydroxide/nitrogen-doped graphite foam hybrids for enhanced electrocatalytic oxygen evolution reactions. International Journal of Hydrogen Energy, 2018, 43, 7956-7963.	7.1	24
18	Defect-rich carbon fiber electrocatalysts with porous graphene skin for flexible solid-state zinc–air batteries. Energy Storage Materials, 2018, 15, 124-130.	18.0	162
19	Emerging Two-Dimensional Nanomaterials for Electrocatalysis. Chemical Reviews, 2018, 118, 6337-6408.	47.7	1,552

#	Article	IF	CITATIONS
21	Multiple heteroatom-doped few-layer carbons for the electrochemical oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 22277-22286.	10.3	81
22	Recent Advances in Energy Chemical Engineering of Next-Generation Lithium Batteries. Engineering, 2018, 4, 831-847.	6.7	169
23	Recent advances in energy chemistry of precious-metal-free catalysts for oxygen electrocatalysis. Chinese Chemical Letters, 2018, 29, 1757-1767.	9.0	63
24	From metal to metal-free catalysts: Routes to sustainable chemistry. Advances in Catalysis, 2018, 63, 1-73.	0.2	16
25	Engineering the Interface of Carbon Electrocatalysts at the Triple Point for Enhanced Oxygen Reduction Reaction. Chemistry - A European Journal, 2018, 24, 18374-18384.	3.3	45
26	Co ₉ S ₈ â€Catalyzed Growth of Thinâ€Walled Graphite Microtubes for Robust, Efficient Overall Water Splitting. ChemSusChem, 2018, 11, 4150-4155.	6.8	22
27	Hierarchical Flowerlike Highly Synergistic Three-Dimensional Iron Tungsten Oxide Nanostructure-Anchored Nitrogen-Doped Graphene as an Efficient and Durable Electrocatalyst for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2018, 10, 32220-32232.	8.0	48
28	Phosphorus-doped onion-like carbon for CO ₂ electrochemical reduction: the decisive role of the bonding configuration of phosphorus. Journal of Materials Chemistry A, 2018, 6, 19998-20004.	10.3	51
29	A Review of Electrocatalytic Reduction of Dinitrogen to Ammonia under Ambient Conditions. Advanced Energy Materials, 2018, 8, 1800369.	19.5	950
30	Modulating the oxygen reduction activity of heteroatom-doped carbon catalysts <i>via</i> the triple effect: charge, spin density and ligand effect. Chemical Science, 2018, 9, 5795-5804.	7.4	121
31	Electrical Behavior and Electron Transfer Modulation of Nickel–Copper Nanoalloys Confined in Nickel–Copper Nitrides Nanowires Array Encapsulated in Nitrogenâ€Doped Carbon Framework as Robust Bifunctional Electrocatalyst for Overall Water Splitting. Advanced Functional Materials, 2018, 28, 1803278.	14.9	84
32	Host-Guest Engineering of Layered Double Hydroxides towards Efficient Oxygen Evolution Reaction: Recent Advances and Perspectives. Catalysts, 2018, 8, 214.	3.5	21
33	<i>In situ</i> synthesis of metal embedded nitrogen doped carbon nanotubes as an electrocatalyst for the oxygen reduction reaction with high activity and stability. RSC Advances, 2018, 8, 25051-25056.	3.6	7
34	The effect of carbon support on the oxygen reduction activity and durability of single-atom iron catalysts. MRS Communications, 2018, 8, 1158-1166.	1.8	27
35	A Review of Preciousâ€Metalâ€Free Bifunctional Oxygen Electrocatalysts: Rational Design and Applications in Znâ^'Air Batteries. Advanced Functional Materials, 2018, 28, 1803329.	14.9	524
36	Distorted niobium-self-doped graphene in-situ grown from 2D niobium carbide for catalyzing oxygen reduction. Carbon, 2018, 139, 1144-1151.	10.3	19
37	Tailoring the Structure of Carbon Nanomaterials toward Highâ€End Energy Applications. Advanced Materials, 2018, 30, e1802104.	21.0	92
38	Rational synthesis of CaCo2O4 nanoplate as an earth-abundant electrocatalyst for oxygen evolution reaction. Journal of Energy Chemistry, 2019, 31, 125-131.	12.9	12

#	Article	IF	CITATIONS
39	Review and prospect of NiCo2O4-based composite materials for supercapacitor electrodes. Journal of Energy Chemistry, 2019, 31, 54-78.	12.9	275
40	Recent progress in functionalized layered double hydroxides and their application in efficient electrocatalytic water oxidation. Journal of Energy Chemistry, 2019, 32, 93-104.	12.9	70
41	Fe-doped Co3O4@C nanoparticles derived from layered double hydroxide used as efficient electrocatalyst for oxygen evolution reaction. Journal of Energy Chemistry, 2019, 32, 63-70.	12.9	47
42	Soybean milk derived carbon intercalated with reduced graphene oxide as high efficient electrocatalysts for oxygen reduction reaction. International Journal of Hydrogen Energy, 2019, 44, 21790-21802.	7.1	14
43	Preparation of hierarchical trimetallic coordination polymer film as efficient electrocatalyst for oxygen evolution reaction. Chemical Communications, 2019, 55, 9343-9346.	4.1	19
44	Recent progresses in H2-PEMFC at DICP. Journal of Energy Chemistry, 2019, 36, 129-140.	12.9	37
45	Nitrogen-doped metal-free carbon catalysts for (electro)chemical CO ₂ conversion and valorisation. Dalton Transactions, 2019, 48, 13508-13528.	3.3	71
46	The effects of fine and coarse particulate matter on lung function among the elderly. Scientific Reports, 2019, 9, 14790.	3.3	49
47	Cu2-xSe@CuO core-shell assembly grew on copper foam for efficient oxygen evolution. International Journal of Hydrogen Energy, 2019, 44, 31979-31986.	7.1	17
48	Underpotential Deposition of Copper Clusters on Sulfur and Nitrogen Coâ€Doped Graphite Foam for the Oxygen Reduction Reaction. ChemElectroChem, 2019, 6, 5682-5687.	3.4	4
49	A Gas Diffusion Layer Impregnated with Mn ₃ O ₄ â€Decorated Nâ€Doped Carbon Nanotubes for the Oxygen Reduction Reaction in Zincâ€Air Batteries. Batteries and Supercaps, 2019, 2, 882-893.	4.7	17
50	Electrocatalyst Derived from Abundant Biomass and its Excellent Activity for In Situ H ₂ O ₂ Production. ChemElectroChem, 2019, 6, 4877-4884.	3.4	14
51	Three-Dimensional Nitrogen-Doped Hollow Carbon Fiber with a Micro-Scale Diameter as a Binder-Free Oxygen Electrode for Li-O ₂ Batteries. Journal of the Electrochemical Society, 2019, 166, A3425-A3431.	2.9	4
52	Waste-to-wealth: biowaste valorization into valuable bio(nano)materials. Chemical Society Reviews, 2019, 48, 4791-4822.	38.1	244
53	One minute from pristine carbon to an electrocatalyst for hydrogen peroxide production. Journal of Materials Chemistry A, 2019, 7, 21329-21337.	10.3	53
54	Mass production of nitrogen and oxygen codoped carbon nanotubes by a delicately-designed Pechini method for supercapacitors and electrocatalysis. Nanoscale, 2019, 11, 17425-17435.	5.6	15
55	In Situ ZnO-Activated Hierarchical Porous Carbon Nanofibers as Self-Standing Electrodes for Flexible Zn–Air Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 17817-17824.	6.7	22
56	Carbonâ€Based Metalâ€Free Catalysts for Energy Storage and Environmental Remediation. Advanced Materials, 2019, 31, e1806128.	21.0	188

#	Article	IF	CITATIONS
57	Sulfur Redox Reactions at Working Interfaces in Lithium–Sulfur Batteries: A Perspective. Advanced Materials Interfaces, 2019, 6, 1802046.	3.7	128
58	Directional construction of Cu2S branch arrays for advanced oxygen evolution reaction. Journal of Energy Chemistry, 2019, 39, 61-67.	12.9	45
59	Modification of C, O, and N Groups for Oxygen Reduction Reaction on an Electrochemically Stabilized Graphene Nanoribbon Surface. Journal of Physical Chemistry C, 2019, 123, 16308-16316.	3.1	24
60	Pd-Supported N/S-Codoped Graphene-Like Carbons Boost Quinoline Hydrogenation Activity. ACS Sustainable Chemistry and Engineering, 2019, 7, 11369-11376.	6.7	34
61	Rational design of multifunctional air electrodes for rechargeable Zn–Air batteries: Recent progress and future perspectives. Energy Storage Materials, 2019, 21, 253-286.	18.0	171
62	Chitosan-based layered carbon materials prepared via ionic-liquid-assisted hydrothermal carbonization and their performance study. Journal of the Taiwan Institute of Chemical Engineers, 2019, 101, 231-243.	5.3	25
63	Electrocatalyst derived from fungal hyphae and its excellent activity for electrochemical production of hydrogen peroxide. Electrochimica Acta, 2019, 308, 74-82.	5.2	33
64	Microwave-Assisted Synthesis of Co/CoO _x Supported on Earth-Abundant Coal-Derived Carbon for Electrocatalysis of Oxygen Evolution. Journal of the Electrochemical Society, 2019, 166, F479-F486.	2.9	17
65	Substrate participation ultrafast synthesis of amorphous NiFe nanosheets on iron foam at room temperature toward highly efficient oxygen evolution reaction. Journal of Energy Chemistry, 2019, 35, 197-203.	12.9	20
66	Transition metal coordinated framework porphyrin for electrocatalytic oxygen reduction. Chinese Chemical Letters, 2019, 30, 911-914.	9.0	54
67	Modified Nanocarbons for Catalysis. ChemCatChem, 2019, 11, 90-133.	3.7	66
68	A review of graphene-based 3D van der Waals hybrids and their energy applications. Nano Today, 2019, 25, 27-37.	11.9	59
69	Prospects and challenges of graphene based fuel cells. Journal of Energy Chemistry, 2019, 39, 217-234.	12.9	63
70	A 3D porous Ni-Zn/RGO catalyst with superaerophobic surface for high-performance hydrazine electrooxidation. Journal of Alloys and Compounds, 2019, 788, 1240-1245.	5.5	28
71	3D Hierarchical Porous Graphene-Based Energy Materials: Synthesis, Functionalization, and Application in Energy Storage and Conversion. Electrochemical Energy Reviews, 2019, 2, 332-371.	25.5	82
72	Electrogeneration of hydrogen peroxide using phosphorus-doped carbon nanotubes gas diffusion electrodes and its application in electro-Fenton. Journal of Electroanalytical Chemistry, 2019, 840, 400-408.	3.8	56
73	Mass-loading independent electrocatalyst with high performance for oxygen reduction reaction and Zn-air battery based on Co-N-codoped carbon nanotube assembled microspheres. Chemical Engineering Journal, 2019, 373, 734-743.	12.7	40
74	In-situ embedding zeolitic imidazolate framework derived Co–N–C bifunctional catalysts in carbon nanotube networks for flexible Zn–air batteries. Journal of Energy Chemistry, 2019, 38, 170-176.	12.9	55

#	Article	IF	CITATIONS
75	Carbon Nanomaterials for Energy and Biorelated Catalysis: Recent Advances and Looking Forward. ACS Central Science, 2019, 5, 389-408.	11.3	67
76	Noble metal-free two dimensional carbon-based electrocatalysts for water splitting. BMC Materials, 2019, 1, .	6.8	21
77	Defect-driven unique stability of Pt/carbon nanotubes for propane dehydrogenation. Applied Surface Science, 2019, 464, 146-152.	6.1	30
78	Electrosynthesis of hierarchical NiLa-layered double hydroxide electrode for efficient oxygen evolution reaction. Journal of Energy Chemistry, 2019, 33, 125-129.	12.9	24
79	Selective electrocatalytic CO2 reduction enabled by SnO2 nanoclusters. Journal of Energy Chemistry, 2019, 37, 93-96.	12.9	52
80	Nitrogen-Enriched Hollow Carbon Spheres Coupled with Efficient Co–Nx–C Species as Cathode Catalysts for Triiodide Reduction in Dye-Sensitized Solar Cells. ACS Sustainable Chemistry and Engineering, 2019, 7, 2679-2685.	6.7	15
81	P-doped hierarchical porous carbon aerogels derived from phenolic resins for high performance supercapacitor. Applied Surface Science, 2019, 475, 56-66.	6.1	119
82	Core-branch CoNi hydroxysulfides with versatilely regulated electronic and surface structures for superior oxygen evolution electrocatalysis. Journal of Energy Chemistry, 2019, 38, 8-14.	12.9	63
83	Sulfur, Nitrogen and Fluorine Tripleâ€Đoped Metalâ€Free Carbon Electrocatalysts for the Oxygen Reduction Reaction. ChemElectroChem, 2019, 6, 741-747.	3.4	33
84	From Waste to Wealth: From Kraft Lignin to Free-standing Supercapacitors. Carbon, 2019, 145, 470-480.	10.3	145
85	Synthesis of a MoS <i>_x</i> –O–PtO <i>_x</i> Electrocatalyst with High Hydrogen Evolution Activity Using a Sacrificial Counterâ€Electrode. Advanced Science, 2019, 6, 1801663.	11.2	21
86	Heterostructured MoC-MoP/N-doped carbon nanofibers as efficient electrocatalysts for hydrogen evolution reaction. Electrochimica Acta, 2019, 299, 708-716.	5.2	48
87	Carbon-based derivatives from metal-organic frameworks as cathode hosts for Li–S batteries. Journal of Energy Chemistry, 2019, 38, 94-113.	12.9	104
88	Application of nanoparticles in biofuels: An overview. Fuel, 2019, 237, 380-397.	6.4	268
89	Surface chemistry of nanocarbon: Characterization strategies from the viewpoint of catalysis and energy conversion. Carbon, 2019, 143, 915-936.	10.3	61
90	Hierarchical sulfur and nitrogen co-doped carbon nanocages as efficient bifunctional oxygen electrocatalysts for rechargeable Zn-air battery. Journal of Energy Chemistry, 2019, 34, 64-71.	12.9	69
91	Atomic Modulation and Structure Design of Carbons for Bifunctional Electrocatalysis in Metal–Air Batteries. Advanced Materials, 2019, 31, e1803800.	21.0	208
92	Electrocatalytic water splitting at nitrogen-doped carbon layers-encapsulated nickel cobalt selenide. Journal of Energy Chemistry, 2019, 34, 161-170.	12.9	31

#	Article	IF	CITATIONS
93	Reaction milling for scalable synthesis of N, P-codoped covalent organic polymers for metal-free bifunctional electrocatalysts. Chemical Engineering Journal, 2019, 358, 427-434.	12.7	44
94	Enhanced hydrogen evolution reaction over molybdenum carbide nanoparticles confined inside single-walled carbon nanotubes. Journal of Energy Chemistry, 2019, 28, 123-127.	12.9	55
95	Highly efficient electrocatalysts derived from carbon black supported non-precious metal macrocycle catalysts for oxygen reduction reaction. Journal of Energy Chemistry, 2019, 28, 73-78.	12.9	17
96	Engineering the HER catalytic behavior of heteroatom-doped molybdenum disulfide via versatile partial cation exchange. Journal of Energy Chemistry, 2020, 41, 15-19.	12.9	13
97	Metal-organic-framework-derived formation of Co–N-doped carbon materials for efficient oxygen reduction reaction. Journal of Energy Chemistry, 2020, 40, 137-143.	12.9	74
98	Hierarchically porous N-doped carbon derived from biomass as oxygen reduction electrocatalyst for high-performance Al–air battery. Journal of Energy Chemistry, 2020, 45, 119-125.	12.9	59
99	A general bimetal-ion adsorption strategy to prepare nickel single atom catalysts anchored on graphene for efficient oxygen evolution reaction. Journal of Energy Chemistry, 2020, 43, 52-57.	12.9	85
100	Cobalt Nanoparticles and Atomic Sites in Nitrogenâ€Doped Carbon Frameworks for Highly Sensitive Sensing of Hydrogen Peroxide. Small, 2020, 16, e1902860.	10.0	38
101	B-Site Doping in Lanthanum Cerate Nanomaterials for Water Electrocatalysis. Journal of the Electrochemical Society, 2020, 167, 026503.	2.9	13
102	Atomic Platinum Anchored on Fe-N-C Material for High Performance Oxygen Reduction Reaction. European Journal of Inorganic Chemistry, 2020, 2020, 165-168.	2.0	4
103	Electrochemical oxygen evolution reaction efficiently boosted by selective fluoridation of FeNi3 alloy/oxide hybrid. Journal of Energy Chemistry, 2020, 47, 166-171.	12.9	104
104	Construction of crystalline and amorphous interface between FeS2 and polyaniline for enhanced electrocatalytic activity. Applied Surface Science, 2020, 505, 144534.	6.1	6
105	Content-dependent electroactivity enhancement of nickel hexacyanoferrate/multi-walled carbon nanotubes electrocatalyst: Cost-efficient construction and promising application for alkaline water splitting. International Journal of Hydrogen Energy, 2020, 45, 2754-2764.	7.1	12
106	Highâ€Power Microbial Fuel Cells Based on a Carbon–Carbon Composite Air Cathode. Small, 2020, 16, e1905240.	10.0	15
107	3D Carbon Materials for Efficient Oxygen and Hydrogen Electrocatalysis. Advanced Energy Materials, 2020, 10, 1902494.	19.5	97
108	Heteroatom-doped carbon catalysts for zinc–air batteries: progress, mechanism, and opportunities. Energy and Environmental Science, 2020, 13, 4536-4563.	30.8	209
109	Defect Engineering of Carbonâ€based Electrocatalysts for Rechargeable Zincâ€air Batteries. Chemistry - an Asian Journal, 2020, 15, 3737-3751.	3.3	28
110	Seawater-based electrolyte for zinc–air batteries. Green Chemical Engineering, 2020, 1, 117-123.	6.3	24

#	Article	IF	CITATIONS
111	Cu-MOF-derived and porous Cu0.26V2O5@C composite cathode for aqueous zinc-ion batteries. Sustainable Materials and Technologies, 2020, 26, e00236.	3.3	13
112	Polyacrylamide hydrogel-derived three-dimensional hierarchical porous N,S co-doped carbon frameworks for electrochemical capacitors. New Journal of Chemistry, 2020, 44, 21279-21287.	2.8	2
113	One-step preparation of a N-CNTs@Ni foam electrode material with the co-production of H2 by catalytic reforming of N-containing compound of biomass tar. Fuel, 2020, 280, 118601.	6.4	9
114	Rational design of sustainable transition metal-based bifunctional electrocatalysts for oxygen reduction and evolution reactions. Sustainable Materials and Technologies, 2020, 25, e00204.	3.3	17
115	High dispersion of heteropolyacid nanoparticles on hydrothermally Cs-modified three-dimensionally ordered macroporous SiO2 with excellent selectivity in methacrolein oxidation. Chinese Journal of Chemical Engineering, 2020, 28, 2785-2791.	3.5	6
116	Electrospun Inorganic Nanofibers for Oxygen Electrocatalysis: Design, Fabrication, and Progress. Advanced Energy Materials, 2020, 10, 1902115.	19.5	111
117	Effect of surface oxygen groups in the electrochemical modification of multi-walled carbon nanotubes by 4-amino phenyl phosphonic acid. Carbon, 2020, 165, 328-339.	10.3	15
118	CoN C active sites-rich three-dimensional porous carbon nanofibers network derived from bacterial cellulose and bimetal-ZIFs as efficient multifunctional electrocatalyst for rechargeable Zn–air batteries. Journal of Energy Chemistry, 2020, 51, 323-332.	12.9	35
119	In-situ grown of polyaniline on defective mesoporous carbon as a high performance supercapacitor electrode material. Journal of Energy Storage, 2020, 30, 101429.	8.1	14
120	Structure evolution of oxygen removal from porous carbon for optimizing supercapacitor performance. Journal of Energy Chemistry, 2020, 51, 396-404.	12.9	71
121	NH3 plasma synthesis of N-doped activated carbon supported Pd catalysts with high catalytic activity and stability for HCOOH dehydrogenation. International Journal of Hydrogen Energy, 2020, 45, 21380-21391.	7.1	26
122	Upgrading of marine (fish and crustaceans) biowaste for high added-value molecules and bio(nano)-materials. Chemical Society Reviews, 2020, 49, 4527-4563.	38.1	93
123	Pyrazine–nitrogen–rich exfoliated C4N nanosheets as efficient metal–free polymeric catalysts for oxygen reduction reaction. Journal of Energy Chemistry, 2020, 49, 243-247.	12.9	24
124	Recent advances in hydrothermal carbonisation: from tailored carbon materials and biochemicals to applications and bioenergy. Green Chemistry, 2020, 22, 4747-4800.	9.0	136
125	Multiscale Construction of Bifunctional Electrocatalysts for Longâ€Lifespan Rechargeable Zinc–Air Batteries. Advanced Functional Materials, 2020, 30, 2003619.	14.9	70
126	A three-dimensional carbon electrode derived from bean sprout for supercapacitors. Ionics, 2020, 26, 5705-5714.	2.4	11
127	Nanoarray-structured nitrogen-doped graphite foil as the support of NiFe layered double hydroxides for enhancing oxygen evolution reaction. Journal of Power Sources, 2020, 469, 228419.	7.8	21
128	Metal-free carbocatalysis for electrochemical oxygen reduction reaction: Activity origin and mechanism. Journal of Energy Chemistry, 2020, 48, 308-321.	12.9	69

#	ARTICLE	IF	CITATIONS
129	Intermolecular electron modulation by P/O bridging in an IrO ₂ -CoPi catalyst to enhance the hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 8273-8280.	10.3	16
130	Recent progress on biomassâ€derived ecomaterials toward advanced rechargeable lithium batteries. EcoMat, 2020, 2, e12019.	11.9	117
131	Investigation of Transition Metal-Based (Mn, Co, Ni, Fe) Trimetallic Oxide Nanoparticles on N-doped Carbon Nanotubes as Bifunctional Catalysts for Zn-Air Batteries. Journal of the Electrochemical Society, 2020, 167, 040503.	2.9	16
132	MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chemical Society Reviews, 2020, 49, 1414-1448.	38.1	1,128
133	Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions. Materials Today, 2020, 36, 125-138.	14.2	308
134	Defect-Rich, Graphenelike Carbon Sheets Derived from Biomass as Efficient Electrocatalysts for Rechargeable Zinc–Air Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 2981-2989.	6.7	65
135	Practical fuel cells enabled by unprecedented oxygen reduction reaction on 3D nanostructured electrocatalysts. Journal of Energy Chemistry, 2020, 48, 107-108.	12.9	14
136	A general strategy for metal compound encapsulated into network-structured carbon as fast-charging alkali-metal ion battery anode. Energy Storage Materials, 2020, 29, 300-309.	18.0	19
137	Metal-free heteroatom-doped carbon-based catalysts for ORR: A critical assessment about the role of heteroatoms. Carbon, 2020, 165, 434-454.	10.3	231
138	Intrinsic Electrocatalytic Activity Regulation of M–N–C Singleâ€Atom Catalysts for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2021, 60, 4448-4463.	13.8	433
139	Intrinsische elektrokatalytische Aktivitästeuerung von Mâ€Nâ€Câ€Einzelatomâ€Katalysatoren für die Sauerstoffreduktionsreaktion. Angewandte Chemie, 2021, 133, 4496-4512.	2.0	40
140	Recent advances in defect electrocatalysts: Preparation and characterization. Journal of Energy Chemistry, 2021, 53, 208-225.	12.9	98
141	Recent advances in spinel-type electrocatalysts for bifunctional oxygen reduction and oxygen evolution reactions. Journal of Energy Chemistry, 2021, 53, 290-302.	12.9	154
142	Solid phase microwave-assisted fabrication of Fe-doped ZIF-8 for single-atom Fe-N-C electrocatalysts on oxygen reduction. Journal of Energy Chemistry, 2021, 54, 579-586.	12.9	52
143	Multiscale structural engineering of atomically dispersed FeN4 electrocatalyst for proton exchange membrane fuel cells. Journal of Energy Chemistry, 2021, 58, 629-635.	12.9	28
144	FeCo alloy/N, S dual-doped carbon composite as a high-performance bifunctional catalyst in an advanced rechargeable zinc-air battery. Journal of Energy Chemistry, 2021, 56, 64-71.	12.9	110
145	Boosting electrocatalytic hydrogen generation by a renewable porous wood membrane decorated with Fe-doped NiP alloys. Journal of Energy Chemistry, 2021, 56, 23-33.	12.9	72
146	Insights into efficient transition metal-nitrogen/carbon oxygen reduction electrocatalysts. Journal of Energy Chemistry, 2021, 56, 470-485.	12.9	56

#	Article	IF	Citations
147	A lightweight nitrogen/oxygen dual-doping carbon nanofiber interlayer with meso-/micropores for high-performance lithium-sulfur batteries. Journal of Energy Chemistry, 2021, 58, 115-123.	12.9	21
148	Inherent mass transfer engineering of a Co, N co-doped carbon material towards oxygen reduction reaction. Journal of Energy Chemistry, 2021, 58, 391-396.	12.9	12
149	Nanocarbon-based metal-free and non-precious metal bifunctional electrocatalysts for oxygen reduction and oxygen evolution reactions. Journal of Energy Chemistry, 2021, 58, 610-628.	12.9	30
150	Vanadium Dopants: A Boon or a Bane for Molybdenum Dichalcogenidesâ€Based Electrocatalysis Applications. Advanced Functional Materials, 2021, 31, 2009083.	14.9	14
151	Modification strategies on transition metal-based electrocatalysts for efficient water splitting. Journal of Energy Chemistry, 2021, 58, 446-462.	12.9	88
152	In situ surface-confined fabrication of single atomic Fe-N4 on N-doped carbon nanoleaves for oxygen reduction reaction. Journal of Energy Chemistry, 2021, 59, 482-491.	12.9	38
153	A flexible carbon nanotube@V2O5 film as a high-capacity and durable cathode for zinc ion batteries. Journal of Energy Chemistry, 2021, 59, 126-133.	12.9	78
154	Transition metal/carbon hybrids for oxygen electrocatalysis in rechargeable <scp>zincâ€air</scp> batteries. EcoMat, 2021, 3, e12067.	11.9	48
155	Cobalt–Iron nanoparticles encapsulated in mesoporous carbon nanosheets: A one-pot synthesis of highly stable electrocatalysts for overall water splitting. International Journal of Hydrogen Energy, 2021, 46, 5234-5249.	7.1	35
156	Biomass carbon dualâ€doped with iron and nitrogen for highâ€performance electrocatalyst in water splitting. International Journal of Energy Research, 2021, 45, 8474-8483.	4.5	14
157	Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts. Chemical Society Reviews, 2021, 50, 7745-7778.	38.1	385
158	Recent Trends in the Use of Three-Dimensional Graphene Structures for Supercapacitors. ACS Applied Electronic Materials, 2021, 3, 574-596.	4.3	19
159	Recent advancements and challenges of nanomaterials application in biofuel production. , 2021, , 7-55.		3
160	Biochar Nanocomposite Derived from Watermelon Peels for Electrocatalytic Hydrogen Production. ACS Omega, 2021, 6, 2066-2073.	3.5	18
161	Multifunctional carbon-based metal-free catalysts for advanced energy conversion and storage. Cell Reports Physical Science, 2021, 2, 100328.	5.6	55
162	Cobalt porphyrins supported on carbon nanotubes as model catalysts of metal-N4/C sites for oxygen electrocatalysis. Journal of Energy Chemistry, 2021, 53, 77-81.	12.9	77
163	Melamine-assisted pyrolytic synthesis of bifunctional cobalt-based core–shell electrocatalysts for rechargeable zinc–air batteries. Journal of Energy Chemistry, 2021, 53, 364-371.	12.9	36
164	Understanding of Neighboring Feâ€N ₄ â€C and Coâ€N ₄ â€C Dual Active Centers for Oxygen Reduction Reaction. Advanced Functional Materials, 2021, 31, 2011289.	14.9	149

#	Article	IF	CITATIONS
165	Use of Lignin-Derived Carbon to Prepare Nickel-Based Electrocatalysts for Water Splitting. International Journal of Electrochemical Science, 0, , 210312.	1.3	2
166	The effects of different dimensional carbon additives on performance of PEMFC with low-Pt loading cathode catalytic layers. International Journal of Hydrogen Energy, 2021, 46, 15887-15895.	7.1	15
167	Molecular metal nanoclusters for ORR, HER and OER: Achievements, opportunities and challenges. International Journal of Hydrogen Energy, 2021, 46, 25771-25781.	7.1	56
168	Carbon-Based Composites as Electrocatalysts for Oxygen Evolution Reaction in Alkaline Media. Materials, 2021, 14, 4984.	2.9	23
169	Accurate machine learning models based on small dataset of energetic materials through spatial matrix featurization methods. Journal of Energy Chemistry, 2021, 63, 364-375.	12.9	7
170	Recent advances of layered double hydroxides–based bifunctional electrocatalysts for ORR and OER. Materials Today Chemistry, 2021, 21, 100488.	3.5	15
171	Photocatalytic Nanofiber Membranes for the Degradation of Micropollutants and Their Antimicrobial Activity: Recent Advances and Future Prospects. Membranes, 2021, 11, 678.	3.0	23
172	Nanostructured N-doped carbon materials derived from expandable biomass with superior electrocatalytic performance towards V2+/V3+ redox reaction for vanadium redox flow battery. Journal of Energy Chemistry, 2021, 59, 706-714.	12.9	72
173	Hierarchical CoNi-LDH nanosheet array with hydrogen vacancy for high-performance aqueous battery cathode. Journal of Energy Chemistry, 2022, 69, 9-15.	12.9	23
174	Cobalt coordination with pyridines in sulfurized polyacrylonitrile cathodes to form conductive pathways and catalytic M-N4S sites for accelerated Li-S kinetics. Journal of Energy Chemistry, 2021, 61, 170-178.	12.9	28
175	Homogeneous triple-phase interfaces enabling one-pot route to metal compound/carbon composites. Journal of Colloid and Interface Science, 2021, 599, 271-279.	9.4	3
176	Intrinsic defect-rich porous carbon nanosheets synthesized from potassium citrate toward advanced supercapacitors and microwave absorption. Carbon, 2021, 183, 176-186.	10.3	67
177	MoS2 on topological insulator Bi2Te3 thin films: Activation of the basal plane for hydrogen reduction. Journal of Energy Chemistry, 2021, 62, 516-522.	12.9	24
178	Preparation and application of 0D-2D nanomaterial hybrid heterostructures for energy applications. Materials Today Advances, 2021, 12, 100169.	5.2	20
179	Is it universal that the layered-spinel structure can improve electrochemical performance?. Journal of Energy Chemistry, 2022, 64, 344-353.	12.9	11
180	Confined Ni-In intermetallic alloy nanocatalyst with excellent coking resistance for methane dry reforming. Journal of Energy Chemistry, 2022, 65, 34-47.	12.9	96
181	Reduced formation of peroxide and radical species stabilises iron-based hybrid catalysts in polymer electrolyte membrane fuel cells. Journal of Energy Chemistry, 2022, 65, 433-438.	12.9	18
182	One-pot hydrothermal preparation of hierarchical manganese oxide nanorods for high-performance symmetric supercapacitors. Journal of Energy Chemistry, 2022, 65, 116-126.	12.9	101

#	Article	IF	CITATIONS
183	Role of transition metal oxides in g-C3N4-based heterojunctions for photocatalysis and supercapacitors. Journal of Energy Chemistry, 2022, 64, 214-235.	12.9	117
184	Biomass-derived bifunctional electrocatalysts for oxygen reduction and evolution reaction: A review. Journal of Energy Chemistry, 2022, 65, 149-172.	12.9	66
185	Nano-Confined Hybridization and Electrocatalytic Application Based on 3D Mesoporous Graphene Framework. Springer Theses, 2021, , 89-118.	0.1	0
187	Green synthesis of nanoparticles from microbes and their prospective applications. , 2021, , 283-298.		7
188	Self-assembled heteropolyacid on nitrogen-enriched carbon nanofiber for vanadium flow batteries. Nanoscale, 2018, 10, 13212-13222.	5.6	15
189	Recent advances in the design of a high performance metal–nitrogen–carbon catalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2021, 9, 22218-22247.	10.3	66
190	Ni2V2O7 dandelion microsphere for a high-performance electrocatalyst in water splitting. International Journal of Hydrogen Energy, 2021, 46, 39658-39664.	7.1	14
191	Covalent Organic Framework (COF)â€Based Hybrids for Electrocatalysis: Recent Advances and Perspectives. Small Methods, 2021, 5, e2100945.	8.6	36
192	Optimization of catalyst dosage and total volume for extendible stacked microbial fuel cell reactors using spacer. Journal of Power Sources, 2022, 517, 230697.	7.8	4
193	Carbon Based Electrocatalysts. , 2020, , 301-309.		0
194	Iron-based nanocomposites implanting in N, P Co-doped carbon nanosheets as efficient oxygen reduction electrocatalysts for Zn-Air batteries. Composites Communications, 2022, 29, 100994.	6.3	16
195	Conjugated Polymer/Graphene Oxide Nanocomposites—State-of-the-Art. Journal of Composites Science, 2021, 5, 292.	3.0	16
196	One–dimensional metal–organic frameworks for electrochemical applications. Advances in Colloid and Interface Science, 2021, 298, 102562.	14.7	45
197	Graphene: Structure, properties, preparation, modification, and applications. , 2022, , 1-24.		0
198	Amorphous phosphorus chalcogenide as an anode material for lithium-ion batteries with high capacity and long cycle life. Journal of Energy Chemistry, 2022, 68, 658-668.	12.9	15
199	Construction of single-atom copper sites with low coordination number for efficient CO ₂ electroreduction to CH ₄ . Journal of Materials Chemistry A, 2022, 10, 6187-6192.	10.3	24
200	ls proton a charge carrier for δ-MnO2 cathode in aqueous rechargeable magnesium-ion batteries?. Journal of Energy Chemistry, 2022, 68, 572-579.	12.9	17
201	Metal-organic frameworks derived transition metal phosphides for electrocatalytic water splitting. Journal of Energy Chemistry, 2022, 68, 494-520.	12.9	70

#	Article	IF	CITATIONS
202	Green heterogeneous catalysis. , 2022, , 193-242.		1
203	NiSe ₂ /FeSe ₂ heterostructured nanoparticles supported on rGO for efficient water electrolysis. Inorganic Chemistry Frontiers, 2022, 9, 448-457.	6.0	21
204	Shape memory polymer/graphene nanocomposites: State-of-the-art. E-Polymers, 2022, 22, 165-181.	3.0	25
205	CeO2 quantum dots embedded in 3D hierarchical porous foliaceous N-doped carbon as an efficient oxygen reduction electrocatalyst for metal-air battery. Journal of Alloys and Compounds, 2022, 905, 164063.	5.5	5
206	Utilizing waste duckweed from phytoremediation to synthesize highly efficient Fe N C catalysts for oxygen reduction reaction electrocatalysis. Science of the Total Environment, 2022, 819, 153115.	8.0	5
207	Smart Designs of Mo Based Electrocatalysts for Hydrogen Evolution Reaction. Catalysts, 2022, 12, 2.	3.5	8
208	Atomically Dispersed Transition Metal-Nitrogen-Carbon Bifunctional Oxygen Electrocatalysts for Zinc-Air Batteries: Recent Advances and Future Perspectives. Nano-Micro Letters, 2022, 14, 36.	27.0	117
209	Electrospinning research and products: The road and the way forward. Applied Physics Reviews, 2022, 9, .	11.3	50
210	Review of photocatalytic and photo-electrocatalytic reduction of CO2 on carbon supported films. International Journal of Hydrogen Energy, 2022, 47, 30908-30936.	7.1	16
211	A Comprehensive Understanding of Interlayer Engineering in Layered Manganese and Vanadium Cathodes for Aqueous Znâ€lon Batteries. Chemistry - an Asian Journal, 2022, 17, .	3.3	8
212	Metal-Free Pyrene-Based Conjugated Microporous Polymer Catalyst Bearing N- and S-Sites for Photoelectrochemical Oxygen Evolution Reaction. Frontiers in Chemistry, 2021, 9, 803860.	3.6	8
213	Designing Self-Supported Electrocatalysts for Electrochemical Water Splitting: Surface/Interface Engineering toward Enhanced Electrocatalytic Performance. ACS Applied Materials & Interfaces, 2021, 13, 59593-59617.	8.0	58
214	Developments and Perspectives on Robust Nano―and Microstructured Binderâ€Free Electrodes for Bifunctional Water Electrolysis and Beyond. Advanced Energy Materials, 2022, 12, .	19.5	63
215	Boosting the oxygen evolution reaction performance of wrinkled Mn(OH)2 via conductive activation with a carbon binder. Journal of Energy Chemistry, 2022, 71, 580-587.	12.9	11
216	In-situ characterizations for application in water splitting. , 2022, , 351-370.		0
217	Nonâ€Nobleâ€Metal Catalyst and Zn/Graphene Film for Lowâ€Cost and Ultraâ€Longâ€Durability Solidâ€&tate Zr Batteries in Harsh Electrolytes. Advanced Functional Materials, 2022, 32, .	nâ€Air 14.9	36
219	Mitigating the Jahn-Teller distortion driven by the spin-orbit coupling of lithium manganate cathode. Journal of Energy Chemistry, 2022, 72, 379-387.	12.9	11
220	High-Performance Hybrid Supercapacitor with Passionfruit-Derived Cathode and Anode. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
221	Metal chalcogenide-based photoelectrodes for photoelectrochemical water splitting. Journal of Energy Chemistry, 2022, 73, 189-213.	12.9	40
222	Free-standing and binder-free porous monolithic electrodes prepared via sol–gel processes. Journal of Sol-Gel Science and Technology, 2022, 103, 637-679.	2.4	5
223	Layered Double Hydroxide/Nanocarbon Composites as Heterogeneous Catalysts: A Review. ChemEngineering, 2022, 6, 45.	2.4	6
224	A novel 2D sulfide gallium heterojunction as a high-performance electrocatalyst for overall water splitting. Journal of Solid State Chemistry, 2022, , 123365.	2.9	11
225	Emerging Graphene Derivatives and Analogues for Efficient Energy Electrocatalysis. Advanced Functional Materials, 2022, 32, .	14.9	22
226	Influence of interfacial aspects on electromagnetic interference shielding performance of graphene reinforced nanocomposites: an overview. Composite Interfaces, 2022, 29, 1373-1396.	2.3	4
227	Zeolitic imidazolate framework-67 derived Al-Co-S hierarchical sheets bridged by nitrogen-doped graphene: Incorporation of PANI derived carbon nanorods for solid-state asymmetric supercapacitors. Journal of Energy Chemistry, 2022, 74, 429-445.	12.9	33
228	Interfacial design of silicon/carbon anodes for rechargeable batteries: A review. Journal of Energy Chemistry, 2023, 76, 576-600.	12.9	64
229	Quantitative manipulation of covalent bonds to obtain ultra-stable half/full Li-ion batteries via gel encapsulation-post annealing route. Composites Science and Technology, 2022, 229, 109668.	7.8	1
230	Applications of Nanotechnology in Biofuel Production. Clean Energy Production Technologies, 2022, , 297-332.	0.5	1
231	Ni3s2 Nanoparticles Encapsulated in S-Doped Biomass-Derived Hierarchically Porous Carbon as an Advanced Electrode for Excellent Hybrid Supercapacitors Performance. SSRN Electronic Journal, 0, , .	0.4	0
232	Regulated electronic structure and improved electrocatalytic performances of S-doped FeWO4 for rechargeable zinc-air batteries. Journal of Energy Chemistry, 2023, 76, 359-367.	12.9	45
233	Carbon Surface Chemistry: New Insight into the Old Story. Advanced Materials, 2022, 34, .	21.0	43
234	Rational Design of a Low-Dimensional and Metal-free Heterostructure for Efficient Water Oxidation: DFT and Experimental Studies. Langmuir, 2022, 38, 12562-12569.	3.5	1
235	Oxidation Behavior of Glassy Carbon in Acidic Electrolyte. ChemElectroChem, 2022, 9, .	3.4	5
236	Self-sacrificial growth of hierarchical P(Ni, Co, Fe) for enhanced asymmetric supercapacitors and oxygen evolution reactions. Electrochimica Acta, 2023, 438, 141582.	5.2	10
237	A state-of-the-art review on carbon quantum dots: Prospective, advances, zebrafish biocompatibility and bioimaging in vivo and bibliometric analysis. Sustainable Materials and Technologies, 2023, 35, e00529.	3.3	3
238	Heteroatoms-Doped Carbon Nanotubes for Energy Applications. , 2022, , 485-523.		0

#	Article	IF	CITATIONS
239	Rareâ€Earth Lanthanum Tailoring Mott–Schottky Heterojunction by Sulfur Vacancy Modification as a Bifunctional Electrocatalyst for Zinc–Air Battery. Small Structures, 2023, 4, .	12.0	8
240	Recent progress in carbon-based electrochemical catalysts: From structure design to potential applications. , 2023, 2, e9120047.		33
241	Synthesis and Characterization of Hybrid Materials Derived from Conjugated Copolymers and Reduced Graphene Oxide. Polymers, 2022, 14, 5292.	4.5	4
242	Polymer/graphene nanocomposite for corrosion protection application: From design to technical trends. Polymer-Plastics Technology and Materials, 2022, 61, 1521-1543.	1.3	3
243	Cathode Materials for Secondary Zinc-Air Batteries. , 2023, , 67-156.		0
244	Manufacturing Strategies for Graphene Derivative Nanocomposites—Current Status and Fruitions. Nanomanufacturing, 2023, 3, 1-19.	3.6	5
245	In situ synthesis of two-dimensional graphene-like nickel-molybdenum nitride as efficient electrocatalyst towards water-splitting under large-current density. Journal of Colloid and Interface Science, 2023, 637, 104-111.	9.4	9
246	Selectively converting CO2 to HCOOH on Cu-alloys integrated in hematite-driven artificial photosynthetic cells. Journal of Energy Chemistry, 2023, 79, 601-610.	12.9	8
247	Fullerene: Fundamentals and state-of-the-art. , 2023, , 1-19.		0
248	Carboxyl induced ultrahigh defects and boron/nitrogen active centers in cobalt-embedded hierarchically porous carbon nanofibers: The stable oxygen reduction reaction catalysis in acid. Journal of Colloid and Interface Science, 2023, 637, 291-304.	9.4	9
249	Understanding the influence of bending on OER activity in metal phthalocyanines: A first-principles study. Applied Surface Science, 2023, 618, 156582.	6.1	6
250	Phase separation-hydrogen etching-derived Cu-decorated Cu-Mn bimetallic oxides with oxygen vacancies boosting superior sodium-ion storage kinetics. Journal of Energy Chemistry, 2023, 80, 163-173.	12.9	2
251	Electrocatalytic oxygen evolution activities of metal chalcogenides and phosphides: Fundamentals, origins, and future strategies. Journal of Energy Chemistry, 2023, 81, 167-191.	12.9	31
252	Preparation of porous carbon spheres and their application as anode materials for lithium-ion batteries: A review. Materials Today Nano, 2023, 22, 100321.	4.6	7
253	Interface engineering Ni/Ni12P5@CNx Mott-Schottky heterojunction tailoring electrocatalytic pathways for zinc-air battery. Journal of Colloid and Interface Science, 2023, 642, 439-446.	9.4	8
254	Deciphering engineering principle of three-phase interface for advanced gas-involved electrochemical reactions. Journal of Energy Chemistry, 2023, 80, 302-323.	12.9	11
255	Ni3S2 nanoparticles encapsulated in S-doped biomass-derived hierarchically porous carbon as an advanced electrode for excellent hybrid supercapacitors performance. Industrial Crops and Products, 2023, 194, 116320.	5.2	15
256	Ultrasmall CoS nanoparticles embedded in heteroatom-doped carbon for sodium-ion batteries and mechanism explorations via synchrotron X-ray techniques. Journal of Energy Chemistry, 2023, 79, 373-381.	12.9	16

#	Article	IF	CITATIONS
257	Graphene Nanocomposites in Space Sector—Fundamentals and Advancements. Journal of Carbon Research, 2023, 9, 29.	2.7	5
258	Two-Dimensional Mesoporous Materials for Energy Storage and Conversion: Current Status, Chemical Synthesis and Challenging Perspectives. Electrochemical Energy Reviews, 2023, 6, .	25.5	15
259	Halogen chlorine triggered oxygen vacancy-rich Ni(OH)2 with enhanced reaction kinetics for pseudocapacitive energy storage. Journal of Energy Chemistry, 2023, 82, 296-306.	12.9	6
260	Electrosynthesis of αâ€Amino Acids from NO and other NO _{<i>x</i>} species over CoFe alloyâ€decorated Selfâ€standing Carbon Fiber Membranes. Angewandte Chemie, 2023, 135, .	2.0	2
261	Electrosynthesis of αâ€Amino Acids from NO and other NO _{<i>x</i>} species over CoFe alloyâ€decorated Selfâ€standing Carbon Fiber Membranes. Angewandte Chemie - International Edition, 2023, 62, .	13.8	18
262	Practical Classification of Catalysts for Oxygen Reduction Reactions: Optimization Strategies and Mechanistic Analysis. Advanced Functional Materials, 2023, 33, .	14.9	5
263	Integrating thermal energy storage and microwave absorption in phase change material-encapsulated core-sheath MoS2@CNTs. Journal of Energy Chemistry, 2023, 84, 41-49.	12.9	15
264	Tuning the charge distribution and crystal field of iron single atoms via iron oxide integration for enhanced oxygen reduction reaction in zinc-air batteries. Journal of Energy Chemistry, 2023, 85, 154-163.	12.9	8
265	Combining descriptor-based analyses and mean-field modeling of the electrochemical interface to comprehend trends of catalytic processes at the solid/liquid interface. Journal of Energy Chemistry, 2023, 85, 288-290.	12.9	4
266	Mapping the research landscape of hydrogen production through electrocatalysis: A decade of progress and key trends. Renewable and Sustainable Energy Reviews, 2023, 184, 113490.	16.4	3
267	Graphene Nanocomposites as Innovative Materials for Energy Storage and Conversion—Design and Headways. International Journal of Molecular Sciences, 2023, 24, 11593.	4.1	4
268	Nanocomposite Nanofibers of Graphene—Fundamentals and Systematic Developments. Journal of Composites Science, 2023, 7, 323.	3.0	1
269	Recent advances of metal oxide catalysts for electrochemical NH ₃ production from nitrogen-containing sources. Inorganic Chemistry Frontiers, 2023, 10, 5812-5838.	6.0	3
270	Engineering carbon nanomaterials toward high-efficiency bioelectrocatalysis for enzymatic biofuel cells: a review. Materials Chemistry Frontiers, 2023, 7, 5806-5825.	5.9	2
271	Graphene Nanocomposites for Electromagnetic Interference Shielding—Trends and Advancements. Journal of Composites Science, 2023, 7, 384.	3.0	2
272	The role, formation and characterization of LiC6 in composite lithium anodes. New Carbon Materials, 2023, 38, 641-655.	6.1	0
273	Advanced heterostructures as bifunctional electrocatalysts for overall water splitting - a review. Journal of Energy Storage, 2023, 73, 109127.	8.1	4
274	Research Progress in the Construction of Tungsten Based Catalysts and Their Electro Catalytic Performance for Hydrogen Production. Journal of Advances in Physical Chemistry, 2023, 12, 205-221.	0.1	0

	CITATION RE	ITATION REPORT		
	· · · · · · · · · · · · · · · · · · ·	15	0	
#	ARTICLE	IF	CITATIONS	
275	A review on electrospun nanofibers for photocatalysis: Upcoming technology for energy and environmental remediation applications. Applied Surface Science Advances, 2023, 18, 100471.	6.8	2	
276	Graphene footprints in energy storage systems—An overview. E-Prime, 2023, 6, 100361.	2.0	0	
277	Optimization Strategies of Covalent Organic Frameworks and Their Derivatives for Electrocatalytic Applications. Advanced Functional Materials, 0, , .	14.9	6	
278	Solution Combustion Synthesis of Ni-Based Nanocatalyst Using Ethylenediaminetetraacetic Acid and Nickel-Carbon Nanotube Growth Behavior. Materials, 2023, 16, 7191.	2.9	0	
279	A lignin–derived N-doped carbon-supported iron-based nanocomposite as high-efficiency oxygen reduction reaction electrocatalyst. International Journal of Biological Macromolecules, 2024, 257, 128317.	7.5	1	
280	Electronic structure and spin state regulation of vanadium nitride via a sulfur doping strategy toward flexible zinc-air batteries. Journal of Energy Chemistry, 2024, 89, 239-249.	12.9	4	
281	Metal-organic framework-derived cation regulation of metal sulfides for enhanced oxygen evolution activity. Chinese Journal of Catalysis, 2023, 54, 290-297.	14.0	2	
282	Silver ion in combination intercalation/deintercalation reaction of aqueous zinc-ion batteries. Journal of Materials Science, 2023, 58, 12008-12019.	3.7	0	
283	Review of electrocatalytic reduction of CO2 on carbon supported films. International Journal of Hydrogen Energy, 2024, 57, 450-472.	7.1	0	
284	Nanocomposite nanofibrous membranes of graphene and graphene oxide: water remediation potential. Pure and Applied Chemistry, 2024, .	1.9	0	
285	Graphene-MOF hybrids in high-tech energy devices—present and future advances. , 2024, 5, 100150.		0	
286	A review on carbon material-metal oxide-conducting polymer and ionic liquid as electrode materials for energy storage in supercapacitors. Ionics, 2024, 30, 1857-1870.	2.4	1	
287	Operando Studies of Bismuth Nanoparticles Embedded in N, Oâ€Doped Porous Carbon for Highâ€Performance Potassiumâ€Ion Hybrid Capacitor. Small, 0, , .	10.0	0	